]> git.proxmox.com Git - qemu.git/blob - hw/ppc.c
qxl: create slots on post_load in vga state
[qemu.git] / hw / ppc.c
1 /*
2 * QEMU generic PowerPC hardware System Emulator
3 *
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw.h"
25 #include "ppc.h"
26 #include "qemu-timer.h"
27 #include "sysemu.h"
28 #include "nvram.h"
29 #include "qemu-log.h"
30 #include "loader.h"
31 #include "kvm.h"
32 #include "kvm_ppc.h"
33
34 //#define PPC_DEBUG_IRQ
35 //#define PPC_DEBUG_TB
36
37 #ifdef PPC_DEBUG_IRQ
38 # define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
39 #else
40 # define LOG_IRQ(...) do { } while (0)
41 #endif
42
43
44 #ifdef PPC_DEBUG_TB
45 # define LOG_TB(...) qemu_log(__VA_ARGS__)
46 #else
47 # define LOG_TB(...) do { } while (0)
48 #endif
49
50 static void cpu_ppc_tb_stop (CPUState *env);
51 static void cpu_ppc_tb_start (CPUState *env);
52
53 void ppc_set_irq(CPUState *env, int n_IRQ, int level)
54 {
55 unsigned int old_pending = env->pending_interrupts;
56
57 if (level) {
58 env->pending_interrupts |= 1 << n_IRQ;
59 cpu_interrupt(env, CPU_INTERRUPT_HARD);
60 } else {
61 env->pending_interrupts &= ~(1 << n_IRQ);
62 if (env->pending_interrupts == 0)
63 cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
64 }
65
66 if (old_pending != env->pending_interrupts) {
67 #ifdef CONFIG_KVM
68 kvmppc_set_interrupt(env, n_IRQ, level);
69 #endif
70 }
71
72 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
73 "req %08x\n", __func__, env, n_IRQ, level,
74 env->pending_interrupts, env->interrupt_request);
75 }
76
77 /* PowerPC 6xx / 7xx internal IRQ controller */
78 static void ppc6xx_set_irq (void *opaque, int pin, int level)
79 {
80 CPUState *env = opaque;
81 int cur_level;
82
83 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
84 env, pin, level);
85 cur_level = (env->irq_input_state >> pin) & 1;
86 /* Don't generate spurious events */
87 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
88 switch (pin) {
89 case PPC6xx_INPUT_TBEN:
90 /* Level sensitive - active high */
91 LOG_IRQ("%s: %s the time base\n",
92 __func__, level ? "start" : "stop");
93 if (level) {
94 cpu_ppc_tb_start(env);
95 } else {
96 cpu_ppc_tb_stop(env);
97 }
98 case PPC6xx_INPUT_INT:
99 /* Level sensitive - active high */
100 LOG_IRQ("%s: set the external IRQ state to %d\n",
101 __func__, level);
102 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
103 break;
104 case PPC6xx_INPUT_SMI:
105 /* Level sensitive - active high */
106 LOG_IRQ("%s: set the SMI IRQ state to %d\n",
107 __func__, level);
108 ppc_set_irq(env, PPC_INTERRUPT_SMI, level);
109 break;
110 case PPC6xx_INPUT_MCP:
111 /* Negative edge sensitive */
112 /* XXX: TODO: actual reaction may depends on HID0 status
113 * 603/604/740/750: check HID0[EMCP]
114 */
115 if (cur_level == 1 && level == 0) {
116 LOG_IRQ("%s: raise machine check state\n",
117 __func__);
118 ppc_set_irq(env, PPC_INTERRUPT_MCK, 1);
119 }
120 break;
121 case PPC6xx_INPUT_CKSTP_IN:
122 /* Level sensitive - active low */
123 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
124 /* XXX: Note that the only way to restart the CPU is to reset it */
125 if (level) {
126 LOG_IRQ("%s: stop the CPU\n", __func__);
127 env->halted = 1;
128 }
129 break;
130 case PPC6xx_INPUT_HRESET:
131 /* Level sensitive - active low */
132 if (level) {
133 LOG_IRQ("%s: reset the CPU\n", __func__);
134 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
135 /* XXX: TOFIX */
136 #if 0
137 cpu_reset(env);
138 #else
139 qemu_system_reset_request();
140 #endif
141 }
142 break;
143 case PPC6xx_INPUT_SRESET:
144 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
145 __func__, level);
146 ppc_set_irq(env, PPC_INTERRUPT_RESET, level);
147 break;
148 default:
149 /* Unknown pin - do nothing */
150 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
151 return;
152 }
153 if (level)
154 env->irq_input_state |= 1 << pin;
155 else
156 env->irq_input_state &= ~(1 << pin);
157 }
158 }
159
160 void ppc6xx_irq_init (CPUState *env)
161 {
162 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, env,
163 PPC6xx_INPUT_NB);
164 }
165
166 #if defined(TARGET_PPC64)
167 /* PowerPC 970 internal IRQ controller */
168 static void ppc970_set_irq (void *opaque, int pin, int level)
169 {
170 CPUState *env = opaque;
171 int cur_level;
172
173 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
174 env, pin, level);
175 cur_level = (env->irq_input_state >> pin) & 1;
176 /* Don't generate spurious events */
177 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
178 switch (pin) {
179 case PPC970_INPUT_INT:
180 /* Level sensitive - active high */
181 LOG_IRQ("%s: set the external IRQ state to %d\n",
182 __func__, level);
183 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
184 break;
185 case PPC970_INPUT_THINT:
186 /* Level sensitive - active high */
187 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
188 level);
189 ppc_set_irq(env, PPC_INTERRUPT_THERM, level);
190 break;
191 case PPC970_INPUT_MCP:
192 /* Negative edge sensitive */
193 /* XXX: TODO: actual reaction may depends on HID0 status
194 * 603/604/740/750: check HID0[EMCP]
195 */
196 if (cur_level == 1 && level == 0) {
197 LOG_IRQ("%s: raise machine check state\n",
198 __func__);
199 ppc_set_irq(env, PPC_INTERRUPT_MCK, 1);
200 }
201 break;
202 case PPC970_INPUT_CKSTP:
203 /* Level sensitive - active low */
204 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
205 if (level) {
206 LOG_IRQ("%s: stop the CPU\n", __func__);
207 env->halted = 1;
208 } else {
209 LOG_IRQ("%s: restart the CPU\n", __func__);
210 env->halted = 0;
211 qemu_cpu_kick(env);
212 }
213 break;
214 case PPC970_INPUT_HRESET:
215 /* Level sensitive - active low */
216 if (level) {
217 #if 0 // XXX: TOFIX
218 LOG_IRQ("%s: reset the CPU\n", __func__);
219 cpu_reset(env);
220 #endif
221 }
222 break;
223 case PPC970_INPUT_SRESET:
224 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
225 __func__, level);
226 ppc_set_irq(env, PPC_INTERRUPT_RESET, level);
227 break;
228 case PPC970_INPUT_TBEN:
229 LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
230 level);
231 /* XXX: TODO */
232 break;
233 default:
234 /* Unknown pin - do nothing */
235 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
236 return;
237 }
238 if (level)
239 env->irq_input_state |= 1 << pin;
240 else
241 env->irq_input_state &= ~(1 << pin);
242 }
243 }
244
245 void ppc970_irq_init (CPUState *env)
246 {
247 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, env,
248 PPC970_INPUT_NB);
249 }
250
251 /* POWER7 internal IRQ controller */
252 static void power7_set_irq (void *opaque, int pin, int level)
253 {
254 CPUState *env = opaque;
255
256 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
257 env, pin, level);
258
259 switch (pin) {
260 case POWER7_INPUT_INT:
261 /* Level sensitive - active high */
262 LOG_IRQ("%s: set the external IRQ state to %d\n",
263 __func__, level);
264 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
265 break;
266 default:
267 /* Unknown pin - do nothing */
268 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
269 return;
270 }
271 if (level) {
272 env->irq_input_state |= 1 << pin;
273 } else {
274 env->irq_input_state &= ~(1 << pin);
275 }
276 }
277
278 void ppcPOWER7_irq_init (CPUState *env)
279 {
280 env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, env,
281 POWER7_INPUT_NB);
282 }
283 #endif /* defined(TARGET_PPC64) */
284
285 /* PowerPC 40x internal IRQ controller */
286 static void ppc40x_set_irq (void *opaque, int pin, int level)
287 {
288 CPUState *env = opaque;
289 int cur_level;
290
291 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
292 env, pin, level);
293 cur_level = (env->irq_input_state >> pin) & 1;
294 /* Don't generate spurious events */
295 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
296 switch (pin) {
297 case PPC40x_INPUT_RESET_SYS:
298 if (level) {
299 LOG_IRQ("%s: reset the PowerPC system\n",
300 __func__);
301 ppc40x_system_reset(env);
302 }
303 break;
304 case PPC40x_INPUT_RESET_CHIP:
305 if (level) {
306 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
307 ppc40x_chip_reset(env);
308 }
309 break;
310 case PPC40x_INPUT_RESET_CORE:
311 /* XXX: TODO: update DBSR[MRR] */
312 if (level) {
313 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
314 ppc40x_core_reset(env);
315 }
316 break;
317 case PPC40x_INPUT_CINT:
318 /* Level sensitive - active high */
319 LOG_IRQ("%s: set the critical IRQ state to %d\n",
320 __func__, level);
321 ppc_set_irq(env, PPC_INTERRUPT_CEXT, level);
322 break;
323 case PPC40x_INPUT_INT:
324 /* Level sensitive - active high */
325 LOG_IRQ("%s: set the external IRQ state to %d\n",
326 __func__, level);
327 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
328 break;
329 case PPC40x_INPUT_HALT:
330 /* Level sensitive - active low */
331 if (level) {
332 LOG_IRQ("%s: stop the CPU\n", __func__);
333 env->halted = 1;
334 } else {
335 LOG_IRQ("%s: restart the CPU\n", __func__);
336 env->halted = 0;
337 qemu_cpu_kick(env);
338 }
339 break;
340 case PPC40x_INPUT_DEBUG:
341 /* Level sensitive - active high */
342 LOG_IRQ("%s: set the debug pin state to %d\n",
343 __func__, level);
344 ppc_set_irq(env, PPC_INTERRUPT_DEBUG, level);
345 break;
346 default:
347 /* Unknown pin - do nothing */
348 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
349 return;
350 }
351 if (level)
352 env->irq_input_state |= 1 << pin;
353 else
354 env->irq_input_state &= ~(1 << pin);
355 }
356 }
357
358 void ppc40x_irq_init (CPUState *env)
359 {
360 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
361 env, PPC40x_INPUT_NB);
362 }
363
364 /* PowerPC E500 internal IRQ controller */
365 static void ppce500_set_irq (void *opaque, int pin, int level)
366 {
367 CPUState *env = opaque;
368 int cur_level;
369
370 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
371 env, pin, level);
372 cur_level = (env->irq_input_state >> pin) & 1;
373 /* Don't generate spurious events */
374 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
375 switch (pin) {
376 case PPCE500_INPUT_MCK:
377 if (level) {
378 LOG_IRQ("%s: reset the PowerPC system\n",
379 __func__);
380 qemu_system_reset_request();
381 }
382 break;
383 case PPCE500_INPUT_RESET_CORE:
384 if (level) {
385 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
386 ppc_set_irq(env, PPC_INTERRUPT_MCK, level);
387 }
388 break;
389 case PPCE500_INPUT_CINT:
390 /* Level sensitive - active high */
391 LOG_IRQ("%s: set the critical IRQ state to %d\n",
392 __func__, level);
393 ppc_set_irq(env, PPC_INTERRUPT_CEXT, level);
394 break;
395 case PPCE500_INPUT_INT:
396 /* Level sensitive - active high */
397 LOG_IRQ("%s: set the core IRQ state to %d\n",
398 __func__, level);
399 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
400 break;
401 case PPCE500_INPUT_DEBUG:
402 /* Level sensitive - active high */
403 LOG_IRQ("%s: set the debug pin state to %d\n",
404 __func__, level);
405 ppc_set_irq(env, PPC_INTERRUPT_DEBUG, level);
406 break;
407 default:
408 /* Unknown pin - do nothing */
409 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
410 return;
411 }
412 if (level)
413 env->irq_input_state |= 1 << pin;
414 else
415 env->irq_input_state &= ~(1 << pin);
416 }
417 }
418
419 void ppce500_irq_init (CPUState *env)
420 {
421 env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
422 env, PPCE500_INPUT_NB);
423 }
424 /*****************************************************************************/
425 /* PowerPC time base and decrementer emulation */
426
427 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
428 {
429 /* TB time in tb periods */
430 return muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec()) + tb_offset;
431 }
432
433 uint64_t cpu_ppc_load_tbl (CPUState *env)
434 {
435 ppc_tb_t *tb_env = env->tb_env;
436 uint64_t tb;
437
438 if (kvm_enabled()) {
439 return env->spr[SPR_TBL];
440 }
441
442 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->tb_offset);
443 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
444
445 return tb;
446 }
447
448 static inline uint32_t _cpu_ppc_load_tbu(CPUState *env)
449 {
450 ppc_tb_t *tb_env = env->tb_env;
451 uint64_t tb;
452
453 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->tb_offset);
454 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
455
456 return tb >> 32;
457 }
458
459 uint32_t cpu_ppc_load_tbu (CPUState *env)
460 {
461 if (kvm_enabled()) {
462 return env->spr[SPR_TBU];
463 }
464
465 return _cpu_ppc_load_tbu(env);
466 }
467
468 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
469 int64_t *tb_offsetp, uint64_t value)
470 {
471 *tb_offsetp = value - muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec());
472 LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
473 __func__, value, *tb_offsetp);
474 }
475
476 void cpu_ppc_store_tbl (CPUState *env, uint32_t value)
477 {
478 ppc_tb_t *tb_env = env->tb_env;
479 uint64_t tb;
480
481 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->tb_offset);
482 tb &= 0xFFFFFFFF00000000ULL;
483 cpu_ppc_store_tb(tb_env, qemu_get_clock_ns(vm_clock),
484 &tb_env->tb_offset, tb | (uint64_t)value);
485 }
486
487 static inline void _cpu_ppc_store_tbu(CPUState *env, uint32_t value)
488 {
489 ppc_tb_t *tb_env = env->tb_env;
490 uint64_t tb;
491
492 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->tb_offset);
493 tb &= 0x00000000FFFFFFFFULL;
494 cpu_ppc_store_tb(tb_env, qemu_get_clock_ns(vm_clock),
495 &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
496 }
497
498 void cpu_ppc_store_tbu (CPUState *env, uint32_t value)
499 {
500 _cpu_ppc_store_tbu(env, value);
501 }
502
503 uint64_t cpu_ppc_load_atbl (CPUState *env)
504 {
505 ppc_tb_t *tb_env = env->tb_env;
506 uint64_t tb;
507
508 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->atb_offset);
509 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
510
511 return tb;
512 }
513
514 uint32_t cpu_ppc_load_atbu (CPUState *env)
515 {
516 ppc_tb_t *tb_env = env->tb_env;
517 uint64_t tb;
518
519 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->atb_offset);
520 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
521
522 return tb >> 32;
523 }
524
525 void cpu_ppc_store_atbl (CPUState *env, uint32_t value)
526 {
527 ppc_tb_t *tb_env = env->tb_env;
528 uint64_t tb;
529
530 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->atb_offset);
531 tb &= 0xFFFFFFFF00000000ULL;
532 cpu_ppc_store_tb(tb_env, qemu_get_clock_ns(vm_clock),
533 &tb_env->atb_offset, tb | (uint64_t)value);
534 }
535
536 void cpu_ppc_store_atbu (CPUState *env, uint32_t value)
537 {
538 ppc_tb_t *tb_env = env->tb_env;
539 uint64_t tb;
540
541 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->atb_offset);
542 tb &= 0x00000000FFFFFFFFULL;
543 cpu_ppc_store_tb(tb_env, qemu_get_clock_ns(vm_clock),
544 &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
545 }
546
547 static void cpu_ppc_tb_stop (CPUState *env)
548 {
549 ppc_tb_t *tb_env = env->tb_env;
550 uint64_t tb, atb, vmclk;
551
552 /* If the time base is already frozen, do nothing */
553 if (tb_env->tb_freq != 0) {
554 vmclk = qemu_get_clock_ns(vm_clock);
555 /* Get the time base */
556 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
557 /* Get the alternate time base */
558 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
559 /* Store the time base value (ie compute the current offset) */
560 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
561 /* Store the alternate time base value (compute the current offset) */
562 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
563 /* Set the time base frequency to zero */
564 tb_env->tb_freq = 0;
565 /* Now, the time bases are frozen to tb_offset / atb_offset value */
566 }
567 }
568
569 static void cpu_ppc_tb_start (CPUState *env)
570 {
571 ppc_tb_t *tb_env = env->tb_env;
572 uint64_t tb, atb, vmclk;
573
574 /* If the time base is not frozen, do nothing */
575 if (tb_env->tb_freq == 0) {
576 vmclk = qemu_get_clock_ns(vm_clock);
577 /* Get the time base from tb_offset */
578 tb = tb_env->tb_offset;
579 /* Get the alternate time base from atb_offset */
580 atb = tb_env->atb_offset;
581 /* Restore the tb frequency from the decrementer frequency */
582 tb_env->tb_freq = tb_env->decr_freq;
583 /* Store the time base value */
584 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
585 /* Store the alternate time base value */
586 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
587 }
588 }
589
590 static inline uint32_t _cpu_ppc_load_decr(CPUState *env, uint64_t next)
591 {
592 ppc_tb_t *tb_env = env->tb_env;
593 uint32_t decr;
594 int64_t diff;
595
596 diff = next - qemu_get_clock_ns(vm_clock);
597 if (diff >= 0) {
598 decr = muldiv64(diff, tb_env->decr_freq, get_ticks_per_sec());
599 } else if (tb_env->flags & PPC_TIMER_BOOKE) {
600 decr = 0;
601 } else {
602 decr = -muldiv64(-diff, tb_env->decr_freq, get_ticks_per_sec());
603 }
604 LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);
605
606 return decr;
607 }
608
609 uint32_t cpu_ppc_load_decr (CPUState *env)
610 {
611 ppc_tb_t *tb_env = env->tb_env;
612
613 if (kvm_enabled()) {
614 return env->spr[SPR_DECR];
615 }
616
617 return _cpu_ppc_load_decr(env, tb_env->decr_next);
618 }
619
620 uint32_t cpu_ppc_load_hdecr (CPUState *env)
621 {
622 ppc_tb_t *tb_env = env->tb_env;
623
624 return _cpu_ppc_load_decr(env, tb_env->hdecr_next);
625 }
626
627 uint64_t cpu_ppc_load_purr (CPUState *env)
628 {
629 ppc_tb_t *tb_env = env->tb_env;
630 uint64_t diff;
631
632 diff = qemu_get_clock_ns(vm_clock) - tb_env->purr_start;
633
634 return tb_env->purr_load + muldiv64(diff, tb_env->tb_freq, get_ticks_per_sec());
635 }
636
637 /* When decrementer expires,
638 * all we need to do is generate or queue a CPU exception
639 */
640 static inline void cpu_ppc_decr_excp(CPUState *env)
641 {
642 /* Raise it */
643 LOG_TB("raise decrementer exception\n");
644 ppc_set_irq(env, PPC_INTERRUPT_DECR, 1);
645 }
646
647 static inline void cpu_ppc_hdecr_excp(CPUState *env)
648 {
649 /* Raise it */
650 LOG_TB("raise decrementer exception\n");
651 ppc_set_irq(env, PPC_INTERRUPT_HDECR, 1);
652 }
653
654 static void __cpu_ppc_store_decr (CPUState *env, uint64_t *nextp,
655 struct QEMUTimer *timer,
656 void (*raise_excp)(CPUState *),
657 uint32_t decr, uint32_t value,
658 int is_excp)
659 {
660 ppc_tb_t *tb_env = env->tb_env;
661 uint64_t now, next;
662
663 LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
664 decr, value);
665 now = qemu_get_clock_ns(vm_clock);
666 next = now + muldiv64(value, get_ticks_per_sec(), tb_env->decr_freq);
667 if (is_excp) {
668 next += *nextp - now;
669 }
670 if (next == now) {
671 next++;
672 }
673 *nextp = next;
674 /* Adjust timer */
675 qemu_mod_timer(timer, next);
676
677 /* If we set a negative value and the decrementer was positive, raise an
678 * exception.
679 */
680 if ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED)
681 && (value & 0x80000000)
682 && !(decr & 0x80000000)) {
683 (*raise_excp)(env);
684 }
685 }
686
687 static inline void _cpu_ppc_store_decr(CPUState *env, uint32_t decr,
688 uint32_t value, int is_excp)
689 {
690 ppc_tb_t *tb_env = env->tb_env;
691
692 __cpu_ppc_store_decr(env, &tb_env->decr_next, tb_env->decr_timer,
693 &cpu_ppc_decr_excp, decr, value, is_excp);
694 }
695
696 void cpu_ppc_store_decr (CPUState *env, uint32_t value)
697 {
698 _cpu_ppc_store_decr(env, cpu_ppc_load_decr(env), value, 0);
699 }
700
701 static void cpu_ppc_decr_cb (void *opaque)
702 {
703 _cpu_ppc_store_decr(opaque, 0x00000000, 0xFFFFFFFF, 1);
704 }
705
706 static inline void _cpu_ppc_store_hdecr(CPUState *env, uint32_t hdecr,
707 uint32_t value, int is_excp)
708 {
709 ppc_tb_t *tb_env = env->tb_env;
710
711 if (tb_env->hdecr_timer != NULL) {
712 __cpu_ppc_store_decr(env, &tb_env->hdecr_next, tb_env->hdecr_timer,
713 &cpu_ppc_hdecr_excp, hdecr, value, is_excp);
714 }
715 }
716
717 void cpu_ppc_store_hdecr (CPUState *env, uint32_t value)
718 {
719 _cpu_ppc_store_hdecr(env, cpu_ppc_load_hdecr(env), value, 0);
720 }
721
722 static void cpu_ppc_hdecr_cb (void *opaque)
723 {
724 _cpu_ppc_store_hdecr(opaque, 0x00000000, 0xFFFFFFFF, 1);
725 }
726
727 void cpu_ppc_store_purr (CPUState *env, uint64_t value)
728 {
729 ppc_tb_t *tb_env = env->tb_env;
730
731 tb_env->purr_load = value;
732 tb_env->purr_start = qemu_get_clock_ns(vm_clock);
733 }
734
735 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
736 {
737 CPUState *env = opaque;
738 ppc_tb_t *tb_env = env->tb_env;
739
740 tb_env->tb_freq = freq;
741 tb_env->decr_freq = freq;
742 /* There is a bug in Linux 2.4 kernels:
743 * if a decrementer exception is pending when it enables msr_ee at startup,
744 * it's not ready to handle it...
745 */
746 _cpu_ppc_store_decr(env, 0xFFFFFFFF, 0xFFFFFFFF, 0);
747 _cpu_ppc_store_hdecr(env, 0xFFFFFFFF, 0xFFFFFFFF, 0);
748 cpu_ppc_store_purr(env, 0x0000000000000000ULL);
749 }
750
751 /* Set up (once) timebase frequency (in Hz) */
752 clk_setup_cb cpu_ppc_tb_init (CPUState *env, uint32_t freq)
753 {
754 ppc_tb_t *tb_env;
755
756 tb_env = g_malloc0(sizeof(ppc_tb_t));
757 env->tb_env = tb_env;
758 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
759 /* Create new timer */
760 tb_env->decr_timer = qemu_new_timer_ns(vm_clock, &cpu_ppc_decr_cb, env);
761 if (0) {
762 /* XXX: find a suitable condition to enable the hypervisor decrementer
763 */
764 tb_env->hdecr_timer = qemu_new_timer_ns(vm_clock, &cpu_ppc_hdecr_cb, env);
765 } else {
766 tb_env->hdecr_timer = NULL;
767 }
768 cpu_ppc_set_tb_clk(env, freq);
769
770 return &cpu_ppc_set_tb_clk;
771 }
772
773 /* Specific helpers for POWER & PowerPC 601 RTC */
774 #if 0
775 static clk_setup_cb cpu_ppc601_rtc_init (CPUState *env)
776 {
777 return cpu_ppc_tb_init(env, 7812500);
778 }
779 #endif
780
781 void cpu_ppc601_store_rtcu (CPUState *env, uint32_t value)
782 {
783 _cpu_ppc_store_tbu(env, value);
784 }
785
786 uint32_t cpu_ppc601_load_rtcu (CPUState *env)
787 {
788 return _cpu_ppc_load_tbu(env);
789 }
790
791 void cpu_ppc601_store_rtcl (CPUState *env, uint32_t value)
792 {
793 cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
794 }
795
796 uint32_t cpu_ppc601_load_rtcl (CPUState *env)
797 {
798 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
799 }
800
801 /*****************************************************************************/
802 /* PowerPC 40x timers */
803
804 /* PIT, FIT & WDT */
805 typedef struct ppc40x_timer_t ppc40x_timer_t;
806 struct ppc40x_timer_t {
807 uint64_t pit_reload; /* PIT auto-reload value */
808 uint64_t fit_next; /* Tick for next FIT interrupt */
809 struct QEMUTimer *fit_timer;
810 uint64_t wdt_next; /* Tick for next WDT interrupt */
811 struct QEMUTimer *wdt_timer;
812
813 /* 405 have the PIT, 440 have a DECR. */
814 unsigned int decr_excp;
815 };
816
817 /* Fixed interval timer */
818 static void cpu_4xx_fit_cb (void *opaque)
819 {
820 CPUState *env;
821 ppc_tb_t *tb_env;
822 ppc40x_timer_t *ppc40x_timer;
823 uint64_t now, next;
824
825 env = opaque;
826 tb_env = env->tb_env;
827 ppc40x_timer = tb_env->opaque;
828 now = qemu_get_clock_ns(vm_clock);
829 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
830 case 0:
831 next = 1 << 9;
832 break;
833 case 1:
834 next = 1 << 13;
835 break;
836 case 2:
837 next = 1 << 17;
838 break;
839 case 3:
840 next = 1 << 21;
841 break;
842 default:
843 /* Cannot occur, but makes gcc happy */
844 return;
845 }
846 next = now + muldiv64(next, get_ticks_per_sec(), tb_env->tb_freq);
847 if (next == now)
848 next++;
849 qemu_mod_timer(ppc40x_timer->fit_timer, next);
850 env->spr[SPR_40x_TSR] |= 1 << 26;
851 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1)
852 ppc_set_irq(env, PPC_INTERRUPT_FIT, 1);
853 LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
854 (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
855 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
856 }
857
858 /* Programmable interval timer */
859 static void start_stop_pit (CPUState *env, ppc_tb_t *tb_env, int is_excp)
860 {
861 ppc40x_timer_t *ppc40x_timer;
862 uint64_t now, next;
863
864 ppc40x_timer = tb_env->opaque;
865 if (ppc40x_timer->pit_reload <= 1 ||
866 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
867 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
868 /* Stop PIT */
869 LOG_TB("%s: stop PIT\n", __func__);
870 qemu_del_timer(tb_env->decr_timer);
871 } else {
872 LOG_TB("%s: start PIT %016" PRIx64 "\n",
873 __func__, ppc40x_timer->pit_reload);
874 now = qemu_get_clock_ns(vm_clock);
875 next = now + muldiv64(ppc40x_timer->pit_reload,
876 get_ticks_per_sec(), tb_env->decr_freq);
877 if (is_excp)
878 next += tb_env->decr_next - now;
879 if (next == now)
880 next++;
881 qemu_mod_timer(tb_env->decr_timer, next);
882 tb_env->decr_next = next;
883 }
884 }
885
886 static void cpu_4xx_pit_cb (void *opaque)
887 {
888 CPUState *env;
889 ppc_tb_t *tb_env;
890 ppc40x_timer_t *ppc40x_timer;
891
892 env = opaque;
893 tb_env = env->tb_env;
894 ppc40x_timer = tb_env->opaque;
895 env->spr[SPR_40x_TSR] |= 1 << 27;
896 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1)
897 ppc_set_irq(env, ppc40x_timer->decr_excp, 1);
898 start_stop_pit(env, tb_env, 1);
899 LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
900 "%016" PRIx64 "\n", __func__,
901 (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
902 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
903 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
904 ppc40x_timer->pit_reload);
905 }
906
907 /* Watchdog timer */
908 static void cpu_4xx_wdt_cb (void *opaque)
909 {
910 CPUState *env;
911 ppc_tb_t *tb_env;
912 ppc40x_timer_t *ppc40x_timer;
913 uint64_t now, next;
914
915 env = opaque;
916 tb_env = env->tb_env;
917 ppc40x_timer = tb_env->opaque;
918 now = qemu_get_clock_ns(vm_clock);
919 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
920 case 0:
921 next = 1 << 17;
922 break;
923 case 1:
924 next = 1 << 21;
925 break;
926 case 2:
927 next = 1 << 25;
928 break;
929 case 3:
930 next = 1 << 29;
931 break;
932 default:
933 /* Cannot occur, but makes gcc happy */
934 return;
935 }
936 next = now + muldiv64(next, get_ticks_per_sec(), tb_env->decr_freq);
937 if (next == now)
938 next++;
939 LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
940 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
941 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
942 case 0x0:
943 case 0x1:
944 qemu_mod_timer(ppc40x_timer->wdt_timer, next);
945 ppc40x_timer->wdt_next = next;
946 env->spr[SPR_40x_TSR] |= 1 << 31;
947 break;
948 case 0x2:
949 qemu_mod_timer(ppc40x_timer->wdt_timer, next);
950 ppc40x_timer->wdt_next = next;
951 env->spr[SPR_40x_TSR] |= 1 << 30;
952 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1)
953 ppc_set_irq(env, PPC_INTERRUPT_WDT, 1);
954 break;
955 case 0x3:
956 env->spr[SPR_40x_TSR] &= ~0x30000000;
957 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
958 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
959 case 0x0:
960 /* No reset */
961 break;
962 case 0x1: /* Core reset */
963 ppc40x_core_reset(env);
964 break;
965 case 0x2: /* Chip reset */
966 ppc40x_chip_reset(env);
967 break;
968 case 0x3: /* System reset */
969 ppc40x_system_reset(env);
970 break;
971 }
972 }
973 }
974
975 void store_40x_pit (CPUState *env, target_ulong val)
976 {
977 ppc_tb_t *tb_env;
978 ppc40x_timer_t *ppc40x_timer;
979
980 tb_env = env->tb_env;
981 ppc40x_timer = tb_env->opaque;
982 LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
983 ppc40x_timer->pit_reload = val;
984 start_stop_pit(env, tb_env, 0);
985 }
986
987 target_ulong load_40x_pit (CPUState *env)
988 {
989 return cpu_ppc_load_decr(env);
990 }
991
992 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
993 {
994 CPUState *env = opaque;
995 ppc_tb_t *tb_env = env->tb_env;
996
997 LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
998 freq);
999 tb_env->tb_freq = freq;
1000 tb_env->decr_freq = freq;
1001 /* XXX: we should also update all timers */
1002 }
1003
1004 clk_setup_cb ppc_40x_timers_init (CPUState *env, uint32_t freq,
1005 unsigned int decr_excp)
1006 {
1007 ppc_tb_t *tb_env;
1008 ppc40x_timer_t *ppc40x_timer;
1009
1010 tb_env = g_malloc0(sizeof(ppc_tb_t));
1011 env->tb_env = tb_env;
1012 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1013 ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1014 tb_env->tb_freq = freq;
1015 tb_env->decr_freq = freq;
1016 tb_env->opaque = ppc40x_timer;
1017 LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1018 if (ppc40x_timer != NULL) {
1019 /* We use decr timer for PIT */
1020 tb_env->decr_timer = qemu_new_timer_ns(vm_clock, &cpu_4xx_pit_cb, env);
1021 ppc40x_timer->fit_timer =
1022 qemu_new_timer_ns(vm_clock, &cpu_4xx_fit_cb, env);
1023 ppc40x_timer->wdt_timer =
1024 qemu_new_timer_ns(vm_clock, &cpu_4xx_wdt_cb, env);
1025 ppc40x_timer->decr_excp = decr_excp;
1026 }
1027
1028 return &ppc_40x_set_tb_clk;
1029 }
1030
1031 /*****************************************************************************/
1032 /* Embedded PowerPC Device Control Registers */
1033 typedef struct ppc_dcrn_t ppc_dcrn_t;
1034 struct ppc_dcrn_t {
1035 dcr_read_cb dcr_read;
1036 dcr_write_cb dcr_write;
1037 void *opaque;
1038 };
1039
1040 /* XXX: on 460, DCR addresses are 32 bits wide,
1041 * using DCRIPR to get the 22 upper bits of the DCR address
1042 */
1043 #define DCRN_NB 1024
1044 struct ppc_dcr_t {
1045 ppc_dcrn_t dcrn[DCRN_NB];
1046 int (*read_error)(int dcrn);
1047 int (*write_error)(int dcrn);
1048 };
1049
1050 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1051 {
1052 ppc_dcrn_t *dcr;
1053
1054 if (dcrn < 0 || dcrn >= DCRN_NB)
1055 goto error;
1056 dcr = &dcr_env->dcrn[dcrn];
1057 if (dcr->dcr_read == NULL)
1058 goto error;
1059 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1060
1061 return 0;
1062
1063 error:
1064 if (dcr_env->read_error != NULL)
1065 return (*dcr_env->read_error)(dcrn);
1066
1067 return -1;
1068 }
1069
1070 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1071 {
1072 ppc_dcrn_t *dcr;
1073
1074 if (dcrn < 0 || dcrn >= DCRN_NB)
1075 goto error;
1076 dcr = &dcr_env->dcrn[dcrn];
1077 if (dcr->dcr_write == NULL)
1078 goto error;
1079 (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1080
1081 return 0;
1082
1083 error:
1084 if (dcr_env->write_error != NULL)
1085 return (*dcr_env->write_error)(dcrn);
1086
1087 return -1;
1088 }
1089
1090 int ppc_dcr_register (CPUState *env, int dcrn, void *opaque,
1091 dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1092 {
1093 ppc_dcr_t *dcr_env;
1094 ppc_dcrn_t *dcr;
1095
1096 dcr_env = env->dcr_env;
1097 if (dcr_env == NULL)
1098 return -1;
1099 if (dcrn < 0 || dcrn >= DCRN_NB)
1100 return -1;
1101 dcr = &dcr_env->dcrn[dcrn];
1102 if (dcr->opaque != NULL ||
1103 dcr->dcr_read != NULL ||
1104 dcr->dcr_write != NULL)
1105 return -1;
1106 dcr->opaque = opaque;
1107 dcr->dcr_read = dcr_read;
1108 dcr->dcr_write = dcr_write;
1109
1110 return 0;
1111 }
1112
1113 int ppc_dcr_init (CPUState *env, int (*read_error)(int dcrn),
1114 int (*write_error)(int dcrn))
1115 {
1116 ppc_dcr_t *dcr_env;
1117
1118 dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1119 dcr_env->read_error = read_error;
1120 dcr_env->write_error = write_error;
1121 env->dcr_env = dcr_env;
1122
1123 return 0;
1124 }
1125
1126 /*****************************************************************************/
1127 /* Debug port */
1128 void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1129 {
1130 addr &= 0xF;
1131 switch (addr) {
1132 case 0:
1133 printf("%c", val);
1134 break;
1135 case 1:
1136 printf("\n");
1137 fflush(stdout);
1138 break;
1139 case 2:
1140 printf("Set loglevel to %04" PRIx32 "\n", val);
1141 cpu_set_log(val | 0x100);
1142 break;
1143 }
1144 }
1145
1146 /*****************************************************************************/
1147 /* NVRAM helpers */
1148 static inline uint32_t nvram_read (nvram_t *nvram, uint32_t addr)
1149 {
1150 return (*nvram->read_fn)(nvram->opaque, addr);;
1151 }
1152
1153 static inline void nvram_write (nvram_t *nvram, uint32_t addr, uint32_t val)
1154 {
1155 (*nvram->write_fn)(nvram->opaque, addr, val);
1156 }
1157
1158 void NVRAM_set_byte (nvram_t *nvram, uint32_t addr, uint8_t value)
1159 {
1160 nvram_write(nvram, addr, value);
1161 }
1162
1163 uint8_t NVRAM_get_byte (nvram_t *nvram, uint32_t addr)
1164 {
1165 return nvram_read(nvram, addr);
1166 }
1167
1168 void NVRAM_set_word (nvram_t *nvram, uint32_t addr, uint16_t value)
1169 {
1170 nvram_write(nvram, addr, value >> 8);
1171 nvram_write(nvram, addr + 1, value & 0xFF);
1172 }
1173
1174 uint16_t NVRAM_get_word (nvram_t *nvram, uint32_t addr)
1175 {
1176 uint16_t tmp;
1177
1178 tmp = nvram_read(nvram, addr) << 8;
1179 tmp |= nvram_read(nvram, addr + 1);
1180
1181 return tmp;
1182 }
1183
1184 void NVRAM_set_lword (nvram_t *nvram, uint32_t addr, uint32_t value)
1185 {
1186 nvram_write(nvram, addr, value >> 24);
1187 nvram_write(nvram, addr + 1, (value >> 16) & 0xFF);
1188 nvram_write(nvram, addr + 2, (value >> 8) & 0xFF);
1189 nvram_write(nvram, addr + 3, value & 0xFF);
1190 }
1191
1192 uint32_t NVRAM_get_lword (nvram_t *nvram, uint32_t addr)
1193 {
1194 uint32_t tmp;
1195
1196 tmp = nvram_read(nvram, addr) << 24;
1197 tmp |= nvram_read(nvram, addr + 1) << 16;
1198 tmp |= nvram_read(nvram, addr + 2) << 8;
1199 tmp |= nvram_read(nvram, addr + 3);
1200
1201 return tmp;
1202 }
1203
1204 void NVRAM_set_string (nvram_t *nvram, uint32_t addr,
1205 const char *str, uint32_t max)
1206 {
1207 int i;
1208
1209 for (i = 0; i < max && str[i] != '\0'; i++) {
1210 nvram_write(nvram, addr + i, str[i]);
1211 }
1212 nvram_write(nvram, addr + i, str[i]);
1213 nvram_write(nvram, addr + max - 1, '\0');
1214 }
1215
1216 int NVRAM_get_string (nvram_t *nvram, uint8_t *dst, uint16_t addr, int max)
1217 {
1218 int i;
1219
1220 memset(dst, 0, max);
1221 for (i = 0; i < max; i++) {
1222 dst[i] = NVRAM_get_byte(nvram, addr + i);
1223 if (dst[i] == '\0')
1224 break;
1225 }
1226
1227 return i;
1228 }
1229
1230 static uint16_t NVRAM_crc_update (uint16_t prev, uint16_t value)
1231 {
1232 uint16_t tmp;
1233 uint16_t pd, pd1, pd2;
1234
1235 tmp = prev >> 8;
1236 pd = prev ^ value;
1237 pd1 = pd & 0x000F;
1238 pd2 = ((pd >> 4) & 0x000F) ^ pd1;
1239 tmp ^= (pd1 << 3) | (pd1 << 8);
1240 tmp ^= pd2 | (pd2 << 7) | (pd2 << 12);
1241
1242 return tmp;
1243 }
1244
1245 static uint16_t NVRAM_compute_crc (nvram_t *nvram, uint32_t start, uint32_t count)
1246 {
1247 uint32_t i;
1248 uint16_t crc = 0xFFFF;
1249 int odd;
1250
1251 odd = count & 1;
1252 count &= ~1;
1253 for (i = 0; i != count; i++) {
1254 crc = NVRAM_crc_update(crc, NVRAM_get_word(nvram, start + i));
1255 }
1256 if (odd) {
1257 crc = NVRAM_crc_update(crc, NVRAM_get_byte(nvram, start + i) << 8);
1258 }
1259
1260 return crc;
1261 }
1262
1263 #define CMDLINE_ADDR 0x017ff000
1264
1265 int PPC_NVRAM_set_params (nvram_t *nvram, uint16_t NVRAM_size,
1266 const char *arch,
1267 uint32_t RAM_size, int boot_device,
1268 uint32_t kernel_image, uint32_t kernel_size,
1269 const char *cmdline,
1270 uint32_t initrd_image, uint32_t initrd_size,
1271 uint32_t NVRAM_image,
1272 int width, int height, int depth)
1273 {
1274 uint16_t crc;
1275
1276 /* Set parameters for Open Hack'Ware BIOS */
1277 NVRAM_set_string(nvram, 0x00, "QEMU_BIOS", 16);
1278 NVRAM_set_lword(nvram, 0x10, 0x00000002); /* structure v2 */
1279 NVRAM_set_word(nvram, 0x14, NVRAM_size);
1280 NVRAM_set_string(nvram, 0x20, arch, 16);
1281 NVRAM_set_lword(nvram, 0x30, RAM_size);
1282 NVRAM_set_byte(nvram, 0x34, boot_device);
1283 NVRAM_set_lword(nvram, 0x38, kernel_image);
1284 NVRAM_set_lword(nvram, 0x3C, kernel_size);
1285 if (cmdline) {
1286 /* XXX: put the cmdline in NVRAM too ? */
1287 pstrcpy_targphys("cmdline", CMDLINE_ADDR, RAM_size - CMDLINE_ADDR, cmdline);
1288 NVRAM_set_lword(nvram, 0x40, CMDLINE_ADDR);
1289 NVRAM_set_lword(nvram, 0x44, strlen(cmdline));
1290 } else {
1291 NVRAM_set_lword(nvram, 0x40, 0);
1292 NVRAM_set_lword(nvram, 0x44, 0);
1293 }
1294 NVRAM_set_lword(nvram, 0x48, initrd_image);
1295 NVRAM_set_lword(nvram, 0x4C, initrd_size);
1296 NVRAM_set_lword(nvram, 0x50, NVRAM_image);
1297
1298 NVRAM_set_word(nvram, 0x54, width);
1299 NVRAM_set_word(nvram, 0x56, height);
1300 NVRAM_set_word(nvram, 0x58, depth);
1301 crc = NVRAM_compute_crc(nvram, 0x00, 0xF8);
1302 NVRAM_set_word(nvram, 0xFC, crc);
1303
1304 return 0;
1305 }