]> git.proxmox.com Git - qemu.git/blob - hw/ppc.c
Merge remote branch 'kwolf/for-anthony' into staging
[qemu.git] / hw / ppc.c
1 /*
2 * QEMU generic PowerPC hardware System Emulator
3 *
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw.h"
25 #include "ppc.h"
26 #include "qemu-timer.h"
27 #include "sysemu.h"
28 #include "nvram.h"
29 #include "qemu-log.h"
30 #include "loader.h"
31
32 //#define PPC_DEBUG_IRQ
33 //#define PPC_DEBUG_TB
34
35 #ifdef PPC_DEBUG_IRQ
36 # define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
37 #else
38 # define LOG_IRQ(...) do { } while (0)
39 #endif
40
41
42 #ifdef PPC_DEBUG_TB
43 # define LOG_TB(...) qemu_log(__VA_ARGS__)
44 #else
45 # define LOG_TB(...) do { } while (0)
46 #endif
47
48 static void cpu_ppc_tb_stop (CPUState *env);
49 static void cpu_ppc_tb_start (CPUState *env);
50
51 static void ppc_set_irq (CPUState *env, int n_IRQ, int level)
52 {
53 if (level) {
54 env->pending_interrupts |= 1 << n_IRQ;
55 cpu_interrupt(env, CPU_INTERRUPT_HARD);
56 } else {
57 env->pending_interrupts &= ~(1 << n_IRQ);
58 if (env->pending_interrupts == 0)
59 cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
60 }
61 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
62 "req %08x\n", __func__, env, n_IRQ, level,
63 env->pending_interrupts, env->interrupt_request);
64 }
65
66 /* PowerPC 6xx / 7xx internal IRQ controller */
67 static void ppc6xx_set_irq (void *opaque, int pin, int level)
68 {
69 CPUState *env = opaque;
70 int cur_level;
71
72 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
73 env, pin, level);
74 cur_level = (env->irq_input_state >> pin) & 1;
75 /* Don't generate spurious events */
76 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
77 switch (pin) {
78 case PPC6xx_INPUT_TBEN:
79 /* Level sensitive - active high */
80 LOG_IRQ("%s: %s the time base\n",
81 __func__, level ? "start" : "stop");
82 if (level) {
83 cpu_ppc_tb_start(env);
84 } else {
85 cpu_ppc_tb_stop(env);
86 }
87 case PPC6xx_INPUT_INT:
88 /* Level sensitive - active high */
89 LOG_IRQ("%s: set the external IRQ state to %d\n",
90 __func__, level);
91 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
92 break;
93 case PPC6xx_INPUT_SMI:
94 /* Level sensitive - active high */
95 LOG_IRQ("%s: set the SMI IRQ state to %d\n",
96 __func__, level);
97 ppc_set_irq(env, PPC_INTERRUPT_SMI, level);
98 break;
99 case PPC6xx_INPUT_MCP:
100 /* Negative edge sensitive */
101 /* XXX: TODO: actual reaction may depends on HID0 status
102 * 603/604/740/750: check HID0[EMCP]
103 */
104 if (cur_level == 1 && level == 0) {
105 LOG_IRQ("%s: raise machine check state\n",
106 __func__);
107 ppc_set_irq(env, PPC_INTERRUPT_MCK, 1);
108 }
109 break;
110 case PPC6xx_INPUT_CKSTP_IN:
111 /* Level sensitive - active low */
112 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
113 /* XXX: Note that the only way to restart the CPU is to reset it */
114 if (level) {
115 LOG_IRQ("%s: stop the CPU\n", __func__);
116 env->halted = 1;
117 }
118 break;
119 case PPC6xx_INPUT_HRESET:
120 /* Level sensitive - active low */
121 if (level) {
122 LOG_IRQ("%s: reset the CPU\n", __func__);
123 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
124 /* XXX: TOFIX */
125 #if 0
126 cpu_reset(env);
127 #else
128 qemu_system_reset_request();
129 #endif
130 }
131 break;
132 case PPC6xx_INPUT_SRESET:
133 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
134 __func__, level);
135 ppc_set_irq(env, PPC_INTERRUPT_RESET, level);
136 break;
137 default:
138 /* Unknown pin - do nothing */
139 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
140 return;
141 }
142 if (level)
143 env->irq_input_state |= 1 << pin;
144 else
145 env->irq_input_state &= ~(1 << pin);
146 }
147 }
148
149 void ppc6xx_irq_init (CPUState *env)
150 {
151 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, env,
152 PPC6xx_INPUT_NB);
153 }
154
155 #if defined(TARGET_PPC64)
156 /* PowerPC 970 internal IRQ controller */
157 static void ppc970_set_irq (void *opaque, int pin, int level)
158 {
159 CPUState *env = opaque;
160 int cur_level;
161
162 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
163 env, pin, level);
164 cur_level = (env->irq_input_state >> pin) & 1;
165 /* Don't generate spurious events */
166 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
167 switch (pin) {
168 case PPC970_INPUT_INT:
169 /* Level sensitive - active high */
170 LOG_IRQ("%s: set the external IRQ state to %d\n",
171 __func__, level);
172 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
173 break;
174 case PPC970_INPUT_THINT:
175 /* Level sensitive - active high */
176 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
177 level);
178 ppc_set_irq(env, PPC_INTERRUPT_THERM, level);
179 break;
180 case PPC970_INPUT_MCP:
181 /* Negative edge sensitive */
182 /* XXX: TODO: actual reaction may depends on HID0 status
183 * 603/604/740/750: check HID0[EMCP]
184 */
185 if (cur_level == 1 && level == 0) {
186 LOG_IRQ("%s: raise machine check state\n",
187 __func__);
188 ppc_set_irq(env, PPC_INTERRUPT_MCK, 1);
189 }
190 break;
191 case PPC970_INPUT_CKSTP:
192 /* Level sensitive - active low */
193 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
194 if (level) {
195 LOG_IRQ("%s: stop the CPU\n", __func__);
196 env->halted = 1;
197 } else {
198 LOG_IRQ("%s: restart the CPU\n", __func__);
199 env->halted = 0;
200 }
201 break;
202 case PPC970_INPUT_HRESET:
203 /* Level sensitive - active low */
204 if (level) {
205 #if 0 // XXX: TOFIX
206 LOG_IRQ("%s: reset the CPU\n", __func__);
207 cpu_reset(env);
208 #endif
209 }
210 break;
211 case PPC970_INPUT_SRESET:
212 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
213 __func__, level);
214 ppc_set_irq(env, PPC_INTERRUPT_RESET, level);
215 break;
216 case PPC970_INPUT_TBEN:
217 LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
218 level);
219 /* XXX: TODO */
220 break;
221 default:
222 /* Unknown pin - do nothing */
223 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
224 return;
225 }
226 if (level)
227 env->irq_input_state |= 1 << pin;
228 else
229 env->irq_input_state &= ~(1 << pin);
230 }
231 }
232
233 void ppc970_irq_init (CPUState *env)
234 {
235 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, env,
236 PPC970_INPUT_NB);
237 }
238 #endif /* defined(TARGET_PPC64) */
239
240 /* PowerPC 40x internal IRQ controller */
241 static void ppc40x_set_irq (void *opaque, int pin, int level)
242 {
243 CPUState *env = opaque;
244 int cur_level;
245
246 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
247 env, pin, level);
248 cur_level = (env->irq_input_state >> pin) & 1;
249 /* Don't generate spurious events */
250 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
251 switch (pin) {
252 case PPC40x_INPUT_RESET_SYS:
253 if (level) {
254 LOG_IRQ("%s: reset the PowerPC system\n",
255 __func__);
256 ppc40x_system_reset(env);
257 }
258 break;
259 case PPC40x_INPUT_RESET_CHIP:
260 if (level) {
261 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
262 ppc40x_chip_reset(env);
263 }
264 break;
265 case PPC40x_INPUT_RESET_CORE:
266 /* XXX: TODO: update DBSR[MRR] */
267 if (level) {
268 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
269 ppc40x_core_reset(env);
270 }
271 break;
272 case PPC40x_INPUT_CINT:
273 /* Level sensitive - active high */
274 LOG_IRQ("%s: set the critical IRQ state to %d\n",
275 __func__, level);
276 ppc_set_irq(env, PPC_INTERRUPT_CEXT, level);
277 break;
278 case PPC40x_INPUT_INT:
279 /* Level sensitive - active high */
280 LOG_IRQ("%s: set the external IRQ state to %d\n",
281 __func__, level);
282 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
283 break;
284 case PPC40x_INPUT_HALT:
285 /* Level sensitive - active low */
286 if (level) {
287 LOG_IRQ("%s: stop the CPU\n", __func__);
288 env->halted = 1;
289 } else {
290 LOG_IRQ("%s: restart the CPU\n", __func__);
291 env->halted = 0;
292 }
293 break;
294 case PPC40x_INPUT_DEBUG:
295 /* Level sensitive - active high */
296 LOG_IRQ("%s: set the debug pin state to %d\n",
297 __func__, level);
298 ppc_set_irq(env, PPC_INTERRUPT_DEBUG, level);
299 break;
300 default:
301 /* Unknown pin - do nothing */
302 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
303 return;
304 }
305 if (level)
306 env->irq_input_state |= 1 << pin;
307 else
308 env->irq_input_state &= ~(1 << pin);
309 }
310 }
311
312 void ppc40x_irq_init (CPUState *env)
313 {
314 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
315 env, PPC40x_INPUT_NB);
316 }
317
318 /* PowerPC E500 internal IRQ controller */
319 static void ppce500_set_irq (void *opaque, int pin, int level)
320 {
321 CPUState *env = opaque;
322 int cur_level;
323
324 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
325 env, pin, level);
326 cur_level = (env->irq_input_state >> pin) & 1;
327 /* Don't generate spurious events */
328 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
329 switch (pin) {
330 case PPCE500_INPUT_MCK:
331 if (level) {
332 LOG_IRQ("%s: reset the PowerPC system\n",
333 __func__);
334 qemu_system_reset_request();
335 }
336 break;
337 case PPCE500_INPUT_RESET_CORE:
338 if (level) {
339 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
340 ppc_set_irq(env, PPC_INTERRUPT_MCK, level);
341 }
342 break;
343 case PPCE500_INPUT_CINT:
344 /* Level sensitive - active high */
345 LOG_IRQ("%s: set the critical IRQ state to %d\n",
346 __func__, level);
347 ppc_set_irq(env, PPC_INTERRUPT_CEXT, level);
348 break;
349 case PPCE500_INPUT_INT:
350 /* Level sensitive - active high */
351 LOG_IRQ("%s: set the core IRQ state to %d\n",
352 __func__, level);
353 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
354 break;
355 case PPCE500_INPUT_DEBUG:
356 /* Level sensitive - active high */
357 LOG_IRQ("%s: set the debug pin state to %d\n",
358 __func__, level);
359 ppc_set_irq(env, PPC_INTERRUPT_DEBUG, level);
360 break;
361 default:
362 /* Unknown pin - do nothing */
363 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
364 return;
365 }
366 if (level)
367 env->irq_input_state |= 1 << pin;
368 else
369 env->irq_input_state &= ~(1 << pin);
370 }
371 }
372
373 void ppce500_irq_init (CPUState *env)
374 {
375 env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
376 env, PPCE500_INPUT_NB);
377 }
378 /*****************************************************************************/
379 /* PowerPC time base and decrementer emulation */
380 struct ppc_tb_t {
381 /* Time base management */
382 int64_t tb_offset; /* Compensation */
383 int64_t atb_offset; /* Compensation */
384 uint32_t tb_freq; /* TB frequency */
385 /* Decrementer management */
386 uint64_t decr_next; /* Tick for next decr interrupt */
387 uint32_t decr_freq; /* decrementer frequency */
388 struct QEMUTimer *decr_timer;
389 /* Hypervisor decrementer management */
390 uint64_t hdecr_next; /* Tick for next hdecr interrupt */
391 struct QEMUTimer *hdecr_timer;
392 uint64_t purr_load;
393 uint64_t purr_start;
394 void *opaque;
395 };
396
397 static inline uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk,
398 int64_t tb_offset)
399 {
400 /* TB time in tb periods */
401 return muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec()) + tb_offset;
402 }
403
404 uint64_t cpu_ppc_load_tbl (CPUState *env)
405 {
406 ppc_tb_t *tb_env = env->tb_env;
407 uint64_t tb;
408
409 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
410 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
411
412 return tb;
413 }
414
415 static inline uint32_t _cpu_ppc_load_tbu(CPUState *env)
416 {
417 ppc_tb_t *tb_env = env->tb_env;
418 uint64_t tb;
419
420 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
421 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
422
423 return tb >> 32;
424 }
425
426 uint32_t cpu_ppc_load_tbu (CPUState *env)
427 {
428 return _cpu_ppc_load_tbu(env);
429 }
430
431 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
432 int64_t *tb_offsetp, uint64_t value)
433 {
434 *tb_offsetp = value - muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec());
435 LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
436 __func__, value, *tb_offsetp);
437 }
438
439 void cpu_ppc_store_tbl (CPUState *env, uint32_t value)
440 {
441 ppc_tb_t *tb_env = env->tb_env;
442 uint64_t tb;
443
444 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
445 tb &= 0xFFFFFFFF00000000ULL;
446 cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
447 &tb_env->tb_offset, tb | (uint64_t)value);
448 }
449
450 static inline void _cpu_ppc_store_tbu(CPUState *env, uint32_t value)
451 {
452 ppc_tb_t *tb_env = env->tb_env;
453 uint64_t tb;
454
455 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
456 tb &= 0x00000000FFFFFFFFULL;
457 cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
458 &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
459 }
460
461 void cpu_ppc_store_tbu (CPUState *env, uint32_t value)
462 {
463 _cpu_ppc_store_tbu(env, value);
464 }
465
466 uint64_t cpu_ppc_load_atbl (CPUState *env)
467 {
468 ppc_tb_t *tb_env = env->tb_env;
469 uint64_t tb;
470
471 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
472 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
473
474 return tb;
475 }
476
477 uint32_t cpu_ppc_load_atbu (CPUState *env)
478 {
479 ppc_tb_t *tb_env = env->tb_env;
480 uint64_t tb;
481
482 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
483 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
484
485 return tb >> 32;
486 }
487
488 void cpu_ppc_store_atbl (CPUState *env, uint32_t value)
489 {
490 ppc_tb_t *tb_env = env->tb_env;
491 uint64_t tb;
492
493 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
494 tb &= 0xFFFFFFFF00000000ULL;
495 cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
496 &tb_env->atb_offset, tb | (uint64_t)value);
497 }
498
499 void cpu_ppc_store_atbu (CPUState *env, uint32_t value)
500 {
501 ppc_tb_t *tb_env = env->tb_env;
502 uint64_t tb;
503
504 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
505 tb &= 0x00000000FFFFFFFFULL;
506 cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
507 &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
508 }
509
510 static void cpu_ppc_tb_stop (CPUState *env)
511 {
512 ppc_tb_t *tb_env = env->tb_env;
513 uint64_t tb, atb, vmclk;
514
515 /* If the time base is already frozen, do nothing */
516 if (tb_env->tb_freq != 0) {
517 vmclk = qemu_get_clock(vm_clock);
518 /* Get the time base */
519 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
520 /* Get the alternate time base */
521 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
522 /* Store the time base value (ie compute the current offset) */
523 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
524 /* Store the alternate time base value (compute the current offset) */
525 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
526 /* Set the time base frequency to zero */
527 tb_env->tb_freq = 0;
528 /* Now, the time bases are frozen to tb_offset / atb_offset value */
529 }
530 }
531
532 static void cpu_ppc_tb_start (CPUState *env)
533 {
534 ppc_tb_t *tb_env = env->tb_env;
535 uint64_t tb, atb, vmclk;
536
537 /* If the time base is not frozen, do nothing */
538 if (tb_env->tb_freq == 0) {
539 vmclk = qemu_get_clock(vm_clock);
540 /* Get the time base from tb_offset */
541 tb = tb_env->tb_offset;
542 /* Get the alternate time base from atb_offset */
543 atb = tb_env->atb_offset;
544 /* Restore the tb frequency from the decrementer frequency */
545 tb_env->tb_freq = tb_env->decr_freq;
546 /* Store the time base value */
547 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
548 /* Store the alternate time base value */
549 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
550 }
551 }
552
553 static inline uint32_t _cpu_ppc_load_decr(CPUState *env, uint64_t next)
554 {
555 ppc_tb_t *tb_env = env->tb_env;
556 uint32_t decr;
557 int64_t diff;
558
559 diff = next - qemu_get_clock(vm_clock);
560 if (diff >= 0)
561 decr = muldiv64(diff, tb_env->decr_freq, get_ticks_per_sec());
562 else
563 decr = -muldiv64(-diff, tb_env->decr_freq, get_ticks_per_sec());
564 LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);
565
566 return decr;
567 }
568
569 uint32_t cpu_ppc_load_decr (CPUState *env)
570 {
571 ppc_tb_t *tb_env = env->tb_env;
572
573 return _cpu_ppc_load_decr(env, tb_env->decr_next);
574 }
575
576 uint32_t cpu_ppc_load_hdecr (CPUState *env)
577 {
578 ppc_tb_t *tb_env = env->tb_env;
579
580 return _cpu_ppc_load_decr(env, tb_env->hdecr_next);
581 }
582
583 uint64_t cpu_ppc_load_purr (CPUState *env)
584 {
585 ppc_tb_t *tb_env = env->tb_env;
586 uint64_t diff;
587
588 diff = qemu_get_clock(vm_clock) - tb_env->purr_start;
589
590 return tb_env->purr_load + muldiv64(diff, tb_env->tb_freq, get_ticks_per_sec());
591 }
592
593 /* When decrementer expires,
594 * all we need to do is generate or queue a CPU exception
595 */
596 static inline void cpu_ppc_decr_excp(CPUState *env)
597 {
598 /* Raise it */
599 LOG_TB("raise decrementer exception\n");
600 ppc_set_irq(env, PPC_INTERRUPT_DECR, 1);
601 }
602
603 static inline void cpu_ppc_hdecr_excp(CPUState *env)
604 {
605 /* Raise it */
606 LOG_TB("raise decrementer exception\n");
607 ppc_set_irq(env, PPC_INTERRUPT_HDECR, 1);
608 }
609
610 static void __cpu_ppc_store_decr (CPUState *env, uint64_t *nextp,
611 struct QEMUTimer *timer,
612 void (*raise_excp)(CPUState *),
613 uint32_t decr, uint32_t value,
614 int is_excp)
615 {
616 ppc_tb_t *tb_env = env->tb_env;
617 uint64_t now, next;
618
619 LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
620 decr, value);
621 now = qemu_get_clock(vm_clock);
622 next = now + muldiv64(value, get_ticks_per_sec(), tb_env->decr_freq);
623 if (is_excp)
624 next += *nextp - now;
625 if (next == now)
626 next++;
627 *nextp = next;
628 /* Adjust timer */
629 qemu_mod_timer(timer, next);
630 /* If we set a negative value and the decrementer was positive,
631 * raise an exception.
632 */
633 if ((value & 0x80000000) && !(decr & 0x80000000))
634 (*raise_excp)(env);
635 }
636
637 static inline void _cpu_ppc_store_decr(CPUState *env, uint32_t decr,
638 uint32_t value, int is_excp)
639 {
640 ppc_tb_t *tb_env = env->tb_env;
641
642 __cpu_ppc_store_decr(env, &tb_env->decr_next, tb_env->decr_timer,
643 &cpu_ppc_decr_excp, decr, value, is_excp);
644 }
645
646 void cpu_ppc_store_decr (CPUState *env, uint32_t value)
647 {
648 _cpu_ppc_store_decr(env, cpu_ppc_load_decr(env), value, 0);
649 }
650
651 static void cpu_ppc_decr_cb (void *opaque)
652 {
653 _cpu_ppc_store_decr(opaque, 0x00000000, 0xFFFFFFFF, 1);
654 }
655
656 static inline void _cpu_ppc_store_hdecr(CPUState *env, uint32_t hdecr,
657 uint32_t value, int is_excp)
658 {
659 ppc_tb_t *tb_env = env->tb_env;
660
661 if (tb_env->hdecr_timer != NULL) {
662 __cpu_ppc_store_decr(env, &tb_env->hdecr_next, tb_env->hdecr_timer,
663 &cpu_ppc_hdecr_excp, hdecr, value, is_excp);
664 }
665 }
666
667 void cpu_ppc_store_hdecr (CPUState *env, uint32_t value)
668 {
669 _cpu_ppc_store_hdecr(env, cpu_ppc_load_hdecr(env), value, 0);
670 }
671
672 static void cpu_ppc_hdecr_cb (void *opaque)
673 {
674 _cpu_ppc_store_hdecr(opaque, 0x00000000, 0xFFFFFFFF, 1);
675 }
676
677 void cpu_ppc_store_purr (CPUState *env, uint64_t value)
678 {
679 ppc_tb_t *tb_env = env->tb_env;
680
681 tb_env->purr_load = value;
682 tb_env->purr_start = qemu_get_clock(vm_clock);
683 }
684
685 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
686 {
687 CPUState *env = opaque;
688 ppc_tb_t *tb_env = env->tb_env;
689
690 tb_env->tb_freq = freq;
691 tb_env->decr_freq = freq;
692 /* There is a bug in Linux 2.4 kernels:
693 * if a decrementer exception is pending when it enables msr_ee at startup,
694 * it's not ready to handle it...
695 */
696 _cpu_ppc_store_decr(env, 0xFFFFFFFF, 0xFFFFFFFF, 0);
697 _cpu_ppc_store_hdecr(env, 0xFFFFFFFF, 0xFFFFFFFF, 0);
698 cpu_ppc_store_purr(env, 0x0000000000000000ULL);
699 }
700
701 /* Set up (once) timebase frequency (in Hz) */
702 clk_setup_cb cpu_ppc_tb_init (CPUState *env, uint32_t freq)
703 {
704 ppc_tb_t *tb_env;
705
706 tb_env = qemu_mallocz(sizeof(ppc_tb_t));
707 env->tb_env = tb_env;
708 /* Create new timer */
709 tb_env->decr_timer = qemu_new_timer(vm_clock, &cpu_ppc_decr_cb, env);
710 if (0) {
711 /* XXX: find a suitable condition to enable the hypervisor decrementer
712 */
713 tb_env->hdecr_timer = qemu_new_timer(vm_clock, &cpu_ppc_hdecr_cb, env);
714 } else {
715 tb_env->hdecr_timer = NULL;
716 }
717 cpu_ppc_set_tb_clk(env, freq);
718
719 return &cpu_ppc_set_tb_clk;
720 }
721
722 /* Specific helpers for POWER & PowerPC 601 RTC */
723 #if 0
724 static clk_setup_cb cpu_ppc601_rtc_init (CPUState *env)
725 {
726 return cpu_ppc_tb_init(env, 7812500);
727 }
728 #endif
729
730 void cpu_ppc601_store_rtcu (CPUState *env, uint32_t value)
731 {
732 _cpu_ppc_store_tbu(env, value);
733 }
734
735 uint32_t cpu_ppc601_load_rtcu (CPUState *env)
736 {
737 return _cpu_ppc_load_tbu(env);
738 }
739
740 void cpu_ppc601_store_rtcl (CPUState *env, uint32_t value)
741 {
742 cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
743 }
744
745 uint32_t cpu_ppc601_load_rtcl (CPUState *env)
746 {
747 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
748 }
749
750 /*****************************************************************************/
751 /* Embedded PowerPC timers */
752
753 /* PIT, FIT & WDT */
754 typedef struct ppcemb_timer_t ppcemb_timer_t;
755 struct ppcemb_timer_t {
756 uint64_t pit_reload; /* PIT auto-reload value */
757 uint64_t fit_next; /* Tick for next FIT interrupt */
758 struct QEMUTimer *fit_timer;
759 uint64_t wdt_next; /* Tick for next WDT interrupt */
760 struct QEMUTimer *wdt_timer;
761 };
762
763 /* Fixed interval timer */
764 static void cpu_4xx_fit_cb (void *opaque)
765 {
766 CPUState *env;
767 ppc_tb_t *tb_env;
768 ppcemb_timer_t *ppcemb_timer;
769 uint64_t now, next;
770
771 env = opaque;
772 tb_env = env->tb_env;
773 ppcemb_timer = tb_env->opaque;
774 now = qemu_get_clock(vm_clock);
775 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
776 case 0:
777 next = 1 << 9;
778 break;
779 case 1:
780 next = 1 << 13;
781 break;
782 case 2:
783 next = 1 << 17;
784 break;
785 case 3:
786 next = 1 << 21;
787 break;
788 default:
789 /* Cannot occur, but makes gcc happy */
790 return;
791 }
792 next = now + muldiv64(next, get_ticks_per_sec(), tb_env->tb_freq);
793 if (next == now)
794 next++;
795 qemu_mod_timer(ppcemb_timer->fit_timer, next);
796 env->spr[SPR_40x_TSR] |= 1 << 26;
797 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1)
798 ppc_set_irq(env, PPC_INTERRUPT_FIT, 1);
799 LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
800 (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
801 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
802 }
803
804 /* Programmable interval timer */
805 static void start_stop_pit (CPUState *env, ppc_tb_t *tb_env, int is_excp)
806 {
807 ppcemb_timer_t *ppcemb_timer;
808 uint64_t now, next;
809
810 ppcemb_timer = tb_env->opaque;
811 if (ppcemb_timer->pit_reload <= 1 ||
812 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
813 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
814 /* Stop PIT */
815 LOG_TB("%s: stop PIT\n", __func__);
816 qemu_del_timer(tb_env->decr_timer);
817 } else {
818 LOG_TB("%s: start PIT %016" PRIx64 "\n",
819 __func__, ppcemb_timer->pit_reload);
820 now = qemu_get_clock(vm_clock);
821 next = now + muldiv64(ppcemb_timer->pit_reload,
822 get_ticks_per_sec(), tb_env->decr_freq);
823 if (is_excp)
824 next += tb_env->decr_next - now;
825 if (next == now)
826 next++;
827 qemu_mod_timer(tb_env->decr_timer, next);
828 tb_env->decr_next = next;
829 }
830 }
831
832 static void cpu_4xx_pit_cb (void *opaque)
833 {
834 CPUState *env;
835 ppc_tb_t *tb_env;
836 ppcemb_timer_t *ppcemb_timer;
837
838 env = opaque;
839 tb_env = env->tb_env;
840 ppcemb_timer = tb_env->opaque;
841 env->spr[SPR_40x_TSR] |= 1 << 27;
842 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1)
843 ppc_set_irq(env, PPC_INTERRUPT_PIT, 1);
844 start_stop_pit(env, tb_env, 1);
845 LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
846 "%016" PRIx64 "\n", __func__,
847 (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
848 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
849 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
850 ppcemb_timer->pit_reload);
851 }
852
853 /* Watchdog timer */
854 static void cpu_4xx_wdt_cb (void *opaque)
855 {
856 CPUState *env;
857 ppc_tb_t *tb_env;
858 ppcemb_timer_t *ppcemb_timer;
859 uint64_t now, next;
860
861 env = opaque;
862 tb_env = env->tb_env;
863 ppcemb_timer = tb_env->opaque;
864 now = qemu_get_clock(vm_clock);
865 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
866 case 0:
867 next = 1 << 17;
868 break;
869 case 1:
870 next = 1 << 21;
871 break;
872 case 2:
873 next = 1 << 25;
874 break;
875 case 3:
876 next = 1 << 29;
877 break;
878 default:
879 /* Cannot occur, but makes gcc happy */
880 return;
881 }
882 next = now + muldiv64(next, get_ticks_per_sec(), tb_env->decr_freq);
883 if (next == now)
884 next++;
885 LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
886 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
887 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
888 case 0x0:
889 case 0x1:
890 qemu_mod_timer(ppcemb_timer->wdt_timer, next);
891 ppcemb_timer->wdt_next = next;
892 env->spr[SPR_40x_TSR] |= 1 << 31;
893 break;
894 case 0x2:
895 qemu_mod_timer(ppcemb_timer->wdt_timer, next);
896 ppcemb_timer->wdt_next = next;
897 env->spr[SPR_40x_TSR] |= 1 << 30;
898 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1)
899 ppc_set_irq(env, PPC_INTERRUPT_WDT, 1);
900 break;
901 case 0x3:
902 env->spr[SPR_40x_TSR] &= ~0x30000000;
903 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
904 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
905 case 0x0:
906 /* No reset */
907 break;
908 case 0x1: /* Core reset */
909 ppc40x_core_reset(env);
910 break;
911 case 0x2: /* Chip reset */
912 ppc40x_chip_reset(env);
913 break;
914 case 0x3: /* System reset */
915 ppc40x_system_reset(env);
916 break;
917 }
918 }
919 }
920
921 void store_40x_pit (CPUState *env, target_ulong val)
922 {
923 ppc_tb_t *tb_env;
924 ppcemb_timer_t *ppcemb_timer;
925
926 tb_env = env->tb_env;
927 ppcemb_timer = tb_env->opaque;
928 LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
929 ppcemb_timer->pit_reload = val;
930 start_stop_pit(env, tb_env, 0);
931 }
932
933 target_ulong load_40x_pit (CPUState *env)
934 {
935 return cpu_ppc_load_decr(env);
936 }
937
938 void store_booke_tsr (CPUState *env, target_ulong val)
939 {
940 LOG_TB("%s: val " TARGET_FMT_lx "\n", __func__, val);
941 env->spr[SPR_40x_TSR] &= ~(val & 0xFC000000);
942 if (val & 0x80000000)
943 ppc_set_irq(env, PPC_INTERRUPT_PIT, 0);
944 }
945
946 void store_booke_tcr (CPUState *env, target_ulong val)
947 {
948 ppc_tb_t *tb_env;
949
950 tb_env = env->tb_env;
951 LOG_TB("%s: val " TARGET_FMT_lx "\n", __func__, val);
952 env->spr[SPR_40x_TCR] = val & 0xFFC00000;
953 start_stop_pit(env, tb_env, 1);
954 cpu_4xx_wdt_cb(env);
955 }
956
957 static void ppc_emb_set_tb_clk (void *opaque, uint32_t freq)
958 {
959 CPUState *env = opaque;
960 ppc_tb_t *tb_env = env->tb_env;
961
962 LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
963 freq);
964 tb_env->tb_freq = freq;
965 tb_env->decr_freq = freq;
966 /* XXX: we should also update all timers */
967 }
968
969 clk_setup_cb ppc_emb_timers_init (CPUState *env, uint32_t freq)
970 {
971 ppc_tb_t *tb_env;
972 ppcemb_timer_t *ppcemb_timer;
973
974 tb_env = qemu_mallocz(sizeof(ppc_tb_t));
975 env->tb_env = tb_env;
976 ppcemb_timer = qemu_mallocz(sizeof(ppcemb_timer_t));
977 tb_env->tb_freq = freq;
978 tb_env->decr_freq = freq;
979 tb_env->opaque = ppcemb_timer;
980 LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
981 if (ppcemb_timer != NULL) {
982 /* We use decr timer for PIT */
983 tb_env->decr_timer = qemu_new_timer(vm_clock, &cpu_4xx_pit_cb, env);
984 ppcemb_timer->fit_timer =
985 qemu_new_timer(vm_clock, &cpu_4xx_fit_cb, env);
986 ppcemb_timer->wdt_timer =
987 qemu_new_timer(vm_clock, &cpu_4xx_wdt_cb, env);
988 }
989
990 return &ppc_emb_set_tb_clk;
991 }
992
993 /*****************************************************************************/
994 /* Embedded PowerPC Device Control Registers */
995 typedef struct ppc_dcrn_t ppc_dcrn_t;
996 struct ppc_dcrn_t {
997 dcr_read_cb dcr_read;
998 dcr_write_cb dcr_write;
999 void *opaque;
1000 };
1001
1002 /* XXX: on 460, DCR addresses are 32 bits wide,
1003 * using DCRIPR to get the 22 upper bits of the DCR address
1004 */
1005 #define DCRN_NB 1024
1006 struct ppc_dcr_t {
1007 ppc_dcrn_t dcrn[DCRN_NB];
1008 int (*read_error)(int dcrn);
1009 int (*write_error)(int dcrn);
1010 };
1011
1012 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1013 {
1014 ppc_dcrn_t *dcr;
1015
1016 if (dcrn < 0 || dcrn >= DCRN_NB)
1017 goto error;
1018 dcr = &dcr_env->dcrn[dcrn];
1019 if (dcr->dcr_read == NULL)
1020 goto error;
1021 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1022
1023 return 0;
1024
1025 error:
1026 if (dcr_env->read_error != NULL)
1027 return (*dcr_env->read_error)(dcrn);
1028
1029 return -1;
1030 }
1031
1032 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1033 {
1034 ppc_dcrn_t *dcr;
1035
1036 if (dcrn < 0 || dcrn >= DCRN_NB)
1037 goto error;
1038 dcr = &dcr_env->dcrn[dcrn];
1039 if (dcr->dcr_write == NULL)
1040 goto error;
1041 (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1042
1043 return 0;
1044
1045 error:
1046 if (dcr_env->write_error != NULL)
1047 return (*dcr_env->write_error)(dcrn);
1048
1049 return -1;
1050 }
1051
1052 int ppc_dcr_register (CPUState *env, int dcrn, void *opaque,
1053 dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1054 {
1055 ppc_dcr_t *dcr_env;
1056 ppc_dcrn_t *dcr;
1057
1058 dcr_env = env->dcr_env;
1059 if (dcr_env == NULL)
1060 return -1;
1061 if (dcrn < 0 || dcrn >= DCRN_NB)
1062 return -1;
1063 dcr = &dcr_env->dcrn[dcrn];
1064 if (dcr->opaque != NULL ||
1065 dcr->dcr_read != NULL ||
1066 dcr->dcr_write != NULL)
1067 return -1;
1068 dcr->opaque = opaque;
1069 dcr->dcr_read = dcr_read;
1070 dcr->dcr_write = dcr_write;
1071
1072 return 0;
1073 }
1074
1075 int ppc_dcr_init (CPUState *env, int (*read_error)(int dcrn),
1076 int (*write_error)(int dcrn))
1077 {
1078 ppc_dcr_t *dcr_env;
1079
1080 dcr_env = qemu_mallocz(sizeof(ppc_dcr_t));
1081 dcr_env->read_error = read_error;
1082 dcr_env->write_error = write_error;
1083 env->dcr_env = dcr_env;
1084
1085 return 0;
1086 }
1087
1088 /*****************************************************************************/
1089 /* Debug port */
1090 void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1091 {
1092 addr &= 0xF;
1093 switch (addr) {
1094 case 0:
1095 printf("%c", val);
1096 break;
1097 case 1:
1098 printf("\n");
1099 fflush(stdout);
1100 break;
1101 case 2:
1102 printf("Set loglevel to %04" PRIx32 "\n", val);
1103 cpu_set_log(val | 0x100);
1104 break;
1105 }
1106 }
1107
1108 /*****************************************************************************/
1109 /* NVRAM helpers */
1110 static inline uint32_t nvram_read (nvram_t *nvram, uint32_t addr)
1111 {
1112 return (*nvram->read_fn)(nvram->opaque, addr);;
1113 }
1114
1115 static inline void nvram_write (nvram_t *nvram, uint32_t addr, uint32_t val)
1116 {
1117 (*nvram->write_fn)(nvram->opaque, addr, val);
1118 }
1119
1120 void NVRAM_set_byte (nvram_t *nvram, uint32_t addr, uint8_t value)
1121 {
1122 nvram_write(nvram, addr, value);
1123 }
1124
1125 uint8_t NVRAM_get_byte (nvram_t *nvram, uint32_t addr)
1126 {
1127 return nvram_read(nvram, addr);
1128 }
1129
1130 void NVRAM_set_word (nvram_t *nvram, uint32_t addr, uint16_t value)
1131 {
1132 nvram_write(nvram, addr, value >> 8);
1133 nvram_write(nvram, addr + 1, value & 0xFF);
1134 }
1135
1136 uint16_t NVRAM_get_word (nvram_t *nvram, uint32_t addr)
1137 {
1138 uint16_t tmp;
1139
1140 tmp = nvram_read(nvram, addr) << 8;
1141 tmp |= nvram_read(nvram, addr + 1);
1142
1143 return tmp;
1144 }
1145
1146 void NVRAM_set_lword (nvram_t *nvram, uint32_t addr, uint32_t value)
1147 {
1148 nvram_write(nvram, addr, value >> 24);
1149 nvram_write(nvram, addr + 1, (value >> 16) & 0xFF);
1150 nvram_write(nvram, addr + 2, (value >> 8) & 0xFF);
1151 nvram_write(nvram, addr + 3, value & 0xFF);
1152 }
1153
1154 uint32_t NVRAM_get_lword (nvram_t *nvram, uint32_t addr)
1155 {
1156 uint32_t tmp;
1157
1158 tmp = nvram_read(nvram, addr) << 24;
1159 tmp |= nvram_read(nvram, addr + 1) << 16;
1160 tmp |= nvram_read(nvram, addr + 2) << 8;
1161 tmp |= nvram_read(nvram, addr + 3);
1162
1163 return tmp;
1164 }
1165
1166 void NVRAM_set_string (nvram_t *nvram, uint32_t addr,
1167 const char *str, uint32_t max)
1168 {
1169 int i;
1170
1171 for (i = 0; i < max && str[i] != '\0'; i++) {
1172 nvram_write(nvram, addr + i, str[i]);
1173 }
1174 nvram_write(nvram, addr + i, str[i]);
1175 nvram_write(nvram, addr + max - 1, '\0');
1176 }
1177
1178 int NVRAM_get_string (nvram_t *nvram, uint8_t *dst, uint16_t addr, int max)
1179 {
1180 int i;
1181
1182 memset(dst, 0, max);
1183 for (i = 0; i < max; i++) {
1184 dst[i] = NVRAM_get_byte(nvram, addr + i);
1185 if (dst[i] == '\0')
1186 break;
1187 }
1188
1189 return i;
1190 }
1191
1192 static uint16_t NVRAM_crc_update (uint16_t prev, uint16_t value)
1193 {
1194 uint16_t tmp;
1195 uint16_t pd, pd1, pd2;
1196
1197 tmp = prev >> 8;
1198 pd = prev ^ value;
1199 pd1 = pd & 0x000F;
1200 pd2 = ((pd >> 4) & 0x000F) ^ pd1;
1201 tmp ^= (pd1 << 3) | (pd1 << 8);
1202 tmp ^= pd2 | (pd2 << 7) | (pd2 << 12);
1203
1204 return tmp;
1205 }
1206
1207 static uint16_t NVRAM_compute_crc (nvram_t *nvram, uint32_t start, uint32_t count)
1208 {
1209 uint32_t i;
1210 uint16_t crc = 0xFFFF;
1211 int odd;
1212
1213 odd = count & 1;
1214 count &= ~1;
1215 for (i = 0; i != count; i++) {
1216 crc = NVRAM_crc_update(crc, NVRAM_get_word(nvram, start + i));
1217 }
1218 if (odd) {
1219 crc = NVRAM_crc_update(crc, NVRAM_get_byte(nvram, start + i) << 8);
1220 }
1221
1222 return crc;
1223 }
1224
1225 #define CMDLINE_ADDR 0x017ff000
1226
1227 int PPC_NVRAM_set_params (nvram_t *nvram, uint16_t NVRAM_size,
1228 const char *arch,
1229 uint32_t RAM_size, int boot_device,
1230 uint32_t kernel_image, uint32_t kernel_size,
1231 const char *cmdline,
1232 uint32_t initrd_image, uint32_t initrd_size,
1233 uint32_t NVRAM_image,
1234 int width, int height, int depth)
1235 {
1236 uint16_t crc;
1237
1238 /* Set parameters for Open Hack'Ware BIOS */
1239 NVRAM_set_string(nvram, 0x00, "QEMU_BIOS", 16);
1240 NVRAM_set_lword(nvram, 0x10, 0x00000002); /* structure v2 */
1241 NVRAM_set_word(nvram, 0x14, NVRAM_size);
1242 NVRAM_set_string(nvram, 0x20, arch, 16);
1243 NVRAM_set_lword(nvram, 0x30, RAM_size);
1244 NVRAM_set_byte(nvram, 0x34, boot_device);
1245 NVRAM_set_lword(nvram, 0x38, kernel_image);
1246 NVRAM_set_lword(nvram, 0x3C, kernel_size);
1247 if (cmdline) {
1248 /* XXX: put the cmdline in NVRAM too ? */
1249 pstrcpy_targphys("cmdline", CMDLINE_ADDR, RAM_size - CMDLINE_ADDR, cmdline);
1250 NVRAM_set_lword(nvram, 0x40, CMDLINE_ADDR);
1251 NVRAM_set_lword(nvram, 0x44, strlen(cmdline));
1252 } else {
1253 NVRAM_set_lword(nvram, 0x40, 0);
1254 NVRAM_set_lword(nvram, 0x44, 0);
1255 }
1256 NVRAM_set_lword(nvram, 0x48, initrd_image);
1257 NVRAM_set_lword(nvram, 0x4C, initrd_size);
1258 NVRAM_set_lword(nvram, 0x50, NVRAM_image);
1259
1260 NVRAM_set_word(nvram, 0x54, width);
1261 NVRAM_set_word(nvram, 0x56, height);
1262 NVRAM_set_word(nvram, 0x58, depth);
1263 crc = NVRAM_compute_crc(nvram, 0x00, 0xF8);
1264 NVRAM_set_word(nvram, 0xFC, crc);
1265
1266 return 0;
1267 }