]> git.proxmox.com Git - qemu.git/blob - hw/ppc.c
Add v{add, sub}{s, u}{b, h, w}s instructions
[qemu.git] / hw / ppc.c
1 /*
2 * QEMU generic PowerPC hardware System Emulator
3 *
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw.h"
25 #include "ppc.h"
26 #include "qemu-timer.h"
27 #include "sysemu.h"
28 #include "nvram.h"
29 #include "qemu-log.h"
30
31 //#define PPC_DEBUG_IRQ
32 //#define PPC_DEBUG_TB
33
34 static void cpu_ppc_tb_stop (CPUState *env);
35 static void cpu_ppc_tb_start (CPUState *env);
36
37 static void ppc_set_irq (CPUState *env, int n_IRQ, int level)
38 {
39 if (level) {
40 env->pending_interrupts |= 1 << n_IRQ;
41 cpu_interrupt(env, CPU_INTERRUPT_HARD);
42 } else {
43 env->pending_interrupts &= ~(1 << n_IRQ);
44 if (env->pending_interrupts == 0)
45 cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
46 }
47 #if defined(PPC_DEBUG_IRQ)
48 if (loglevel & CPU_LOG_INT) {
49 fprintf(logfile, "%s: %p n_IRQ %d level %d => pending %08" PRIx32
50 "req %08x\n", __func__, env, n_IRQ, level,
51 env->pending_interrupts, env->interrupt_request);
52 }
53 #endif
54 }
55
56 /* PowerPC 6xx / 7xx internal IRQ controller */
57 static void ppc6xx_set_irq (void *opaque, int pin, int level)
58 {
59 CPUState *env = opaque;
60 int cur_level;
61
62 #if defined(PPC_DEBUG_IRQ)
63 if (loglevel & CPU_LOG_INT) {
64 fprintf(logfile, "%s: env %p pin %d level %d\n", __func__,
65 env, pin, level);
66 }
67 #endif
68 cur_level = (env->irq_input_state >> pin) & 1;
69 /* Don't generate spurious events */
70 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
71 switch (pin) {
72 case PPC6xx_INPUT_TBEN:
73 /* Level sensitive - active high */
74 #if defined(PPC_DEBUG_IRQ)
75 if (loglevel & CPU_LOG_INT) {
76 fprintf(logfile, "%s: %s the time base\n",
77 __func__, level ? "start" : "stop");
78 }
79 #endif
80 if (level) {
81 cpu_ppc_tb_start(env);
82 } else {
83 cpu_ppc_tb_stop(env);
84 }
85 case PPC6xx_INPUT_INT:
86 /* Level sensitive - active high */
87 #if defined(PPC_DEBUG_IRQ)
88 if (loglevel & CPU_LOG_INT) {
89 fprintf(logfile, "%s: set the external IRQ state to %d\n",
90 __func__, level);
91 }
92 #endif
93 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
94 break;
95 case PPC6xx_INPUT_SMI:
96 /* Level sensitive - active high */
97 #if defined(PPC_DEBUG_IRQ)
98 if (loglevel & CPU_LOG_INT) {
99 fprintf(logfile, "%s: set the SMI IRQ state to %d\n",
100 __func__, level);
101 }
102 #endif
103 ppc_set_irq(env, PPC_INTERRUPT_SMI, level);
104 break;
105 case PPC6xx_INPUT_MCP:
106 /* Negative edge sensitive */
107 /* XXX: TODO: actual reaction may depends on HID0 status
108 * 603/604/740/750: check HID0[EMCP]
109 */
110 if (cur_level == 1 && level == 0) {
111 #if defined(PPC_DEBUG_IRQ)
112 if (loglevel & CPU_LOG_INT) {
113 fprintf(logfile, "%s: raise machine check state\n",
114 __func__);
115 }
116 #endif
117 ppc_set_irq(env, PPC_INTERRUPT_MCK, 1);
118 }
119 break;
120 case PPC6xx_INPUT_CKSTP_IN:
121 /* Level sensitive - active low */
122 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
123 /* XXX: Note that the only way to restart the CPU is to reset it */
124 if (level) {
125 #if defined(PPC_DEBUG_IRQ)
126 if (loglevel & CPU_LOG_INT) {
127 fprintf(logfile, "%s: stop the CPU\n", __func__);
128 }
129 #endif
130 env->halted = 1;
131 }
132 break;
133 case PPC6xx_INPUT_HRESET:
134 /* Level sensitive - active low */
135 if (level) {
136 #if defined(PPC_DEBUG_IRQ)
137 if (loglevel & CPU_LOG_INT) {
138 fprintf(logfile, "%s: reset the CPU\n", __func__);
139 }
140 #endif
141 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
142 /* XXX: TOFIX */
143 #if 0
144 cpu_ppc_reset(env);
145 #else
146 qemu_system_reset_request();
147 #endif
148 }
149 break;
150 case PPC6xx_INPUT_SRESET:
151 #if defined(PPC_DEBUG_IRQ)
152 if (loglevel & CPU_LOG_INT) {
153 fprintf(logfile, "%s: set the RESET IRQ state to %d\n",
154 __func__, level);
155 }
156 #endif
157 ppc_set_irq(env, PPC_INTERRUPT_RESET, level);
158 break;
159 default:
160 /* Unknown pin - do nothing */
161 #if defined(PPC_DEBUG_IRQ)
162 if (loglevel & CPU_LOG_INT) {
163 fprintf(logfile, "%s: unknown IRQ pin %d\n", __func__, pin);
164 }
165 #endif
166 return;
167 }
168 if (level)
169 env->irq_input_state |= 1 << pin;
170 else
171 env->irq_input_state &= ~(1 << pin);
172 }
173 }
174
175 void ppc6xx_irq_init (CPUState *env)
176 {
177 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, env,
178 PPC6xx_INPUT_NB);
179 }
180
181 #if defined(TARGET_PPC64)
182 /* PowerPC 970 internal IRQ controller */
183 static void ppc970_set_irq (void *opaque, int pin, int level)
184 {
185 CPUState *env = opaque;
186 int cur_level;
187
188 #if defined(PPC_DEBUG_IRQ)
189 if (loglevel & CPU_LOG_INT) {
190 fprintf(logfile, "%s: env %p pin %d level %d\n", __func__,
191 env, pin, level);
192 }
193 #endif
194 cur_level = (env->irq_input_state >> pin) & 1;
195 /* Don't generate spurious events */
196 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
197 switch (pin) {
198 case PPC970_INPUT_INT:
199 /* Level sensitive - active high */
200 #if defined(PPC_DEBUG_IRQ)
201 if (loglevel & CPU_LOG_INT) {
202 fprintf(logfile, "%s: set the external IRQ state to %d\n",
203 __func__, level);
204 }
205 #endif
206 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
207 break;
208 case PPC970_INPUT_THINT:
209 /* Level sensitive - active high */
210 #if defined(PPC_DEBUG_IRQ)
211 if (loglevel & CPU_LOG_INT) {
212 fprintf(logfile, "%s: set the SMI IRQ state to %d\n", __func__,
213 level);
214 }
215 #endif
216 ppc_set_irq(env, PPC_INTERRUPT_THERM, level);
217 break;
218 case PPC970_INPUT_MCP:
219 /* Negative edge sensitive */
220 /* XXX: TODO: actual reaction may depends on HID0 status
221 * 603/604/740/750: check HID0[EMCP]
222 */
223 if (cur_level == 1 && level == 0) {
224 #if defined(PPC_DEBUG_IRQ)
225 if (loglevel & CPU_LOG_INT) {
226 fprintf(logfile, "%s: raise machine check state\n",
227 __func__);
228 }
229 #endif
230 ppc_set_irq(env, PPC_INTERRUPT_MCK, 1);
231 }
232 break;
233 case PPC970_INPUT_CKSTP:
234 /* Level sensitive - active low */
235 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
236 if (level) {
237 #if defined(PPC_DEBUG_IRQ)
238 if (loglevel & CPU_LOG_INT) {
239 fprintf(logfile, "%s: stop the CPU\n", __func__);
240 }
241 #endif
242 env->halted = 1;
243 } else {
244 #if defined(PPC_DEBUG_IRQ)
245 if (loglevel & CPU_LOG_INT) {
246 fprintf(logfile, "%s: restart the CPU\n", __func__);
247 }
248 #endif
249 env->halted = 0;
250 }
251 break;
252 case PPC970_INPUT_HRESET:
253 /* Level sensitive - active low */
254 if (level) {
255 #if 0 // XXX: TOFIX
256 #if defined(PPC_DEBUG_IRQ)
257 if (loglevel & CPU_LOG_INT) {
258 fprintf(logfile, "%s: reset the CPU\n", __func__);
259 }
260 #endif
261 cpu_reset(env);
262 #endif
263 }
264 break;
265 case PPC970_INPUT_SRESET:
266 #if defined(PPC_DEBUG_IRQ)
267 if (loglevel & CPU_LOG_INT) {
268 fprintf(logfile, "%s: set the RESET IRQ state to %d\n",
269 __func__, level);
270 }
271 #endif
272 ppc_set_irq(env, PPC_INTERRUPT_RESET, level);
273 break;
274 case PPC970_INPUT_TBEN:
275 #if defined(PPC_DEBUG_IRQ)
276 if (loglevel & CPU_LOG_INT) {
277 fprintf(logfile, "%s: set the TBEN state to %d\n", __func__,
278 level);
279 }
280 #endif
281 /* XXX: TODO */
282 break;
283 default:
284 /* Unknown pin - do nothing */
285 #if defined(PPC_DEBUG_IRQ)
286 if (loglevel & CPU_LOG_INT) {
287 fprintf(logfile, "%s: unknown IRQ pin %d\n", __func__, pin);
288 }
289 #endif
290 return;
291 }
292 if (level)
293 env->irq_input_state |= 1 << pin;
294 else
295 env->irq_input_state &= ~(1 << pin);
296 }
297 }
298
299 void ppc970_irq_init (CPUState *env)
300 {
301 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, env,
302 PPC970_INPUT_NB);
303 }
304 #endif /* defined(TARGET_PPC64) */
305
306 /* PowerPC 40x internal IRQ controller */
307 static void ppc40x_set_irq (void *opaque, int pin, int level)
308 {
309 CPUState *env = opaque;
310 int cur_level;
311
312 #if defined(PPC_DEBUG_IRQ)
313 if (loglevel & CPU_LOG_INT) {
314 fprintf(logfile, "%s: env %p pin %d level %d\n", __func__,
315 env, pin, level);
316 }
317 #endif
318 cur_level = (env->irq_input_state >> pin) & 1;
319 /* Don't generate spurious events */
320 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
321 switch (pin) {
322 case PPC40x_INPUT_RESET_SYS:
323 if (level) {
324 #if defined(PPC_DEBUG_IRQ)
325 if (loglevel & CPU_LOG_INT) {
326 fprintf(logfile, "%s: reset the PowerPC system\n",
327 __func__);
328 }
329 #endif
330 ppc40x_system_reset(env);
331 }
332 break;
333 case PPC40x_INPUT_RESET_CHIP:
334 if (level) {
335 #if defined(PPC_DEBUG_IRQ)
336 if (loglevel & CPU_LOG_INT) {
337 fprintf(logfile, "%s: reset the PowerPC chip\n", __func__);
338 }
339 #endif
340 ppc40x_chip_reset(env);
341 }
342 break;
343 case PPC40x_INPUT_RESET_CORE:
344 /* XXX: TODO: update DBSR[MRR] */
345 if (level) {
346 #if defined(PPC_DEBUG_IRQ)
347 if (loglevel & CPU_LOG_INT) {
348 fprintf(logfile, "%s: reset the PowerPC core\n", __func__);
349 }
350 #endif
351 ppc40x_core_reset(env);
352 }
353 break;
354 case PPC40x_INPUT_CINT:
355 /* Level sensitive - active high */
356 #if defined(PPC_DEBUG_IRQ)
357 if (loglevel & CPU_LOG_INT) {
358 fprintf(logfile, "%s: set the critical IRQ state to %d\n",
359 __func__, level);
360 }
361 #endif
362 ppc_set_irq(env, PPC_INTERRUPT_CEXT, level);
363 break;
364 case PPC40x_INPUT_INT:
365 /* Level sensitive - active high */
366 #if defined(PPC_DEBUG_IRQ)
367 if (loglevel & CPU_LOG_INT) {
368 fprintf(logfile, "%s: set the external IRQ state to %d\n",
369 __func__, level);
370 }
371 #endif
372 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
373 break;
374 case PPC40x_INPUT_HALT:
375 /* Level sensitive - active low */
376 if (level) {
377 #if defined(PPC_DEBUG_IRQ)
378 if (loglevel & CPU_LOG_INT) {
379 fprintf(logfile, "%s: stop the CPU\n", __func__);
380 }
381 #endif
382 env->halted = 1;
383 } else {
384 #if defined(PPC_DEBUG_IRQ)
385 if (loglevel & CPU_LOG_INT) {
386 fprintf(logfile, "%s: restart the CPU\n", __func__);
387 }
388 #endif
389 env->halted = 0;
390 }
391 break;
392 case PPC40x_INPUT_DEBUG:
393 /* Level sensitive - active high */
394 #if defined(PPC_DEBUG_IRQ)
395 if (loglevel & CPU_LOG_INT) {
396 fprintf(logfile, "%s: set the debug pin state to %d\n",
397 __func__, level);
398 }
399 #endif
400 ppc_set_irq(env, PPC_INTERRUPT_DEBUG, level);
401 break;
402 default:
403 /* Unknown pin - do nothing */
404 #if defined(PPC_DEBUG_IRQ)
405 if (loglevel & CPU_LOG_INT) {
406 fprintf(logfile, "%s: unknown IRQ pin %d\n", __func__, pin);
407 }
408 #endif
409 return;
410 }
411 if (level)
412 env->irq_input_state |= 1 << pin;
413 else
414 env->irq_input_state &= ~(1 << pin);
415 }
416 }
417
418 void ppc40x_irq_init (CPUState *env)
419 {
420 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
421 env, PPC40x_INPUT_NB);
422 }
423
424 /*****************************************************************************/
425 /* PowerPC time base and decrementer emulation */
426 struct ppc_tb_t {
427 /* Time base management */
428 int64_t tb_offset; /* Compensation */
429 int64_t atb_offset; /* Compensation */
430 uint32_t tb_freq; /* TB frequency */
431 /* Decrementer management */
432 uint64_t decr_next; /* Tick for next decr interrupt */
433 uint32_t decr_freq; /* decrementer frequency */
434 struct QEMUTimer *decr_timer;
435 /* Hypervisor decrementer management */
436 uint64_t hdecr_next; /* Tick for next hdecr interrupt */
437 struct QEMUTimer *hdecr_timer;
438 uint64_t purr_load;
439 uint64_t purr_start;
440 void *opaque;
441 };
442
443 static always_inline uint64_t cpu_ppc_get_tb (ppc_tb_t *tb_env, uint64_t vmclk,
444 int64_t tb_offset)
445 {
446 /* TB time in tb periods */
447 return muldiv64(vmclk, tb_env->tb_freq, ticks_per_sec) + tb_offset;
448 }
449
450 uint32_t cpu_ppc_load_tbl (CPUState *env)
451 {
452 ppc_tb_t *tb_env = env->tb_env;
453 uint64_t tb;
454
455 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
456 #if defined(PPC_DEBUG_TB)
457 if (loglevel != 0) {
458 fprintf(logfile, "%s: tb %016" PRIx64 "\n", __func__, tb);
459 }
460 #endif
461
462 return tb & 0xFFFFFFFF;
463 }
464
465 static always_inline uint32_t _cpu_ppc_load_tbu (CPUState *env)
466 {
467 ppc_tb_t *tb_env = env->tb_env;
468 uint64_t tb;
469
470 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
471 #if defined(PPC_DEBUG_TB)
472 if (loglevel != 0) {
473 fprintf(logfile, "%s: tb %016" PRIx64 "\n", __func__, tb);
474 }
475 #endif
476
477 return tb >> 32;
478 }
479
480 uint32_t cpu_ppc_load_tbu (CPUState *env)
481 {
482 return _cpu_ppc_load_tbu(env);
483 }
484
485 static always_inline void cpu_ppc_store_tb (ppc_tb_t *tb_env, uint64_t vmclk,
486 int64_t *tb_offsetp,
487 uint64_t value)
488 {
489 *tb_offsetp = value - muldiv64(vmclk, tb_env->tb_freq, ticks_per_sec);
490 #ifdef PPC_DEBUG_TB
491 if (loglevel != 0) {
492 fprintf(logfile, "%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
493 __func__, value, *tb_offsetp);
494 }
495 #endif
496 }
497
498 void cpu_ppc_store_tbl (CPUState *env, uint32_t value)
499 {
500 ppc_tb_t *tb_env = env->tb_env;
501 uint64_t tb;
502
503 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
504 tb &= 0xFFFFFFFF00000000ULL;
505 cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
506 &tb_env->tb_offset, tb | (uint64_t)value);
507 }
508
509 static always_inline void _cpu_ppc_store_tbu (CPUState *env, uint32_t value)
510 {
511 ppc_tb_t *tb_env = env->tb_env;
512 uint64_t tb;
513
514 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
515 tb &= 0x00000000FFFFFFFFULL;
516 cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
517 &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
518 }
519
520 void cpu_ppc_store_tbu (CPUState *env, uint32_t value)
521 {
522 _cpu_ppc_store_tbu(env, value);
523 }
524
525 uint32_t cpu_ppc_load_atbl (CPUState *env)
526 {
527 ppc_tb_t *tb_env = env->tb_env;
528 uint64_t tb;
529
530 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
531 #if defined(PPC_DEBUG_TB)
532 if (loglevel != 0) {
533 fprintf(logfile, "%s: tb %016" PRIx64 "\n", __func__, tb);
534 }
535 #endif
536
537 return tb & 0xFFFFFFFF;
538 }
539
540 uint32_t cpu_ppc_load_atbu (CPUState *env)
541 {
542 ppc_tb_t *tb_env = env->tb_env;
543 uint64_t tb;
544
545 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
546 #if defined(PPC_DEBUG_TB)
547 if (loglevel != 0) {
548 fprintf(logfile, "%s: tb %016" PRIx64 "\n", __func__, tb);
549 }
550 #endif
551
552 return tb >> 32;
553 }
554
555 void cpu_ppc_store_atbl (CPUState *env, uint32_t value)
556 {
557 ppc_tb_t *tb_env = env->tb_env;
558 uint64_t tb;
559
560 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
561 tb &= 0xFFFFFFFF00000000ULL;
562 cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
563 &tb_env->atb_offset, tb | (uint64_t)value);
564 }
565
566 void cpu_ppc_store_atbu (CPUState *env, uint32_t value)
567 {
568 ppc_tb_t *tb_env = env->tb_env;
569 uint64_t tb;
570
571 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
572 tb &= 0x00000000FFFFFFFFULL;
573 cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
574 &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
575 }
576
577 static void cpu_ppc_tb_stop (CPUState *env)
578 {
579 ppc_tb_t *tb_env = env->tb_env;
580 uint64_t tb, atb, vmclk;
581
582 /* If the time base is already frozen, do nothing */
583 if (tb_env->tb_freq != 0) {
584 vmclk = qemu_get_clock(vm_clock);
585 /* Get the time base */
586 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
587 /* Get the alternate time base */
588 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
589 /* Store the time base value (ie compute the current offset) */
590 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
591 /* Store the alternate time base value (compute the current offset) */
592 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
593 /* Set the time base frequency to zero */
594 tb_env->tb_freq = 0;
595 /* Now, the time bases are frozen to tb_offset / atb_offset value */
596 }
597 }
598
599 static void cpu_ppc_tb_start (CPUState *env)
600 {
601 ppc_tb_t *tb_env = env->tb_env;
602 uint64_t tb, atb, vmclk;
603
604 /* If the time base is not frozen, do nothing */
605 if (tb_env->tb_freq == 0) {
606 vmclk = qemu_get_clock(vm_clock);
607 /* Get the time base from tb_offset */
608 tb = tb_env->tb_offset;
609 /* Get the alternate time base from atb_offset */
610 atb = tb_env->atb_offset;
611 /* Restore the tb frequency from the decrementer frequency */
612 tb_env->tb_freq = tb_env->decr_freq;
613 /* Store the time base value */
614 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
615 /* Store the alternate time base value */
616 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
617 }
618 }
619
620 static always_inline uint32_t _cpu_ppc_load_decr (CPUState *env,
621 uint64_t *next)
622 {
623 ppc_tb_t *tb_env = env->tb_env;
624 uint32_t decr;
625 int64_t diff;
626
627 diff = tb_env->decr_next - qemu_get_clock(vm_clock);
628 if (diff >= 0)
629 decr = muldiv64(diff, tb_env->decr_freq, ticks_per_sec);
630 else
631 decr = -muldiv64(-diff, tb_env->decr_freq, ticks_per_sec);
632 #if defined(PPC_DEBUG_TB)
633 if (loglevel != 0) {
634 fprintf(logfile, "%s: %08" PRIx32 "\n", __func__, decr);
635 }
636 #endif
637
638 return decr;
639 }
640
641 uint32_t cpu_ppc_load_decr (CPUState *env)
642 {
643 ppc_tb_t *tb_env = env->tb_env;
644
645 return _cpu_ppc_load_decr(env, &tb_env->decr_next);
646 }
647
648 uint32_t cpu_ppc_load_hdecr (CPUState *env)
649 {
650 ppc_tb_t *tb_env = env->tb_env;
651
652 return _cpu_ppc_load_decr(env, &tb_env->hdecr_next);
653 }
654
655 uint64_t cpu_ppc_load_purr (CPUState *env)
656 {
657 ppc_tb_t *tb_env = env->tb_env;
658 uint64_t diff;
659
660 diff = qemu_get_clock(vm_clock) - tb_env->purr_start;
661
662 return tb_env->purr_load + muldiv64(diff, tb_env->tb_freq, ticks_per_sec);
663 }
664
665 /* When decrementer expires,
666 * all we need to do is generate or queue a CPU exception
667 */
668 static always_inline void cpu_ppc_decr_excp (CPUState *env)
669 {
670 /* Raise it */
671 #ifdef PPC_DEBUG_TB
672 if (loglevel != 0) {
673 fprintf(logfile, "raise decrementer exception\n");
674 }
675 #endif
676 ppc_set_irq(env, PPC_INTERRUPT_DECR, 1);
677 }
678
679 static always_inline void cpu_ppc_hdecr_excp (CPUState *env)
680 {
681 /* Raise it */
682 #ifdef PPC_DEBUG_TB
683 if (loglevel != 0) {
684 fprintf(logfile, "raise decrementer exception\n");
685 }
686 #endif
687 ppc_set_irq(env, PPC_INTERRUPT_HDECR, 1);
688 }
689
690 static void __cpu_ppc_store_decr (CPUState *env, uint64_t *nextp,
691 struct QEMUTimer *timer,
692 void (*raise_excp)(CPUState *),
693 uint32_t decr, uint32_t value,
694 int is_excp)
695 {
696 ppc_tb_t *tb_env = env->tb_env;
697 uint64_t now, next;
698
699 #ifdef PPC_DEBUG_TB
700 if (loglevel != 0) {
701 fprintf(logfile, "%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
702 decr, value);
703 }
704 #endif
705 now = qemu_get_clock(vm_clock);
706 next = now + muldiv64(value, ticks_per_sec, tb_env->decr_freq);
707 if (is_excp)
708 next += *nextp - now;
709 if (next == now)
710 next++;
711 *nextp = next;
712 /* Adjust timer */
713 qemu_mod_timer(timer, next);
714 /* If we set a negative value and the decrementer was positive,
715 * raise an exception.
716 */
717 if ((value & 0x80000000) && !(decr & 0x80000000))
718 (*raise_excp)(env);
719 }
720
721 static always_inline void _cpu_ppc_store_decr (CPUState *env, uint32_t decr,
722 uint32_t value, int is_excp)
723 {
724 ppc_tb_t *tb_env = env->tb_env;
725
726 __cpu_ppc_store_decr(env, &tb_env->decr_next, tb_env->decr_timer,
727 &cpu_ppc_decr_excp, decr, value, is_excp);
728 }
729
730 void cpu_ppc_store_decr (CPUState *env, uint32_t value)
731 {
732 _cpu_ppc_store_decr(env, cpu_ppc_load_decr(env), value, 0);
733 }
734
735 static void cpu_ppc_decr_cb (void *opaque)
736 {
737 _cpu_ppc_store_decr(opaque, 0x00000000, 0xFFFFFFFF, 1);
738 }
739
740 static always_inline void _cpu_ppc_store_hdecr (CPUState *env, uint32_t hdecr,
741 uint32_t value, int is_excp)
742 {
743 ppc_tb_t *tb_env = env->tb_env;
744
745 if (tb_env->hdecr_timer != NULL) {
746 __cpu_ppc_store_decr(env, &tb_env->hdecr_next, tb_env->hdecr_timer,
747 &cpu_ppc_hdecr_excp, hdecr, value, is_excp);
748 }
749 }
750
751 void cpu_ppc_store_hdecr (CPUState *env, uint32_t value)
752 {
753 _cpu_ppc_store_hdecr(env, cpu_ppc_load_hdecr(env), value, 0);
754 }
755
756 static void cpu_ppc_hdecr_cb (void *opaque)
757 {
758 _cpu_ppc_store_hdecr(opaque, 0x00000000, 0xFFFFFFFF, 1);
759 }
760
761 void cpu_ppc_store_purr (CPUState *env, uint64_t value)
762 {
763 ppc_tb_t *tb_env = env->tb_env;
764
765 tb_env->purr_load = value;
766 tb_env->purr_start = qemu_get_clock(vm_clock);
767 }
768
769 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
770 {
771 CPUState *env = opaque;
772 ppc_tb_t *tb_env = env->tb_env;
773
774 tb_env->tb_freq = freq;
775 tb_env->decr_freq = freq;
776 /* There is a bug in Linux 2.4 kernels:
777 * if a decrementer exception is pending when it enables msr_ee at startup,
778 * it's not ready to handle it...
779 */
780 _cpu_ppc_store_decr(env, 0xFFFFFFFF, 0xFFFFFFFF, 0);
781 _cpu_ppc_store_hdecr(env, 0xFFFFFFFF, 0xFFFFFFFF, 0);
782 cpu_ppc_store_purr(env, 0x0000000000000000ULL);
783 }
784
785 /* Set up (once) timebase frequency (in Hz) */
786 clk_setup_cb cpu_ppc_tb_init (CPUState *env, uint32_t freq)
787 {
788 ppc_tb_t *tb_env;
789
790 tb_env = qemu_mallocz(sizeof(ppc_tb_t));
791 if (tb_env == NULL)
792 return NULL;
793 env->tb_env = tb_env;
794 /* Create new timer */
795 tb_env->decr_timer = qemu_new_timer(vm_clock, &cpu_ppc_decr_cb, env);
796 if (0) {
797 /* XXX: find a suitable condition to enable the hypervisor decrementer
798 */
799 tb_env->hdecr_timer = qemu_new_timer(vm_clock, &cpu_ppc_hdecr_cb, env);
800 } else {
801 tb_env->hdecr_timer = NULL;
802 }
803 cpu_ppc_set_tb_clk(env, freq);
804
805 return &cpu_ppc_set_tb_clk;
806 }
807
808 /* Specific helpers for POWER & PowerPC 601 RTC */
809 #if 0
810 static clk_setup_cb cpu_ppc601_rtc_init (CPUState *env)
811 {
812 return cpu_ppc_tb_init(env, 7812500);
813 }
814 #endif
815
816 void cpu_ppc601_store_rtcu (CPUState *env, uint32_t value)
817 {
818 _cpu_ppc_store_tbu(env, value);
819 }
820
821 uint32_t cpu_ppc601_load_rtcu (CPUState *env)
822 {
823 return _cpu_ppc_load_tbu(env);
824 }
825
826 void cpu_ppc601_store_rtcl (CPUState *env, uint32_t value)
827 {
828 cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
829 }
830
831 uint32_t cpu_ppc601_load_rtcl (CPUState *env)
832 {
833 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
834 }
835
836 /*****************************************************************************/
837 /* Embedded PowerPC timers */
838
839 /* PIT, FIT & WDT */
840 typedef struct ppcemb_timer_t ppcemb_timer_t;
841 struct ppcemb_timer_t {
842 uint64_t pit_reload; /* PIT auto-reload value */
843 uint64_t fit_next; /* Tick for next FIT interrupt */
844 struct QEMUTimer *fit_timer;
845 uint64_t wdt_next; /* Tick for next WDT interrupt */
846 struct QEMUTimer *wdt_timer;
847 };
848
849 /* Fixed interval timer */
850 static void cpu_4xx_fit_cb (void *opaque)
851 {
852 CPUState *env;
853 ppc_tb_t *tb_env;
854 ppcemb_timer_t *ppcemb_timer;
855 uint64_t now, next;
856
857 env = opaque;
858 tb_env = env->tb_env;
859 ppcemb_timer = tb_env->opaque;
860 now = qemu_get_clock(vm_clock);
861 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
862 case 0:
863 next = 1 << 9;
864 break;
865 case 1:
866 next = 1 << 13;
867 break;
868 case 2:
869 next = 1 << 17;
870 break;
871 case 3:
872 next = 1 << 21;
873 break;
874 default:
875 /* Cannot occur, but makes gcc happy */
876 return;
877 }
878 next = now + muldiv64(next, ticks_per_sec, tb_env->tb_freq);
879 if (next == now)
880 next++;
881 qemu_mod_timer(ppcemb_timer->fit_timer, next);
882 env->spr[SPR_40x_TSR] |= 1 << 26;
883 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1)
884 ppc_set_irq(env, PPC_INTERRUPT_FIT, 1);
885 #ifdef PPC_DEBUG_TB
886 if (loglevel != 0) {
887 fprintf(logfile, "%s: ir %d TCR " ADDRX " TSR " ADDRX "\n", __func__,
888 (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
889 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
890 }
891 #endif
892 }
893
894 /* Programmable interval timer */
895 static void start_stop_pit (CPUState *env, ppc_tb_t *tb_env, int is_excp)
896 {
897 ppcemb_timer_t *ppcemb_timer;
898 uint64_t now, next;
899
900 ppcemb_timer = tb_env->opaque;
901 if (ppcemb_timer->pit_reload <= 1 ||
902 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
903 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
904 /* Stop PIT */
905 #ifdef PPC_DEBUG_TB
906 if (loglevel != 0) {
907 fprintf(logfile, "%s: stop PIT\n", __func__);
908 }
909 #endif
910 qemu_del_timer(tb_env->decr_timer);
911 } else {
912 #ifdef PPC_DEBUG_TB
913 if (loglevel != 0) {
914 fprintf(logfile, "%s: start PIT %016" PRIx64 "\n",
915 __func__, ppcemb_timer->pit_reload);
916 }
917 #endif
918 now = qemu_get_clock(vm_clock);
919 next = now + muldiv64(ppcemb_timer->pit_reload,
920 ticks_per_sec, tb_env->decr_freq);
921 if (is_excp)
922 next += tb_env->decr_next - now;
923 if (next == now)
924 next++;
925 qemu_mod_timer(tb_env->decr_timer, next);
926 tb_env->decr_next = next;
927 }
928 }
929
930 static void cpu_4xx_pit_cb (void *opaque)
931 {
932 CPUState *env;
933 ppc_tb_t *tb_env;
934 ppcemb_timer_t *ppcemb_timer;
935
936 env = opaque;
937 tb_env = env->tb_env;
938 ppcemb_timer = tb_env->opaque;
939 env->spr[SPR_40x_TSR] |= 1 << 27;
940 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1)
941 ppc_set_irq(env, PPC_INTERRUPT_PIT, 1);
942 start_stop_pit(env, tb_env, 1);
943 #ifdef PPC_DEBUG_TB
944 if (loglevel != 0) {
945 fprintf(logfile, "%s: ar %d ir %d TCR " ADDRX " TSR " ADDRX " "
946 "%016" PRIx64 "\n", __func__,
947 (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
948 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
949 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
950 ppcemb_timer->pit_reload);
951 }
952 #endif
953 }
954
955 /* Watchdog timer */
956 static void cpu_4xx_wdt_cb (void *opaque)
957 {
958 CPUState *env;
959 ppc_tb_t *tb_env;
960 ppcemb_timer_t *ppcemb_timer;
961 uint64_t now, next;
962
963 env = opaque;
964 tb_env = env->tb_env;
965 ppcemb_timer = tb_env->opaque;
966 now = qemu_get_clock(vm_clock);
967 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
968 case 0:
969 next = 1 << 17;
970 break;
971 case 1:
972 next = 1 << 21;
973 break;
974 case 2:
975 next = 1 << 25;
976 break;
977 case 3:
978 next = 1 << 29;
979 break;
980 default:
981 /* Cannot occur, but makes gcc happy */
982 return;
983 }
984 next = now + muldiv64(next, ticks_per_sec, tb_env->decr_freq);
985 if (next == now)
986 next++;
987 #ifdef PPC_DEBUG_TB
988 if (loglevel != 0) {
989 fprintf(logfile, "%s: TCR " ADDRX " TSR " ADDRX "\n", __func__,
990 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
991 }
992 #endif
993 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
994 case 0x0:
995 case 0x1:
996 qemu_mod_timer(ppcemb_timer->wdt_timer, next);
997 ppcemb_timer->wdt_next = next;
998 env->spr[SPR_40x_TSR] |= 1 << 31;
999 break;
1000 case 0x2:
1001 qemu_mod_timer(ppcemb_timer->wdt_timer, next);
1002 ppcemb_timer->wdt_next = next;
1003 env->spr[SPR_40x_TSR] |= 1 << 30;
1004 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1)
1005 ppc_set_irq(env, PPC_INTERRUPT_WDT, 1);
1006 break;
1007 case 0x3:
1008 env->spr[SPR_40x_TSR] &= ~0x30000000;
1009 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1010 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1011 case 0x0:
1012 /* No reset */
1013 break;
1014 case 0x1: /* Core reset */
1015 ppc40x_core_reset(env);
1016 break;
1017 case 0x2: /* Chip reset */
1018 ppc40x_chip_reset(env);
1019 break;
1020 case 0x3: /* System reset */
1021 ppc40x_system_reset(env);
1022 break;
1023 }
1024 }
1025 }
1026
1027 void store_40x_pit (CPUState *env, target_ulong val)
1028 {
1029 ppc_tb_t *tb_env;
1030 ppcemb_timer_t *ppcemb_timer;
1031
1032 tb_env = env->tb_env;
1033 ppcemb_timer = tb_env->opaque;
1034 #ifdef PPC_DEBUG_TB
1035 if (loglevel != 0) {
1036 fprintf(logfile, "%s val" ADDRX "\n", __func__, val);
1037 }
1038 #endif
1039 ppcemb_timer->pit_reload = val;
1040 start_stop_pit(env, tb_env, 0);
1041 }
1042
1043 target_ulong load_40x_pit (CPUState *env)
1044 {
1045 return cpu_ppc_load_decr(env);
1046 }
1047
1048 void store_booke_tsr (CPUState *env, target_ulong val)
1049 {
1050 #ifdef PPC_DEBUG_TB
1051 if (loglevel != 0) {
1052 fprintf(logfile, "%s: val " ADDRX "\n", __func__, val);
1053 }
1054 #endif
1055 env->spr[SPR_40x_TSR] &= ~(val & 0xFC000000);
1056 if (val & 0x80000000)
1057 ppc_set_irq(env, PPC_INTERRUPT_PIT, 0);
1058 }
1059
1060 void store_booke_tcr (CPUState *env, target_ulong val)
1061 {
1062 ppc_tb_t *tb_env;
1063
1064 tb_env = env->tb_env;
1065 #ifdef PPC_DEBUG_TB
1066 if (loglevel != 0) {
1067 fprintf(logfile, "%s: val " ADDRX "\n", __func__, val);
1068 }
1069 #endif
1070 env->spr[SPR_40x_TCR] = val & 0xFFC00000;
1071 start_stop_pit(env, tb_env, 1);
1072 cpu_4xx_wdt_cb(env);
1073 }
1074
1075 static void ppc_emb_set_tb_clk (void *opaque, uint32_t freq)
1076 {
1077 CPUState *env = opaque;
1078 ppc_tb_t *tb_env = env->tb_env;
1079
1080 #ifdef PPC_DEBUG_TB
1081 if (loglevel != 0) {
1082 fprintf(logfile, "%s set new frequency to %" PRIu32 "\n", __func__,
1083 freq);
1084 }
1085 #endif
1086 tb_env->tb_freq = freq;
1087 tb_env->decr_freq = freq;
1088 /* XXX: we should also update all timers */
1089 }
1090
1091 clk_setup_cb ppc_emb_timers_init (CPUState *env, uint32_t freq)
1092 {
1093 ppc_tb_t *tb_env;
1094 ppcemb_timer_t *ppcemb_timer;
1095
1096 tb_env = qemu_mallocz(sizeof(ppc_tb_t));
1097 if (tb_env == NULL) {
1098 return NULL;
1099 }
1100 env->tb_env = tb_env;
1101 ppcemb_timer = qemu_mallocz(sizeof(ppcemb_timer_t));
1102 tb_env->tb_freq = freq;
1103 tb_env->decr_freq = freq;
1104 tb_env->opaque = ppcemb_timer;
1105 #ifdef PPC_DEBUG_TB
1106 if (loglevel != 0) {
1107 fprintf(logfile, "%s freq %" PRIu32 "\n", __func__, freq);
1108 }
1109 #endif
1110 if (ppcemb_timer != NULL) {
1111 /* We use decr timer for PIT */
1112 tb_env->decr_timer = qemu_new_timer(vm_clock, &cpu_4xx_pit_cb, env);
1113 ppcemb_timer->fit_timer =
1114 qemu_new_timer(vm_clock, &cpu_4xx_fit_cb, env);
1115 ppcemb_timer->wdt_timer =
1116 qemu_new_timer(vm_clock, &cpu_4xx_wdt_cb, env);
1117 }
1118
1119 return &ppc_emb_set_tb_clk;
1120 }
1121
1122 /*****************************************************************************/
1123 /* Embedded PowerPC Device Control Registers */
1124 typedef struct ppc_dcrn_t ppc_dcrn_t;
1125 struct ppc_dcrn_t {
1126 dcr_read_cb dcr_read;
1127 dcr_write_cb dcr_write;
1128 void *opaque;
1129 };
1130
1131 /* XXX: on 460, DCR addresses are 32 bits wide,
1132 * using DCRIPR to get the 22 upper bits of the DCR address
1133 */
1134 #define DCRN_NB 1024
1135 struct ppc_dcr_t {
1136 ppc_dcrn_t dcrn[DCRN_NB];
1137 int (*read_error)(int dcrn);
1138 int (*write_error)(int dcrn);
1139 };
1140
1141 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, target_ulong *valp)
1142 {
1143 ppc_dcrn_t *dcr;
1144
1145 if (dcrn < 0 || dcrn >= DCRN_NB)
1146 goto error;
1147 dcr = &dcr_env->dcrn[dcrn];
1148 if (dcr->dcr_read == NULL)
1149 goto error;
1150 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1151
1152 return 0;
1153
1154 error:
1155 if (dcr_env->read_error != NULL)
1156 return (*dcr_env->read_error)(dcrn);
1157
1158 return -1;
1159 }
1160
1161 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, target_ulong val)
1162 {
1163 ppc_dcrn_t *dcr;
1164
1165 if (dcrn < 0 || dcrn >= DCRN_NB)
1166 goto error;
1167 dcr = &dcr_env->dcrn[dcrn];
1168 if (dcr->dcr_write == NULL)
1169 goto error;
1170 (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1171
1172 return 0;
1173
1174 error:
1175 if (dcr_env->write_error != NULL)
1176 return (*dcr_env->write_error)(dcrn);
1177
1178 return -1;
1179 }
1180
1181 int ppc_dcr_register (CPUState *env, int dcrn, void *opaque,
1182 dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1183 {
1184 ppc_dcr_t *dcr_env;
1185 ppc_dcrn_t *dcr;
1186
1187 dcr_env = env->dcr_env;
1188 if (dcr_env == NULL)
1189 return -1;
1190 if (dcrn < 0 || dcrn >= DCRN_NB)
1191 return -1;
1192 dcr = &dcr_env->dcrn[dcrn];
1193 if (dcr->opaque != NULL ||
1194 dcr->dcr_read != NULL ||
1195 dcr->dcr_write != NULL)
1196 return -1;
1197 dcr->opaque = opaque;
1198 dcr->dcr_read = dcr_read;
1199 dcr->dcr_write = dcr_write;
1200
1201 return 0;
1202 }
1203
1204 int ppc_dcr_init (CPUState *env, int (*read_error)(int dcrn),
1205 int (*write_error)(int dcrn))
1206 {
1207 ppc_dcr_t *dcr_env;
1208
1209 dcr_env = qemu_mallocz(sizeof(ppc_dcr_t));
1210 if (dcr_env == NULL)
1211 return -1;
1212 dcr_env->read_error = read_error;
1213 dcr_env->write_error = write_error;
1214 env->dcr_env = dcr_env;
1215
1216 return 0;
1217 }
1218
1219 #if 0
1220 /*****************************************************************************/
1221 /* Handle system reset (for now, just stop emulation) */
1222 void cpu_ppc_reset (CPUState *env)
1223 {
1224 printf("Reset asked... Stop emulation\n");
1225 abort();
1226 }
1227 #endif
1228
1229 /*****************************************************************************/
1230 /* Debug port */
1231 void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1232 {
1233 addr &= 0xF;
1234 switch (addr) {
1235 case 0:
1236 printf("%c", val);
1237 break;
1238 case 1:
1239 printf("\n");
1240 fflush(stdout);
1241 break;
1242 case 2:
1243 printf("Set loglevel to %04" PRIx32 "\n", val);
1244 cpu_set_log(val | 0x100);
1245 break;
1246 }
1247 }
1248
1249 /*****************************************************************************/
1250 /* NVRAM helpers */
1251 static inline uint32_t nvram_read (nvram_t *nvram, uint32_t addr)
1252 {
1253 return (*nvram->read_fn)(nvram->opaque, addr);;
1254 }
1255
1256 static inline void nvram_write (nvram_t *nvram, uint32_t addr, uint32_t val)
1257 {
1258 (*nvram->write_fn)(nvram->opaque, addr, val);
1259 }
1260
1261 void NVRAM_set_byte (nvram_t *nvram, uint32_t addr, uint8_t value)
1262 {
1263 nvram_write(nvram, addr, value);
1264 }
1265
1266 uint8_t NVRAM_get_byte (nvram_t *nvram, uint32_t addr)
1267 {
1268 return nvram_read(nvram, addr);
1269 }
1270
1271 void NVRAM_set_word (nvram_t *nvram, uint32_t addr, uint16_t value)
1272 {
1273 nvram_write(nvram, addr, value >> 8);
1274 nvram_write(nvram, addr + 1, value & 0xFF);
1275 }
1276
1277 uint16_t NVRAM_get_word (nvram_t *nvram, uint32_t addr)
1278 {
1279 uint16_t tmp;
1280
1281 tmp = nvram_read(nvram, addr) << 8;
1282 tmp |= nvram_read(nvram, addr + 1);
1283
1284 return tmp;
1285 }
1286
1287 void NVRAM_set_lword (nvram_t *nvram, uint32_t addr, uint32_t value)
1288 {
1289 nvram_write(nvram, addr, value >> 24);
1290 nvram_write(nvram, addr + 1, (value >> 16) & 0xFF);
1291 nvram_write(nvram, addr + 2, (value >> 8) & 0xFF);
1292 nvram_write(nvram, addr + 3, value & 0xFF);
1293 }
1294
1295 uint32_t NVRAM_get_lword (nvram_t *nvram, uint32_t addr)
1296 {
1297 uint32_t tmp;
1298
1299 tmp = nvram_read(nvram, addr) << 24;
1300 tmp |= nvram_read(nvram, addr + 1) << 16;
1301 tmp |= nvram_read(nvram, addr + 2) << 8;
1302 tmp |= nvram_read(nvram, addr + 3);
1303
1304 return tmp;
1305 }
1306
1307 void NVRAM_set_string (nvram_t *nvram, uint32_t addr,
1308 const char *str, uint32_t max)
1309 {
1310 int i;
1311
1312 for (i = 0; i < max && str[i] != '\0'; i++) {
1313 nvram_write(nvram, addr + i, str[i]);
1314 }
1315 nvram_write(nvram, addr + i, str[i]);
1316 nvram_write(nvram, addr + max - 1, '\0');
1317 }
1318
1319 int NVRAM_get_string (nvram_t *nvram, uint8_t *dst, uint16_t addr, int max)
1320 {
1321 int i;
1322
1323 memset(dst, 0, max);
1324 for (i = 0; i < max; i++) {
1325 dst[i] = NVRAM_get_byte(nvram, addr + i);
1326 if (dst[i] == '\0')
1327 break;
1328 }
1329
1330 return i;
1331 }
1332
1333 static uint16_t NVRAM_crc_update (uint16_t prev, uint16_t value)
1334 {
1335 uint16_t tmp;
1336 uint16_t pd, pd1, pd2;
1337
1338 tmp = prev >> 8;
1339 pd = prev ^ value;
1340 pd1 = pd & 0x000F;
1341 pd2 = ((pd >> 4) & 0x000F) ^ pd1;
1342 tmp ^= (pd1 << 3) | (pd1 << 8);
1343 tmp ^= pd2 | (pd2 << 7) | (pd2 << 12);
1344
1345 return tmp;
1346 }
1347
1348 static uint16_t NVRAM_compute_crc (nvram_t *nvram, uint32_t start, uint32_t count)
1349 {
1350 uint32_t i;
1351 uint16_t crc = 0xFFFF;
1352 int odd;
1353
1354 odd = count & 1;
1355 count &= ~1;
1356 for (i = 0; i != count; i++) {
1357 crc = NVRAM_crc_update(crc, NVRAM_get_word(nvram, start + i));
1358 }
1359 if (odd) {
1360 crc = NVRAM_crc_update(crc, NVRAM_get_byte(nvram, start + i) << 8);
1361 }
1362
1363 return crc;
1364 }
1365
1366 #define CMDLINE_ADDR 0x017ff000
1367
1368 int PPC_NVRAM_set_params (nvram_t *nvram, uint16_t NVRAM_size,
1369 const char *arch,
1370 uint32_t RAM_size, int boot_device,
1371 uint32_t kernel_image, uint32_t kernel_size,
1372 const char *cmdline,
1373 uint32_t initrd_image, uint32_t initrd_size,
1374 uint32_t NVRAM_image,
1375 int width, int height, int depth)
1376 {
1377 uint16_t crc;
1378
1379 /* Set parameters for Open Hack'Ware BIOS */
1380 NVRAM_set_string(nvram, 0x00, "QEMU_BIOS", 16);
1381 NVRAM_set_lword(nvram, 0x10, 0x00000002); /* structure v2 */
1382 NVRAM_set_word(nvram, 0x14, NVRAM_size);
1383 NVRAM_set_string(nvram, 0x20, arch, 16);
1384 NVRAM_set_lword(nvram, 0x30, RAM_size);
1385 NVRAM_set_byte(nvram, 0x34, boot_device);
1386 NVRAM_set_lword(nvram, 0x38, kernel_image);
1387 NVRAM_set_lword(nvram, 0x3C, kernel_size);
1388 if (cmdline) {
1389 /* XXX: put the cmdline in NVRAM too ? */
1390 strcpy((char *)(phys_ram_base + CMDLINE_ADDR), cmdline);
1391 NVRAM_set_lword(nvram, 0x40, CMDLINE_ADDR);
1392 NVRAM_set_lword(nvram, 0x44, strlen(cmdline));
1393 } else {
1394 NVRAM_set_lword(nvram, 0x40, 0);
1395 NVRAM_set_lword(nvram, 0x44, 0);
1396 }
1397 NVRAM_set_lword(nvram, 0x48, initrd_image);
1398 NVRAM_set_lword(nvram, 0x4C, initrd_size);
1399 NVRAM_set_lword(nvram, 0x50, NVRAM_image);
1400
1401 NVRAM_set_word(nvram, 0x54, width);
1402 NVRAM_set_word(nvram, 0x56, height);
1403 NVRAM_set_word(nvram, 0x58, depth);
1404 crc = NVRAM_compute_crc(nvram, 0x00, 0xF8);
1405 NVRAM_set_word(nvram, 0xFC, crc);
1406
1407 return 0;
1408 }