]> git.proxmox.com Git - qemu.git/blob - hw/ppc.c
Always make all PowerPC exception definitions visible.
[qemu.git] / hw / ppc.c
1 /*
2 * QEMU generic PowerPC hardware System Emulator
3 *
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "vl.h"
25
26 //#define PPC_DEBUG_IRQ
27 //#define PPC_DEBUG_TB
28
29 extern FILE *logfile;
30 extern int loglevel;
31
32 static void cpu_ppc_tb_stop (CPUState *env);
33 static void cpu_ppc_tb_start (CPUState *env);
34
35 static void ppc_set_irq (CPUState *env, int n_IRQ, int level)
36 {
37 if (level) {
38 env->pending_interrupts |= 1 << n_IRQ;
39 cpu_interrupt(env, CPU_INTERRUPT_HARD);
40 } else {
41 env->pending_interrupts &= ~(1 << n_IRQ);
42 if (env->pending_interrupts == 0)
43 cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
44 }
45 #if defined(PPC_DEBUG_IRQ)
46 if (loglevel & CPU_LOG_INT) {
47 fprintf(logfile, "%s: %p n_IRQ %d level %d => pending %08x req %08x\n",
48 __func__, env, n_IRQ, level,
49 env->pending_interrupts, env->interrupt_request);
50 }
51 #endif
52 }
53
54 /* PowerPC 6xx / 7xx internal IRQ controller */
55 static void ppc6xx_set_irq (void *opaque, int pin, int level)
56 {
57 CPUState *env = opaque;
58 int cur_level;
59
60 #if defined(PPC_DEBUG_IRQ)
61 if (loglevel & CPU_LOG_INT) {
62 fprintf(logfile, "%s: env %p pin %d level %d\n", __func__,
63 env, pin, level);
64 }
65 #endif
66 cur_level = (env->irq_input_state >> pin) & 1;
67 /* Don't generate spurious events */
68 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
69 switch (pin) {
70 case PPC6xx_INPUT_TBEN:
71 /* Level sensitive - active high */
72 #if defined(PPC_DEBUG_IRQ)
73 if (loglevel & CPU_LOG_INT) {
74 fprintf(logfile, "%s: %s the time base\n",
75 __func__, level ? "start" : "stop");
76 }
77 #endif
78 if (level) {
79 cpu_ppc_tb_start(env);
80 } else {
81 cpu_ppc_tb_stop(env);
82 }
83 case PPC6xx_INPUT_INT:
84 /* Level sensitive - active high */
85 #if defined(PPC_DEBUG_IRQ)
86 if (loglevel & CPU_LOG_INT) {
87 fprintf(logfile, "%s: set the external IRQ state to %d\n",
88 __func__, level);
89 }
90 #endif
91 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
92 break;
93 case PPC6xx_INPUT_SMI:
94 /* Level sensitive - active high */
95 #if defined(PPC_DEBUG_IRQ)
96 if (loglevel & CPU_LOG_INT) {
97 fprintf(logfile, "%s: set the SMI IRQ state to %d\n",
98 __func__, level);
99 }
100 #endif
101 ppc_set_irq(env, PPC_INTERRUPT_SMI, level);
102 break;
103 case PPC6xx_INPUT_MCP:
104 /* Negative edge sensitive */
105 /* XXX: TODO: actual reaction may depends on HID0 status
106 * 603/604/740/750: check HID0[EMCP]
107 */
108 if (cur_level == 1 && level == 0) {
109 #if defined(PPC_DEBUG_IRQ)
110 if (loglevel & CPU_LOG_INT) {
111 fprintf(logfile, "%s: raise machine check state\n",
112 __func__);
113 }
114 #endif
115 ppc_set_irq(env, PPC_INTERRUPT_MCK, 1);
116 }
117 break;
118 case PPC6xx_INPUT_CKSTP_IN:
119 /* Level sensitive - active low */
120 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
121 /* XXX: Note that the only way to restart the CPU is to reset it */
122 if (level) {
123 #if defined(PPC_DEBUG_IRQ)
124 if (loglevel & CPU_LOG_INT) {
125 fprintf(logfile, "%s: stop the CPU\n", __func__);
126 }
127 #endif
128 env->halted = 1;
129 }
130 break;
131 case PPC6xx_INPUT_HRESET:
132 /* Level sensitive - active low */
133 if (level) {
134 #if defined(PPC_DEBUG_IRQ)
135 if (loglevel & CPU_LOG_INT) {
136 fprintf(logfile, "%s: reset the CPU\n", __func__);
137 }
138 #endif
139 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
140 /* XXX: TOFIX */
141 #if 0
142 cpu_ppc_reset(env);
143 #else
144 qemu_system_reset_request();
145 #endif
146 }
147 break;
148 case PPC6xx_INPUT_SRESET:
149 #if defined(PPC_DEBUG_IRQ)
150 if (loglevel & CPU_LOG_INT) {
151 fprintf(logfile, "%s: set the RESET IRQ state to %d\n",
152 __func__, level);
153 }
154 #endif
155 ppc_set_irq(env, PPC_INTERRUPT_RESET, level);
156 break;
157 default:
158 /* Unknown pin - do nothing */
159 #if defined(PPC_DEBUG_IRQ)
160 if (loglevel & CPU_LOG_INT) {
161 fprintf(logfile, "%s: unknown IRQ pin %d\n", __func__, pin);
162 }
163 #endif
164 return;
165 }
166 if (level)
167 env->irq_input_state |= 1 << pin;
168 else
169 env->irq_input_state &= ~(1 << pin);
170 }
171 }
172
173 void ppc6xx_irq_init (CPUState *env)
174 {
175 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, env, 6);
176 }
177
178 #if defined(TARGET_PPC64)
179 /* PowerPC 970 internal IRQ controller */
180 static void ppc970_set_irq (void *opaque, int pin, int level)
181 {
182 CPUState *env = opaque;
183 int cur_level;
184
185 #if defined(PPC_DEBUG_IRQ)
186 if (loglevel & CPU_LOG_INT) {
187 fprintf(logfile, "%s: env %p pin %d level %d\n", __func__,
188 env, pin, level);
189 }
190 #endif
191 cur_level = (env->irq_input_state >> pin) & 1;
192 /* Don't generate spurious events */
193 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
194 switch (pin) {
195 case PPC970_INPUT_INT:
196 /* Level sensitive - active high */
197 #if defined(PPC_DEBUG_IRQ)
198 if (loglevel & CPU_LOG_INT) {
199 fprintf(logfile, "%s: set the external IRQ state to %d\n",
200 __func__, level);
201 }
202 #endif
203 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
204 break;
205 case PPC970_INPUT_THINT:
206 /* Level sensitive - active high */
207 #if defined(PPC_DEBUG_IRQ)
208 if (loglevel & CPU_LOG_INT) {
209 fprintf(logfile, "%s: set the SMI IRQ state to %d\n", __func__,
210 level);
211 }
212 #endif
213 ppc_set_irq(env, PPC_INTERRUPT_THERM, level);
214 break;
215 case PPC970_INPUT_MCP:
216 /* Negative edge sensitive */
217 /* XXX: TODO: actual reaction may depends on HID0 status
218 * 603/604/740/750: check HID0[EMCP]
219 */
220 if (cur_level == 1 && level == 0) {
221 #if defined(PPC_DEBUG_IRQ)
222 if (loglevel & CPU_LOG_INT) {
223 fprintf(logfile, "%s: raise machine check state\n",
224 __func__);
225 }
226 #endif
227 ppc_set_irq(env, PPC_INTERRUPT_MCK, 1);
228 }
229 break;
230 case PPC970_INPUT_CKSTP:
231 /* Level sensitive - active low */
232 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
233 if (level) {
234 #if defined(PPC_DEBUG_IRQ)
235 if (loglevel & CPU_LOG_INT) {
236 fprintf(logfile, "%s: stop the CPU\n", __func__);
237 }
238 #endif
239 env->halted = 1;
240 } else {
241 #if defined(PPC_DEBUG_IRQ)
242 if (loglevel & CPU_LOG_INT) {
243 fprintf(logfile, "%s: restart the CPU\n", __func__);
244 }
245 #endif
246 env->halted = 0;
247 }
248 break;
249 case PPC970_INPUT_HRESET:
250 /* Level sensitive - active low */
251 if (level) {
252 #if 0 // XXX: TOFIX
253 #if defined(PPC_DEBUG_IRQ)
254 if (loglevel & CPU_LOG_INT) {
255 fprintf(logfile, "%s: reset the CPU\n", __func__);
256 }
257 #endif
258 cpu_reset(env);
259 #endif
260 }
261 break;
262 case PPC970_INPUT_SRESET:
263 #if defined(PPC_DEBUG_IRQ)
264 if (loglevel & CPU_LOG_INT) {
265 fprintf(logfile, "%s: set the RESET IRQ state to %d\n",
266 __func__, level);
267 }
268 #endif
269 ppc_set_irq(env, PPC_INTERRUPT_RESET, level);
270 break;
271 case PPC970_INPUT_TBEN:
272 #if defined(PPC_DEBUG_IRQ)
273 if (loglevel & CPU_LOG_INT) {
274 fprintf(logfile, "%s: set the TBEN state to %d\n", __func__,
275 level);
276 }
277 #endif
278 /* XXX: TODO */
279 break;
280 default:
281 /* Unknown pin - do nothing */
282 #if defined(PPC_DEBUG_IRQ)
283 if (loglevel & CPU_LOG_INT) {
284 fprintf(logfile, "%s: unknown IRQ pin %d\n", __func__, pin);
285 }
286 #endif
287 return;
288 }
289 if (level)
290 env->irq_input_state |= 1 << pin;
291 else
292 env->irq_input_state &= ~(1 << pin);
293 }
294 }
295
296 void ppc970_irq_init (CPUState *env)
297 {
298 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, env, 7);
299 }
300 #endif /* defined(TARGET_PPC64) */
301
302 /* PowerPC 40x internal IRQ controller */
303 static void ppc40x_set_irq (void *opaque, int pin, int level)
304 {
305 CPUState *env = opaque;
306 int cur_level;
307
308 #if defined(PPC_DEBUG_IRQ)
309 if (loglevel & CPU_LOG_INT) {
310 fprintf(logfile, "%s: env %p pin %d level %d\n", __func__,
311 env, pin, level);
312 }
313 #endif
314 cur_level = (env->irq_input_state >> pin) & 1;
315 /* Don't generate spurious events */
316 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
317 switch (pin) {
318 case PPC40x_INPUT_RESET_SYS:
319 if (level) {
320 #if defined(PPC_DEBUG_IRQ)
321 if (loglevel & CPU_LOG_INT) {
322 fprintf(logfile, "%s: reset the PowerPC system\n",
323 __func__);
324 }
325 #endif
326 ppc40x_system_reset(env);
327 }
328 break;
329 case PPC40x_INPUT_RESET_CHIP:
330 if (level) {
331 #if defined(PPC_DEBUG_IRQ)
332 if (loglevel & CPU_LOG_INT) {
333 fprintf(logfile, "%s: reset the PowerPC chip\n", __func__);
334 }
335 #endif
336 ppc40x_chip_reset(env);
337 }
338 break;
339 case PPC40x_INPUT_RESET_CORE:
340 /* XXX: TODO: update DBSR[MRR] */
341 if (level) {
342 #if defined(PPC_DEBUG_IRQ)
343 if (loglevel & CPU_LOG_INT) {
344 fprintf(logfile, "%s: reset the PowerPC core\n", __func__);
345 }
346 #endif
347 ppc40x_core_reset(env);
348 }
349 break;
350 case PPC40x_INPUT_CINT:
351 /* Level sensitive - active high */
352 #if defined(PPC_DEBUG_IRQ)
353 if (loglevel & CPU_LOG_INT) {
354 fprintf(logfile, "%s: set the critical IRQ state to %d\n",
355 __func__, level);
356 }
357 #endif
358 ppc_set_irq(env, PPC_INTERRUPT_CEXT, level);
359 break;
360 case PPC40x_INPUT_INT:
361 /* Level sensitive - active high */
362 #if defined(PPC_DEBUG_IRQ)
363 if (loglevel & CPU_LOG_INT) {
364 fprintf(logfile, "%s: set the external IRQ state to %d\n",
365 __func__, level);
366 }
367 #endif
368 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
369 break;
370 case PPC40x_INPUT_HALT:
371 /* Level sensitive - active low */
372 if (level) {
373 #if defined(PPC_DEBUG_IRQ)
374 if (loglevel & CPU_LOG_INT) {
375 fprintf(logfile, "%s: stop the CPU\n", __func__);
376 }
377 #endif
378 env->halted = 1;
379 } else {
380 #if defined(PPC_DEBUG_IRQ)
381 if (loglevel & CPU_LOG_INT) {
382 fprintf(logfile, "%s: restart the CPU\n", __func__);
383 }
384 #endif
385 env->halted = 0;
386 }
387 break;
388 case PPC40x_INPUT_DEBUG:
389 /* Level sensitive - active high */
390 #if defined(PPC_DEBUG_IRQ)
391 if (loglevel & CPU_LOG_INT) {
392 fprintf(logfile, "%s: set the debug pin state to %d\n",
393 __func__, level);
394 }
395 #endif
396 ppc_set_irq(env, PPC_INTERRUPT_DEBUG, level);
397 break;
398 default:
399 /* Unknown pin - do nothing */
400 #if defined(PPC_DEBUG_IRQ)
401 if (loglevel & CPU_LOG_INT) {
402 fprintf(logfile, "%s: unknown IRQ pin %d\n", __func__, pin);
403 }
404 #endif
405 return;
406 }
407 if (level)
408 env->irq_input_state |= 1 << pin;
409 else
410 env->irq_input_state &= ~(1 << pin);
411 }
412 }
413
414 void ppc40x_irq_init (CPUState *env)
415 {
416 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
417 env, PPC40x_INPUT_NB);
418 }
419
420 /*****************************************************************************/
421 /* PowerPC time base and decrementer emulation */
422 struct ppc_tb_t {
423 /* Time base management */
424 int64_t tb_offset; /* Compensation */
425 int64_t atb_offset; /* Compensation */
426 uint32_t tb_freq; /* TB frequency */
427 /* Decrementer management */
428 uint64_t decr_next; /* Tick for next decr interrupt */
429 uint32_t decr_freq; /* decrementer frequency */
430 struct QEMUTimer *decr_timer;
431 /* Hypervisor decrementer management */
432 uint64_t hdecr_next; /* Tick for next hdecr interrupt */
433 struct QEMUTimer *hdecr_timer;
434 uint64_t purr_load;
435 uint64_t purr_start;
436 void *opaque;
437 };
438
439 static always_inline uint64_t cpu_ppc_get_tb (ppc_tb_t *tb_env, uint64_t vmclk,
440 int64_t tb_offset)
441 {
442 /* TB time in tb periods */
443 return muldiv64(vmclk, tb_env->tb_freq, ticks_per_sec) + tb_offset;
444 }
445
446 uint32_t cpu_ppc_load_tbl (CPUState *env)
447 {
448 ppc_tb_t *tb_env = env->tb_env;
449 uint64_t tb;
450
451 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
452 #if defined(PPC_DEBUG_TB)
453 if (loglevel != 0) {
454 fprintf(logfile, "%s: tb=0x%016lx\n", __func__, tb);
455 }
456 #endif
457
458 return tb & 0xFFFFFFFF;
459 }
460
461 static always_inline uint32_t _cpu_ppc_load_tbu (CPUState *env)
462 {
463 ppc_tb_t *tb_env = env->tb_env;
464 uint64_t tb;
465
466 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
467 #if defined(PPC_DEBUG_TB)
468 if (loglevel != 0) {
469 fprintf(logfile, "%s: tb=0x%016lx\n", __func__, tb);
470 }
471 #endif
472
473 return tb >> 32;
474 }
475
476 uint32_t cpu_ppc_load_tbu (CPUState *env)
477 {
478 return _cpu_ppc_load_tbu(env);
479 }
480
481 static always_inline void cpu_ppc_store_tb (ppc_tb_t *tb_env, uint64_t vmclk,
482 int64_t *tb_offsetp,
483 uint64_t value)
484 {
485 *tb_offsetp = value - muldiv64(vmclk, tb_env->tb_freq, ticks_per_sec);
486 #ifdef PPC_DEBUG_TB
487 if (loglevel != 0) {
488 fprintf(logfile, "%s: tb=0x%016lx offset=%08lx\n", __func__, value,
489 *tb_offsetp);
490 }
491 #endif
492 }
493
494 void cpu_ppc_store_tbl (CPUState *env, uint32_t value)
495 {
496 ppc_tb_t *tb_env = env->tb_env;
497 uint64_t tb;
498
499 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
500 tb &= 0xFFFFFFFF00000000ULL;
501 cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
502 &tb_env->tb_offset, tb | (uint64_t)value);
503 }
504
505 static always_inline void _cpu_ppc_store_tbu (CPUState *env, uint32_t value)
506 {
507 ppc_tb_t *tb_env = env->tb_env;
508 uint64_t tb;
509
510 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
511 tb &= 0x00000000FFFFFFFFULL;
512 cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
513 &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
514 }
515
516 void cpu_ppc_store_tbu (CPUState *env, uint32_t value)
517 {
518 _cpu_ppc_store_tbu(env, value);
519 }
520
521 uint32_t cpu_ppc_load_atbl (CPUState *env)
522 {
523 ppc_tb_t *tb_env = env->tb_env;
524 uint64_t tb;
525
526 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
527 #if defined(PPC_DEBUG_TB)
528 if (loglevel != 0) {
529 fprintf(logfile, "%s: tb=0x%016lx\n", __func__, tb);
530 }
531 #endif
532
533 return tb & 0xFFFFFFFF;
534 }
535
536 uint32_t cpu_ppc_load_atbu (CPUState *env)
537 {
538 ppc_tb_t *tb_env = env->tb_env;
539 uint64_t tb;
540
541 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
542 #if defined(PPC_DEBUG_TB)
543 if (loglevel != 0) {
544 fprintf(logfile, "%s: tb=0x%016lx\n", __func__, tb);
545 }
546 #endif
547
548 return tb >> 32;
549 }
550
551 void cpu_ppc_store_atbl (CPUState *env, uint32_t value)
552 {
553 ppc_tb_t *tb_env = env->tb_env;
554 uint64_t tb;
555
556 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
557 tb &= 0xFFFFFFFF00000000ULL;
558 cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
559 &tb_env->atb_offset, tb | (uint64_t)value);
560 }
561
562 void cpu_ppc_store_atbu (CPUState *env, uint32_t value)
563 {
564 ppc_tb_t *tb_env = env->tb_env;
565 uint64_t tb;
566
567 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
568 tb &= 0x00000000FFFFFFFFULL;
569 cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
570 &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
571 }
572
573 static void cpu_ppc_tb_stop (CPUState *env)
574 {
575 ppc_tb_t *tb_env = env->tb_env;
576 uint64_t tb, atb, vmclk;
577
578 /* If the time base is already frozen, do nothing */
579 if (tb_env->tb_freq != 0) {
580 vmclk = qemu_get_clock(vm_clock);
581 /* Get the time base */
582 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
583 /* Get the alternate time base */
584 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
585 /* Store the time base value (ie compute the current offset) */
586 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
587 /* Store the alternate time base value (compute the current offset) */
588 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
589 /* Set the time base frequency to zero */
590 tb_env->tb_freq = 0;
591 /* Now, the time bases are frozen to tb_offset / atb_offset value */
592 }
593 }
594
595 static void cpu_ppc_tb_start (CPUState *env)
596 {
597 ppc_tb_t *tb_env = env->tb_env;
598 uint64_t tb, atb, vmclk;
599
600 /* If the time base is not frozen, do nothing */
601 if (tb_env->tb_freq == 0) {
602 vmclk = qemu_get_clock(vm_clock);
603 /* Get the time base from tb_offset */
604 tb = tb_env->tb_offset;
605 /* Get the alternate time base from atb_offset */
606 atb = tb_env->atb_offset;
607 /* Restore the tb frequency from the decrementer frequency */
608 tb_env->tb_freq = tb_env->decr_freq;
609 /* Store the time base value */
610 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
611 /* Store the alternate time base value */
612 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
613 }
614 }
615
616 static always_inline uint32_t _cpu_ppc_load_decr (CPUState *env,
617 uint64_t *next)
618 {
619 ppc_tb_t *tb_env = env->tb_env;
620 uint32_t decr;
621 int64_t diff;
622
623 diff = tb_env->decr_next - qemu_get_clock(vm_clock);
624 if (diff >= 0)
625 decr = muldiv64(diff, tb_env->decr_freq, ticks_per_sec);
626 else
627 decr = -muldiv64(-diff, tb_env->decr_freq, ticks_per_sec);
628 #if defined(PPC_DEBUG_TB)
629 if (loglevel != 0) {
630 fprintf(logfile, "%s: 0x%08x\n", __func__, decr);
631 }
632 #endif
633
634 return decr;
635 }
636
637 uint32_t cpu_ppc_load_decr (CPUState *env)
638 {
639 ppc_tb_t *tb_env = env->tb_env;
640
641 return _cpu_ppc_load_decr(env, &tb_env->decr_next);
642 }
643
644 uint32_t cpu_ppc_load_hdecr (CPUState *env)
645 {
646 ppc_tb_t *tb_env = env->tb_env;
647
648 return _cpu_ppc_load_decr(env, &tb_env->hdecr_next);
649 }
650
651 uint64_t cpu_ppc_load_purr (CPUState *env)
652 {
653 ppc_tb_t *tb_env = env->tb_env;
654 uint64_t diff;
655
656 diff = qemu_get_clock(vm_clock) - tb_env->purr_start;
657
658 return tb_env->purr_load + muldiv64(diff, tb_env->tb_freq, ticks_per_sec);
659 }
660
661 /* When decrementer expires,
662 * all we need to do is generate or queue a CPU exception
663 */
664 static always_inline void cpu_ppc_decr_excp (CPUState *env)
665 {
666 /* Raise it */
667 #ifdef PPC_DEBUG_TB
668 if (loglevel != 0) {
669 fprintf(logfile, "raise decrementer exception\n");
670 }
671 #endif
672 ppc_set_irq(env, PPC_INTERRUPT_DECR, 1);
673 }
674
675 static always_inline void cpu_ppc_hdecr_excp (CPUState *env)
676 {
677 /* Raise it */
678 #ifdef PPC_DEBUG_TB
679 if (loglevel != 0) {
680 fprintf(logfile, "raise decrementer exception\n");
681 }
682 #endif
683 ppc_set_irq(env, PPC_INTERRUPT_HDECR, 1);
684 }
685
686 static void __cpu_ppc_store_decr (CPUState *env, uint64_t *nextp,
687 struct QEMUTimer *timer,
688 void (*raise_excp)(CPUState *),
689 uint32_t decr, uint32_t value,
690 int is_excp)
691 {
692 ppc_tb_t *tb_env = env->tb_env;
693 uint64_t now, next;
694
695 #ifdef PPC_DEBUG_TB
696 if (loglevel != 0) {
697 fprintf(logfile, "%s: 0x%08x => 0x%08x\n", __func__, decr, value);
698 }
699 #endif
700 now = qemu_get_clock(vm_clock);
701 next = now + muldiv64(value, ticks_per_sec, tb_env->decr_freq);
702 if (is_excp)
703 next += *nextp - now;
704 if (next == now)
705 next++;
706 *nextp = next;
707 /* Adjust timer */
708 qemu_mod_timer(timer, next);
709 /* If we set a negative value and the decrementer was positive,
710 * raise an exception.
711 */
712 if ((value & 0x80000000) && !(decr & 0x80000000))
713 (*raise_excp)(env);
714 }
715
716 static always_inline void _cpu_ppc_store_decr (CPUState *env, uint32_t decr,
717 uint32_t value, int is_excp)
718 {
719 ppc_tb_t *tb_env = env->tb_env;
720
721 __cpu_ppc_store_decr(env, &tb_env->decr_next, tb_env->decr_timer,
722 &cpu_ppc_decr_excp, decr, value, is_excp);
723 }
724
725 void cpu_ppc_store_decr (CPUState *env, uint32_t value)
726 {
727 _cpu_ppc_store_decr(env, cpu_ppc_load_decr(env), value, 0);
728 }
729
730 static void cpu_ppc_decr_cb (void *opaque)
731 {
732 _cpu_ppc_store_decr(opaque, 0x00000000, 0xFFFFFFFF, 1);
733 }
734
735 static always_inline void _cpu_ppc_store_hdecr (CPUState *env, uint32_t hdecr,
736 uint32_t value, int is_excp)
737 {
738 ppc_tb_t *tb_env = env->tb_env;
739
740 if (tb_env->hdecr_timer != NULL) {
741 __cpu_ppc_store_decr(env, &tb_env->hdecr_next, tb_env->hdecr_timer,
742 &cpu_ppc_hdecr_excp, hdecr, value, is_excp);
743 }
744 }
745
746 void cpu_ppc_store_hdecr (CPUState *env, uint32_t value)
747 {
748 _cpu_ppc_store_hdecr(env, cpu_ppc_load_hdecr(env), value, 0);
749 }
750
751 static void cpu_ppc_hdecr_cb (void *opaque)
752 {
753 _cpu_ppc_store_hdecr(opaque, 0x00000000, 0xFFFFFFFF, 1);
754 }
755
756 void cpu_ppc_store_purr (CPUState *env, uint64_t value)
757 {
758 ppc_tb_t *tb_env = env->tb_env;
759
760 tb_env->purr_load = value;
761 tb_env->purr_start = qemu_get_clock(vm_clock);
762 }
763
764 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
765 {
766 CPUState *env = opaque;
767 ppc_tb_t *tb_env = env->tb_env;
768
769 tb_env->tb_freq = freq;
770 tb_env->decr_freq = freq;
771 /* There is a bug in Linux 2.4 kernels:
772 * if a decrementer exception is pending when it enables msr_ee at startup,
773 * it's not ready to handle it...
774 */
775 _cpu_ppc_store_decr(env, 0xFFFFFFFF, 0xFFFFFFFF, 0);
776 _cpu_ppc_store_hdecr(env, 0xFFFFFFFF, 0xFFFFFFFF, 0);
777 cpu_ppc_store_purr(env, 0x0000000000000000ULL);
778 }
779
780 /* Set up (once) timebase frequency (in Hz) */
781 clk_setup_cb cpu_ppc_tb_init (CPUState *env, uint32_t freq)
782 {
783 ppc_tb_t *tb_env;
784
785 tb_env = qemu_mallocz(sizeof(ppc_tb_t));
786 if (tb_env == NULL)
787 return NULL;
788 env->tb_env = tb_env;
789 /* Create new timer */
790 tb_env->decr_timer = qemu_new_timer(vm_clock, &cpu_ppc_decr_cb, env);
791 if (0) {
792 /* XXX: find a suitable condition to enable the hypervisor decrementer
793 */
794 tb_env->hdecr_timer = qemu_new_timer(vm_clock, &cpu_ppc_hdecr_cb, env);
795 } else {
796 tb_env->hdecr_timer = NULL;
797 }
798 cpu_ppc_set_tb_clk(env, freq);
799
800 return &cpu_ppc_set_tb_clk;
801 }
802
803 /* Specific helpers for POWER & PowerPC 601 RTC */
804 clk_setup_cb cpu_ppc601_rtc_init (CPUState *env)
805 {
806 return cpu_ppc_tb_init(env, 7812500);
807 }
808
809 void cpu_ppc601_store_rtcu (CPUState *env, uint32_t value)
810 {
811 _cpu_ppc_store_tbu(env, value);
812 }
813
814 uint32_t cpu_ppc601_load_rtcu (CPUState *env)
815 {
816 return _cpu_ppc_load_tbu(env);
817 }
818
819 void cpu_ppc601_store_rtcl (CPUState *env, uint32_t value)
820 {
821 cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
822 }
823
824 uint32_t cpu_ppc601_load_rtcl (CPUState *env)
825 {
826 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
827 }
828
829 /*****************************************************************************/
830 /* Embedded PowerPC timers */
831
832 /* PIT, FIT & WDT */
833 typedef struct ppcemb_timer_t ppcemb_timer_t;
834 struct ppcemb_timer_t {
835 uint64_t pit_reload; /* PIT auto-reload value */
836 uint64_t fit_next; /* Tick for next FIT interrupt */
837 struct QEMUTimer *fit_timer;
838 uint64_t wdt_next; /* Tick for next WDT interrupt */
839 struct QEMUTimer *wdt_timer;
840 };
841
842 /* Fixed interval timer */
843 static void cpu_4xx_fit_cb (void *opaque)
844 {
845 CPUState *env;
846 ppc_tb_t *tb_env;
847 ppcemb_timer_t *ppcemb_timer;
848 uint64_t now, next;
849
850 env = opaque;
851 tb_env = env->tb_env;
852 ppcemb_timer = tb_env->opaque;
853 now = qemu_get_clock(vm_clock);
854 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
855 case 0:
856 next = 1 << 9;
857 break;
858 case 1:
859 next = 1 << 13;
860 break;
861 case 2:
862 next = 1 << 17;
863 break;
864 case 3:
865 next = 1 << 21;
866 break;
867 default:
868 /* Cannot occur, but makes gcc happy */
869 return;
870 }
871 next = now + muldiv64(next, ticks_per_sec, tb_env->tb_freq);
872 if (next == now)
873 next++;
874 qemu_mod_timer(ppcemb_timer->fit_timer, next);
875 env->spr[SPR_40x_TSR] |= 1 << 26;
876 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1)
877 ppc_set_irq(env, PPC_INTERRUPT_FIT, 1);
878 #ifdef PPC_DEBUG_TB
879 if (loglevel != 0) {
880 fprintf(logfile, "%s: ir %d TCR " ADDRX " TSR " ADDRX "\n", __func__,
881 (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
882 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
883 }
884 #endif
885 }
886
887 /* Programmable interval timer */
888 static void start_stop_pit (CPUState *env, ppc_tb_t *tb_env, int is_excp)
889 {
890 ppcemb_timer_t *ppcemb_timer;
891 uint64_t now, next;
892
893 ppcemb_timer = tb_env->opaque;
894 if (ppcemb_timer->pit_reload <= 1 ||
895 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
896 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
897 /* Stop PIT */
898 #ifdef PPC_DEBUG_TB
899 if (loglevel != 0) {
900 fprintf(logfile, "%s: stop PIT\n", __func__);
901 }
902 #endif
903 qemu_del_timer(tb_env->decr_timer);
904 } else {
905 #ifdef PPC_DEBUG_TB
906 if (loglevel != 0) {
907 fprintf(logfile, "%s: start PIT 0x" REGX "\n",
908 __func__, ppcemb_timer->pit_reload);
909 }
910 #endif
911 now = qemu_get_clock(vm_clock);
912 next = now + muldiv64(ppcemb_timer->pit_reload,
913 ticks_per_sec, tb_env->decr_freq);
914 if (is_excp)
915 next += tb_env->decr_next - now;
916 if (next == now)
917 next++;
918 qemu_mod_timer(tb_env->decr_timer, next);
919 tb_env->decr_next = next;
920 }
921 }
922
923 static void cpu_4xx_pit_cb (void *opaque)
924 {
925 CPUState *env;
926 ppc_tb_t *tb_env;
927 ppcemb_timer_t *ppcemb_timer;
928
929 env = opaque;
930 tb_env = env->tb_env;
931 ppcemb_timer = tb_env->opaque;
932 env->spr[SPR_40x_TSR] |= 1 << 27;
933 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1)
934 ppc_set_irq(env, PPC_INTERRUPT_PIT, 1);
935 start_stop_pit(env, tb_env, 1);
936 #ifdef PPC_DEBUG_TB
937 if (loglevel != 0) {
938 fprintf(logfile, "%s: ar %d ir %d TCR " ADDRX " TSR " ADDRX " "
939 "%016" PRIx64 "\n", __func__,
940 (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
941 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
942 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
943 ppcemb_timer->pit_reload);
944 }
945 #endif
946 }
947
948 /* Watchdog timer */
949 static void cpu_4xx_wdt_cb (void *opaque)
950 {
951 CPUState *env;
952 ppc_tb_t *tb_env;
953 ppcemb_timer_t *ppcemb_timer;
954 uint64_t now, next;
955
956 env = opaque;
957 tb_env = env->tb_env;
958 ppcemb_timer = tb_env->opaque;
959 now = qemu_get_clock(vm_clock);
960 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
961 case 0:
962 next = 1 << 17;
963 break;
964 case 1:
965 next = 1 << 21;
966 break;
967 case 2:
968 next = 1 << 25;
969 break;
970 case 3:
971 next = 1 << 29;
972 break;
973 default:
974 /* Cannot occur, but makes gcc happy */
975 return;
976 }
977 next = now + muldiv64(next, ticks_per_sec, tb_env->decr_freq);
978 if (next == now)
979 next++;
980 #ifdef PPC_DEBUG_TB
981 if (loglevel != 0) {
982 fprintf(logfile, "%s: TCR " ADDRX " TSR " ADDRX "\n", __func__,
983 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
984 }
985 #endif
986 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
987 case 0x0:
988 case 0x1:
989 qemu_mod_timer(ppcemb_timer->wdt_timer, next);
990 ppcemb_timer->wdt_next = next;
991 env->spr[SPR_40x_TSR] |= 1 << 31;
992 break;
993 case 0x2:
994 qemu_mod_timer(ppcemb_timer->wdt_timer, next);
995 ppcemb_timer->wdt_next = next;
996 env->spr[SPR_40x_TSR] |= 1 << 30;
997 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1)
998 ppc_set_irq(env, PPC_INTERRUPT_WDT, 1);
999 break;
1000 case 0x3:
1001 env->spr[SPR_40x_TSR] &= ~0x30000000;
1002 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1003 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1004 case 0x0:
1005 /* No reset */
1006 break;
1007 case 0x1: /* Core reset */
1008 ppc40x_core_reset(env);
1009 break;
1010 case 0x2: /* Chip reset */
1011 ppc40x_chip_reset(env);
1012 break;
1013 case 0x3: /* System reset */
1014 ppc40x_system_reset(env);
1015 break;
1016 }
1017 }
1018 }
1019
1020 void store_40x_pit (CPUState *env, target_ulong val)
1021 {
1022 ppc_tb_t *tb_env;
1023 ppcemb_timer_t *ppcemb_timer;
1024
1025 tb_env = env->tb_env;
1026 ppcemb_timer = tb_env->opaque;
1027 #ifdef PPC_DEBUG_TB
1028 if (loglevel != 0) {
1029 fprintf(logfile, "%s %p %p\n", __func__, tb_env, ppcemb_timer);
1030 }
1031 #endif
1032 ppcemb_timer->pit_reload = val;
1033 start_stop_pit(env, tb_env, 0);
1034 }
1035
1036 target_ulong load_40x_pit (CPUState *env)
1037 {
1038 return cpu_ppc_load_decr(env);
1039 }
1040
1041 void store_booke_tsr (CPUState *env, target_ulong val)
1042 {
1043 #ifdef PPC_DEBUG_TB
1044 if (loglevel != 0) {
1045 fprintf(logfile, "%s: val=" ADDRX "\n", __func__, val);
1046 }
1047 #endif
1048 env->spr[SPR_40x_TSR] &= ~(val & 0xFC000000);
1049 if (val & 0x80000000)
1050 ppc_set_irq(env, PPC_INTERRUPT_PIT, 0);
1051 }
1052
1053 void store_booke_tcr (CPUState *env, target_ulong val)
1054 {
1055 ppc_tb_t *tb_env;
1056
1057 tb_env = env->tb_env;
1058 #ifdef PPC_DEBUG_TB
1059 if (loglevel != 0) {
1060 fprintf(logfile, "%s: val=" ADDRX "\n", __func__, val);
1061 }
1062 #endif
1063 env->spr[SPR_40x_TCR] = val & 0xFFC00000;
1064 start_stop_pit(env, tb_env, 1);
1065 cpu_4xx_wdt_cb(env);
1066 }
1067
1068 static void ppc_emb_set_tb_clk (void *opaque, uint32_t freq)
1069 {
1070 CPUState *env = opaque;
1071 ppc_tb_t *tb_env = env->tb_env;
1072
1073 #ifdef PPC_DEBUG_TB
1074 if (loglevel != 0) {
1075 fprintf(logfile, "%s set new frequency to %u\n", __func__, freq);
1076 }
1077 #endif
1078 tb_env->tb_freq = freq;
1079 tb_env->decr_freq = freq;
1080 /* XXX: we should also update all timers */
1081 }
1082
1083 clk_setup_cb ppc_emb_timers_init (CPUState *env, uint32_t freq)
1084 {
1085 ppc_tb_t *tb_env;
1086 ppcemb_timer_t *ppcemb_timer;
1087
1088 tb_env = qemu_mallocz(sizeof(ppc_tb_t));
1089 if (tb_env == NULL) {
1090 return NULL;
1091 }
1092 env->tb_env = tb_env;
1093 ppcemb_timer = qemu_mallocz(sizeof(ppcemb_timer_t));
1094 tb_env->tb_freq = freq;
1095 tb_env->decr_freq = freq;
1096 tb_env->opaque = ppcemb_timer;
1097 #ifdef PPC_DEBUG_TB
1098 if (loglevel != 0) {
1099 fprintf(logfile, "%s %p %p %p\n", __func__, tb_env, ppcemb_timer,
1100 &ppc_emb_set_tb_clk);
1101 }
1102 #endif
1103 if (ppcemb_timer != NULL) {
1104 /* We use decr timer for PIT */
1105 tb_env->decr_timer = qemu_new_timer(vm_clock, &cpu_4xx_pit_cb, env);
1106 ppcemb_timer->fit_timer =
1107 qemu_new_timer(vm_clock, &cpu_4xx_fit_cb, env);
1108 ppcemb_timer->wdt_timer =
1109 qemu_new_timer(vm_clock, &cpu_4xx_wdt_cb, env);
1110 }
1111
1112 return &ppc_emb_set_tb_clk;
1113 }
1114
1115 /*****************************************************************************/
1116 /* Embedded PowerPC Device Control Registers */
1117 typedef struct ppc_dcrn_t ppc_dcrn_t;
1118 struct ppc_dcrn_t {
1119 dcr_read_cb dcr_read;
1120 dcr_write_cb dcr_write;
1121 void *opaque;
1122 };
1123
1124 /* XXX: on 460, DCR addresses are 32 bits wide,
1125 * using DCRIPR to get the 22 upper bits of the DCR address
1126 */
1127 #define DCRN_NB 1024
1128 struct ppc_dcr_t {
1129 ppc_dcrn_t dcrn[DCRN_NB];
1130 int (*read_error)(int dcrn);
1131 int (*write_error)(int dcrn);
1132 };
1133
1134 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, target_ulong *valp)
1135 {
1136 ppc_dcrn_t *dcr;
1137
1138 if (dcrn < 0 || dcrn >= DCRN_NB)
1139 goto error;
1140 dcr = &dcr_env->dcrn[dcrn];
1141 if (dcr->dcr_read == NULL)
1142 goto error;
1143 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1144
1145 return 0;
1146
1147 error:
1148 if (dcr_env->read_error != NULL)
1149 return (*dcr_env->read_error)(dcrn);
1150
1151 return -1;
1152 }
1153
1154 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, target_ulong val)
1155 {
1156 ppc_dcrn_t *dcr;
1157
1158 if (dcrn < 0 || dcrn >= DCRN_NB)
1159 goto error;
1160 dcr = &dcr_env->dcrn[dcrn];
1161 if (dcr->dcr_write == NULL)
1162 goto error;
1163 (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1164
1165 return 0;
1166
1167 error:
1168 if (dcr_env->write_error != NULL)
1169 return (*dcr_env->write_error)(dcrn);
1170
1171 return -1;
1172 }
1173
1174 int ppc_dcr_register (CPUState *env, int dcrn, void *opaque,
1175 dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1176 {
1177 ppc_dcr_t *dcr_env;
1178 ppc_dcrn_t *dcr;
1179
1180 dcr_env = env->dcr_env;
1181 if (dcr_env == NULL)
1182 return -1;
1183 if (dcrn < 0 || dcrn >= DCRN_NB)
1184 return -1;
1185 dcr = &dcr_env->dcrn[dcrn];
1186 if (dcr->opaque != NULL ||
1187 dcr->dcr_read != NULL ||
1188 dcr->dcr_write != NULL)
1189 return -1;
1190 dcr->opaque = opaque;
1191 dcr->dcr_read = dcr_read;
1192 dcr->dcr_write = dcr_write;
1193
1194 return 0;
1195 }
1196
1197 int ppc_dcr_init (CPUState *env, int (*read_error)(int dcrn),
1198 int (*write_error)(int dcrn))
1199 {
1200 ppc_dcr_t *dcr_env;
1201
1202 dcr_env = qemu_mallocz(sizeof(ppc_dcr_t));
1203 if (dcr_env == NULL)
1204 return -1;
1205 dcr_env->read_error = read_error;
1206 dcr_env->write_error = write_error;
1207 env->dcr_env = dcr_env;
1208
1209 return 0;
1210 }
1211
1212 #if 0
1213 /*****************************************************************************/
1214 /* Handle system reset (for now, just stop emulation) */
1215 void cpu_ppc_reset (CPUState *env)
1216 {
1217 printf("Reset asked... Stop emulation\n");
1218 abort();
1219 }
1220 #endif
1221
1222 /*****************************************************************************/
1223 /* Debug port */
1224 void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1225 {
1226 addr &= 0xF;
1227 switch (addr) {
1228 case 0:
1229 printf("%c", val);
1230 break;
1231 case 1:
1232 printf("\n");
1233 fflush(stdout);
1234 break;
1235 case 2:
1236 printf("Set loglevel to %04x\n", val);
1237 cpu_set_log(val | 0x100);
1238 break;
1239 }
1240 }
1241
1242 /*****************************************************************************/
1243 /* NVRAM helpers */
1244 static inline uint32_t nvram_read (nvram_t *nvram, uint32_t addr)
1245 {
1246 return (*nvram->read_fn)(nvram->opaque, addr);;
1247 }
1248
1249 static inline void nvram_write (nvram_t *nvram, uint32_t addr, uint32_t val)
1250 {
1251 (*nvram->write_fn)(nvram->opaque, addr, val);
1252 }
1253
1254 void NVRAM_set_byte (nvram_t *nvram, uint32_t addr, uint8_t value)
1255 {
1256 nvram_write(nvram, addr, value);
1257 }
1258
1259 uint8_t NVRAM_get_byte (nvram_t *nvram, uint32_t addr)
1260 {
1261 return nvram_read(nvram, addr);
1262 }
1263
1264 void NVRAM_set_word (nvram_t *nvram, uint32_t addr, uint16_t value)
1265 {
1266 nvram_write(nvram, addr, value >> 8);
1267 nvram_write(nvram, addr + 1, value & 0xFF);
1268 }
1269
1270 uint16_t NVRAM_get_word (nvram_t *nvram, uint32_t addr)
1271 {
1272 uint16_t tmp;
1273
1274 tmp = nvram_read(nvram, addr) << 8;
1275 tmp |= nvram_read(nvram, addr + 1);
1276
1277 return tmp;
1278 }
1279
1280 void NVRAM_set_lword (nvram_t *nvram, uint32_t addr, uint32_t value)
1281 {
1282 nvram_write(nvram, addr, value >> 24);
1283 nvram_write(nvram, addr + 1, (value >> 16) & 0xFF);
1284 nvram_write(nvram, addr + 2, (value >> 8) & 0xFF);
1285 nvram_write(nvram, addr + 3, value & 0xFF);
1286 }
1287
1288 uint32_t NVRAM_get_lword (nvram_t *nvram, uint32_t addr)
1289 {
1290 uint32_t tmp;
1291
1292 tmp = nvram_read(nvram, addr) << 24;
1293 tmp |= nvram_read(nvram, addr + 1) << 16;
1294 tmp |= nvram_read(nvram, addr + 2) << 8;
1295 tmp |= nvram_read(nvram, addr + 3);
1296
1297 return tmp;
1298 }
1299
1300 void NVRAM_set_string (nvram_t *nvram, uint32_t addr,
1301 const unsigned char *str, uint32_t max)
1302 {
1303 int i;
1304
1305 for (i = 0; i < max && str[i] != '\0'; i++) {
1306 nvram_write(nvram, addr + i, str[i]);
1307 }
1308 nvram_write(nvram, addr + i, str[i]);
1309 nvram_write(nvram, addr + max - 1, '\0');
1310 }
1311
1312 int NVRAM_get_string (nvram_t *nvram, uint8_t *dst, uint16_t addr, int max)
1313 {
1314 int i;
1315
1316 memset(dst, 0, max);
1317 for (i = 0; i < max; i++) {
1318 dst[i] = NVRAM_get_byte(nvram, addr + i);
1319 if (dst[i] == '\0')
1320 break;
1321 }
1322
1323 return i;
1324 }
1325
1326 static uint16_t NVRAM_crc_update (uint16_t prev, uint16_t value)
1327 {
1328 uint16_t tmp;
1329 uint16_t pd, pd1, pd2;
1330
1331 tmp = prev >> 8;
1332 pd = prev ^ value;
1333 pd1 = pd & 0x000F;
1334 pd2 = ((pd >> 4) & 0x000F) ^ pd1;
1335 tmp ^= (pd1 << 3) | (pd1 << 8);
1336 tmp ^= pd2 | (pd2 << 7) | (pd2 << 12);
1337
1338 return tmp;
1339 }
1340
1341 uint16_t NVRAM_compute_crc (nvram_t *nvram, uint32_t start, uint32_t count)
1342 {
1343 uint32_t i;
1344 uint16_t crc = 0xFFFF;
1345 int odd;
1346
1347 odd = count & 1;
1348 count &= ~1;
1349 for (i = 0; i != count; i++) {
1350 crc = NVRAM_crc_update(crc, NVRAM_get_word(nvram, start + i));
1351 }
1352 if (odd) {
1353 crc = NVRAM_crc_update(crc, NVRAM_get_byte(nvram, start + i) << 8);
1354 }
1355
1356 return crc;
1357 }
1358
1359 #define CMDLINE_ADDR 0x017ff000
1360
1361 int PPC_NVRAM_set_params (nvram_t *nvram, uint16_t NVRAM_size,
1362 const unsigned char *arch,
1363 uint32_t RAM_size, int boot_device,
1364 uint32_t kernel_image, uint32_t kernel_size,
1365 const char *cmdline,
1366 uint32_t initrd_image, uint32_t initrd_size,
1367 uint32_t NVRAM_image,
1368 int width, int height, int depth)
1369 {
1370 uint16_t crc;
1371
1372 /* Set parameters for Open Hack'Ware BIOS */
1373 NVRAM_set_string(nvram, 0x00, "QEMU_BIOS", 16);
1374 NVRAM_set_lword(nvram, 0x10, 0x00000002); /* structure v2 */
1375 NVRAM_set_word(nvram, 0x14, NVRAM_size);
1376 NVRAM_set_string(nvram, 0x20, arch, 16);
1377 NVRAM_set_lword(nvram, 0x30, RAM_size);
1378 NVRAM_set_byte(nvram, 0x34, boot_device);
1379 NVRAM_set_lword(nvram, 0x38, kernel_image);
1380 NVRAM_set_lword(nvram, 0x3C, kernel_size);
1381 if (cmdline) {
1382 /* XXX: put the cmdline in NVRAM too ? */
1383 strcpy(phys_ram_base + CMDLINE_ADDR, cmdline);
1384 NVRAM_set_lword(nvram, 0x40, CMDLINE_ADDR);
1385 NVRAM_set_lword(nvram, 0x44, strlen(cmdline));
1386 } else {
1387 NVRAM_set_lword(nvram, 0x40, 0);
1388 NVRAM_set_lword(nvram, 0x44, 0);
1389 }
1390 NVRAM_set_lword(nvram, 0x48, initrd_image);
1391 NVRAM_set_lword(nvram, 0x4C, initrd_size);
1392 NVRAM_set_lword(nvram, 0x50, NVRAM_image);
1393
1394 NVRAM_set_word(nvram, 0x54, width);
1395 NVRAM_set_word(nvram, 0x56, height);
1396 NVRAM_set_word(nvram, 0x58, depth);
1397 crc = NVRAM_compute_crc(nvram, 0x00, 0xF8);
1398 NVRAM_set_word(nvram, 0xFC, crc);
1399
1400 return 0;
1401 }