]> git.proxmox.com Git - qemu.git/blob - hw/ppc.c
acpi_piix4: Re-define PCI hotplug eject register read
[qemu.git] / hw / ppc.c
1 /*
2 * QEMU generic PowerPC hardware System Emulator
3 *
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw.h"
25 #include "ppc.h"
26 #include "qemu-timer.h"
27 #include "sysemu.h"
28 #include "nvram.h"
29 #include "qemu-log.h"
30 #include "loader.h"
31 #include "kvm.h"
32 #include "kvm_ppc.h"
33
34 //#define PPC_DEBUG_IRQ
35 //#define PPC_DEBUG_TB
36
37 #ifdef PPC_DEBUG_IRQ
38 # define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
39 #else
40 # define LOG_IRQ(...) do { } while (0)
41 #endif
42
43
44 #ifdef PPC_DEBUG_TB
45 # define LOG_TB(...) qemu_log(__VA_ARGS__)
46 #else
47 # define LOG_TB(...) do { } while (0)
48 #endif
49
50 static void cpu_ppc_tb_stop (CPUPPCState *env);
51 static void cpu_ppc_tb_start (CPUPPCState *env);
52
53 void ppc_set_irq(CPUPPCState *env, int n_IRQ, int level)
54 {
55 unsigned int old_pending = env->pending_interrupts;
56
57 if (level) {
58 env->pending_interrupts |= 1 << n_IRQ;
59 cpu_interrupt(env, CPU_INTERRUPT_HARD);
60 } else {
61 env->pending_interrupts &= ~(1 << n_IRQ);
62 if (env->pending_interrupts == 0)
63 cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
64 }
65
66 if (old_pending != env->pending_interrupts) {
67 #ifdef CONFIG_KVM
68 kvmppc_set_interrupt(env, n_IRQ, level);
69 #endif
70 }
71
72 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
73 "req %08x\n", __func__, env, n_IRQ, level,
74 env->pending_interrupts, env->interrupt_request);
75 }
76
77 /* PowerPC 6xx / 7xx internal IRQ controller */
78 static void ppc6xx_set_irq (void *opaque, int pin, int level)
79 {
80 CPUPPCState *env = opaque;
81 int cur_level;
82
83 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
84 env, pin, level);
85 cur_level = (env->irq_input_state >> pin) & 1;
86 /* Don't generate spurious events */
87 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
88 switch (pin) {
89 case PPC6xx_INPUT_TBEN:
90 /* Level sensitive - active high */
91 LOG_IRQ("%s: %s the time base\n",
92 __func__, level ? "start" : "stop");
93 if (level) {
94 cpu_ppc_tb_start(env);
95 } else {
96 cpu_ppc_tb_stop(env);
97 }
98 case PPC6xx_INPUT_INT:
99 /* Level sensitive - active high */
100 LOG_IRQ("%s: set the external IRQ state to %d\n",
101 __func__, level);
102 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
103 break;
104 case PPC6xx_INPUT_SMI:
105 /* Level sensitive - active high */
106 LOG_IRQ("%s: set the SMI IRQ state to %d\n",
107 __func__, level);
108 ppc_set_irq(env, PPC_INTERRUPT_SMI, level);
109 break;
110 case PPC6xx_INPUT_MCP:
111 /* Negative edge sensitive */
112 /* XXX: TODO: actual reaction may depends on HID0 status
113 * 603/604/740/750: check HID0[EMCP]
114 */
115 if (cur_level == 1 && level == 0) {
116 LOG_IRQ("%s: raise machine check state\n",
117 __func__);
118 ppc_set_irq(env, PPC_INTERRUPT_MCK, 1);
119 }
120 break;
121 case PPC6xx_INPUT_CKSTP_IN:
122 /* Level sensitive - active low */
123 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
124 /* XXX: Note that the only way to restart the CPU is to reset it */
125 if (level) {
126 LOG_IRQ("%s: stop the CPU\n", __func__);
127 env->halted = 1;
128 }
129 break;
130 case PPC6xx_INPUT_HRESET:
131 /* Level sensitive - active low */
132 if (level) {
133 LOG_IRQ("%s: reset the CPU\n", __func__);
134 cpu_interrupt(env, CPU_INTERRUPT_RESET);
135 }
136 break;
137 case PPC6xx_INPUT_SRESET:
138 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
139 __func__, level);
140 ppc_set_irq(env, PPC_INTERRUPT_RESET, level);
141 break;
142 default:
143 /* Unknown pin - do nothing */
144 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
145 return;
146 }
147 if (level)
148 env->irq_input_state |= 1 << pin;
149 else
150 env->irq_input_state &= ~(1 << pin);
151 }
152 }
153
154 void ppc6xx_irq_init (CPUPPCState *env)
155 {
156 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, env,
157 PPC6xx_INPUT_NB);
158 }
159
160 #if defined(TARGET_PPC64)
161 /* PowerPC 970 internal IRQ controller */
162 static void ppc970_set_irq (void *opaque, int pin, int level)
163 {
164 CPUPPCState *env = opaque;
165 int cur_level;
166
167 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
168 env, pin, level);
169 cur_level = (env->irq_input_state >> pin) & 1;
170 /* Don't generate spurious events */
171 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
172 switch (pin) {
173 case PPC970_INPUT_INT:
174 /* Level sensitive - active high */
175 LOG_IRQ("%s: set the external IRQ state to %d\n",
176 __func__, level);
177 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
178 break;
179 case PPC970_INPUT_THINT:
180 /* Level sensitive - active high */
181 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
182 level);
183 ppc_set_irq(env, PPC_INTERRUPT_THERM, level);
184 break;
185 case PPC970_INPUT_MCP:
186 /* Negative edge sensitive */
187 /* XXX: TODO: actual reaction may depends on HID0 status
188 * 603/604/740/750: check HID0[EMCP]
189 */
190 if (cur_level == 1 && level == 0) {
191 LOG_IRQ("%s: raise machine check state\n",
192 __func__);
193 ppc_set_irq(env, PPC_INTERRUPT_MCK, 1);
194 }
195 break;
196 case PPC970_INPUT_CKSTP:
197 /* Level sensitive - active low */
198 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
199 if (level) {
200 LOG_IRQ("%s: stop the CPU\n", __func__);
201 env->halted = 1;
202 } else {
203 LOG_IRQ("%s: restart the CPU\n", __func__);
204 env->halted = 0;
205 qemu_cpu_kick(env);
206 }
207 break;
208 case PPC970_INPUT_HRESET:
209 /* Level sensitive - active low */
210 if (level) {
211 cpu_interrupt(env, CPU_INTERRUPT_RESET);
212 }
213 break;
214 case PPC970_INPUT_SRESET:
215 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
216 __func__, level);
217 ppc_set_irq(env, PPC_INTERRUPT_RESET, level);
218 break;
219 case PPC970_INPUT_TBEN:
220 LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
221 level);
222 /* XXX: TODO */
223 break;
224 default:
225 /* Unknown pin - do nothing */
226 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
227 return;
228 }
229 if (level)
230 env->irq_input_state |= 1 << pin;
231 else
232 env->irq_input_state &= ~(1 << pin);
233 }
234 }
235
236 void ppc970_irq_init (CPUPPCState *env)
237 {
238 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, env,
239 PPC970_INPUT_NB);
240 }
241
242 /* POWER7 internal IRQ controller */
243 static void power7_set_irq (void *opaque, int pin, int level)
244 {
245 CPUPPCState *env = opaque;
246
247 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
248 env, pin, level);
249
250 switch (pin) {
251 case POWER7_INPUT_INT:
252 /* Level sensitive - active high */
253 LOG_IRQ("%s: set the external IRQ state to %d\n",
254 __func__, level);
255 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
256 break;
257 default:
258 /* Unknown pin - do nothing */
259 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
260 return;
261 }
262 if (level) {
263 env->irq_input_state |= 1 << pin;
264 } else {
265 env->irq_input_state &= ~(1 << pin);
266 }
267 }
268
269 void ppcPOWER7_irq_init (CPUPPCState *env)
270 {
271 env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, env,
272 POWER7_INPUT_NB);
273 }
274 #endif /* defined(TARGET_PPC64) */
275
276 /* PowerPC 40x internal IRQ controller */
277 static void ppc40x_set_irq (void *opaque, int pin, int level)
278 {
279 CPUPPCState *env = opaque;
280 int cur_level;
281
282 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
283 env, pin, level);
284 cur_level = (env->irq_input_state >> pin) & 1;
285 /* Don't generate spurious events */
286 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
287 switch (pin) {
288 case PPC40x_INPUT_RESET_SYS:
289 if (level) {
290 LOG_IRQ("%s: reset the PowerPC system\n",
291 __func__);
292 ppc40x_system_reset(env);
293 }
294 break;
295 case PPC40x_INPUT_RESET_CHIP:
296 if (level) {
297 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
298 ppc40x_chip_reset(env);
299 }
300 break;
301 case PPC40x_INPUT_RESET_CORE:
302 /* XXX: TODO: update DBSR[MRR] */
303 if (level) {
304 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
305 ppc40x_core_reset(env);
306 }
307 break;
308 case PPC40x_INPUT_CINT:
309 /* Level sensitive - active high */
310 LOG_IRQ("%s: set the critical IRQ state to %d\n",
311 __func__, level);
312 ppc_set_irq(env, PPC_INTERRUPT_CEXT, level);
313 break;
314 case PPC40x_INPUT_INT:
315 /* Level sensitive - active high */
316 LOG_IRQ("%s: set the external IRQ state to %d\n",
317 __func__, level);
318 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
319 break;
320 case PPC40x_INPUT_HALT:
321 /* Level sensitive - active low */
322 if (level) {
323 LOG_IRQ("%s: stop the CPU\n", __func__);
324 env->halted = 1;
325 } else {
326 LOG_IRQ("%s: restart the CPU\n", __func__);
327 env->halted = 0;
328 qemu_cpu_kick(env);
329 }
330 break;
331 case PPC40x_INPUT_DEBUG:
332 /* Level sensitive - active high */
333 LOG_IRQ("%s: set the debug pin state to %d\n",
334 __func__, level);
335 ppc_set_irq(env, PPC_INTERRUPT_DEBUG, level);
336 break;
337 default:
338 /* Unknown pin - do nothing */
339 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
340 return;
341 }
342 if (level)
343 env->irq_input_state |= 1 << pin;
344 else
345 env->irq_input_state &= ~(1 << pin);
346 }
347 }
348
349 void ppc40x_irq_init (CPUPPCState *env)
350 {
351 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
352 env, PPC40x_INPUT_NB);
353 }
354
355 /* PowerPC E500 internal IRQ controller */
356 static void ppce500_set_irq (void *opaque, int pin, int level)
357 {
358 CPUPPCState *env = opaque;
359 int cur_level;
360
361 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
362 env, pin, level);
363 cur_level = (env->irq_input_state >> pin) & 1;
364 /* Don't generate spurious events */
365 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
366 switch (pin) {
367 case PPCE500_INPUT_MCK:
368 if (level) {
369 LOG_IRQ("%s: reset the PowerPC system\n",
370 __func__);
371 qemu_system_reset_request();
372 }
373 break;
374 case PPCE500_INPUT_RESET_CORE:
375 if (level) {
376 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
377 ppc_set_irq(env, PPC_INTERRUPT_MCK, level);
378 }
379 break;
380 case PPCE500_INPUT_CINT:
381 /* Level sensitive - active high */
382 LOG_IRQ("%s: set the critical IRQ state to %d\n",
383 __func__, level);
384 ppc_set_irq(env, PPC_INTERRUPT_CEXT, level);
385 break;
386 case PPCE500_INPUT_INT:
387 /* Level sensitive - active high */
388 LOG_IRQ("%s: set the core IRQ state to %d\n",
389 __func__, level);
390 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
391 break;
392 case PPCE500_INPUT_DEBUG:
393 /* Level sensitive - active high */
394 LOG_IRQ("%s: set the debug pin state to %d\n",
395 __func__, level);
396 ppc_set_irq(env, PPC_INTERRUPT_DEBUG, level);
397 break;
398 default:
399 /* Unknown pin - do nothing */
400 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
401 return;
402 }
403 if (level)
404 env->irq_input_state |= 1 << pin;
405 else
406 env->irq_input_state &= ~(1 << pin);
407 }
408 }
409
410 void ppce500_irq_init (CPUPPCState *env)
411 {
412 env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
413 env, PPCE500_INPUT_NB);
414 }
415 /*****************************************************************************/
416 /* PowerPC time base and decrementer emulation */
417
418 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
419 {
420 /* TB time in tb periods */
421 return muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec()) + tb_offset;
422 }
423
424 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
425 {
426 ppc_tb_t *tb_env = env->tb_env;
427 uint64_t tb;
428
429 if (kvm_enabled()) {
430 return env->spr[SPR_TBL];
431 }
432
433 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->tb_offset);
434 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
435
436 return tb;
437 }
438
439 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
440 {
441 ppc_tb_t *tb_env = env->tb_env;
442 uint64_t tb;
443
444 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->tb_offset);
445 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
446
447 return tb >> 32;
448 }
449
450 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
451 {
452 if (kvm_enabled()) {
453 return env->spr[SPR_TBU];
454 }
455
456 return _cpu_ppc_load_tbu(env);
457 }
458
459 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
460 int64_t *tb_offsetp, uint64_t value)
461 {
462 *tb_offsetp = value - muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec());
463 LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
464 __func__, value, *tb_offsetp);
465 }
466
467 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
468 {
469 ppc_tb_t *tb_env = env->tb_env;
470 uint64_t tb;
471
472 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->tb_offset);
473 tb &= 0xFFFFFFFF00000000ULL;
474 cpu_ppc_store_tb(tb_env, qemu_get_clock_ns(vm_clock),
475 &tb_env->tb_offset, tb | (uint64_t)value);
476 }
477
478 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
479 {
480 ppc_tb_t *tb_env = env->tb_env;
481 uint64_t tb;
482
483 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->tb_offset);
484 tb &= 0x00000000FFFFFFFFULL;
485 cpu_ppc_store_tb(tb_env, qemu_get_clock_ns(vm_clock),
486 &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
487 }
488
489 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
490 {
491 _cpu_ppc_store_tbu(env, value);
492 }
493
494 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
495 {
496 ppc_tb_t *tb_env = env->tb_env;
497 uint64_t tb;
498
499 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->atb_offset);
500 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
501
502 return tb;
503 }
504
505 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
506 {
507 ppc_tb_t *tb_env = env->tb_env;
508 uint64_t tb;
509
510 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->atb_offset);
511 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
512
513 return tb >> 32;
514 }
515
516 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
517 {
518 ppc_tb_t *tb_env = env->tb_env;
519 uint64_t tb;
520
521 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->atb_offset);
522 tb &= 0xFFFFFFFF00000000ULL;
523 cpu_ppc_store_tb(tb_env, qemu_get_clock_ns(vm_clock),
524 &tb_env->atb_offset, tb | (uint64_t)value);
525 }
526
527 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
528 {
529 ppc_tb_t *tb_env = env->tb_env;
530 uint64_t tb;
531
532 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->atb_offset);
533 tb &= 0x00000000FFFFFFFFULL;
534 cpu_ppc_store_tb(tb_env, qemu_get_clock_ns(vm_clock),
535 &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
536 }
537
538 static void cpu_ppc_tb_stop (CPUPPCState *env)
539 {
540 ppc_tb_t *tb_env = env->tb_env;
541 uint64_t tb, atb, vmclk;
542
543 /* If the time base is already frozen, do nothing */
544 if (tb_env->tb_freq != 0) {
545 vmclk = qemu_get_clock_ns(vm_clock);
546 /* Get the time base */
547 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
548 /* Get the alternate time base */
549 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
550 /* Store the time base value (ie compute the current offset) */
551 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
552 /* Store the alternate time base value (compute the current offset) */
553 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
554 /* Set the time base frequency to zero */
555 tb_env->tb_freq = 0;
556 /* Now, the time bases are frozen to tb_offset / atb_offset value */
557 }
558 }
559
560 static void cpu_ppc_tb_start (CPUPPCState *env)
561 {
562 ppc_tb_t *tb_env = env->tb_env;
563 uint64_t tb, atb, vmclk;
564
565 /* If the time base is not frozen, do nothing */
566 if (tb_env->tb_freq == 0) {
567 vmclk = qemu_get_clock_ns(vm_clock);
568 /* Get the time base from tb_offset */
569 tb = tb_env->tb_offset;
570 /* Get the alternate time base from atb_offset */
571 atb = tb_env->atb_offset;
572 /* Restore the tb frequency from the decrementer frequency */
573 tb_env->tb_freq = tb_env->decr_freq;
574 /* Store the time base value */
575 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
576 /* Store the alternate time base value */
577 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
578 }
579 }
580
581 static inline uint32_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
582 {
583 ppc_tb_t *tb_env = env->tb_env;
584 uint32_t decr;
585 int64_t diff;
586
587 diff = next - qemu_get_clock_ns(vm_clock);
588 if (diff >= 0) {
589 decr = muldiv64(diff, tb_env->decr_freq, get_ticks_per_sec());
590 } else if (tb_env->flags & PPC_TIMER_BOOKE) {
591 decr = 0;
592 } else {
593 decr = -muldiv64(-diff, tb_env->decr_freq, get_ticks_per_sec());
594 }
595 LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);
596
597 return decr;
598 }
599
600 uint32_t cpu_ppc_load_decr (CPUPPCState *env)
601 {
602 ppc_tb_t *tb_env = env->tb_env;
603
604 if (kvm_enabled()) {
605 return env->spr[SPR_DECR];
606 }
607
608 return _cpu_ppc_load_decr(env, tb_env->decr_next);
609 }
610
611 uint32_t cpu_ppc_load_hdecr (CPUPPCState *env)
612 {
613 ppc_tb_t *tb_env = env->tb_env;
614
615 return _cpu_ppc_load_decr(env, tb_env->hdecr_next);
616 }
617
618 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
619 {
620 ppc_tb_t *tb_env = env->tb_env;
621 uint64_t diff;
622
623 diff = qemu_get_clock_ns(vm_clock) - tb_env->purr_start;
624
625 return tb_env->purr_load + muldiv64(diff, tb_env->tb_freq, get_ticks_per_sec());
626 }
627
628 /* When decrementer expires,
629 * all we need to do is generate or queue a CPU exception
630 */
631 static inline void cpu_ppc_decr_excp(CPUPPCState *env)
632 {
633 /* Raise it */
634 LOG_TB("raise decrementer exception\n");
635 ppc_set_irq(env, PPC_INTERRUPT_DECR, 1);
636 }
637
638 static inline void cpu_ppc_hdecr_excp(CPUPPCState *env)
639 {
640 /* Raise it */
641 LOG_TB("raise decrementer exception\n");
642 ppc_set_irq(env, PPC_INTERRUPT_HDECR, 1);
643 }
644
645 static void __cpu_ppc_store_decr (CPUPPCState *env, uint64_t *nextp,
646 struct QEMUTimer *timer,
647 void (*raise_excp)(CPUPPCState *),
648 uint32_t decr, uint32_t value,
649 int is_excp)
650 {
651 ppc_tb_t *tb_env = env->tb_env;
652 uint64_t now, next;
653
654 LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
655 decr, value);
656
657 if (kvm_enabled()) {
658 /* KVM handles decrementer exceptions, we don't need our own timer */
659 return;
660 }
661
662 now = qemu_get_clock_ns(vm_clock);
663 next = now + muldiv64(value, get_ticks_per_sec(), tb_env->decr_freq);
664 if (is_excp) {
665 next += *nextp - now;
666 }
667 if (next == now) {
668 next++;
669 }
670 *nextp = next;
671 /* Adjust timer */
672 qemu_mod_timer(timer, next);
673
674 /* If we set a negative value and the decrementer was positive, raise an
675 * exception.
676 */
677 if ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED)
678 && (value & 0x80000000)
679 && !(decr & 0x80000000)) {
680 (*raise_excp)(env);
681 }
682 }
683
684 static inline void _cpu_ppc_store_decr(CPUPPCState *env, uint32_t decr,
685 uint32_t value, int is_excp)
686 {
687 ppc_tb_t *tb_env = env->tb_env;
688
689 __cpu_ppc_store_decr(env, &tb_env->decr_next, tb_env->decr_timer,
690 &cpu_ppc_decr_excp, decr, value, is_excp);
691 }
692
693 void cpu_ppc_store_decr (CPUPPCState *env, uint32_t value)
694 {
695 _cpu_ppc_store_decr(env, cpu_ppc_load_decr(env), value, 0);
696 }
697
698 static void cpu_ppc_decr_cb (void *opaque)
699 {
700 _cpu_ppc_store_decr(opaque, 0x00000000, 0xFFFFFFFF, 1);
701 }
702
703 static inline void _cpu_ppc_store_hdecr(CPUPPCState *env, uint32_t hdecr,
704 uint32_t value, int is_excp)
705 {
706 ppc_tb_t *tb_env = env->tb_env;
707
708 if (tb_env->hdecr_timer != NULL) {
709 __cpu_ppc_store_decr(env, &tb_env->hdecr_next, tb_env->hdecr_timer,
710 &cpu_ppc_hdecr_excp, hdecr, value, is_excp);
711 }
712 }
713
714 void cpu_ppc_store_hdecr (CPUPPCState *env, uint32_t value)
715 {
716 _cpu_ppc_store_hdecr(env, cpu_ppc_load_hdecr(env), value, 0);
717 }
718
719 static void cpu_ppc_hdecr_cb (void *opaque)
720 {
721 _cpu_ppc_store_hdecr(opaque, 0x00000000, 0xFFFFFFFF, 1);
722 }
723
724 void cpu_ppc_store_purr (CPUPPCState *env, uint64_t value)
725 {
726 ppc_tb_t *tb_env = env->tb_env;
727
728 tb_env->purr_load = value;
729 tb_env->purr_start = qemu_get_clock_ns(vm_clock);
730 }
731
732 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
733 {
734 CPUPPCState *env = opaque;
735 ppc_tb_t *tb_env = env->tb_env;
736
737 tb_env->tb_freq = freq;
738 tb_env->decr_freq = freq;
739 /* There is a bug in Linux 2.4 kernels:
740 * if a decrementer exception is pending when it enables msr_ee at startup,
741 * it's not ready to handle it...
742 */
743 _cpu_ppc_store_decr(env, 0xFFFFFFFF, 0xFFFFFFFF, 0);
744 _cpu_ppc_store_hdecr(env, 0xFFFFFFFF, 0xFFFFFFFF, 0);
745 cpu_ppc_store_purr(env, 0x0000000000000000ULL);
746 }
747
748 /* Set up (once) timebase frequency (in Hz) */
749 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
750 {
751 ppc_tb_t *tb_env;
752
753 tb_env = g_malloc0(sizeof(ppc_tb_t));
754 env->tb_env = tb_env;
755 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
756 /* Create new timer */
757 tb_env->decr_timer = qemu_new_timer_ns(vm_clock, &cpu_ppc_decr_cb, env);
758 if (0) {
759 /* XXX: find a suitable condition to enable the hypervisor decrementer
760 */
761 tb_env->hdecr_timer = qemu_new_timer_ns(vm_clock, &cpu_ppc_hdecr_cb, env);
762 } else {
763 tb_env->hdecr_timer = NULL;
764 }
765 cpu_ppc_set_tb_clk(env, freq);
766
767 return &cpu_ppc_set_tb_clk;
768 }
769
770 /* Specific helpers for POWER & PowerPC 601 RTC */
771 #if 0
772 static clk_setup_cb cpu_ppc601_rtc_init (CPUPPCState *env)
773 {
774 return cpu_ppc_tb_init(env, 7812500);
775 }
776 #endif
777
778 void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
779 {
780 _cpu_ppc_store_tbu(env, value);
781 }
782
783 uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
784 {
785 return _cpu_ppc_load_tbu(env);
786 }
787
788 void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
789 {
790 cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
791 }
792
793 uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
794 {
795 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
796 }
797
798 /*****************************************************************************/
799 /* PowerPC 40x timers */
800
801 /* PIT, FIT & WDT */
802 typedef struct ppc40x_timer_t ppc40x_timer_t;
803 struct ppc40x_timer_t {
804 uint64_t pit_reload; /* PIT auto-reload value */
805 uint64_t fit_next; /* Tick for next FIT interrupt */
806 struct QEMUTimer *fit_timer;
807 uint64_t wdt_next; /* Tick for next WDT interrupt */
808 struct QEMUTimer *wdt_timer;
809
810 /* 405 have the PIT, 440 have a DECR. */
811 unsigned int decr_excp;
812 };
813
814 /* Fixed interval timer */
815 static void cpu_4xx_fit_cb (void *opaque)
816 {
817 CPUPPCState *env;
818 ppc_tb_t *tb_env;
819 ppc40x_timer_t *ppc40x_timer;
820 uint64_t now, next;
821
822 env = opaque;
823 tb_env = env->tb_env;
824 ppc40x_timer = tb_env->opaque;
825 now = qemu_get_clock_ns(vm_clock);
826 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
827 case 0:
828 next = 1 << 9;
829 break;
830 case 1:
831 next = 1 << 13;
832 break;
833 case 2:
834 next = 1 << 17;
835 break;
836 case 3:
837 next = 1 << 21;
838 break;
839 default:
840 /* Cannot occur, but makes gcc happy */
841 return;
842 }
843 next = now + muldiv64(next, get_ticks_per_sec(), tb_env->tb_freq);
844 if (next == now)
845 next++;
846 qemu_mod_timer(ppc40x_timer->fit_timer, next);
847 env->spr[SPR_40x_TSR] |= 1 << 26;
848 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1)
849 ppc_set_irq(env, PPC_INTERRUPT_FIT, 1);
850 LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
851 (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
852 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
853 }
854
855 /* Programmable interval timer */
856 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
857 {
858 ppc40x_timer_t *ppc40x_timer;
859 uint64_t now, next;
860
861 ppc40x_timer = tb_env->opaque;
862 if (ppc40x_timer->pit_reload <= 1 ||
863 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
864 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
865 /* Stop PIT */
866 LOG_TB("%s: stop PIT\n", __func__);
867 qemu_del_timer(tb_env->decr_timer);
868 } else {
869 LOG_TB("%s: start PIT %016" PRIx64 "\n",
870 __func__, ppc40x_timer->pit_reload);
871 now = qemu_get_clock_ns(vm_clock);
872 next = now + muldiv64(ppc40x_timer->pit_reload,
873 get_ticks_per_sec(), tb_env->decr_freq);
874 if (is_excp)
875 next += tb_env->decr_next - now;
876 if (next == now)
877 next++;
878 qemu_mod_timer(tb_env->decr_timer, next);
879 tb_env->decr_next = next;
880 }
881 }
882
883 static void cpu_4xx_pit_cb (void *opaque)
884 {
885 CPUPPCState *env;
886 ppc_tb_t *tb_env;
887 ppc40x_timer_t *ppc40x_timer;
888
889 env = opaque;
890 tb_env = env->tb_env;
891 ppc40x_timer = tb_env->opaque;
892 env->spr[SPR_40x_TSR] |= 1 << 27;
893 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1)
894 ppc_set_irq(env, ppc40x_timer->decr_excp, 1);
895 start_stop_pit(env, tb_env, 1);
896 LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
897 "%016" PRIx64 "\n", __func__,
898 (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
899 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
900 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
901 ppc40x_timer->pit_reload);
902 }
903
904 /* Watchdog timer */
905 static void cpu_4xx_wdt_cb (void *opaque)
906 {
907 CPUPPCState *env;
908 ppc_tb_t *tb_env;
909 ppc40x_timer_t *ppc40x_timer;
910 uint64_t now, next;
911
912 env = opaque;
913 tb_env = env->tb_env;
914 ppc40x_timer = tb_env->opaque;
915 now = qemu_get_clock_ns(vm_clock);
916 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
917 case 0:
918 next = 1 << 17;
919 break;
920 case 1:
921 next = 1 << 21;
922 break;
923 case 2:
924 next = 1 << 25;
925 break;
926 case 3:
927 next = 1 << 29;
928 break;
929 default:
930 /* Cannot occur, but makes gcc happy */
931 return;
932 }
933 next = now + muldiv64(next, get_ticks_per_sec(), tb_env->decr_freq);
934 if (next == now)
935 next++;
936 LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
937 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
938 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
939 case 0x0:
940 case 0x1:
941 qemu_mod_timer(ppc40x_timer->wdt_timer, next);
942 ppc40x_timer->wdt_next = next;
943 env->spr[SPR_40x_TSR] |= 1 << 31;
944 break;
945 case 0x2:
946 qemu_mod_timer(ppc40x_timer->wdt_timer, next);
947 ppc40x_timer->wdt_next = next;
948 env->spr[SPR_40x_TSR] |= 1 << 30;
949 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1)
950 ppc_set_irq(env, PPC_INTERRUPT_WDT, 1);
951 break;
952 case 0x3:
953 env->spr[SPR_40x_TSR] &= ~0x30000000;
954 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
955 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
956 case 0x0:
957 /* No reset */
958 break;
959 case 0x1: /* Core reset */
960 ppc40x_core_reset(env);
961 break;
962 case 0x2: /* Chip reset */
963 ppc40x_chip_reset(env);
964 break;
965 case 0x3: /* System reset */
966 ppc40x_system_reset(env);
967 break;
968 }
969 }
970 }
971
972 void store_40x_pit (CPUPPCState *env, target_ulong val)
973 {
974 ppc_tb_t *tb_env;
975 ppc40x_timer_t *ppc40x_timer;
976
977 tb_env = env->tb_env;
978 ppc40x_timer = tb_env->opaque;
979 LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
980 ppc40x_timer->pit_reload = val;
981 start_stop_pit(env, tb_env, 0);
982 }
983
984 target_ulong load_40x_pit (CPUPPCState *env)
985 {
986 return cpu_ppc_load_decr(env);
987 }
988
989 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
990 {
991 CPUPPCState *env = opaque;
992 ppc_tb_t *tb_env = env->tb_env;
993
994 LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
995 freq);
996 tb_env->tb_freq = freq;
997 tb_env->decr_freq = freq;
998 /* XXX: we should also update all timers */
999 }
1000
1001 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1002 unsigned int decr_excp)
1003 {
1004 ppc_tb_t *tb_env;
1005 ppc40x_timer_t *ppc40x_timer;
1006
1007 tb_env = g_malloc0(sizeof(ppc_tb_t));
1008 env->tb_env = tb_env;
1009 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1010 ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1011 tb_env->tb_freq = freq;
1012 tb_env->decr_freq = freq;
1013 tb_env->opaque = ppc40x_timer;
1014 LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1015 if (ppc40x_timer != NULL) {
1016 /* We use decr timer for PIT */
1017 tb_env->decr_timer = qemu_new_timer_ns(vm_clock, &cpu_4xx_pit_cb, env);
1018 ppc40x_timer->fit_timer =
1019 qemu_new_timer_ns(vm_clock, &cpu_4xx_fit_cb, env);
1020 ppc40x_timer->wdt_timer =
1021 qemu_new_timer_ns(vm_clock, &cpu_4xx_wdt_cb, env);
1022 ppc40x_timer->decr_excp = decr_excp;
1023 }
1024
1025 return &ppc_40x_set_tb_clk;
1026 }
1027
1028 /*****************************************************************************/
1029 /* Embedded PowerPC Device Control Registers */
1030 typedef struct ppc_dcrn_t ppc_dcrn_t;
1031 struct ppc_dcrn_t {
1032 dcr_read_cb dcr_read;
1033 dcr_write_cb dcr_write;
1034 void *opaque;
1035 };
1036
1037 /* XXX: on 460, DCR addresses are 32 bits wide,
1038 * using DCRIPR to get the 22 upper bits of the DCR address
1039 */
1040 #define DCRN_NB 1024
1041 struct ppc_dcr_t {
1042 ppc_dcrn_t dcrn[DCRN_NB];
1043 int (*read_error)(int dcrn);
1044 int (*write_error)(int dcrn);
1045 };
1046
1047 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1048 {
1049 ppc_dcrn_t *dcr;
1050
1051 if (dcrn < 0 || dcrn >= DCRN_NB)
1052 goto error;
1053 dcr = &dcr_env->dcrn[dcrn];
1054 if (dcr->dcr_read == NULL)
1055 goto error;
1056 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1057
1058 return 0;
1059
1060 error:
1061 if (dcr_env->read_error != NULL)
1062 return (*dcr_env->read_error)(dcrn);
1063
1064 return -1;
1065 }
1066
1067 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1068 {
1069 ppc_dcrn_t *dcr;
1070
1071 if (dcrn < 0 || dcrn >= DCRN_NB)
1072 goto error;
1073 dcr = &dcr_env->dcrn[dcrn];
1074 if (dcr->dcr_write == NULL)
1075 goto error;
1076 (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1077
1078 return 0;
1079
1080 error:
1081 if (dcr_env->write_error != NULL)
1082 return (*dcr_env->write_error)(dcrn);
1083
1084 return -1;
1085 }
1086
1087 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1088 dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1089 {
1090 ppc_dcr_t *dcr_env;
1091 ppc_dcrn_t *dcr;
1092
1093 dcr_env = env->dcr_env;
1094 if (dcr_env == NULL)
1095 return -1;
1096 if (dcrn < 0 || dcrn >= DCRN_NB)
1097 return -1;
1098 dcr = &dcr_env->dcrn[dcrn];
1099 if (dcr->opaque != NULL ||
1100 dcr->dcr_read != NULL ||
1101 dcr->dcr_write != NULL)
1102 return -1;
1103 dcr->opaque = opaque;
1104 dcr->dcr_read = dcr_read;
1105 dcr->dcr_write = dcr_write;
1106
1107 return 0;
1108 }
1109
1110 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1111 int (*write_error)(int dcrn))
1112 {
1113 ppc_dcr_t *dcr_env;
1114
1115 dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1116 dcr_env->read_error = read_error;
1117 dcr_env->write_error = write_error;
1118 env->dcr_env = dcr_env;
1119
1120 return 0;
1121 }
1122
1123 /*****************************************************************************/
1124 /* Debug port */
1125 void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1126 {
1127 addr &= 0xF;
1128 switch (addr) {
1129 case 0:
1130 printf("%c", val);
1131 break;
1132 case 1:
1133 printf("\n");
1134 fflush(stdout);
1135 break;
1136 case 2:
1137 printf("Set loglevel to %04" PRIx32 "\n", val);
1138 cpu_set_log(val | 0x100);
1139 break;
1140 }
1141 }
1142
1143 /*****************************************************************************/
1144 /* NVRAM helpers */
1145 static inline uint32_t nvram_read (nvram_t *nvram, uint32_t addr)
1146 {
1147 return (*nvram->read_fn)(nvram->opaque, addr);
1148 }
1149
1150 static inline void nvram_write (nvram_t *nvram, uint32_t addr, uint32_t val)
1151 {
1152 (*nvram->write_fn)(nvram->opaque, addr, val);
1153 }
1154
1155 void NVRAM_set_byte (nvram_t *nvram, uint32_t addr, uint8_t value)
1156 {
1157 nvram_write(nvram, addr, value);
1158 }
1159
1160 uint8_t NVRAM_get_byte (nvram_t *nvram, uint32_t addr)
1161 {
1162 return nvram_read(nvram, addr);
1163 }
1164
1165 void NVRAM_set_word (nvram_t *nvram, uint32_t addr, uint16_t value)
1166 {
1167 nvram_write(nvram, addr, value >> 8);
1168 nvram_write(nvram, addr + 1, value & 0xFF);
1169 }
1170
1171 uint16_t NVRAM_get_word (nvram_t *nvram, uint32_t addr)
1172 {
1173 uint16_t tmp;
1174
1175 tmp = nvram_read(nvram, addr) << 8;
1176 tmp |= nvram_read(nvram, addr + 1);
1177
1178 return tmp;
1179 }
1180
1181 void NVRAM_set_lword (nvram_t *nvram, uint32_t addr, uint32_t value)
1182 {
1183 nvram_write(nvram, addr, value >> 24);
1184 nvram_write(nvram, addr + 1, (value >> 16) & 0xFF);
1185 nvram_write(nvram, addr + 2, (value >> 8) & 0xFF);
1186 nvram_write(nvram, addr + 3, value & 0xFF);
1187 }
1188
1189 uint32_t NVRAM_get_lword (nvram_t *nvram, uint32_t addr)
1190 {
1191 uint32_t tmp;
1192
1193 tmp = nvram_read(nvram, addr) << 24;
1194 tmp |= nvram_read(nvram, addr + 1) << 16;
1195 tmp |= nvram_read(nvram, addr + 2) << 8;
1196 tmp |= nvram_read(nvram, addr + 3);
1197
1198 return tmp;
1199 }
1200
1201 void NVRAM_set_string (nvram_t *nvram, uint32_t addr,
1202 const char *str, uint32_t max)
1203 {
1204 int i;
1205
1206 for (i = 0; i < max && str[i] != '\0'; i++) {
1207 nvram_write(nvram, addr + i, str[i]);
1208 }
1209 nvram_write(nvram, addr + i, str[i]);
1210 nvram_write(nvram, addr + max - 1, '\0');
1211 }
1212
1213 int NVRAM_get_string (nvram_t *nvram, uint8_t *dst, uint16_t addr, int max)
1214 {
1215 int i;
1216
1217 memset(dst, 0, max);
1218 for (i = 0; i < max; i++) {
1219 dst[i] = NVRAM_get_byte(nvram, addr + i);
1220 if (dst[i] == '\0')
1221 break;
1222 }
1223
1224 return i;
1225 }
1226
1227 static uint16_t NVRAM_crc_update (uint16_t prev, uint16_t value)
1228 {
1229 uint16_t tmp;
1230 uint16_t pd, pd1, pd2;
1231
1232 tmp = prev >> 8;
1233 pd = prev ^ value;
1234 pd1 = pd & 0x000F;
1235 pd2 = ((pd >> 4) & 0x000F) ^ pd1;
1236 tmp ^= (pd1 << 3) | (pd1 << 8);
1237 tmp ^= pd2 | (pd2 << 7) | (pd2 << 12);
1238
1239 return tmp;
1240 }
1241
1242 static uint16_t NVRAM_compute_crc (nvram_t *nvram, uint32_t start, uint32_t count)
1243 {
1244 uint32_t i;
1245 uint16_t crc = 0xFFFF;
1246 int odd;
1247
1248 odd = count & 1;
1249 count &= ~1;
1250 for (i = 0; i != count; i++) {
1251 crc = NVRAM_crc_update(crc, NVRAM_get_word(nvram, start + i));
1252 }
1253 if (odd) {
1254 crc = NVRAM_crc_update(crc, NVRAM_get_byte(nvram, start + i) << 8);
1255 }
1256
1257 return crc;
1258 }
1259
1260 #define CMDLINE_ADDR 0x017ff000
1261
1262 int PPC_NVRAM_set_params (nvram_t *nvram, uint16_t NVRAM_size,
1263 const char *arch,
1264 uint32_t RAM_size, int boot_device,
1265 uint32_t kernel_image, uint32_t kernel_size,
1266 const char *cmdline,
1267 uint32_t initrd_image, uint32_t initrd_size,
1268 uint32_t NVRAM_image,
1269 int width, int height, int depth)
1270 {
1271 uint16_t crc;
1272
1273 /* Set parameters for Open Hack'Ware BIOS */
1274 NVRAM_set_string(nvram, 0x00, "QEMU_BIOS", 16);
1275 NVRAM_set_lword(nvram, 0x10, 0x00000002); /* structure v2 */
1276 NVRAM_set_word(nvram, 0x14, NVRAM_size);
1277 NVRAM_set_string(nvram, 0x20, arch, 16);
1278 NVRAM_set_lword(nvram, 0x30, RAM_size);
1279 NVRAM_set_byte(nvram, 0x34, boot_device);
1280 NVRAM_set_lword(nvram, 0x38, kernel_image);
1281 NVRAM_set_lword(nvram, 0x3C, kernel_size);
1282 if (cmdline) {
1283 /* XXX: put the cmdline in NVRAM too ? */
1284 pstrcpy_targphys("cmdline", CMDLINE_ADDR, RAM_size - CMDLINE_ADDR, cmdline);
1285 NVRAM_set_lword(nvram, 0x40, CMDLINE_ADDR);
1286 NVRAM_set_lword(nvram, 0x44, strlen(cmdline));
1287 } else {
1288 NVRAM_set_lword(nvram, 0x40, 0);
1289 NVRAM_set_lword(nvram, 0x44, 0);
1290 }
1291 NVRAM_set_lword(nvram, 0x48, initrd_image);
1292 NVRAM_set_lword(nvram, 0x4C, initrd_size);
1293 NVRAM_set_lword(nvram, 0x50, NVRAM_image);
1294
1295 NVRAM_set_word(nvram, 0x54, width);
1296 NVRAM_set_word(nvram, 0x56, height);
1297 NVRAM_set_word(nvram, 0x58, depth);
1298 crc = NVRAM_compute_crc(nvram, 0x00, 0xF8);
1299 NVRAM_set_word(nvram, 0xFC, crc);
1300
1301 return 0;
1302 }