]> git.proxmox.com Git - qemu.git/blob - hw/ppc.c
Expose thread_id in info cpus
[qemu.git] / hw / ppc.c
1 /*
2 * QEMU generic PowerPC hardware System Emulator
3 *
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw.h"
25 #include "ppc.h"
26 #include "qemu-timer.h"
27 #include "sysemu.h"
28 #include "nvram.h"
29 #include "qemu-log.h"
30 #include "loader.h"
31 #include "kvm.h"
32 #include "kvm_ppc.h"
33
34 //#define PPC_DEBUG_IRQ
35 //#define PPC_DEBUG_TB
36
37 #ifdef PPC_DEBUG_IRQ
38 # define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
39 #else
40 # define LOG_IRQ(...) do { } while (0)
41 #endif
42
43
44 #ifdef PPC_DEBUG_TB
45 # define LOG_TB(...) qemu_log(__VA_ARGS__)
46 #else
47 # define LOG_TB(...) do { } while (0)
48 #endif
49
50 static void cpu_ppc_tb_stop (CPUState *env);
51 static void cpu_ppc_tb_start (CPUState *env);
52
53 static void ppc_set_irq (CPUState *env, int n_IRQ, int level)
54 {
55 unsigned int old_pending = env->pending_interrupts;
56
57 if (level) {
58 env->pending_interrupts |= 1 << n_IRQ;
59 cpu_interrupt(env, CPU_INTERRUPT_HARD);
60 } else {
61 env->pending_interrupts &= ~(1 << n_IRQ);
62 if (env->pending_interrupts == 0)
63 cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
64 }
65
66 if (old_pending != env->pending_interrupts) {
67 #ifdef CONFIG_KVM
68 kvmppc_set_interrupt(env, n_IRQ, level);
69 #endif
70 }
71
72 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
73 "req %08x\n", __func__, env, n_IRQ, level,
74 env->pending_interrupts, env->interrupt_request);
75 }
76
77 /* PowerPC 6xx / 7xx internal IRQ controller */
78 static void ppc6xx_set_irq (void *opaque, int pin, int level)
79 {
80 CPUState *env = opaque;
81 int cur_level;
82
83 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
84 env, pin, level);
85 cur_level = (env->irq_input_state >> pin) & 1;
86 /* Don't generate spurious events */
87 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
88 switch (pin) {
89 case PPC6xx_INPUT_TBEN:
90 /* Level sensitive - active high */
91 LOG_IRQ("%s: %s the time base\n",
92 __func__, level ? "start" : "stop");
93 if (level) {
94 cpu_ppc_tb_start(env);
95 } else {
96 cpu_ppc_tb_stop(env);
97 }
98 case PPC6xx_INPUT_INT:
99 /* Level sensitive - active high */
100 LOG_IRQ("%s: set the external IRQ state to %d\n",
101 __func__, level);
102 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
103 break;
104 case PPC6xx_INPUT_SMI:
105 /* Level sensitive - active high */
106 LOG_IRQ("%s: set the SMI IRQ state to %d\n",
107 __func__, level);
108 ppc_set_irq(env, PPC_INTERRUPT_SMI, level);
109 break;
110 case PPC6xx_INPUT_MCP:
111 /* Negative edge sensitive */
112 /* XXX: TODO: actual reaction may depends on HID0 status
113 * 603/604/740/750: check HID0[EMCP]
114 */
115 if (cur_level == 1 && level == 0) {
116 LOG_IRQ("%s: raise machine check state\n",
117 __func__);
118 ppc_set_irq(env, PPC_INTERRUPT_MCK, 1);
119 }
120 break;
121 case PPC6xx_INPUT_CKSTP_IN:
122 /* Level sensitive - active low */
123 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
124 /* XXX: Note that the only way to restart the CPU is to reset it */
125 if (level) {
126 LOG_IRQ("%s: stop the CPU\n", __func__);
127 env->halted = 1;
128 }
129 break;
130 case PPC6xx_INPUT_HRESET:
131 /* Level sensitive - active low */
132 if (level) {
133 LOG_IRQ("%s: reset the CPU\n", __func__);
134 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
135 /* XXX: TOFIX */
136 #if 0
137 cpu_reset(env);
138 #else
139 qemu_system_reset_request();
140 #endif
141 }
142 break;
143 case PPC6xx_INPUT_SRESET:
144 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
145 __func__, level);
146 ppc_set_irq(env, PPC_INTERRUPT_RESET, level);
147 break;
148 default:
149 /* Unknown pin - do nothing */
150 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
151 return;
152 }
153 if (level)
154 env->irq_input_state |= 1 << pin;
155 else
156 env->irq_input_state &= ~(1 << pin);
157 }
158 }
159
160 void ppc6xx_irq_init (CPUState *env)
161 {
162 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, env,
163 PPC6xx_INPUT_NB);
164 }
165
166 #if defined(TARGET_PPC64)
167 /* PowerPC 970 internal IRQ controller */
168 static void ppc970_set_irq (void *opaque, int pin, int level)
169 {
170 CPUState *env = opaque;
171 int cur_level;
172
173 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
174 env, pin, level);
175 cur_level = (env->irq_input_state >> pin) & 1;
176 /* Don't generate spurious events */
177 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
178 switch (pin) {
179 case PPC970_INPUT_INT:
180 /* Level sensitive - active high */
181 LOG_IRQ("%s: set the external IRQ state to %d\n",
182 __func__, level);
183 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
184 break;
185 case PPC970_INPUT_THINT:
186 /* Level sensitive - active high */
187 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
188 level);
189 ppc_set_irq(env, PPC_INTERRUPT_THERM, level);
190 break;
191 case PPC970_INPUT_MCP:
192 /* Negative edge sensitive */
193 /* XXX: TODO: actual reaction may depends on HID0 status
194 * 603/604/740/750: check HID0[EMCP]
195 */
196 if (cur_level == 1 && level == 0) {
197 LOG_IRQ("%s: raise machine check state\n",
198 __func__);
199 ppc_set_irq(env, PPC_INTERRUPT_MCK, 1);
200 }
201 break;
202 case PPC970_INPUT_CKSTP:
203 /* Level sensitive - active low */
204 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
205 if (level) {
206 LOG_IRQ("%s: stop the CPU\n", __func__);
207 env->halted = 1;
208 } else {
209 LOG_IRQ("%s: restart the CPU\n", __func__);
210 env->halted = 0;
211 qemu_cpu_kick(env);
212 }
213 break;
214 case PPC970_INPUT_HRESET:
215 /* Level sensitive - active low */
216 if (level) {
217 #if 0 // XXX: TOFIX
218 LOG_IRQ("%s: reset the CPU\n", __func__);
219 cpu_reset(env);
220 #endif
221 }
222 break;
223 case PPC970_INPUT_SRESET:
224 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
225 __func__, level);
226 ppc_set_irq(env, PPC_INTERRUPT_RESET, level);
227 break;
228 case PPC970_INPUT_TBEN:
229 LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
230 level);
231 /* XXX: TODO */
232 break;
233 default:
234 /* Unknown pin - do nothing */
235 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
236 return;
237 }
238 if (level)
239 env->irq_input_state |= 1 << pin;
240 else
241 env->irq_input_state &= ~(1 << pin);
242 }
243 }
244
245 void ppc970_irq_init (CPUState *env)
246 {
247 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, env,
248 PPC970_INPUT_NB);
249 }
250 #endif /* defined(TARGET_PPC64) */
251
252 /* PowerPC 40x internal IRQ controller */
253 static void ppc40x_set_irq (void *opaque, int pin, int level)
254 {
255 CPUState *env = opaque;
256 int cur_level;
257
258 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
259 env, pin, level);
260 cur_level = (env->irq_input_state >> pin) & 1;
261 /* Don't generate spurious events */
262 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
263 switch (pin) {
264 case PPC40x_INPUT_RESET_SYS:
265 if (level) {
266 LOG_IRQ("%s: reset the PowerPC system\n",
267 __func__);
268 ppc40x_system_reset(env);
269 }
270 break;
271 case PPC40x_INPUT_RESET_CHIP:
272 if (level) {
273 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
274 ppc40x_chip_reset(env);
275 }
276 break;
277 case PPC40x_INPUT_RESET_CORE:
278 /* XXX: TODO: update DBSR[MRR] */
279 if (level) {
280 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
281 ppc40x_core_reset(env);
282 }
283 break;
284 case PPC40x_INPUT_CINT:
285 /* Level sensitive - active high */
286 LOG_IRQ("%s: set the critical IRQ state to %d\n",
287 __func__, level);
288 ppc_set_irq(env, PPC_INTERRUPT_CEXT, level);
289 break;
290 case PPC40x_INPUT_INT:
291 /* Level sensitive - active high */
292 LOG_IRQ("%s: set the external IRQ state to %d\n",
293 __func__, level);
294 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
295 break;
296 case PPC40x_INPUT_HALT:
297 /* Level sensitive - active low */
298 if (level) {
299 LOG_IRQ("%s: stop the CPU\n", __func__);
300 env->halted = 1;
301 } else {
302 LOG_IRQ("%s: restart the CPU\n", __func__);
303 env->halted = 0;
304 qemu_cpu_kick(env);
305 }
306 break;
307 case PPC40x_INPUT_DEBUG:
308 /* Level sensitive - active high */
309 LOG_IRQ("%s: set the debug pin state to %d\n",
310 __func__, level);
311 ppc_set_irq(env, PPC_INTERRUPT_DEBUG, level);
312 break;
313 default:
314 /* Unknown pin - do nothing */
315 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
316 return;
317 }
318 if (level)
319 env->irq_input_state |= 1 << pin;
320 else
321 env->irq_input_state &= ~(1 << pin);
322 }
323 }
324
325 void ppc40x_irq_init (CPUState *env)
326 {
327 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
328 env, PPC40x_INPUT_NB);
329 }
330
331 /* PowerPC E500 internal IRQ controller */
332 static void ppce500_set_irq (void *opaque, int pin, int level)
333 {
334 CPUState *env = opaque;
335 int cur_level;
336
337 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
338 env, pin, level);
339 cur_level = (env->irq_input_state >> pin) & 1;
340 /* Don't generate spurious events */
341 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
342 switch (pin) {
343 case PPCE500_INPUT_MCK:
344 if (level) {
345 LOG_IRQ("%s: reset the PowerPC system\n",
346 __func__);
347 qemu_system_reset_request();
348 }
349 break;
350 case PPCE500_INPUT_RESET_CORE:
351 if (level) {
352 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
353 ppc_set_irq(env, PPC_INTERRUPT_MCK, level);
354 }
355 break;
356 case PPCE500_INPUT_CINT:
357 /* Level sensitive - active high */
358 LOG_IRQ("%s: set the critical IRQ state to %d\n",
359 __func__, level);
360 ppc_set_irq(env, PPC_INTERRUPT_CEXT, level);
361 break;
362 case PPCE500_INPUT_INT:
363 /* Level sensitive - active high */
364 LOG_IRQ("%s: set the core IRQ state to %d\n",
365 __func__, level);
366 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
367 break;
368 case PPCE500_INPUT_DEBUG:
369 /* Level sensitive - active high */
370 LOG_IRQ("%s: set the debug pin state to %d\n",
371 __func__, level);
372 ppc_set_irq(env, PPC_INTERRUPT_DEBUG, level);
373 break;
374 default:
375 /* Unknown pin - do nothing */
376 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
377 return;
378 }
379 if (level)
380 env->irq_input_state |= 1 << pin;
381 else
382 env->irq_input_state &= ~(1 << pin);
383 }
384 }
385
386 void ppce500_irq_init (CPUState *env)
387 {
388 env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
389 env, PPCE500_INPUT_NB);
390 }
391 /*****************************************************************************/
392 /* PowerPC time base and decrementer emulation */
393 struct ppc_tb_t {
394 /* Time base management */
395 int64_t tb_offset; /* Compensation */
396 int64_t atb_offset; /* Compensation */
397 uint32_t tb_freq; /* TB frequency */
398 /* Decrementer management */
399 uint64_t decr_next; /* Tick for next decr interrupt */
400 uint32_t decr_freq; /* decrementer frequency */
401 struct QEMUTimer *decr_timer;
402 /* Hypervisor decrementer management */
403 uint64_t hdecr_next; /* Tick for next hdecr interrupt */
404 struct QEMUTimer *hdecr_timer;
405 uint64_t purr_load;
406 uint64_t purr_start;
407 void *opaque;
408 };
409
410 static inline uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk,
411 int64_t tb_offset)
412 {
413 /* TB time in tb periods */
414 return muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec()) + tb_offset;
415 }
416
417 uint64_t cpu_ppc_load_tbl (CPUState *env)
418 {
419 ppc_tb_t *tb_env = env->tb_env;
420 uint64_t tb;
421
422 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
423 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
424
425 return tb;
426 }
427
428 static inline uint32_t _cpu_ppc_load_tbu(CPUState *env)
429 {
430 ppc_tb_t *tb_env = env->tb_env;
431 uint64_t tb;
432
433 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
434 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
435
436 return tb >> 32;
437 }
438
439 uint32_t cpu_ppc_load_tbu (CPUState *env)
440 {
441 return _cpu_ppc_load_tbu(env);
442 }
443
444 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
445 int64_t *tb_offsetp, uint64_t value)
446 {
447 *tb_offsetp = value - muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec());
448 LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
449 __func__, value, *tb_offsetp);
450 }
451
452 void cpu_ppc_store_tbl (CPUState *env, uint32_t value)
453 {
454 ppc_tb_t *tb_env = env->tb_env;
455 uint64_t tb;
456
457 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
458 tb &= 0xFFFFFFFF00000000ULL;
459 cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
460 &tb_env->tb_offset, tb | (uint64_t)value);
461 }
462
463 static inline void _cpu_ppc_store_tbu(CPUState *env, uint32_t value)
464 {
465 ppc_tb_t *tb_env = env->tb_env;
466 uint64_t tb;
467
468 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
469 tb &= 0x00000000FFFFFFFFULL;
470 cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
471 &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
472 }
473
474 void cpu_ppc_store_tbu (CPUState *env, uint32_t value)
475 {
476 _cpu_ppc_store_tbu(env, value);
477 }
478
479 uint64_t cpu_ppc_load_atbl (CPUState *env)
480 {
481 ppc_tb_t *tb_env = env->tb_env;
482 uint64_t tb;
483
484 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
485 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
486
487 return tb;
488 }
489
490 uint32_t cpu_ppc_load_atbu (CPUState *env)
491 {
492 ppc_tb_t *tb_env = env->tb_env;
493 uint64_t tb;
494
495 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
496 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
497
498 return tb >> 32;
499 }
500
501 void cpu_ppc_store_atbl (CPUState *env, uint32_t value)
502 {
503 ppc_tb_t *tb_env = env->tb_env;
504 uint64_t tb;
505
506 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
507 tb &= 0xFFFFFFFF00000000ULL;
508 cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
509 &tb_env->atb_offset, tb | (uint64_t)value);
510 }
511
512 void cpu_ppc_store_atbu (CPUState *env, uint32_t value)
513 {
514 ppc_tb_t *tb_env = env->tb_env;
515 uint64_t tb;
516
517 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
518 tb &= 0x00000000FFFFFFFFULL;
519 cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
520 &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
521 }
522
523 static void cpu_ppc_tb_stop (CPUState *env)
524 {
525 ppc_tb_t *tb_env = env->tb_env;
526 uint64_t tb, atb, vmclk;
527
528 /* If the time base is already frozen, do nothing */
529 if (tb_env->tb_freq != 0) {
530 vmclk = qemu_get_clock(vm_clock);
531 /* Get the time base */
532 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
533 /* Get the alternate time base */
534 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
535 /* Store the time base value (ie compute the current offset) */
536 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
537 /* Store the alternate time base value (compute the current offset) */
538 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
539 /* Set the time base frequency to zero */
540 tb_env->tb_freq = 0;
541 /* Now, the time bases are frozen to tb_offset / atb_offset value */
542 }
543 }
544
545 static void cpu_ppc_tb_start (CPUState *env)
546 {
547 ppc_tb_t *tb_env = env->tb_env;
548 uint64_t tb, atb, vmclk;
549
550 /* If the time base is not frozen, do nothing */
551 if (tb_env->tb_freq == 0) {
552 vmclk = qemu_get_clock(vm_clock);
553 /* Get the time base from tb_offset */
554 tb = tb_env->tb_offset;
555 /* Get the alternate time base from atb_offset */
556 atb = tb_env->atb_offset;
557 /* Restore the tb frequency from the decrementer frequency */
558 tb_env->tb_freq = tb_env->decr_freq;
559 /* Store the time base value */
560 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
561 /* Store the alternate time base value */
562 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
563 }
564 }
565
566 static inline uint32_t _cpu_ppc_load_decr(CPUState *env, uint64_t next)
567 {
568 ppc_tb_t *tb_env = env->tb_env;
569 uint32_t decr;
570 int64_t diff;
571
572 diff = next - qemu_get_clock(vm_clock);
573 if (diff >= 0)
574 decr = muldiv64(diff, tb_env->decr_freq, get_ticks_per_sec());
575 else
576 decr = -muldiv64(-diff, tb_env->decr_freq, get_ticks_per_sec());
577 LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);
578
579 return decr;
580 }
581
582 uint32_t cpu_ppc_load_decr (CPUState *env)
583 {
584 ppc_tb_t *tb_env = env->tb_env;
585
586 return _cpu_ppc_load_decr(env, tb_env->decr_next);
587 }
588
589 uint32_t cpu_ppc_load_hdecr (CPUState *env)
590 {
591 ppc_tb_t *tb_env = env->tb_env;
592
593 return _cpu_ppc_load_decr(env, tb_env->hdecr_next);
594 }
595
596 uint64_t cpu_ppc_load_purr (CPUState *env)
597 {
598 ppc_tb_t *tb_env = env->tb_env;
599 uint64_t diff;
600
601 diff = qemu_get_clock(vm_clock) - tb_env->purr_start;
602
603 return tb_env->purr_load + muldiv64(diff, tb_env->tb_freq, get_ticks_per_sec());
604 }
605
606 /* When decrementer expires,
607 * all we need to do is generate or queue a CPU exception
608 */
609 static inline void cpu_ppc_decr_excp(CPUState *env)
610 {
611 /* Raise it */
612 LOG_TB("raise decrementer exception\n");
613 ppc_set_irq(env, PPC_INTERRUPT_DECR, 1);
614 }
615
616 static inline void cpu_ppc_hdecr_excp(CPUState *env)
617 {
618 /* Raise it */
619 LOG_TB("raise decrementer exception\n");
620 ppc_set_irq(env, PPC_INTERRUPT_HDECR, 1);
621 }
622
623 static void __cpu_ppc_store_decr (CPUState *env, uint64_t *nextp,
624 struct QEMUTimer *timer,
625 void (*raise_excp)(CPUState *),
626 uint32_t decr, uint32_t value,
627 int is_excp)
628 {
629 ppc_tb_t *tb_env = env->tb_env;
630 uint64_t now, next;
631
632 LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
633 decr, value);
634 now = qemu_get_clock(vm_clock);
635 next = now + muldiv64(value, get_ticks_per_sec(), tb_env->decr_freq);
636 if (is_excp)
637 next += *nextp - now;
638 if (next == now)
639 next++;
640 *nextp = next;
641 /* Adjust timer */
642 qemu_mod_timer(timer, next);
643 /* If we set a negative value and the decrementer was positive,
644 * raise an exception.
645 */
646 if ((value & 0x80000000) && !(decr & 0x80000000))
647 (*raise_excp)(env);
648 }
649
650 static inline void _cpu_ppc_store_decr(CPUState *env, uint32_t decr,
651 uint32_t value, int is_excp)
652 {
653 ppc_tb_t *tb_env = env->tb_env;
654
655 __cpu_ppc_store_decr(env, &tb_env->decr_next, tb_env->decr_timer,
656 &cpu_ppc_decr_excp, decr, value, is_excp);
657 }
658
659 void cpu_ppc_store_decr (CPUState *env, uint32_t value)
660 {
661 _cpu_ppc_store_decr(env, cpu_ppc_load_decr(env), value, 0);
662 }
663
664 static void cpu_ppc_decr_cb (void *opaque)
665 {
666 _cpu_ppc_store_decr(opaque, 0x00000000, 0xFFFFFFFF, 1);
667 }
668
669 static inline void _cpu_ppc_store_hdecr(CPUState *env, uint32_t hdecr,
670 uint32_t value, int is_excp)
671 {
672 ppc_tb_t *tb_env = env->tb_env;
673
674 if (tb_env->hdecr_timer != NULL) {
675 __cpu_ppc_store_decr(env, &tb_env->hdecr_next, tb_env->hdecr_timer,
676 &cpu_ppc_hdecr_excp, hdecr, value, is_excp);
677 }
678 }
679
680 void cpu_ppc_store_hdecr (CPUState *env, uint32_t value)
681 {
682 _cpu_ppc_store_hdecr(env, cpu_ppc_load_hdecr(env), value, 0);
683 }
684
685 static void cpu_ppc_hdecr_cb (void *opaque)
686 {
687 _cpu_ppc_store_hdecr(opaque, 0x00000000, 0xFFFFFFFF, 1);
688 }
689
690 void cpu_ppc_store_purr (CPUState *env, uint64_t value)
691 {
692 ppc_tb_t *tb_env = env->tb_env;
693
694 tb_env->purr_load = value;
695 tb_env->purr_start = qemu_get_clock(vm_clock);
696 }
697
698 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
699 {
700 CPUState *env = opaque;
701 ppc_tb_t *tb_env = env->tb_env;
702
703 tb_env->tb_freq = freq;
704 tb_env->decr_freq = freq;
705 /* There is a bug in Linux 2.4 kernels:
706 * if a decrementer exception is pending when it enables msr_ee at startup,
707 * it's not ready to handle it...
708 */
709 _cpu_ppc_store_decr(env, 0xFFFFFFFF, 0xFFFFFFFF, 0);
710 _cpu_ppc_store_hdecr(env, 0xFFFFFFFF, 0xFFFFFFFF, 0);
711 cpu_ppc_store_purr(env, 0x0000000000000000ULL);
712 }
713
714 /* Set up (once) timebase frequency (in Hz) */
715 clk_setup_cb cpu_ppc_tb_init (CPUState *env, uint32_t freq)
716 {
717 ppc_tb_t *tb_env;
718
719 tb_env = qemu_mallocz(sizeof(ppc_tb_t));
720 env->tb_env = tb_env;
721 /* Create new timer */
722 tb_env->decr_timer = qemu_new_timer(vm_clock, &cpu_ppc_decr_cb, env);
723 if (0) {
724 /* XXX: find a suitable condition to enable the hypervisor decrementer
725 */
726 tb_env->hdecr_timer = qemu_new_timer(vm_clock, &cpu_ppc_hdecr_cb, env);
727 } else {
728 tb_env->hdecr_timer = NULL;
729 }
730 cpu_ppc_set_tb_clk(env, freq);
731
732 return &cpu_ppc_set_tb_clk;
733 }
734
735 /* Specific helpers for POWER & PowerPC 601 RTC */
736 #if 0
737 static clk_setup_cb cpu_ppc601_rtc_init (CPUState *env)
738 {
739 return cpu_ppc_tb_init(env, 7812500);
740 }
741 #endif
742
743 void cpu_ppc601_store_rtcu (CPUState *env, uint32_t value)
744 {
745 _cpu_ppc_store_tbu(env, value);
746 }
747
748 uint32_t cpu_ppc601_load_rtcu (CPUState *env)
749 {
750 return _cpu_ppc_load_tbu(env);
751 }
752
753 void cpu_ppc601_store_rtcl (CPUState *env, uint32_t value)
754 {
755 cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
756 }
757
758 uint32_t cpu_ppc601_load_rtcl (CPUState *env)
759 {
760 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
761 }
762
763 /*****************************************************************************/
764 /* Embedded PowerPC timers */
765
766 /* PIT, FIT & WDT */
767 typedef struct ppcemb_timer_t ppcemb_timer_t;
768 struct ppcemb_timer_t {
769 uint64_t pit_reload; /* PIT auto-reload value */
770 uint64_t fit_next; /* Tick for next FIT interrupt */
771 struct QEMUTimer *fit_timer;
772 uint64_t wdt_next; /* Tick for next WDT interrupt */
773 struct QEMUTimer *wdt_timer;
774
775 /* 405 have the PIT, 440 have a DECR. */
776 unsigned int decr_excp;
777 };
778
779 /* Fixed interval timer */
780 static void cpu_4xx_fit_cb (void *opaque)
781 {
782 CPUState *env;
783 ppc_tb_t *tb_env;
784 ppcemb_timer_t *ppcemb_timer;
785 uint64_t now, next;
786
787 env = opaque;
788 tb_env = env->tb_env;
789 ppcemb_timer = tb_env->opaque;
790 now = qemu_get_clock(vm_clock);
791 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
792 case 0:
793 next = 1 << 9;
794 break;
795 case 1:
796 next = 1 << 13;
797 break;
798 case 2:
799 next = 1 << 17;
800 break;
801 case 3:
802 next = 1 << 21;
803 break;
804 default:
805 /* Cannot occur, but makes gcc happy */
806 return;
807 }
808 next = now + muldiv64(next, get_ticks_per_sec(), tb_env->tb_freq);
809 if (next == now)
810 next++;
811 qemu_mod_timer(ppcemb_timer->fit_timer, next);
812 env->spr[SPR_40x_TSR] |= 1 << 26;
813 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1)
814 ppc_set_irq(env, PPC_INTERRUPT_FIT, 1);
815 LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
816 (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
817 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
818 }
819
820 /* Programmable interval timer */
821 static void start_stop_pit (CPUState *env, ppc_tb_t *tb_env, int is_excp)
822 {
823 ppcemb_timer_t *ppcemb_timer;
824 uint64_t now, next;
825
826 ppcemb_timer = tb_env->opaque;
827 if (ppcemb_timer->pit_reload <= 1 ||
828 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
829 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
830 /* Stop PIT */
831 LOG_TB("%s: stop PIT\n", __func__);
832 qemu_del_timer(tb_env->decr_timer);
833 } else {
834 LOG_TB("%s: start PIT %016" PRIx64 "\n",
835 __func__, ppcemb_timer->pit_reload);
836 now = qemu_get_clock(vm_clock);
837 next = now + muldiv64(ppcemb_timer->pit_reload,
838 get_ticks_per_sec(), tb_env->decr_freq);
839 if (is_excp)
840 next += tb_env->decr_next - now;
841 if (next == now)
842 next++;
843 qemu_mod_timer(tb_env->decr_timer, next);
844 tb_env->decr_next = next;
845 }
846 }
847
848 static void cpu_4xx_pit_cb (void *opaque)
849 {
850 CPUState *env;
851 ppc_tb_t *tb_env;
852 ppcemb_timer_t *ppcemb_timer;
853
854 env = opaque;
855 tb_env = env->tb_env;
856 ppcemb_timer = tb_env->opaque;
857 env->spr[SPR_40x_TSR] |= 1 << 27;
858 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1)
859 ppc_set_irq(env, ppcemb_timer->decr_excp, 1);
860 start_stop_pit(env, tb_env, 1);
861 LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
862 "%016" PRIx64 "\n", __func__,
863 (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
864 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
865 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
866 ppcemb_timer->pit_reload);
867 }
868
869 /* Watchdog timer */
870 static void cpu_4xx_wdt_cb (void *opaque)
871 {
872 CPUState *env;
873 ppc_tb_t *tb_env;
874 ppcemb_timer_t *ppcemb_timer;
875 uint64_t now, next;
876
877 env = opaque;
878 tb_env = env->tb_env;
879 ppcemb_timer = tb_env->opaque;
880 now = qemu_get_clock(vm_clock);
881 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
882 case 0:
883 next = 1 << 17;
884 break;
885 case 1:
886 next = 1 << 21;
887 break;
888 case 2:
889 next = 1 << 25;
890 break;
891 case 3:
892 next = 1 << 29;
893 break;
894 default:
895 /* Cannot occur, but makes gcc happy */
896 return;
897 }
898 next = now + muldiv64(next, get_ticks_per_sec(), tb_env->decr_freq);
899 if (next == now)
900 next++;
901 LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
902 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
903 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
904 case 0x0:
905 case 0x1:
906 qemu_mod_timer(ppcemb_timer->wdt_timer, next);
907 ppcemb_timer->wdt_next = next;
908 env->spr[SPR_40x_TSR] |= 1 << 31;
909 break;
910 case 0x2:
911 qemu_mod_timer(ppcemb_timer->wdt_timer, next);
912 ppcemb_timer->wdt_next = next;
913 env->spr[SPR_40x_TSR] |= 1 << 30;
914 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1)
915 ppc_set_irq(env, PPC_INTERRUPT_WDT, 1);
916 break;
917 case 0x3:
918 env->spr[SPR_40x_TSR] &= ~0x30000000;
919 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
920 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
921 case 0x0:
922 /* No reset */
923 break;
924 case 0x1: /* Core reset */
925 ppc40x_core_reset(env);
926 break;
927 case 0x2: /* Chip reset */
928 ppc40x_chip_reset(env);
929 break;
930 case 0x3: /* System reset */
931 ppc40x_system_reset(env);
932 break;
933 }
934 }
935 }
936
937 void store_40x_pit (CPUState *env, target_ulong val)
938 {
939 ppc_tb_t *tb_env;
940 ppcemb_timer_t *ppcemb_timer;
941
942 tb_env = env->tb_env;
943 ppcemb_timer = tb_env->opaque;
944 LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
945 ppcemb_timer->pit_reload = val;
946 start_stop_pit(env, tb_env, 0);
947 }
948
949 target_ulong load_40x_pit (CPUState *env)
950 {
951 return cpu_ppc_load_decr(env);
952 }
953
954 void store_booke_tsr (CPUState *env, target_ulong val)
955 {
956 ppc_tb_t *tb_env = env->tb_env;
957 ppcemb_timer_t *ppcemb_timer;
958
959 ppcemb_timer = tb_env->opaque;
960
961 LOG_TB("%s: val " TARGET_FMT_lx "\n", __func__, val);
962 env->spr[SPR_40x_TSR] &= ~(val & 0xFC000000);
963 if (val & 0x80000000)
964 ppc_set_irq(env, ppcemb_timer->decr_excp, 0);
965 }
966
967 void store_booke_tcr (CPUState *env, target_ulong val)
968 {
969 ppc_tb_t *tb_env;
970
971 tb_env = env->tb_env;
972 LOG_TB("%s: val " TARGET_FMT_lx "\n", __func__, val);
973 env->spr[SPR_40x_TCR] = val & 0xFFC00000;
974 start_stop_pit(env, tb_env, 1);
975 cpu_4xx_wdt_cb(env);
976 }
977
978 static void ppc_emb_set_tb_clk (void *opaque, uint32_t freq)
979 {
980 CPUState *env = opaque;
981 ppc_tb_t *tb_env = env->tb_env;
982
983 LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
984 freq);
985 tb_env->tb_freq = freq;
986 tb_env->decr_freq = freq;
987 /* XXX: we should also update all timers */
988 }
989
990 clk_setup_cb ppc_emb_timers_init (CPUState *env, uint32_t freq,
991 unsigned int decr_excp)
992 {
993 ppc_tb_t *tb_env;
994 ppcemb_timer_t *ppcemb_timer;
995
996 tb_env = qemu_mallocz(sizeof(ppc_tb_t));
997 env->tb_env = tb_env;
998 ppcemb_timer = qemu_mallocz(sizeof(ppcemb_timer_t));
999 tb_env->tb_freq = freq;
1000 tb_env->decr_freq = freq;
1001 tb_env->opaque = ppcemb_timer;
1002 LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1003 if (ppcemb_timer != NULL) {
1004 /* We use decr timer for PIT */
1005 tb_env->decr_timer = qemu_new_timer(vm_clock, &cpu_4xx_pit_cb, env);
1006 ppcemb_timer->fit_timer =
1007 qemu_new_timer(vm_clock, &cpu_4xx_fit_cb, env);
1008 ppcemb_timer->wdt_timer =
1009 qemu_new_timer(vm_clock, &cpu_4xx_wdt_cb, env);
1010 ppcemb_timer->decr_excp = decr_excp;
1011 }
1012
1013 return &ppc_emb_set_tb_clk;
1014 }
1015
1016 /*****************************************************************************/
1017 /* Embedded PowerPC Device Control Registers */
1018 typedef struct ppc_dcrn_t ppc_dcrn_t;
1019 struct ppc_dcrn_t {
1020 dcr_read_cb dcr_read;
1021 dcr_write_cb dcr_write;
1022 void *opaque;
1023 };
1024
1025 /* XXX: on 460, DCR addresses are 32 bits wide,
1026 * using DCRIPR to get the 22 upper bits of the DCR address
1027 */
1028 #define DCRN_NB 1024
1029 struct ppc_dcr_t {
1030 ppc_dcrn_t dcrn[DCRN_NB];
1031 int (*read_error)(int dcrn);
1032 int (*write_error)(int dcrn);
1033 };
1034
1035 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1036 {
1037 ppc_dcrn_t *dcr;
1038
1039 if (dcrn < 0 || dcrn >= DCRN_NB)
1040 goto error;
1041 dcr = &dcr_env->dcrn[dcrn];
1042 if (dcr->dcr_read == NULL)
1043 goto error;
1044 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1045
1046 return 0;
1047
1048 error:
1049 if (dcr_env->read_error != NULL)
1050 return (*dcr_env->read_error)(dcrn);
1051
1052 return -1;
1053 }
1054
1055 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1056 {
1057 ppc_dcrn_t *dcr;
1058
1059 if (dcrn < 0 || dcrn >= DCRN_NB)
1060 goto error;
1061 dcr = &dcr_env->dcrn[dcrn];
1062 if (dcr->dcr_write == NULL)
1063 goto error;
1064 (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1065
1066 return 0;
1067
1068 error:
1069 if (dcr_env->write_error != NULL)
1070 return (*dcr_env->write_error)(dcrn);
1071
1072 return -1;
1073 }
1074
1075 int ppc_dcr_register (CPUState *env, int dcrn, void *opaque,
1076 dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1077 {
1078 ppc_dcr_t *dcr_env;
1079 ppc_dcrn_t *dcr;
1080
1081 dcr_env = env->dcr_env;
1082 if (dcr_env == NULL)
1083 return -1;
1084 if (dcrn < 0 || dcrn >= DCRN_NB)
1085 return -1;
1086 dcr = &dcr_env->dcrn[dcrn];
1087 if (dcr->opaque != NULL ||
1088 dcr->dcr_read != NULL ||
1089 dcr->dcr_write != NULL)
1090 return -1;
1091 dcr->opaque = opaque;
1092 dcr->dcr_read = dcr_read;
1093 dcr->dcr_write = dcr_write;
1094
1095 return 0;
1096 }
1097
1098 int ppc_dcr_init (CPUState *env, int (*read_error)(int dcrn),
1099 int (*write_error)(int dcrn))
1100 {
1101 ppc_dcr_t *dcr_env;
1102
1103 dcr_env = qemu_mallocz(sizeof(ppc_dcr_t));
1104 dcr_env->read_error = read_error;
1105 dcr_env->write_error = write_error;
1106 env->dcr_env = dcr_env;
1107
1108 return 0;
1109 }
1110
1111 /*****************************************************************************/
1112 /* Debug port */
1113 void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1114 {
1115 addr &= 0xF;
1116 switch (addr) {
1117 case 0:
1118 printf("%c", val);
1119 break;
1120 case 1:
1121 printf("\n");
1122 fflush(stdout);
1123 break;
1124 case 2:
1125 printf("Set loglevel to %04" PRIx32 "\n", val);
1126 cpu_set_log(val | 0x100);
1127 break;
1128 }
1129 }
1130
1131 /*****************************************************************************/
1132 /* NVRAM helpers */
1133 static inline uint32_t nvram_read (nvram_t *nvram, uint32_t addr)
1134 {
1135 return (*nvram->read_fn)(nvram->opaque, addr);;
1136 }
1137
1138 static inline void nvram_write (nvram_t *nvram, uint32_t addr, uint32_t val)
1139 {
1140 (*nvram->write_fn)(nvram->opaque, addr, val);
1141 }
1142
1143 void NVRAM_set_byte (nvram_t *nvram, uint32_t addr, uint8_t value)
1144 {
1145 nvram_write(nvram, addr, value);
1146 }
1147
1148 uint8_t NVRAM_get_byte (nvram_t *nvram, uint32_t addr)
1149 {
1150 return nvram_read(nvram, addr);
1151 }
1152
1153 void NVRAM_set_word (nvram_t *nvram, uint32_t addr, uint16_t value)
1154 {
1155 nvram_write(nvram, addr, value >> 8);
1156 nvram_write(nvram, addr + 1, value & 0xFF);
1157 }
1158
1159 uint16_t NVRAM_get_word (nvram_t *nvram, uint32_t addr)
1160 {
1161 uint16_t tmp;
1162
1163 tmp = nvram_read(nvram, addr) << 8;
1164 tmp |= nvram_read(nvram, addr + 1);
1165
1166 return tmp;
1167 }
1168
1169 void NVRAM_set_lword (nvram_t *nvram, uint32_t addr, uint32_t value)
1170 {
1171 nvram_write(nvram, addr, value >> 24);
1172 nvram_write(nvram, addr + 1, (value >> 16) & 0xFF);
1173 nvram_write(nvram, addr + 2, (value >> 8) & 0xFF);
1174 nvram_write(nvram, addr + 3, value & 0xFF);
1175 }
1176
1177 uint32_t NVRAM_get_lword (nvram_t *nvram, uint32_t addr)
1178 {
1179 uint32_t tmp;
1180
1181 tmp = nvram_read(nvram, addr) << 24;
1182 tmp |= nvram_read(nvram, addr + 1) << 16;
1183 tmp |= nvram_read(nvram, addr + 2) << 8;
1184 tmp |= nvram_read(nvram, addr + 3);
1185
1186 return tmp;
1187 }
1188
1189 void NVRAM_set_string (nvram_t *nvram, uint32_t addr,
1190 const char *str, uint32_t max)
1191 {
1192 int i;
1193
1194 for (i = 0; i < max && str[i] != '\0'; i++) {
1195 nvram_write(nvram, addr + i, str[i]);
1196 }
1197 nvram_write(nvram, addr + i, str[i]);
1198 nvram_write(nvram, addr + max - 1, '\0');
1199 }
1200
1201 int NVRAM_get_string (nvram_t *nvram, uint8_t *dst, uint16_t addr, int max)
1202 {
1203 int i;
1204
1205 memset(dst, 0, max);
1206 for (i = 0; i < max; i++) {
1207 dst[i] = NVRAM_get_byte(nvram, addr + i);
1208 if (dst[i] == '\0')
1209 break;
1210 }
1211
1212 return i;
1213 }
1214
1215 static uint16_t NVRAM_crc_update (uint16_t prev, uint16_t value)
1216 {
1217 uint16_t tmp;
1218 uint16_t pd, pd1, pd2;
1219
1220 tmp = prev >> 8;
1221 pd = prev ^ value;
1222 pd1 = pd & 0x000F;
1223 pd2 = ((pd >> 4) & 0x000F) ^ pd1;
1224 tmp ^= (pd1 << 3) | (pd1 << 8);
1225 tmp ^= pd2 | (pd2 << 7) | (pd2 << 12);
1226
1227 return tmp;
1228 }
1229
1230 static uint16_t NVRAM_compute_crc (nvram_t *nvram, uint32_t start, uint32_t count)
1231 {
1232 uint32_t i;
1233 uint16_t crc = 0xFFFF;
1234 int odd;
1235
1236 odd = count & 1;
1237 count &= ~1;
1238 for (i = 0; i != count; i++) {
1239 crc = NVRAM_crc_update(crc, NVRAM_get_word(nvram, start + i));
1240 }
1241 if (odd) {
1242 crc = NVRAM_crc_update(crc, NVRAM_get_byte(nvram, start + i) << 8);
1243 }
1244
1245 return crc;
1246 }
1247
1248 #define CMDLINE_ADDR 0x017ff000
1249
1250 int PPC_NVRAM_set_params (nvram_t *nvram, uint16_t NVRAM_size,
1251 const char *arch,
1252 uint32_t RAM_size, int boot_device,
1253 uint32_t kernel_image, uint32_t kernel_size,
1254 const char *cmdline,
1255 uint32_t initrd_image, uint32_t initrd_size,
1256 uint32_t NVRAM_image,
1257 int width, int height, int depth)
1258 {
1259 uint16_t crc;
1260
1261 /* Set parameters for Open Hack'Ware BIOS */
1262 NVRAM_set_string(nvram, 0x00, "QEMU_BIOS", 16);
1263 NVRAM_set_lword(nvram, 0x10, 0x00000002); /* structure v2 */
1264 NVRAM_set_word(nvram, 0x14, NVRAM_size);
1265 NVRAM_set_string(nvram, 0x20, arch, 16);
1266 NVRAM_set_lword(nvram, 0x30, RAM_size);
1267 NVRAM_set_byte(nvram, 0x34, boot_device);
1268 NVRAM_set_lword(nvram, 0x38, kernel_image);
1269 NVRAM_set_lword(nvram, 0x3C, kernel_size);
1270 if (cmdline) {
1271 /* XXX: put the cmdline in NVRAM too ? */
1272 pstrcpy_targphys("cmdline", CMDLINE_ADDR, RAM_size - CMDLINE_ADDR, cmdline);
1273 NVRAM_set_lword(nvram, 0x40, CMDLINE_ADDR);
1274 NVRAM_set_lword(nvram, 0x44, strlen(cmdline));
1275 } else {
1276 NVRAM_set_lword(nvram, 0x40, 0);
1277 NVRAM_set_lword(nvram, 0x44, 0);
1278 }
1279 NVRAM_set_lword(nvram, 0x48, initrd_image);
1280 NVRAM_set_lword(nvram, 0x4C, initrd_size);
1281 NVRAM_set_lword(nvram, 0x50, NVRAM_image);
1282
1283 NVRAM_set_word(nvram, 0x54, width);
1284 NVRAM_set_word(nvram, 0x56, height);
1285 NVRAM_set_word(nvram, 0x58, depth);
1286 crc = NVRAM_compute_crc(nvram, 0x00, 0xF8);
1287 NVRAM_set_word(nvram, 0xFC, crc);
1288
1289 return 0;
1290 }