]> git.proxmox.com Git - qemu.git/blob - hw/pxa2xx.c
added cpu_model parameter to cpu_init()
[qemu.git] / hw / pxa2xx.c
1 /*
2 * Intel XScale PXA255/270 processor support.
3 *
4 * Copyright (c) 2006 Openedhand Ltd.
5 * Written by Andrzej Zaborowski <balrog@zabor.org>
6 *
7 * This code is licenced under the GPL.
8 */
9
10 # include "vl.h"
11
12 static struct {
13 target_phys_addr_t io_base;
14 int irqn;
15 } pxa255_serial[] = {
16 { 0x40100000, PXA2XX_PIC_FFUART },
17 { 0x40200000, PXA2XX_PIC_BTUART },
18 { 0x40700000, PXA2XX_PIC_STUART },
19 { 0x41600000, PXA25X_PIC_HWUART },
20 { 0, 0 }
21 }, pxa270_serial[] = {
22 { 0x40100000, PXA2XX_PIC_FFUART },
23 { 0x40200000, PXA2XX_PIC_BTUART },
24 { 0x40700000, PXA2XX_PIC_STUART },
25 { 0, 0 }
26 };
27
28 static struct {
29 target_phys_addr_t io_base;
30 int irqn;
31 } pxa250_ssp[] = {
32 { 0x41000000, PXA2XX_PIC_SSP },
33 { 0, 0 }
34 }, pxa255_ssp[] = {
35 { 0x41000000, PXA2XX_PIC_SSP },
36 { 0x41400000, PXA25X_PIC_NSSP },
37 { 0, 0 }
38 }, pxa26x_ssp[] = {
39 { 0x41000000, PXA2XX_PIC_SSP },
40 { 0x41400000, PXA25X_PIC_NSSP },
41 { 0x41500000, PXA26X_PIC_ASSP },
42 { 0, 0 }
43 }, pxa27x_ssp[] = {
44 { 0x41000000, PXA2XX_PIC_SSP },
45 { 0x41700000, PXA27X_PIC_SSP2 },
46 { 0x41900000, PXA2XX_PIC_SSP3 },
47 { 0, 0 }
48 };
49
50 #define PMCR 0x00 /* Power Manager Control register */
51 #define PSSR 0x04 /* Power Manager Sleep Status register */
52 #define PSPR 0x08 /* Power Manager Scratch-Pad register */
53 #define PWER 0x0c /* Power Manager Wake-Up Enable register */
54 #define PRER 0x10 /* Power Manager Rising-Edge Detect Enable register */
55 #define PFER 0x14 /* Power Manager Falling-Edge Detect Enable register */
56 #define PEDR 0x18 /* Power Manager Edge-Detect Status register */
57 #define PCFR 0x1c /* Power Manager General Configuration register */
58 #define PGSR0 0x20 /* Power Manager GPIO Sleep-State register 0 */
59 #define PGSR1 0x24 /* Power Manager GPIO Sleep-State register 1 */
60 #define PGSR2 0x28 /* Power Manager GPIO Sleep-State register 2 */
61 #define PGSR3 0x2c /* Power Manager GPIO Sleep-State register 3 */
62 #define RCSR 0x30 /* Reset Controller Status register */
63 #define PSLR 0x34 /* Power Manager Sleep Configuration register */
64 #define PTSR 0x38 /* Power Manager Standby Configuration register */
65 #define PVCR 0x40 /* Power Manager Voltage Change Control register */
66 #define PUCR 0x4c /* Power Manager USIM Card Control/Status register */
67 #define PKWR 0x50 /* Power Manager Keyboard Wake-Up Enable register */
68 #define PKSR 0x54 /* Power Manager Keyboard Level-Detect Status */
69 #define PCMD0 0x80 /* Power Manager I2C Command register File 0 */
70 #define PCMD31 0xfc /* Power Manager I2C Command register File 31 */
71
72 static uint32_t pxa2xx_pm_read(void *opaque, target_phys_addr_t addr)
73 {
74 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
75 addr -= s->pm_base;
76
77 switch (addr) {
78 case PMCR ... PCMD31:
79 if (addr & 3)
80 goto fail;
81
82 return s->pm_regs[addr >> 2];
83 default:
84 fail:
85 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
86 break;
87 }
88 return 0;
89 }
90
91 static void pxa2xx_pm_write(void *opaque, target_phys_addr_t addr,
92 uint32_t value)
93 {
94 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
95 addr -= s->pm_base;
96
97 switch (addr) {
98 case PMCR:
99 s->pm_regs[addr >> 2] &= 0x15 & ~(value & 0x2a);
100 s->pm_regs[addr >> 2] |= value & 0x15;
101 break;
102
103 case PSSR: /* Read-clean registers */
104 case RCSR:
105 case PKSR:
106 s->pm_regs[addr >> 2] &= ~value;
107 break;
108
109 default: /* Read-write registers */
110 if (addr >= PMCR && addr <= PCMD31 && !(addr & 3)) {
111 s->pm_regs[addr >> 2] = value;
112 break;
113 }
114
115 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
116 break;
117 }
118 }
119
120 static CPUReadMemoryFunc *pxa2xx_pm_readfn[] = {
121 pxa2xx_pm_read,
122 pxa2xx_pm_read,
123 pxa2xx_pm_read,
124 };
125
126 static CPUWriteMemoryFunc *pxa2xx_pm_writefn[] = {
127 pxa2xx_pm_write,
128 pxa2xx_pm_write,
129 pxa2xx_pm_write,
130 };
131
132 static void pxa2xx_pm_save(QEMUFile *f, void *opaque)
133 {
134 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
135 int i;
136
137 for (i = 0; i < 0x40; i ++)
138 qemu_put_be32s(f, &s->pm_regs[i]);
139 }
140
141 static int pxa2xx_pm_load(QEMUFile *f, void *opaque, int version_id)
142 {
143 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
144 int i;
145
146 for (i = 0; i < 0x40; i ++)
147 qemu_get_be32s(f, &s->pm_regs[i]);
148
149 return 0;
150 }
151
152 #define CCCR 0x00 /* Core Clock Configuration register */
153 #define CKEN 0x04 /* Clock Enable register */
154 #define OSCC 0x08 /* Oscillator Configuration register */
155 #define CCSR 0x0c /* Core Clock Status register */
156
157 static uint32_t pxa2xx_cm_read(void *opaque, target_phys_addr_t addr)
158 {
159 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
160 addr -= s->cm_base;
161
162 switch (addr) {
163 case CCCR:
164 case CKEN:
165 case OSCC:
166 return s->cm_regs[addr >> 2];
167
168 case CCSR:
169 return s->cm_regs[CCCR >> 2] | (3 << 28);
170
171 default:
172 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
173 break;
174 }
175 return 0;
176 }
177
178 static void pxa2xx_cm_write(void *opaque, target_phys_addr_t addr,
179 uint32_t value)
180 {
181 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
182 addr -= s->cm_base;
183
184 switch (addr) {
185 case CCCR:
186 case CKEN:
187 s->cm_regs[addr >> 2] = value;
188 break;
189
190 case OSCC:
191 s->cm_regs[addr >> 2] &= ~0x6c;
192 s->cm_regs[addr >> 2] |= value & 0x6e;
193 if ((value >> 1) & 1) /* OON */
194 s->cm_regs[addr >> 2] |= 1 << 0; /* Oscillator is now stable */
195 break;
196
197 default:
198 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
199 break;
200 }
201 }
202
203 static CPUReadMemoryFunc *pxa2xx_cm_readfn[] = {
204 pxa2xx_cm_read,
205 pxa2xx_cm_read,
206 pxa2xx_cm_read,
207 };
208
209 static CPUWriteMemoryFunc *pxa2xx_cm_writefn[] = {
210 pxa2xx_cm_write,
211 pxa2xx_cm_write,
212 pxa2xx_cm_write,
213 };
214
215 static void pxa2xx_cm_save(QEMUFile *f, void *opaque)
216 {
217 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
218 int i;
219
220 for (i = 0; i < 4; i ++)
221 qemu_put_be32s(f, &s->cm_regs[i]);
222 qemu_put_be32s(f, &s->clkcfg);
223 qemu_put_be32s(f, &s->pmnc);
224 }
225
226 static int pxa2xx_cm_load(QEMUFile *f, void *opaque, int version_id)
227 {
228 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
229 int i;
230
231 for (i = 0; i < 4; i ++)
232 qemu_get_be32s(f, &s->cm_regs[i]);
233 qemu_get_be32s(f, &s->clkcfg);
234 qemu_get_be32s(f, &s->pmnc);
235
236 return 0;
237 }
238
239 static uint32_t pxa2xx_clkpwr_read(void *opaque, int op2, int reg, int crm)
240 {
241 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
242
243 switch (reg) {
244 case 6: /* Clock Configuration register */
245 return s->clkcfg;
246
247 case 7: /* Power Mode register */
248 return 0;
249
250 default:
251 printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
252 break;
253 }
254 return 0;
255 }
256
257 static void pxa2xx_clkpwr_write(void *opaque, int op2, int reg, int crm,
258 uint32_t value)
259 {
260 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
261 static const char *pwrmode[8] = {
262 "Normal", "Idle", "Deep-idle", "Standby",
263 "Sleep", "reserved (!)", "reserved (!)", "Deep-sleep",
264 };
265
266 switch (reg) {
267 case 6: /* Clock Configuration register */
268 s->clkcfg = value & 0xf;
269 if (value & 2)
270 printf("%s: CPU frequency change attempt\n", __FUNCTION__);
271 break;
272
273 case 7: /* Power Mode register */
274 if (value & 8)
275 printf("%s: CPU voltage change attempt\n", __FUNCTION__);
276 switch (value & 7) {
277 case 0:
278 /* Do nothing */
279 break;
280
281 case 1:
282 /* Idle */
283 if (!(s->cm_regs[CCCR >> 2] & (1 << 31))) { /* CPDIS */
284 cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
285 break;
286 }
287 /* Fall through. */
288
289 case 2:
290 /* Deep-Idle */
291 cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
292 s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
293 goto message;
294
295 case 3:
296 s->env->uncached_cpsr =
297 ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
298 s->env->cp15.c1_sys = 0;
299 s->env->cp15.c1_coproc = 0;
300 s->env->cp15.c2_base = 0;
301 s->env->cp15.c3 = 0;
302 s->pm_regs[PSSR >> 2] |= 0x8; /* Set STS */
303 s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
304
305 /*
306 * The scratch-pad register is almost universally used
307 * for storing the return address on suspend. For the
308 * lack of a resuming bootloader, perform a jump
309 * directly to that address.
310 */
311 memset(s->env->regs, 0, 4 * 15);
312 s->env->regs[15] = s->pm_regs[PSPR >> 2];
313
314 #if 0
315 buffer = 0xe59ff000; /* ldr pc, [pc, #0] */
316 cpu_physical_memory_write(0, &buffer, 4);
317 buffer = s->pm_regs[PSPR >> 2];
318 cpu_physical_memory_write(8, &buffer, 4);
319 #endif
320
321 /* Suspend */
322 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HALT);
323
324 goto message;
325
326 default:
327 message:
328 printf("%s: machine entered %s mode\n", __FUNCTION__,
329 pwrmode[value & 7]);
330 }
331 break;
332
333 default:
334 printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
335 break;
336 }
337 }
338
339 /* Performace Monitoring Registers */
340 #define CPPMNC 0 /* Performance Monitor Control register */
341 #define CPCCNT 1 /* Clock Counter register */
342 #define CPINTEN 4 /* Interrupt Enable register */
343 #define CPFLAG 5 /* Overflow Flag register */
344 #define CPEVTSEL 8 /* Event Selection register */
345
346 #define CPPMN0 0 /* Performance Count register 0 */
347 #define CPPMN1 1 /* Performance Count register 1 */
348 #define CPPMN2 2 /* Performance Count register 2 */
349 #define CPPMN3 3 /* Performance Count register 3 */
350
351 static uint32_t pxa2xx_perf_read(void *opaque, int op2, int reg, int crm)
352 {
353 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
354
355 switch (reg) {
356 case CPPMNC:
357 return s->pmnc;
358 case CPCCNT:
359 if (s->pmnc & 1)
360 return qemu_get_clock(vm_clock);
361 else
362 return 0;
363 case CPINTEN:
364 case CPFLAG:
365 case CPEVTSEL:
366 return 0;
367
368 default:
369 printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
370 break;
371 }
372 return 0;
373 }
374
375 static void pxa2xx_perf_write(void *opaque, int op2, int reg, int crm,
376 uint32_t value)
377 {
378 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
379
380 switch (reg) {
381 case CPPMNC:
382 s->pmnc = value;
383 break;
384
385 case CPCCNT:
386 case CPINTEN:
387 case CPFLAG:
388 case CPEVTSEL:
389 break;
390
391 default:
392 printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
393 break;
394 }
395 }
396
397 static uint32_t pxa2xx_cp14_read(void *opaque, int op2, int reg, int crm)
398 {
399 switch (crm) {
400 case 0:
401 return pxa2xx_clkpwr_read(opaque, op2, reg, crm);
402 case 1:
403 return pxa2xx_perf_read(opaque, op2, reg, crm);
404 case 2:
405 switch (reg) {
406 case CPPMN0:
407 case CPPMN1:
408 case CPPMN2:
409 case CPPMN3:
410 return 0;
411 }
412 /* Fall through */
413 default:
414 printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
415 break;
416 }
417 return 0;
418 }
419
420 static void pxa2xx_cp14_write(void *opaque, int op2, int reg, int crm,
421 uint32_t value)
422 {
423 switch (crm) {
424 case 0:
425 pxa2xx_clkpwr_write(opaque, op2, reg, crm, value);
426 break;
427 case 1:
428 pxa2xx_perf_write(opaque, op2, reg, crm, value);
429 break;
430 case 2:
431 switch (reg) {
432 case CPPMN0:
433 case CPPMN1:
434 case CPPMN2:
435 case CPPMN3:
436 return;
437 }
438 /* Fall through */
439 default:
440 printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
441 break;
442 }
443 }
444
445 #define MDCNFG 0x00 /* SDRAM Configuration register */
446 #define MDREFR 0x04 /* SDRAM Refresh Control register */
447 #define MSC0 0x08 /* Static Memory Control register 0 */
448 #define MSC1 0x0c /* Static Memory Control register 1 */
449 #define MSC2 0x10 /* Static Memory Control register 2 */
450 #define MECR 0x14 /* Expansion Memory Bus Config register */
451 #define SXCNFG 0x1c /* Synchronous Static Memory Config register */
452 #define MCMEM0 0x28 /* PC Card Memory Socket 0 Timing register */
453 #define MCMEM1 0x2c /* PC Card Memory Socket 1 Timing register */
454 #define MCATT0 0x30 /* PC Card Attribute Socket 0 register */
455 #define MCATT1 0x34 /* PC Card Attribute Socket 1 register */
456 #define MCIO0 0x38 /* PC Card I/O Socket 0 Timing register */
457 #define MCIO1 0x3c /* PC Card I/O Socket 1 Timing register */
458 #define MDMRS 0x40 /* SDRAM Mode Register Set Config register */
459 #define BOOT_DEF 0x44 /* Boot-time Default Configuration register */
460 #define ARB_CNTL 0x48 /* Arbiter Control register */
461 #define BSCNTR0 0x4c /* Memory Buffer Strength Control register 0 */
462 #define BSCNTR1 0x50 /* Memory Buffer Strength Control register 1 */
463 #define LCDBSCNTR 0x54 /* LCD Buffer Strength Control register */
464 #define MDMRSLP 0x58 /* Low Power SDRAM Mode Set Config register */
465 #define BSCNTR2 0x5c /* Memory Buffer Strength Control register 2 */
466 #define BSCNTR3 0x60 /* Memory Buffer Strength Control register 3 */
467 #define SA1110 0x64 /* SA-1110 Memory Compatibility register */
468
469 static uint32_t pxa2xx_mm_read(void *opaque, target_phys_addr_t addr)
470 {
471 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
472 addr -= s->mm_base;
473
474 switch (addr) {
475 case MDCNFG ... SA1110:
476 if ((addr & 3) == 0)
477 return s->mm_regs[addr >> 2];
478
479 default:
480 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
481 break;
482 }
483 return 0;
484 }
485
486 static void pxa2xx_mm_write(void *opaque, target_phys_addr_t addr,
487 uint32_t value)
488 {
489 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
490 addr -= s->mm_base;
491
492 switch (addr) {
493 case MDCNFG ... SA1110:
494 if ((addr & 3) == 0) {
495 s->mm_regs[addr >> 2] = value;
496 break;
497 }
498
499 default:
500 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
501 break;
502 }
503 }
504
505 static CPUReadMemoryFunc *pxa2xx_mm_readfn[] = {
506 pxa2xx_mm_read,
507 pxa2xx_mm_read,
508 pxa2xx_mm_read,
509 };
510
511 static CPUWriteMemoryFunc *pxa2xx_mm_writefn[] = {
512 pxa2xx_mm_write,
513 pxa2xx_mm_write,
514 pxa2xx_mm_write,
515 };
516
517 static void pxa2xx_mm_save(QEMUFile *f, void *opaque)
518 {
519 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
520 int i;
521
522 for (i = 0; i < 0x1a; i ++)
523 qemu_put_be32s(f, &s->mm_regs[i]);
524 }
525
526 static int pxa2xx_mm_load(QEMUFile *f, void *opaque, int version_id)
527 {
528 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
529 int i;
530
531 for (i = 0; i < 0x1a; i ++)
532 qemu_get_be32s(f, &s->mm_regs[i]);
533
534 return 0;
535 }
536
537 /* Synchronous Serial Ports */
538 struct pxa2xx_ssp_s {
539 target_phys_addr_t base;
540 qemu_irq irq;
541 int enable;
542
543 uint32_t sscr[2];
544 uint32_t sspsp;
545 uint32_t ssto;
546 uint32_t ssitr;
547 uint32_t sssr;
548 uint8_t sstsa;
549 uint8_t ssrsa;
550 uint8_t ssacd;
551
552 uint32_t rx_fifo[16];
553 int rx_level;
554 int rx_start;
555
556 uint32_t (*readfn)(void *opaque);
557 void (*writefn)(void *opaque, uint32_t value);
558 void *opaque;
559 };
560
561 #define SSCR0 0x00 /* SSP Control register 0 */
562 #define SSCR1 0x04 /* SSP Control register 1 */
563 #define SSSR 0x08 /* SSP Status register */
564 #define SSITR 0x0c /* SSP Interrupt Test register */
565 #define SSDR 0x10 /* SSP Data register */
566 #define SSTO 0x28 /* SSP Time-Out register */
567 #define SSPSP 0x2c /* SSP Programmable Serial Protocol register */
568 #define SSTSA 0x30 /* SSP TX Time Slot Active register */
569 #define SSRSA 0x34 /* SSP RX Time Slot Active register */
570 #define SSTSS 0x38 /* SSP Time Slot Status register */
571 #define SSACD 0x3c /* SSP Audio Clock Divider register */
572
573 /* Bitfields for above registers */
574 #define SSCR0_SPI(x) (((x) & 0x30) == 0x00)
575 #define SSCR0_SSP(x) (((x) & 0x30) == 0x10)
576 #define SSCR0_UWIRE(x) (((x) & 0x30) == 0x20)
577 #define SSCR0_PSP(x) (((x) & 0x30) == 0x30)
578 #define SSCR0_SSE (1 << 7)
579 #define SSCR0_RIM (1 << 22)
580 #define SSCR0_TIM (1 << 23)
581 #define SSCR0_MOD (1 << 31)
582 #define SSCR0_DSS(x) (((((x) >> 16) & 0x10) | ((x) & 0xf)) + 1)
583 #define SSCR1_RIE (1 << 0)
584 #define SSCR1_TIE (1 << 1)
585 #define SSCR1_LBM (1 << 2)
586 #define SSCR1_MWDS (1 << 5)
587 #define SSCR1_TFT(x) ((((x) >> 6) & 0xf) + 1)
588 #define SSCR1_RFT(x) ((((x) >> 10) & 0xf) + 1)
589 #define SSCR1_EFWR (1 << 14)
590 #define SSCR1_PINTE (1 << 18)
591 #define SSCR1_TINTE (1 << 19)
592 #define SSCR1_RSRE (1 << 20)
593 #define SSCR1_TSRE (1 << 21)
594 #define SSCR1_EBCEI (1 << 29)
595 #define SSITR_INT (7 << 5)
596 #define SSSR_TNF (1 << 2)
597 #define SSSR_RNE (1 << 3)
598 #define SSSR_TFS (1 << 5)
599 #define SSSR_RFS (1 << 6)
600 #define SSSR_ROR (1 << 7)
601 #define SSSR_PINT (1 << 18)
602 #define SSSR_TINT (1 << 19)
603 #define SSSR_EOC (1 << 20)
604 #define SSSR_TUR (1 << 21)
605 #define SSSR_BCE (1 << 23)
606 #define SSSR_RW 0x00bc0080
607
608 static void pxa2xx_ssp_int_update(struct pxa2xx_ssp_s *s)
609 {
610 int level = 0;
611
612 level |= s->ssitr & SSITR_INT;
613 level |= (s->sssr & SSSR_BCE) && (s->sscr[1] & SSCR1_EBCEI);
614 level |= (s->sssr & SSSR_TUR) && !(s->sscr[0] & SSCR0_TIM);
615 level |= (s->sssr & SSSR_EOC) && (s->sssr & (SSSR_TINT | SSSR_PINT));
616 level |= (s->sssr & SSSR_TINT) && (s->sscr[1] & SSCR1_TINTE);
617 level |= (s->sssr & SSSR_PINT) && (s->sscr[1] & SSCR1_PINTE);
618 level |= (s->sssr & SSSR_ROR) && !(s->sscr[0] & SSCR0_RIM);
619 level |= (s->sssr & SSSR_RFS) && (s->sscr[1] & SSCR1_RIE);
620 level |= (s->sssr & SSSR_TFS) && (s->sscr[1] & SSCR1_TIE);
621 qemu_set_irq(s->irq, !!level);
622 }
623
624 static void pxa2xx_ssp_fifo_update(struct pxa2xx_ssp_s *s)
625 {
626 s->sssr &= ~(0xf << 12); /* Clear RFL */
627 s->sssr &= ~(0xf << 8); /* Clear TFL */
628 s->sssr &= ~SSSR_TNF;
629 if (s->enable) {
630 s->sssr |= ((s->rx_level - 1) & 0xf) << 12;
631 if (s->rx_level >= SSCR1_RFT(s->sscr[1]))
632 s->sssr |= SSSR_RFS;
633 else
634 s->sssr &= ~SSSR_RFS;
635 if (0 <= SSCR1_TFT(s->sscr[1]))
636 s->sssr |= SSSR_TFS;
637 else
638 s->sssr &= ~SSSR_TFS;
639 if (s->rx_level)
640 s->sssr |= SSSR_RNE;
641 else
642 s->sssr &= ~SSSR_RNE;
643 s->sssr |= SSSR_TNF;
644 }
645
646 pxa2xx_ssp_int_update(s);
647 }
648
649 static uint32_t pxa2xx_ssp_read(void *opaque, target_phys_addr_t addr)
650 {
651 struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque;
652 uint32_t retval;
653 addr -= s->base;
654
655 switch (addr) {
656 case SSCR0:
657 return s->sscr[0];
658 case SSCR1:
659 return s->sscr[1];
660 case SSPSP:
661 return s->sspsp;
662 case SSTO:
663 return s->ssto;
664 case SSITR:
665 return s->ssitr;
666 case SSSR:
667 return s->sssr | s->ssitr;
668 case SSDR:
669 if (!s->enable)
670 return 0xffffffff;
671 if (s->rx_level < 1) {
672 printf("%s: SSP Rx Underrun\n", __FUNCTION__);
673 return 0xffffffff;
674 }
675 s->rx_level --;
676 retval = s->rx_fifo[s->rx_start ++];
677 s->rx_start &= 0xf;
678 pxa2xx_ssp_fifo_update(s);
679 return retval;
680 case SSTSA:
681 return s->sstsa;
682 case SSRSA:
683 return s->ssrsa;
684 case SSTSS:
685 return 0;
686 case SSACD:
687 return s->ssacd;
688 default:
689 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
690 break;
691 }
692 return 0;
693 }
694
695 static void pxa2xx_ssp_write(void *opaque, target_phys_addr_t addr,
696 uint32_t value)
697 {
698 struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque;
699 addr -= s->base;
700
701 switch (addr) {
702 case SSCR0:
703 s->sscr[0] = value & 0xc7ffffff;
704 s->enable = value & SSCR0_SSE;
705 if (value & SSCR0_MOD)
706 printf("%s: Attempt to use network mode\n", __FUNCTION__);
707 if (s->enable && SSCR0_DSS(value) < 4)
708 printf("%s: Wrong data size: %i bits\n", __FUNCTION__,
709 SSCR0_DSS(value));
710 if (!(value & SSCR0_SSE)) {
711 s->sssr = 0;
712 s->ssitr = 0;
713 s->rx_level = 0;
714 }
715 pxa2xx_ssp_fifo_update(s);
716 break;
717
718 case SSCR1:
719 s->sscr[1] = value;
720 if (value & (SSCR1_LBM | SSCR1_EFWR))
721 printf("%s: Attempt to use SSP test mode\n", __FUNCTION__);
722 pxa2xx_ssp_fifo_update(s);
723 break;
724
725 case SSPSP:
726 s->sspsp = value;
727 break;
728
729 case SSTO:
730 s->ssto = value;
731 break;
732
733 case SSITR:
734 s->ssitr = value & SSITR_INT;
735 pxa2xx_ssp_int_update(s);
736 break;
737
738 case SSSR:
739 s->sssr &= ~(value & SSSR_RW);
740 pxa2xx_ssp_int_update(s);
741 break;
742
743 case SSDR:
744 if (SSCR0_UWIRE(s->sscr[0])) {
745 if (s->sscr[1] & SSCR1_MWDS)
746 value &= 0xffff;
747 else
748 value &= 0xff;
749 } else
750 /* Note how 32bits overflow does no harm here */
751 value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
752
753 /* Data goes from here to the Tx FIFO and is shifted out from
754 * there directly to the slave, no need to buffer it.
755 */
756 if (s->enable) {
757 if (s->writefn)
758 s->writefn(s->opaque, value);
759
760 if (s->rx_level < 0x10) {
761 if (s->readfn)
762 s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] =
763 s->readfn(s->opaque);
764 else
765 s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] = 0x0;
766 } else
767 s->sssr |= SSSR_ROR;
768 }
769 pxa2xx_ssp_fifo_update(s);
770 break;
771
772 case SSTSA:
773 s->sstsa = value;
774 break;
775
776 case SSRSA:
777 s->ssrsa = value;
778 break;
779
780 case SSACD:
781 s->ssacd = value;
782 break;
783
784 default:
785 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
786 break;
787 }
788 }
789
790 void pxa2xx_ssp_attach(struct pxa2xx_ssp_s *port,
791 uint32_t (*readfn)(void *opaque),
792 void (*writefn)(void *opaque, uint32_t value), void *opaque)
793 {
794 if (!port) {
795 printf("%s: no such SSP\n", __FUNCTION__);
796 exit(-1);
797 }
798
799 port->opaque = opaque;
800 port->readfn = readfn;
801 port->writefn = writefn;
802 }
803
804 static CPUReadMemoryFunc *pxa2xx_ssp_readfn[] = {
805 pxa2xx_ssp_read,
806 pxa2xx_ssp_read,
807 pxa2xx_ssp_read,
808 };
809
810 static CPUWriteMemoryFunc *pxa2xx_ssp_writefn[] = {
811 pxa2xx_ssp_write,
812 pxa2xx_ssp_write,
813 pxa2xx_ssp_write,
814 };
815
816 static void pxa2xx_ssp_save(QEMUFile *f, void *opaque)
817 {
818 struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque;
819 int i;
820
821 qemu_put_be32(f, s->enable);
822
823 qemu_put_be32s(f, &s->sscr[0]);
824 qemu_put_be32s(f, &s->sscr[1]);
825 qemu_put_be32s(f, &s->sspsp);
826 qemu_put_be32s(f, &s->ssto);
827 qemu_put_be32s(f, &s->ssitr);
828 qemu_put_be32s(f, &s->sssr);
829 qemu_put_8s(f, &s->sstsa);
830 qemu_put_8s(f, &s->ssrsa);
831 qemu_put_8s(f, &s->ssacd);
832
833 qemu_put_byte(f, s->rx_level);
834 for (i = 0; i < s->rx_level; i ++)
835 qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 0xf]);
836 }
837
838 static int pxa2xx_ssp_load(QEMUFile *f, void *opaque, int version_id)
839 {
840 struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque;
841 int i;
842
843 s->enable = qemu_get_be32(f);
844
845 qemu_get_be32s(f, &s->sscr[0]);
846 qemu_get_be32s(f, &s->sscr[1]);
847 qemu_get_be32s(f, &s->sspsp);
848 qemu_get_be32s(f, &s->ssto);
849 qemu_get_be32s(f, &s->ssitr);
850 qemu_get_be32s(f, &s->sssr);
851 qemu_get_8s(f, &s->sstsa);
852 qemu_get_8s(f, &s->ssrsa);
853 qemu_get_8s(f, &s->ssacd);
854
855 s->rx_level = qemu_get_byte(f);
856 s->rx_start = 0;
857 for (i = 0; i < s->rx_level; i ++)
858 s->rx_fifo[i] = qemu_get_byte(f);
859
860 return 0;
861 }
862
863 /* Real-Time Clock */
864 #define RCNR 0x00 /* RTC Counter register */
865 #define RTAR 0x04 /* RTC Alarm register */
866 #define RTSR 0x08 /* RTC Status register */
867 #define RTTR 0x0c /* RTC Timer Trim register */
868 #define RDCR 0x10 /* RTC Day Counter register */
869 #define RYCR 0x14 /* RTC Year Counter register */
870 #define RDAR1 0x18 /* RTC Wristwatch Day Alarm register 1 */
871 #define RYAR1 0x1c /* RTC Wristwatch Year Alarm register 1 */
872 #define RDAR2 0x20 /* RTC Wristwatch Day Alarm register 2 */
873 #define RYAR2 0x24 /* RTC Wristwatch Year Alarm register 2 */
874 #define SWCR 0x28 /* RTC Stopwatch Counter register */
875 #define SWAR1 0x2c /* RTC Stopwatch Alarm register 1 */
876 #define SWAR2 0x30 /* RTC Stopwatch Alarm register 2 */
877 #define RTCPICR 0x34 /* RTC Periodic Interrupt Counter register */
878 #define PIAR 0x38 /* RTC Periodic Interrupt Alarm register */
879
880 static inline void pxa2xx_rtc_int_update(struct pxa2xx_state_s *s)
881 {
882 qemu_set_irq(s->pic[PXA2XX_PIC_RTCALARM], !!(s->rtsr & 0x2553));
883 }
884
885 static void pxa2xx_rtc_hzupdate(struct pxa2xx_state_s *s)
886 {
887 int64_t rt = qemu_get_clock(rt_clock);
888 s->last_rcnr += ((rt - s->last_hz) << 15) /
889 (1000 * ((s->rttr & 0xffff) + 1));
890 s->last_rdcr += ((rt - s->last_hz) << 15) /
891 (1000 * ((s->rttr & 0xffff) + 1));
892 s->last_hz = rt;
893 }
894
895 static void pxa2xx_rtc_swupdate(struct pxa2xx_state_s *s)
896 {
897 int64_t rt = qemu_get_clock(rt_clock);
898 if (s->rtsr & (1 << 12))
899 s->last_swcr += (rt - s->last_sw) / 10;
900 s->last_sw = rt;
901 }
902
903 static void pxa2xx_rtc_piupdate(struct pxa2xx_state_s *s)
904 {
905 int64_t rt = qemu_get_clock(rt_clock);
906 if (s->rtsr & (1 << 15))
907 s->last_swcr += rt - s->last_pi;
908 s->last_pi = rt;
909 }
910
911 static inline void pxa2xx_rtc_alarm_update(struct pxa2xx_state_s *s,
912 uint32_t rtsr)
913 {
914 if ((rtsr & (1 << 2)) && !(rtsr & (1 << 0)))
915 qemu_mod_timer(s->rtc_hz, s->last_hz +
916 (((s->rtar - s->last_rcnr) * 1000 *
917 ((s->rttr & 0xffff) + 1)) >> 15));
918 else
919 qemu_del_timer(s->rtc_hz);
920
921 if ((rtsr & (1 << 5)) && !(rtsr & (1 << 4)))
922 qemu_mod_timer(s->rtc_rdal1, s->last_hz +
923 (((s->rdar1 - s->last_rdcr) * 1000 *
924 ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
925 else
926 qemu_del_timer(s->rtc_rdal1);
927
928 if ((rtsr & (1 << 7)) && !(rtsr & (1 << 6)))
929 qemu_mod_timer(s->rtc_rdal2, s->last_hz +
930 (((s->rdar2 - s->last_rdcr) * 1000 *
931 ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
932 else
933 qemu_del_timer(s->rtc_rdal2);
934
935 if ((rtsr & 0x1200) == 0x1200 && !(rtsr & (1 << 8)))
936 qemu_mod_timer(s->rtc_swal1, s->last_sw +
937 (s->swar1 - s->last_swcr) * 10); /* TODO: fixup */
938 else
939 qemu_del_timer(s->rtc_swal1);
940
941 if ((rtsr & 0x1800) == 0x1800 && !(rtsr & (1 << 10)))
942 qemu_mod_timer(s->rtc_swal2, s->last_sw +
943 (s->swar2 - s->last_swcr) * 10); /* TODO: fixup */
944 else
945 qemu_del_timer(s->rtc_swal2);
946
947 if ((rtsr & 0xc000) == 0xc000 && !(rtsr & (1 << 13)))
948 qemu_mod_timer(s->rtc_pi, s->last_pi +
949 (s->piar & 0xffff) - s->last_rtcpicr);
950 else
951 qemu_del_timer(s->rtc_pi);
952 }
953
954 static inline void pxa2xx_rtc_hz_tick(void *opaque)
955 {
956 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
957 s->rtsr |= (1 << 0);
958 pxa2xx_rtc_alarm_update(s, s->rtsr);
959 pxa2xx_rtc_int_update(s);
960 }
961
962 static inline void pxa2xx_rtc_rdal1_tick(void *opaque)
963 {
964 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
965 s->rtsr |= (1 << 4);
966 pxa2xx_rtc_alarm_update(s, s->rtsr);
967 pxa2xx_rtc_int_update(s);
968 }
969
970 static inline void pxa2xx_rtc_rdal2_tick(void *opaque)
971 {
972 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
973 s->rtsr |= (1 << 6);
974 pxa2xx_rtc_alarm_update(s, s->rtsr);
975 pxa2xx_rtc_int_update(s);
976 }
977
978 static inline void pxa2xx_rtc_swal1_tick(void *opaque)
979 {
980 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
981 s->rtsr |= (1 << 8);
982 pxa2xx_rtc_alarm_update(s, s->rtsr);
983 pxa2xx_rtc_int_update(s);
984 }
985
986 static inline void pxa2xx_rtc_swal2_tick(void *opaque)
987 {
988 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
989 s->rtsr |= (1 << 10);
990 pxa2xx_rtc_alarm_update(s, s->rtsr);
991 pxa2xx_rtc_int_update(s);
992 }
993
994 static inline void pxa2xx_rtc_pi_tick(void *opaque)
995 {
996 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
997 s->rtsr |= (1 << 13);
998 pxa2xx_rtc_piupdate(s);
999 s->last_rtcpicr = 0;
1000 pxa2xx_rtc_alarm_update(s, s->rtsr);
1001 pxa2xx_rtc_int_update(s);
1002 }
1003
1004 static uint32_t pxa2xx_rtc_read(void *opaque, target_phys_addr_t addr)
1005 {
1006 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
1007 addr -= s->rtc_base;
1008
1009 switch (addr) {
1010 case RTTR:
1011 return s->rttr;
1012 case RTSR:
1013 return s->rtsr;
1014 case RTAR:
1015 return s->rtar;
1016 case RDAR1:
1017 return s->rdar1;
1018 case RDAR2:
1019 return s->rdar2;
1020 case RYAR1:
1021 return s->ryar1;
1022 case RYAR2:
1023 return s->ryar2;
1024 case SWAR1:
1025 return s->swar1;
1026 case SWAR2:
1027 return s->swar2;
1028 case PIAR:
1029 return s->piar;
1030 case RCNR:
1031 return s->last_rcnr + ((qemu_get_clock(rt_clock) - s->last_hz) << 15) /
1032 (1000 * ((s->rttr & 0xffff) + 1));
1033 case RDCR:
1034 return s->last_rdcr + ((qemu_get_clock(rt_clock) - s->last_hz) << 15) /
1035 (1000 * ((s->rttr & 0xffff) + 1));
1036 case RYCR:
1037 return s->last_rycr;
1038 case SWCR:
1039 if (s->rtsr & (1 << 12))
1040 return s->last_swcr + (qemu_get_clock(rt_clock) - s->last_sw) / 10;
1041 else
1042 return s->last_swcr;
1043 default:
1044 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1045 break;
1046 }
1047 return 0;
1048 }
1049
1050 static void pxa2xx_rtc_write(void *opaque, target_phys_addr_t addr,
1051 uint32_t value)
1052 {
1053 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
1054 addr -= s->rtc_base;
1055
1056 switch (addr) {
1057 case RTTR:
1058 if (!(s->rttr & (1 << 31))) {
1059 pxa2xx_rtc_hzupdate(s);
1060 s->rttr = value;
1061 pxa2xx_rtc_alarm_update(s, s->rtsr);
1062 }
1063 break;
1064
1065 case RTSR:
1066 if ((s->rtsr ^ value) & (1 << 15))
1067 pxa2xx_rtc_piupdate(s);
1068
1069 if ((s->rtsr ^ value) & (1 << 12))
1070 pxa2xx_rtc_swupdate(s);
1071
1072 if (((s->rtsr ^ value) & 0x4aac) | (value & ~0xdaac))
1073 pxa2xx_rtc_alarm_update(s, value);
1074
1075 s->rtsr = (value & 0xdaac) | (s->rtsr & ~(value & ~0xdaac));
1076 pxa2xx_rtc_int_update(s);
1077 break;
1078
1079 case RTAR:
1080 s->rtar = value;
1081 pxa2xx_rtc_alarm_update(s, s->rtsr);
1082 break;
1083
1084 case RDAR1:
1085 s->rdar1 = value;
1086 pxa2xx_rtc_alarm_update(s, s->rtsr);
1087 break;
1088
1089 case RDAR2:
1090 s->rdar2 = value;
1091 pxa2xx_rtc_alarm_update(s, s->rtsr);
1092 break;
1093
1094 case RYAR1:
1095 s->ryar1 = value;
1096 pxa2xx_rtc_alarm_update(s, s->rtsr);
1097 break;
1098
1099 case RYAR2:
1100 s->ryar2 = value;
1101 pxa2xx_rtc_alarm_update(s, s->rtsr);
1102 break;
1103
1104 case SWAR1:
1105 pxa2xx_rtc_swupdate(s);
1106 s->swar1 = value;
1107 s->last_swcr = 0;
1108 pxa2xx_rtc_alarm_update(s, s->rtsr);
1109 break;
1110
1111 case SWAR2:
1112 s->swar2 = value;
1113 pxa2xx_rtc_alarm_update(s, s->rtsr);
1114 break;
1115
1116 case PIAR:
1117 s->piar = value;
1118 pxa2xx_rtc_alarm_update(s, s->rtsr);
1119 break;
1120
1121 case RCNR:
1122 pxa2xx_rtc_hzupdate(s);
1123 s->last_rcnr = value;
1124 pxa2xx_rtc_alarm_update(s, s->rtsr);
1125 break;
1126
1127 case RDCR:
1128 pxa2xx_rtc_hzupdate(s);
1129 s->last_rdcr = value;
1130 pxa2xx_rtc_alarm_update(s, s->rtsr);
1131 break;
1132
1133 case RYCR:
1134 s->last_rycr = value;
1135 break;
1136
1137 case SWCR:
1138 pxa2xx_rtc_swupdate(s);
1139 s->last_swcr = value;
1140 pxa2xx_rtc_alarm_update(s, s->rtsr);
1141 break;
1142
1143 case RTCPICR:
1144 pxa2xx_rtc_piupdate(s);
1145 s->last_rtcpicr = value & 0xffff;
1146 pxa2xx_rtc_alarm_update(s, s->rtsr);
1147 break;
1148
1149 default:
1150 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1151 }
1152 }
1153
1154 static CPUReadMemoryFunc *pxa2xx_rtc_readfn[] = {
1155 pxa2xx_rtc_read,
1156 pxa2xx_rtc_read,
1157 pxa2xx_rtc_read,
1158 };
1159
1160 static CPUWriteMemoryFunc *pxa2xx_rtc_writefn[] = {
1161 pxa2xx_rtc_write,
1162 pxa2xx_rtc_write,
1163 pxa2xx_rtc_write,
1164 };
1165
1166 static void pxa2xx_rtc_init(struct pxa2xx_state_s *s)
1167 {
1168 struct tm *tm;
1169 time_t ti;
1170 int wom;
1171
1172 s->rttr = 0x7fff;
1173 s->rtsr = 0;
1174
1175 time(&ti);
1176 if (rtc_utc)
1177 tm = gmtime(&ti);
1178 else
1179 tm = localtime(&ti);
1180 wom = ((tm->tm_mday - 1) / 7) + 1;
1181
1182 s->last_rcnr = (uint32_t) ti;
1183 s->last_rdcr = (wom << 20) | ((tm->tm_wday + 1) << 17) |
1184 (tm->tm_hour << 12) | (tm->tm_min << 6) | tm->tm_sec;
1185 s->last_rycr = ((tm->tm_year + 1900) << 9) |
1186 ((tm->tm_mon + 1) << 5) | tm->tm_mday;
1187 s->last_swcr = (tm->tm_hour << 19) |
1188 (tm->tm_min << 13) | (tm->tm_sec << 7);
1189 s->last_rtcpicr = 0;
1190 s->last_hz = s->last_sw = s->last_pi = qemu_get_clock(rt_clock);
1191
1192 s->rtc_hz = qemu_new_timer(rt_clock, pxa2xx_rtc_hz_tick, s);
1193 s->rtc_rdal1 = qemu_new_timer(rt_clock, pxa2xx_rtc_rdal1_tick, s);
1194 s->rtc_rdal2 = qemu_new_timer(rt_clock, pxa2xx_rtc_rdal2_tick, s);
1195 s->rtc_swal1 = qemu_new_timer(rt_clock, pxa2xx_rtc_swal1_tick, s);
1196 s->rtc_swal2 = qemu_new_timer(rt_clock, pxa2xx_rtc_swal2_tick, s);
1197 s->rtc_pi = qemu_new_timer(rt_clock, pxa2xx_rtc_pi_tick, s);
1198 }
1199
1200 static void pxa2xx_rtc_save(QEMUFile *f, void *opaque)
1201 {
1202 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
1203
1204 pxa2xx_rtc_hzupdate(s);
1205 pxa2xx_rtc_piupdate(s);
1206 pxa2xx_rtc_swupdate(s);
1207
1208 qemu_put_be32s(f, &s->rttr);
1209 qemu_put_be32s(f, &s->rtsr);
1210 qemu_put_be32s(f, &s->rtar);
1211 qemu_put_be32s(f, &s->rdar1);
1212 qemu_put_be32s(f, &s->rdar2);
1213 qemu_put_be32s(f, &s->ryar1);
1214 qemu_put_be32s(f, &s->ryar2);
1215 qemu_put_be32s(f, &s->swar1);
1216 qemu_put_be32s(f, &s->swar2);
1217 qemu_put_be32s(f, &s->piar);
1218 qemu_put_be32s(f, &s->last_rcnr);
1219 qemu_put_be32s(f, &s->last_rdcr);
1220 qemu_put_be32s(f, &s->last_rycr);
1221 qemu_put_be32s(f, &s->last_swcr);
1222 qemu_put_be32s(f, &s->last_rtcpicr);
1223 qemu_put_be64s(f, &s->last_hz);
1224 qemu_put_be64s(f, &s->last_sw);
1225 qemu_put_be64s(f, &s->last_pi);
1226 }
1227
1228 static int pxa2xx_rtc_load(QEMUFile *f, void *opaque, int version_id)
1229 {
1230 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
1231
1232 qemu_get_be32s(f, &s->rttr);
1233 qemu_get_be32s(f, &s->rtsr);
1234 qemu_get_be32s(f, &s->rtar);
1235 qemu_get_be32s(f, &s->rdar1);
1236 qemu_get_be32s(f, &s->rdar2);
1237 qemu_get_be32s(f, &s->ryar1);
1238 qemu_get_be32s(f, &s->ryar2);
1239 qemu_get_be32s(f, &s->swar1);
1240 qemu_get_be32s(f, &s->swar2);
1241 qemu_get_be32s(f, &s->piar);
1242 qemu_get_be32s(f, &s->last_rcnr);
1243 qemu_get_be32s(f, &s->last_rdcr);
1244 qemu_get_be32s(f, &s->last_rycr);
1245 qemu_get_be32s(f, &s->last_swcr);
1246 qemu_get_be32s(f, &s->last_rtcpicr);
1247 qemu_get_be64s(f, &s->last_hz);
1248 qemu_get_be64s(f, &s->last_sw);
1249 qemu_get_be64s(f, &s->last_pi);
1250
1251 pxa2xx_rtc_alarm_update(s, s->rtsr);
1252
1253 return 0;
1254 }
1255
1256 /* I2C Interface */
1257 struct pxa2xx_i2c_s {
1258 i2c_slave slave;
1259 i2c_bus *bus;
1260 target_phys_addr_t base;
1261 qemu_irq irq;
1262
1263 uint16_t control;
1264 uint16_t status;
1265 uint8_t ibmr;
1266 uint8_t data;
1267 };
1268
1269 #define IBMR 0x80 /* I2C Bus Monitor register */
1270 #define IDBR 0x88 /* I2C Data Buffer register */
1271 #define ICR 0x90 /* I2C Control register */
1272 #define ISR 0x98 /* I2C Status register */
1273 #define ISAR 0xa0 /* I2C Slave Address register */
1274
1275 static void pxa2xx_i2c_update(struct pxa2xx_i2c_s *s)
1276 {
1277 uint16_t level = 0;
1278 level |= s->status & s->control & (1 << 10); /* BED */
1279 level |= (s->status & (1 << 7)) && (s->control & (1 << 9)); /* IRF */
1280 level |= (s->status & (1 << 6)) && (s->control & (1 << 8)); /* ITE */
1281 level |= s->status & (1 << 9); /* SAD */
1282 qemu_set_irq(s->irq, !!level);
1283 }
1284
1285 /* These are only stubs now. */
1286 static void pxa2xx_i2c_event(i2c_slave *i2c, enum i2c_event event)
1287 {
1288 struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) i2c;
1289
1290 switch (event) {
1291 case I2C_START_SEND:
1292 s->status |= (1 << 9); /* set SAD */
1293 s->status &= ~(1 << 0); /* clear RWM */
1294 break;
1295 case I2C_START_RECV:
1296 s->status |= (1 << 9); /* set SAD */
1297 s->status |= 1 << 0; /* set RWM */
1298 break;
1299 case I2C_FINISH:
1300 s->status |= (1 << 4); /* set SSD */
1301 break;
1302 case I2C_NACK:
1303 s->status |= 1 << 1; /* set ACKNAK */
1304 break;
1305 }
1306 pxa2xx_i2c_update(s);
1307 }
1308
1309 static int pxa2xx_i2c_rx(i2c_slave *i2c)
1310 {
1311 struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) i2c;
1312 if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
1313 return 0;
1314
1315 if (s->status & (1 << 0)) { /* RWM */
1316 s->status |= 1 << 6; /* set ITE */
1317 }
1318 pxa2xx_i2c_update(s);
1319
1320 return s->data;
1321 }
1322
1323 static int pxa2xx_i2c_tx(i2c_slave *i2c, uint8_t data)
1324 {
1325 struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) i2c;
1326 if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
1327 return 1;
1328
1329 if (!(s->status & (1 << 0))) { /* RWM */
1330 s->status |= 1 << 7; /* set IRF */
1331 s->data = data;
1332 }
1333 pxa2xx_i2c_update(s);
1334
1335 return 1;
1336 }
1337
1338 static uint32_t pxa2xx_i2c_read(void *opaque, target_phys_addr_t addr)
1339 {
1340 struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) opaque;
1341 addr -= s->base;
1342
1343 switch (addr) {
1344 case ICR:
1345 return s->control;
1346 case ISR:
1347 return s->status | (i2c_bus_busy(s->bus) << 2);
1348 case ISAR:
1349 return s->slave.address;
1350 case IDBR:
1351 return s->data;
1352 case IBMR:
1353 if (s->status & (1 << 2))
1354 s->ibmr ^= 3; /* Fake SCL and SDA pin changes */
1355 else
1356 s->ibmr = 0;
1357 return s->ibmr;
1358 default:
1359 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1360 break;
1361 }
1362 return 0;
1363 }
1364
1365 static void pxa2xx_i2c_write(void *opaque, target_phys_addr_t addr,
1366 uint32_t value)
1367 {
1368 struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) opaque;
1369 int ack;
1370 addr -= s->base;
1371
1372 switch (addr) {
1373 case ICR:
1374 s->control = value & 0xfff7;
1375 if ((value & (1 << 3)) && (value & (1 << 6))) { /* TB and IUE */
1376 /* TODO: slave mode */
1377 if (value & (1 << 0)) { /* START condition */
1378 if (s->data & 1)
1379 s->status |= 1 << 0; /* set RWM */
1380 else
1381 s->status &= ~(1 << 0); /* clear RWM */
1382 ack = !i2c_start_transfer(s->bus, s->data >> 1, s->data & 1);
1383 } else {
1384 if (s->status & (1 << 0)) { /* RWM */
1385 s->data = i2c_recv(s->bus);
1386 if (value & (1 << 2)) /* ACKNAK */
1387 i2c_nack(s->bus);
1388 ack = 1;
1389 } else
1390 ack = !i2c_send(s->bus, s->data);
1391 }
1392
1393 if (value & (1 << 1)) /* STOP condition */
1394 i2c_end_transfer(s->bus);
1395
1396 if (ack) {
1397 if (value & (1 << 0)) /* START condition */
1398 s->status |= 1 << 6; /* set ITE */
1399 else
1400 if (s->status & (1 << 0)) /* RWM */
1401 s->status |= 1 << 7; /* set IRF */
1402 else
1403 s->status |= 1 << 6; /* set ITE */
1404 s->status &= ~(1 << 1); /* clear ACKNAK */
1405 } else {
1406 s->status |= 1 << 6; /* set ITE */
1407 s->status |= 1 << 10; /* set BED */
1408 s->status |= 1 << 1; /* set ACKNAK */
1409 }
1410 }
1411 if (!(value & (1 << 3)) && (value & (1 << 6))) /* !TB and IUE */
1412 if (value & (1 << 4)) /* MA */
1413 i2c_end_transfer(s->bus);
1414 pxa2xx_i2c_update(s);
1415 break;
1416
1417 case ISR:
1418 s->status &= ~(value & 0x07f0);
1419 pxa2xx_i2c_update(s);
1420 break;
1421
1422 case ISAR:
1423 i2c_set_slave_address(&s->slave, value & 0x7f);
1424 break;
1425
1426 case IDBR:
1427 s->data = value & 0xff;
1428 break;
1429
1430 default:
1431 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1432 }
1433 }
1434
1435 static CPUReadMemoryFunc *pxa2xx_i2c_readfn[] = {
1436 pxa2xx_i2c_read,
1437 pxa2xx_i2c_read,
1438 pxa2xx_i2c_read,
1439 };
1440
1441 static CPUWriteMemoryFunc *pxa2xx_i2c_writefn[] = {
1442 pxa2xx_i2c_write,
1443 pxa2xx_i2c_write,
1444 pxa2xx_i2c_write,
1445 };
1446
1447 static void pxa2xx_i2c_save(QEMUFile *f, void *opaque)
1448 {
1449 struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) opaque;
1450
1451 qemu_put_be16s(f, &s->control);
1452 qemu_put_be16s(f, &s->status);
1453 qemu_put_8s(f, &s->ibmr);
1454 qemu_put_8s(f, &s->data);
1455
1456 i2c_bus_save(f, s->bus);
1457 i2c_slave_save(f, &s->slave);
1458 }
1459
1460 static int pxa2xx_i2c_load(QEMUFile *f, void *opaque, int version_id)
1461 {
1462 struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) opaque;
1463
1464 qemu_get_be16s(f, &s->control);
1465 qemu_get_be16s(f, &s->status);
1466 qemu_get_8s(f, &s->ibmr);
1467 qemu_get_8s(f, &s->data);
1468
1469 i2c_bus_load(f, s->bus);
1470 i2c_slave_load(f, &s->slave);
1471 return 0;
1472 }
1473
1474 struct pxa2xx_i2c_s *pxa2xx_i2c_init(target_phys_addr_t base,
1475 qemu_irq irq, uint32_t page_size)
1476 {
1477 int iomemtype;
1478 struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *)
1479 i2c_slave_init(i2c_init_bus(), 0, sizeof(struct pxa2xx_i2c_s));
1480
1481 s->base = base;
1482 s->irq = irq;
1483 s->slave.event = pxa2xx_i2c_event;
1484 s->slave.recv = pxa2xx_i2c_rx;
1485 s->slave.send = pxa2xx_i2c_tx;
1486 s->bus = i2c_init_bus();
1487
1488 iomemtype = cpu_register_io_memory(0, pxa2xx_i2c_readfn,
1489 pxa2xx_i2c_writefn, s);
1490 cpu_register_physical_memory(s->base & ~page_size, page_size, iomemtype);
1491
1492 register_savevm("pxa2xx_i2c", base, 0,
1493 pxa2xx_i2c_save, pxa2xx_i2c_load, s);
1494
1495 return s;
1496 }
1497
1498 i2c_bus *pxa2xx_i2c_bus(struct pxa2xx_i2c_s *s)
1499 {
1500 return s->bus;
1501 }
1502
1503 /* PXA Inter-IC Sound Controller */
1504 static void pxa2xx_i2s_reset(struct pxa2xx_i2s_s *i2s)
1505 {
1506 i2s->rx_len = 0;
1507 i2s->tx_len = 0;
1508 i2s->fifo_len = 0;
1509 i2s->clk = 0x1a;
1510 i2s->control[0] = 0x00;
1511 i2s->control[1] = 0x00;
1512 i2s->status = 0x00;
1513 i2s->mask = 0x00;
1514 }
1515
1516 #define SACR_TFTH(val) ((val >> 8) & 0xf)
1517 #define SACR_RFTH(val) ((val >> 12) & 0xf)
1518 #define SACR_DREC(val) (val & (1 << 3))
1519 #define SACR_DPRL(val) (val & (1 << 4))
1520
1521 static inline void pxa2xx_i2s_update(struct pxa2xx_i2s_s *i2s)
1522 {
1523 int rfs, tfs;
1524 rfs = SACR_RFTH(i2s->control[0]) < i2s->rx_len &&
1525 !SACR_DREC(i2s->control[1]);
1526 tfs = (i2s->tx_len || i2s->fifo_len < SACR_TFTH(i2s->control[0])) &&
1527 i2s->enable && !SACR_DPRL(i2s->control[1]);
1528
1529 pxa2xx_dma_request(i2s->dma, PXA2XX_RX_RQ_I2S, rfs);
1530 pxa2xx_dma_request(i2s->dma, PXA2XX_TX_RQ_I2S, tfs);
1531
1532 i2s->status &= 0xe0;
1533 if (i2s->fifo_len < 16 || !i2s->enable)
1534 i2s->status |= 1 << 0; /* TNF */
1535 if (i2s->rx_len)
1536 i2s->status |= 1 << 1; /* RNE */
1537 if (i2s->enable)
1538 i2s->status |= 1 << 2; /* BSY */
1539 if (tfs)
1540 i2s->status |= 1 << 3; /* TFS */
1541 if (rfs)
1542 i2s->status |= 1 << 4; /* RFS */
1543 if (!(i2s->tx_len && i2s->enable))
1544 i2s->status |= i2s->fifo_len << 8; /* TFL */
1545 i2s->status |= MAX(i2s->rx_len, 0xf) << 12; /* RFL */
1546
1547 qemu_set_irq(i2s->irq, i2s->status & i2s->mask);
1548 }
1549
1550 #define SACR0 0x00 /* Serial Audio Global Control register */
1551 #define SACR1 0x04 /* Serial Audio I2S/MSB-Justified Control register */
1552 #define SASR0 0x0c /* Serial Audio Interface and FIFO Status register */
1553 #define SAIMR 0x14 /* Serial Audio Interrupt Mask register */
1554 #define SAICR 0x18 /* Serial Audio Interrupt Clear register */
1555 #define SADIV 0x60 /* Serial Audio Clock Divider register */
1556 #define SADR 0x80 /* Serial Audio Data register */
1557
1558 static uint32_t pxa2xx_i2s_read(void *opaque, target_phys_addr_t addr)
1559 {
1560 struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
1561 addr -= s->base;
1562
1563 switch (addr) {
1564 case SACR0:
1565 return s->control[0];
1566 case SACR1:
1567 return s->control[1];
1568 case SASR0:
1569 return s->status;
1570 case SAIMR:
1571 return s->mask;
1572 case SAICR:
1573 return 0;
1574 case SADIV:
1575 return s->clk;
1576 case SADR:
1577 if (s->rx_len > 0) {
1578 s->rx_len --;
1579 pxa2xx_i2s_update(s);
1580 return s->codec_in(s->opaque);
1581 }
1582 return 0;
1583 default:
1584 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1585 break;
1586 }
1587 return 0;
1588 }
1589
1590 static void pxa2xx_i2s_write(void *opaque, target_phys_addr_t addr,
1591 uint32_t value)
1592 {
1593 struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
1594 uint32_t *sample;
1595 addr -= s->base;
1596
1597 switch (addr) {
1598 case SACR0:
1599 if (value & (1 << 3)) /* RST */
1600 pxa2xx_i2s_reset(s);
1601 s->control[0] = value & 0xff3d;
1602 if (!s->enable && (value & 1) && s->tx_len) { /* ENB */
1603 for (sample = s->fifo; s->fifo_len > 0; s->fifo_len --, sample ++)
1604 s->codec_out(s->opaque, *sample);
1605 s->status &= ~(1 << 7); /* I2SOFF */
1606 }
1607 if (value & (1 << 4)) /* EFWR */
1608 printf("%s: Attempt to use special function\n", __FUNCTION__);
1609 s->enable = ((value ^ 4) & 5) == 5; /* ENB && !RST*/
1610 pxa2xx_i2s_update(s);
1611 break;
1612 case SACR1:
1613 s->control[1] = value & 0x0039;
1614 if (value & (1 << 5)) /* ENLBF */
1615 printf("%s: Attempt to use loopback function\n", __FUNCTION__);
1616 if (value & (1 << 4)) /* DPRL */
1617 s->fifo_len = 0;
1618 pxa2xx_i2s_update(s);
1619 break;
1620 case SAIMR:
1621 s->mask = value & 0x0078;
1622 pxa2xx_i2s_update(s);
1623 break;
1624 case SAICR:
1625 s->status &= ~(value & (3 << 5));
1626 pxa2xx_i2s_update(s);
1627 break;
1628 case SADIV:
1629 s->clk = value & 0x007f;
1630 break;
1631 case SADR:
1632 if (s->tx_len && s->enable) {
1633 s->tx_len --;
1634 pxa2xx_i2s_update(s);
1635 s->codec_out(s->opaque, value);
1636 } else if (s->fifo_len < 16) {
1637 s->fifo[s->fifo_len ++] = value;
1638 pxa2xx_i2s_update(s);
1639 }
1640 break;
1641 default:
1642 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1643 }
1644 }
1645
1646 static CPUReadMemoryFunc *pxa2xx_i2s_readfn[] = {
1647 pxa2xx_i2s_read,
1648 pxa2xx_i2s_read,
1649 pxa2xx_i2s_read,
1650 };
1651
1652 static CPUWriteMemoryFunc *pxa2xx_i2s_writefn[] = {
1653 pxa2xx_i2s_write,
1654 pxa2xx_i2s_write,
1655 pxa2xx_i2s_write,
1656 };
1657
1658 static void pxa2xx_i2s_save(QEMUFile *f, void *opaque)
1659 {
1660 struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
1661
1662 qemu_put_be32s(f, &s->control[0]);
1663 qemu_put_be32s(f, &s->control[1]);
1664 qemu_put_be32s(f, &s->status);
1665 qemu_put_be32s(f, &s->mask);
1666 qemu_put_be32s(f, &s->clk);
1667
1668 qemu_put_be32(f, s->enable);
1669 qemu_put_be32(f, s->rx_len);
1670 qemu_put_be32(f, s->tx_len);
1671 qemu_put_be32(f, s->fifo_len);
1672 }
1673
1674 static int pxa2xx_i2s_load(QEMUFile *f, void *opaque, int version_id)
1675 {
1676 struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
1677
1678 qemu_get_be32s(f, &s->control[0]);
1679 qemu_get_be32s(f, &s->control[1]);
1680 qemu_get_be32s(f, &s->status);
1681 qemu_get_be32s(f, &s->mask);
1682 qemu_get_be32s(f, &s->clk);
1683
1684 s->enable = qemu_get_be32(f);
1685 s->rx_len = qemu_get_be32(f);
1686 s->tx_len = qemu_get_be32(f);
1687 s->fifo_len = qemu_get_be32(f);
1688
1689 return 0;
1690 }
1691
1692 static void pxa2xx_i2s_data_req(void *opaque, int tx, int rx)
1693 {
1694 struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
1695 uint32_t *sample;
1696
1697 /* Signal FIFO errors */
1698 if (s->enable && s->tx_len)
1699 s->status |= 1 << 5; /* TUR */
1700 if (s->enable && s->rx_len)
1701 s->status |= 1 << 6; /* ROR */
1702
1703 /* Should be tx - MIN(tx, s->fifo_len) but we don't really need to
1704 * handle the cases where it makes a difference. */
1705 s->tx_len = tx - s->fifo_len;
1706 s->rx_len = rx;
1707 /* Note that is s->codec_out wasn't set, we wouldn't get called. */
1708 if (s->enable)
1709 for (sample = s->fifo; s->fifo_len; s->fifo_len --, sample ++)
1710 s->codec_out(s->opaque, *sample);
1711 pxa2xx_i2s_update(s);
1712 }
1713
1714 static struct pxa2xx_i2s_s *pxa2xx_i2s_init(target_phys_addr_t base,
1715 qemu_irq irq, struct pxa2xx_dma_state_s *dma)
1716 {
1717 int iomemtype;
1718 struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *)
1719 qemu_mallocz(sizeof(struct pxa2xx_i2s_s));
1720
1721 s->base = base;
1722 s->irq = irq;
1723 s->dma = dma;
1724 s->data_req = pxa2xx_i2s_data_req;
1725
1726 pxa2xx_i2s_reset(s);
1727
1728 iomemtype = cpu_register_io_memory(0, pxa2xx_i2s_readfn,
1729 pxa2xx_i2s_writefn, s);
1730 cpu_register_physical_memory(s->base & 0xfff00000, 0x100000, iomemtype);
1731
1732 register_savevm("pxa2xx_i2s", base, 0,
1733 pxa2xx_i2s_save, pxa2xx_i2s_load, s);
1734
1735 return s;
1736 }
1737
1738 /* PXA Fast Infra-red Communications Port */
1739 struct pxa2xx_fir_s {
1740 target_phys_addr_t base;
1741 qemu_irq irq;
1742 struct pxa2xx_dma_state_s *dma;
1743 int enable;
1744 CharDriverState *chr;
1745
1746 uint8_t control[3];
1747 uint8_t status[2];
1748
1749 int rx_len;
1750 int rx_start;
1751 uint8_t rx_fifo[64];
1752 };
1753
1754 static void pxa2xx_fir_reset(struct pxa2xx_fir_s *s)
1755 {
1756 s->control[0] = 0x00;
1757 s->control[1] = 0x00;
1758 s->control[2] = 0x00;
1759 s->status[0] = 0x00;
1760 s->status[1] = 0x00;
1761 s->enable = 0;
1762 }
1763
1764 static inline void pxa2xx_fir_update(struct pxa2xx_fir_s *s)
1765 {
1766 static const int tresh[4] = { 8, 16, 32, 0 };
1767 int intr = 0;
1768 if ((s->control[0] & (1 << 4)) && /* RXE */
1769 s->rx_len >= tresh[s->control[2] & 3]) /* TRIG */
1770 s->status[0] |= 1 << 4; /* RFS */
1771 else
1772 s->status[0] &= ~(1 << 4); /* RFS */
1773 if (s->control[0] & (1 << 3)) /* TXE */
1774 s->status[0] |= 1 << 3; /* TFS */
1775 else
1776 s->status[0] &= ~(1 << 3); /* TFS */
1777 if (s->rx_len)
1778 s->status[1] |= 1 << 2; /* RNE */
1779 else
1780 s->status[1] &= ~(1 << 2); /* RNE */
1781 if (s->control[0] & (1 << 4)) /* RXE */
1782 s->status[1] |= 1 << 0; /* RSY */
1783 else
1784 s->status[1] &= ~(1 << 0); /* RSY */
1785
1786 intr |= (s->control[0] & (1 << 5)) && /* RIE */
1787 (s->status[0] & (1 << 4)); /* RFS */
1788 intr |= (s->control[0] & (1 << 6)) && /* TIE */
1789 (s->status[0] & (1 << 3)); /* TFS */
1790 intr |= (s->control[2] & (1 << 4)) && /* TRAIL */
1791 (s->status[0] & (1 << 6)); /* EOC */
1792 intr |= (s->control[0] & (1 << 2)) && /* TUS */
1793 (s->status[0] & (1 << 1)); /* TUR */
1794 intr |= s->status[0] & 0x25; /* FRE, RAB, EIF */
1795
1796 pxa2xx_dma_request(s->dma, PXA2XX_RX_RQ_ICP, (s->status[0] >> 4) & 1);
1797 pxa2xx_dma_request(s->dma, PXA2XX_TX_RQ_ICP, (s->status[0] >> 3) & 1);
1798
1799 qemu_set_irq(s->irq, intr && s->enable);
1800 }
1801
1802 #define ICCR0 0x00 /* FICP Control register 0 */
1803 #define ICCR1 0x04 /* FICP Control register 1 */
1804 #define ICCR2 0x08 /* FICP Control register 2 */
1805 #define ICDR 0x0c /* FICP Data register */
1806 #define ICSR0 0x14 /* FICP Status register 0 */
1807 #define ICSR1 0x18 /* FICP Status register 1 */
1808 #define ICFOR 0x1c /* FICP FIFO Occupancy Status register */
1809
1810 static uint32_t pxa2xx_fir_read(void *opaque, target_phys_addr_t addr)
1811 {
1812 struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
1813 uint8_t ret;
1814 addr -= s->base;
1815
1816 switch (addr) {
1817 case ICCR0:
1818 return s->control[0];
1819 case ICCR1:
1820 return s->control[1];
1821 case ICCR2:
1822 return s->control[2];
1823 case ICDR:
1824 s->status[0] &= ~0x01;
1825 s->status[1] &= ~0x72;
1826 if (s->rx_len) {
1827 s->rx_len --;
1828 ret = s->rx_fifo[s->rx_start ++];
1829 s->rx_start &= 63;
1830 pxa2xx_fir_update(s);
1831 return ret;
1832 }
1833 printf("%s: Rx FIFO underrun.\n", __FUNCTION__);
1834 break;
1835 case ICSR0:
1836 return s->status[0];
1837 case ICSR1:
1838 return s->status[1] | (1 << 3); /* TNF */
1839 case ICFOR:
1840 return s->rx_len;
1841 default:
1842 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1843 break;
1844 }
1845 return 0;
1846 }
1847
1848 static void pxa2xx_fir_write(void *opaque, target_phys_addr_t addr,
1849 uint32_t value)
1850 {
1851 struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
1852 uint8_t ch;
1853 addr -= s->base;
1854
1855 switch (addr) {
1856 case ICCR0:
1857 s->control[0] = value;
1858 if (!(value & (1 << 4))) /* RXE */
1859 s->rx_len = s->rx_start = 0;
1860 if (!(value & (1 << 3))) /* TXE */
1861 /* Nop */;
1862 s->enable = value & 1; /* ITR */
1863 if (!s->enable)
1864 s->status[0] = 0;
1865 pxa2xx_fir_update(s);
1866 break;
1867 case ICCR1:
1868 s->control[1] = value;
1869 break;
1870 case ICCR2:
1871 s->control[2] = value & 0x3f;
1872 pxa2xx_fir_update(s);
1873 break;
1874 case ICDR:
1875 if (s->control[2] & (1 << 2)) /* TXP */
1876 ch = value;
1877 else
1878 ch = ~value;
1879 if (s->chr && s->enable && (s->control[0] & (1 << 3))) /* TXE */
1880 qemu_chr_write(s->chr, &ch, 1);
1881 break;
1882 case ICSR0:
1883 s->status[0] &= ~(value & 0x66);
1884 pxa2xx_fir_update(s);
1885 break;
1886 case ICFOR:
1887 break;
1888 default:
1889 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1890 }
1891 }
1892
1893 static CPUReadMemoryFunc *pxa2xx_fir_readfn[] = {
1894 pxa2xx_fir_read,
1895 pxa2xx_fir_read,
1896 pxa2xx_fir_read,
1897 };
1898
1899 static CPUWriteMemoryFunc *pxa2xx_fir_writefn[] = {
1900 pxa2xx_fir_write,
1901 pxa2xx_fir_write,
1902 pxa2xx_fir_write,
1903 };
1904
1905 static int pxa2xx_fir_is_empty(void *opaque)
1906 {
1907 struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
1908 return (s->rx_len < 64);
1909 }
1910
1911 static void pxa2xx_fir_rx(void *opaque, const uint8_t *buf, int size)
1912 {
1913 struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
1914 if (!(s->control[0] & (1 << 4))) /* RXE */
1915 return;
1916
1917 while (size --) {
1918 s->status[1] |= 1 << 4; /* EOF */
1919 if (s->rx_len >= 64) {
1920 s->status[1] |= 1 << 6; /* ROR */
1921 break;
1922 }
1923
1924 if (s->control[2] & (1 << 3)) /* RXP */
1925 s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = *(buf ++);
1926 else
1927 s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = ~*(buf ++);
1928 }
1929
1930 pxa2xx_fir_update(s);
1931 }
1932
1933 static void pxa2xx_fir_event(void *opaque, int event)
1934 {
1935 }
1936
1937 static void pxa2xx_fir_save(QEMUFile *f, void *opaque)
1938 {
1939 struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
1940 int i;
1941
1942 qemu_put_be32(f, s->enable);
1943
1944 qemu_put_8s(f, &s->control[0]);
1945 qemu_put_8s(f, &s->control[1]);
1946 qemu_put_8s(f, &s->control[2]);
1947 qemu_put_8s(f, &s->status[0]);
1948 qemu_put_8s(f, &s->status[1]);
1949
1950 qemu_put_byte(f, s->rx_len);
1951 for (i = 0; i < s->rx_len; i ++)
1952 qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 63]);
1953 }
1954
1955 static int pxa2xx_fir_load(QEMUFile *f, void *opaque, int version_id)
1956 {
1957 struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
1958 int i;
1959
1960 s->enable = qemu_get_be32(f);
1961
1962 qemu_get_8s(f, &s->control[0]);
1963 qemu_get_8s(f, &s->control[1]);
1964 qemu_get_8s(f, &s->control[2]);
1965 qemu_get_8s(f, &s->status[0]);
1966 qemu_get_8s(f, &s->status[1]);
1967
1968 s->rx_len = qemu_get_byte(f);
1969 s->rx_start = 0;
1970 for (i = 0; i < s->rx_len; i ++)
1971 s->rx_fifo[i] = qemu_get_byte(f);
1972
1973 return 0;
1974 }
1975
1976 static struct pxa2xx_fir_s *pxa2xx_fir_init(target_phys_addr_t base,
1977 qemu_irq irq, struct pxa2xx_dma_state_s *dma,
1978 CharDriverState *chr)
1979 {
1980 int iomemtype;
1981 struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *)
1982 qemu_mallocz(sizeof(struct pxa2xx_fir_s));
1983
1984 s->base = base;
1985 s->irq = irq;
1986 s->dma = dma;
1987 s->chr = chr;
1988
1989 pxa2xx_fir_reset(s);
1990
1991 iomemtype = cpu_register_io_memory(0, pxa2xx_fir_readfn,
1992 pxa2xx_fir_writefn, s);
1993 cpu_register_physical_memory(s->base, 0x1000, iomemtype);
1994
1995 if (chr)
1996 qemu_chr_add_handlers(chr, pxa2xx_fir_is_empty,
1997 pxa2xx_fir_rx, pxa2xx_fir_event, s);
1998
1999 register_savevm("pxa2xx_fir", 0, 0, pxa2xx_fir_save, pxa2xx_fir_load, s);
2000
2001 return s;
2002 }
2003
2004 void pxa2xx_reset(int line, int level, void *opaque)
2005 {
2006 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
2007 if (level && (s->pm_regs[PCFR >> 2] & 0x10)) { /* GPR_EN */
2008 cpu_reset(s->env);
2009 /* TODO: reset peripherals */
2010 }
2011 }
2012
2013 /* Initialise a PXA270 integrated chip (ARM based core). */
2014 struct pxa2xx_state_s *pxa270_init(unsigned int sdram_size,
2015 DisplayState *ds, const char *revision)
2016 {
2017 struct pxa2xx_state_s *s;
2018 struct pxa2xx_ssp_s *ssp;
2019 int iomemtype, i;
2020 s = (struct pxa2xx_state_s *) qemu_mallocz(sizeof(struct pxa2xx_state_s));
2021
2022 if (revision && strncmp(revision, "pxa27", 5)) {
2023 fprintf(stderr, "Machine requires a PXA27x processor.\n");
2024 exit(1);
2025 }
2026 if (!revision)
2027 revision = "pxa270";
2028
2029 s->env = cpu_init(revision);
2030 if (!s->env) {
2031 fprintf(stderr, "Unable to find CPU definition\n");
2032 exit(1);
2033 }
2034 register_savevm("cpu", 0, 0, cpu_save, cpu_load, s->env);
2035
2036 /* SDRAM & Internal Memory Storage */
2037 cpu_register_physical_memory(PXA2XX_SDRAM_BASE,
2038 sdram_size, qemu_ram_alloc(sdram_size) | IO_MEM_RAM);
2039 cpu_register_physical_memory(PXA2XX_INTERNAL_BASE,
2040 0x40000, qemu_ram_alloc(0x40000) | IO_MEM_RAM);
2041
2042 s->pic = pxa2xx_pic_init(0x40d00000, s->env);
2043
2044 s->dma = pxa27x_dma_init(0x40000000, s->pic[PXA2XX_PIC_DMA]);
2045
2046 pxa27x_timer_init(0x40a00000, &s->pic[PXA2XX_PIC_OST_0],
2047 s->pic[PXA27X_PIC_OST_4_11]);
2048
2049 s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 121);
2050
2051 s->mmc = pxa2xx_mmci_init(0x41100000, s->pic[PXA2XX_PIC_MMC], s->dma);
2052
2053 for (i = 0; pxa270_serial[i].io_base; i ++)
2054 if (serial_hds[i])
2055 serial_mm_init(pxa270_serial[i].io_base, 2,
2056 s->pic[pxa270_serial[i].irqn], serial_hds[i], 1);
2057 else
2058 break;
2059 if (serial_hds[i])
2060 s->fir = pxa2xx_fir_init(0x40800000, s->pic[PXA2XX_PIC_ICP],
2061 s->dma, serial_hds[i]);
2062
2063 if (ds)
2064 s->lcd = pxa2xx_lcdc_init(0x44000000, s->pic[PXA2XX_PIC_LCD], ds);
2065
2066 s->cm_base = 0x41300000;
2067 s->cm_regs[CCCR >> 2] = 0x02000210; /* 416.0 MHz */
2068 s->clkcfg = 0x00000009; /* Turbo mode active */
2069 iomemtype = cpu_register_io_memory(0, pxa2xx_cm_readfn,
2070 pxa2xx_cm_writefn, s);
2071 cpu_register_physical_memory(s->cm_base, 0x1000, iomemtype);
2072 register_savevm("pxa2xx_cm", 0, 0, pxa2xx_cm_save, pxa2xx_cm_load, s);
2073
2074 cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s);
2075
2076 s->mm_base = 0x48000000;
2077 s->mm_regs[MDMRS >> 2] = 0x00020002;
2078 s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2079 s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */
2080 iomemtype = cpu_register_io_memory(0, pxa2xx_mm_readfn,
2081 pxa2xx_mm_writefn, s);
2082 cpu_register_physical_memory(s->mm_base, 0x1000, iomemtype);
2083 register_savevm("pxa2xx_mm", 0, 0, pxa2xx_mm_save, pxa2xx_mm_load, s);
2084
2085 s->pm_base = 0x40f00000;
2086 iomemtype = cpu_register_io_memory(0, pxa2xx_pm_readfn,
2087 pxa2xx_pm_writefn, s);
2088 cpu_register_physical_memory(s->pm_base, 0x100, iomemtype);
2089 register_savevm("pxa2xx_pm", 0, 0, pxa2xx_pm_save, pxa2xx_pm_load, s);
2090
2091 for (i = 0; pxa27x_ssp[i].io_base; i ++);
2092 s->ssp = (struct pxa2xx_ssp_s **)
2093 qemu_mallocz(sizeof(struct pxa2xx_ssp_s *) * i);
2094 ssp = (struct pxa2xx_ssp_s *)
2095 qemu_mallocz(sizeof(struct pxa2xx_ssp_s) * i);
2096 for (i = 0; pxa27x_ssp[i].io_base; i ++) {
2097 s->ssp[i] = &ssp[i];
2098 ssp[i].base = pxa27x_ssp[i].io_base;
2099 ssp[i].irq = s->pic[pxa27x_ssp[i].irqn];
2100
2101 iomemtype = cpu_register_io_memory(0, pxa2xx_ssp_readfn,
2102 pxa2xx_ssp_writefn, &ssp[i]);
2103 cpu_register_physical_memory(ssp[i].base, 0x1000, iomemtype);
2104 register_savevm("pxa2xx_ssp", i, 0,
2105 pxa2xx_ssp_save, pxa2xx_ssp_load, s);
2106 }
2107
2108 if (usb_enabled) {
2109 usb_ohci_init_pxa(0x4c000000, 3, -1, s->pic[PXA2XX_PIC_USBH1]);
2110 }
2111
2112 s->pcmcia[0] = pxa2xx_pcmcia_init(0x20000000);
2113 s->pcmcia[1] = pxa2xx_pcmcia_init(0x30000000);
2114
2115 s->rtc_base = 0x40900000;
2116 iomemtype = cpu_register_io_memory(0, pxa2xx_rtc_readfn,
2117 pxa2xx_rtc_writefn, s);
2118 cpu_register_physical_memory(s->rtc_base, 0x1000, iomemtype);
2119 pxa2xx_rtc_init(s);
2120 register_savevm("pxa2xx_rtc", 0, 0, pxa2xx_rtc_save, pxa2xx_rtc_load, s);
2121
2122 s->i2c[0] = pxa2xx_i2c_init(0x40301600, s->pic[PXA2XX_PIC_I2C], 0xffff);
2123 s->i2c[1] = pxa2xx_i2c_init(0x40f00100, s->pic[PXA2XX_PIC_PWRI2C], 0xff);
2124
2125 s->i2s = pxa2xx_i2s_init(0x40400000, s->pic[PXA2XX_PIC_I2S], s->dma);
2126
2127 /* GPIO1 resets the processor */
2128 /* The handler can be overridden by board-specific code */
2129 pxa2xx_gpio_handler_set(s->gpio, 1, pxa2xx_reset, s);
2130 return s;
2131 }
2132
2133 /* Initialise a PXA255 integrated chip (ARM based core). */
2134 struct pxa2xx_state_s *pxa255_init(unsigned int sdram_size,
2135 DisplayState *ds)
2136 {
2137 struct pxa2xx_state_s *s;
2138 struct pxa2xx_ssp_s *ssp;
2139 int iomemtype, i;
2140
2141 s = (struct pxa2xx_state_s *) qemu_mallocz(sizeof(struct pxa2xx_state_s));
2142
2143 s->env = cpu_init("pxa255");
2144 if (!s->env) {
2145 fprintf(stderr, "Unable to find CPU definition\n");
2146 exit(1);
2147 }
2148 register_savevm("cpu", 0, 0, cpu_save, cpu_load, s->env);
2149
2150 /* SDRAM & Internal Memory Storage */
2151 cpu_register_physical_memory(PXA2XX_SDRAM_BASE, sdram_size,
2152 qemu_ram_alloc(sdram_size) | IO_MEM_RAM);
2153 cpu_register_physical_memory(PXA2XX_INTERNAL_BASE, PXA2XX_INTERNAL_SIZE,
2154 qemu_ram_alloc(PXA2XX_INTERNAL_SIZE) | IO_MEM_RAM);
2155
2156 s->pic = pxa2xx_pic_init(0x40d00000, s->env);
2157
2158 s->dma = pxa255_dma_init(0x40000000, s->pic[PXA2XX_PIC_DMA]);
2159
2160 pxa25x_timer_init(0x40a00000, &s->pic[PXA2XX_PIC_OST_0]);
2161
2162 s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 85);
2163
2164 s->mmc = pxa2xx_mmci_init(0x41100000, s->pic[PXA2XX_PIC_MMC], s->dma);
2165
2166 for (i = 0; pxa255_serial[i].io_base; i ++)
2167 if (serial_hds[i])
2168 serial_mm_init(pxa255_serial[i].io_base, 2,
2169 s->pic[pxa255_serial[i].irqn], serial_hds[i], 1);
2170 else
2171 break;
2172 if (serial_hds[i])
2173 s->fir = pxa2xx_fir_init(0x40800000, s->pic[PXA2XX_PIC_ICP],
2174 s->dma, serial_hds[i]);
2175
2176 if (ds)
2177 s->lcd = pxa2xx_lcdc_init(0x44000000, s->pic[PXA2XX_PIC_LCD], ds);
2178
2179 s->cm_base = 0x41300000;
2180 s->cm_regs[CCCR >> 2] = 0x02000210; /* 416.0 MHz */
2181 s->clkcfg = 0x00000009; /* Turbo mode active */
2182 iomemtype = cpu_register_io_memory(0, pxa2xx_cm_readfn,
2183 pxa2xx_cm_writefn, s);
2184 cpu_register_physical_memory(s->cm_base, 0x1000, iomemtype);
2185 register_savevm("pxa2xx_cm", 0, 0, pxa2xx_cm_save, pxa2xx_cm_load, s);
2186
2187 cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s);
2188
2189 s->mm_base = 0x48000000;
2190 s->mm_regs[MDMRS >> 2] = 0x00020002;
2191 s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2192 s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */
2193 iomemtype = cpu_register_io_memory(0, pxa2xx_mm_readfn,
2194 pxa2xx_mm_writefn, s);
2195 cpu_register_physical_memory(s->mm_base, 0x1000, iomemtype);
2196 register_savevm("pxa2xx_mm", 0, 0, pxa2xx_mm_save, pxa2xx_mm_load, s);
2197
2198 s->pm_base = 0x40f00000;
2199 iomemtype = cpu_register_io_memory(0, pxa2xx_pm_readfn,
2200 pxa2xx_pm_writefn, s);
2201 cpu_register_physical_memory(s->pm_base, 0x100, iomemtype);
2202 register_savevm("pxa2xx_pm", 0, 0, pxa2xx_pm_save, pxa2xx_pm_load, s);
2203
2204 for (i = 0; pxa255_ssp[i].io_base; i ++);
2205 s->ssp = (struct pxa2xx_ssp_s **)
2206 qemu_mallocz(sizeof(struct pxa2xx_ssp_s *) * i);
2207 ssp = (struct pxa2xx_ssp_s *)
2208 qemu_mallocz(sizeof(struct pxa2xx_ssp_s) * i);
2209 for (i = 0; pxa255_ssp[i].io_base; i ++) {
2210 s->ssp[i] = &ssp[i];
2211 ssp[i].base = pxa255_ssp[i].io_base;
2212 ssp[i].irq = s->pic[pxa255_ssp[i].irqn];
2213
2214 iomemtype = cpu_register_io_memory(0, pxa2xx_ssp_readfn,
2215 pxa2xx_ssp_writefn, &ssp[i]);
2216 cpu_register_physical_memory(ssp[i].base, 0x1000, iomemtype);
2217 register_savevm("pxa2xx_ssp", i, 0,
2218 pxa2xx_ssp_save, pxa2xx_ssp_load, s);
2219 }
2220
2221 if (usb_enabled) {
2222 usb_ohci_init_pxa(0x4c000000, 3, -1, s->pic[PXA2XX_PIC_USBH1]);
2223 }
2224
2225 s->pcmcia[0] = pxa2xx_pcmcia_init(0x20000000);
2226 s->pcmcia[1] = pxa2xx_pcmcia_init(0x30000000);
2227
2228 s->rtc_base = 0x40900000;
2229 iomemtype = cpu_register_io_memory(0, pxa2xx_rtc_readfn,
2230 pxa2xx_rtc_writefn, s);
2231 cpu_register_physical_memory(s->rtc_base, 0x1000, iomemtype);
2232 pxa2xx_rtc_init(s);
2233 register_savevm("pxa2xx_rtc", 0, 0, pxa2xx_rtc_save, pxa2xx_rtc_load, s);
2234
2235 s->i2c[0] = pxa2xx_i2c_init(0x40301600, s->pic[PXA2XX_PIC_I2C], 0xffff);
2236 s->i2c[1] = pxa2xx_i2c_init(0x40f00100, s->pic[PXA2XX_PIC_PWRI2C], 0xff);
2237
2238 s->i2s = pxa2xx_i2s_init(0x40400000, s->pic[PXA2XX_PIC_I2S], s->dma);
2239
2240 /* GPIO1 resets the processor */
2241 /* The handler can be overridden by board-specific code */
2242 pxa2xx_gpio_handler_set(s->gpio, 1, pxa2xx_reset, s);
2243 return s;
2244 }