]> git.proxmox.com Git - qemu.git/blob - hw/pxa2xx_timer.c
Correct the number of PXA255 GPIO lines. Reuse the PXA timers struct for PXA27x...
[qemu.git] / hw / pxa2xx_timer.c
1 /*
2 * Intel XScale PXA255/270 OS Timers.
3 *
4 * Copyright (c) 2006 Openedhand Ltd.
5 * Copyright (c) 2006 Thorsten Zitterell
6 *
7 * This code is licenced under the GPL.
8 */
9
10 #include "vl.h"
11
12 #define OSMR0 0x00
13 #define OSMR1 0x04
14 #define OSMR2 0x08
15 #define OSMR3 0x0c
16 #define OSMR4 0x80
17 #define OSMR5 0x84
18 #define OSMR6 0x88
19 #define OSMR7 0x8c
20 #define OSMR8 0x90
21 #define OSMR9 0x94
22 #define OSMR10 0x98
23 #define OSMR11 0x9c
24 #define OSCR 0x10 /* OS Timer Count */
25 #define OSCR4 0x40
26 #define OSCR5 0x44
27 #define OSCR6 0x48
28 #define OSCR7 0x4c
29 #define OSCR8 0x50
30 #define OSCR9 0x54
31 #define OSCR10 0x58
32 #define OSCR11 0x5c
33 #define OSSR 0x14 /* Timer status register */
34 #define OWER 0x18
35 #define OIER 0x1c /* Interrupt enable register 3-0 to E3-E0 */
36 #define OMCR4 0xc0 /* OS Match Control registers */
37 #define OMCR5 0xc4
38 #define OMCR6 0xc8
39 #define OMCR7 0xcc
40 #define OMCR8 0xd0
41 #define OMCR9 0xd4
42 #define OMCR10 0xd8
43 #define OMCR11 0xdc
44 #define OSNR 0x20
45
46 #define PXA25X_FREQ 3686400 /* 3.6864 MHz */
47 #define PXA27X_FREQ 3250000 /* 3.25 MHz */
48
49 static int pxa2xx_timer4_freq[8] = {
50 [0] = 0,
51 [1] = 32768,
52 [2] = 1000,
53 [3] = 1,
54 [4] = 1000000,
55 /* [5] is the "Externally supplied clock". Assign if necessary. */
56 [5 ... 7] = 0,
57 };
58
59 struct pxa2xx_timer0_s {
60 uint32_t value;
61 int level;
62 qemu_irq irq;
63 QEMUTimer *qtimer;
64 int num;
65 void *info;
66 };
67
68 struct pxa2xx_timer4_s {
69 struct pxa2xx_timer0_s tm;
70 int32_t oldclock;
71 int32_t clock;
72 uint64_t lastload;
73 uint32_t freq;
74 uint32_t control;
75 };
76
77 typedef struct {
78 uint32_t base;
79 int32_t clock;
80 int32_t oldclock;
81 uint64_t lastload;
82 uint32_t freq;
83 struct pxa2xx_timer0_s timer[4];
84 struct pxa2xx_timer4_s *tm4;
85 uint32_t events;
86 uint32_t irq_enabled;
87 uint32_t reset3;
88 CPUState *cpustate;
89 int64_t qemu_ticks;
90 uint32_t snapshot;
91 } pxa2xx_timer_info;
92
93 static void pxa2xx_timer_update(void *opaque, uint64_t now_qemu)
94 {
95 pxa2xx_timer_info *s = (pxa2xx_timer_info *) opaque;
96 int i;
97 uint32_t now_vm;
98 uint64_t new_qemu;
99
100 now_vm = s->clock +
101 muldiv64(now_qemu - s->lastload, s->freq, ticks_per_sec);
102
103 for (i = 0; i < 4; i ++) {
104 new_qemu = now_qemu + muldiv64((uint32_t) (s->timer[i].value - now_vm),
105 ticks_per_sec, s->freq);
106 qemu_mod_timer(s->timer[i].qtimer, new_qemu);
107 }
108 }
109
110 static void pxa2xx_timer_update4(void *opaque, uint64_t now_qemu, int n)
111 {
112 pxa2xx_timer_info *s = (pxa2xx_timer_info *) opaque;
113 uint32_t now_vm;
114 uint64_t new_qemu;
115 static const int counters[8] = { 0, 0, 0, 0, 4, 4, 6, 6 };
116 int counter;
117
118 if (s->tm4[n].control & (1 << 7))
119 counter = n;
120 else
121 counter = counters[n];
122
123 if (!s->tm4[counter].freq) {
124 qemu_del_timer(s->timer[n].qtimer);
125 return;
126 }
127
128 now_vm = s->tm4[counter].clock + muldiv64(now_qemu -
129 s->tm4[counter].lastload,
130 s->tm4[counter].freq, ticks_per_sec);
131
132 new_qemu = now_qemu + muldiv64((uint32_t) (s->tm4[n].tm.value - now_vm),
133 ticks_per_sec, s->tm4[counter].freq);
134 qemu_mod_timer(s->timer[n].qtimer, new_qemu);
135 }
136
137 static uint32_t pxa2xx_timer_read(void *opaque, target_phys_addr_t offset)
138 {
139 pxa2xx_timer_info *s = (pxa2xx_timer_info *) opaque;
140 int tm = 0;
141
142 offset -= s->base;
143
144 switch (offset) {
145 case OSMR3: tm ++;
146 case OSMR2: tm ++;
147 case OSMR1: tm ++;
148 case OSMR0:
149 return s->timer[tm].value;
150 case OSMR11: tm ++;
151 case OSMR10: tm ++;
152 case OSMR9: tm ++;
153 case OSMR8: tm ++;
154 case OSMR7: tm ++;
155 case OSMR6: tm ++;
156 case OSMR5: tm ++;
157 case OSMR4:
158 if (!s->tm4)
159 goto badreg;
160 return s->tm4[tm].tm.value;
161 case OSCR:
162 return s->clock + muldiv64(qemu_get_clock(vm_clock) -
163 s->lastload, s->freq, ticks_per_sec);
164 case OSCR11: tm ++;
165 case OSCR10: tm ++;
166 case OSCR9: tm ++;
167 case OSCR8: tm ++;
168 case OSCR7: tm ++;
169 case OSCR6: tm ++;
170 case OSCR5: tm ++;
171 case OSCR4:
172 if (!s->tm4)
173 goto badreg;
174
175 if ((tm == 9 - 4 || tm == 11 - 4) && (s->tm4[tm].control & (1 << 9))) {
176 if (s->tm4[tm - 1].freq)
177 s->snapshot = s->tm4[tm - 1].clock + muldiv64(
178 qemu_get_clock(vm_clock) -
179 s->tm4[tm - 1].lastload,
180 s->tm4[tm - 1].freq, ticks_per_sec);
181 else
182 s->snapshot = s->tm4[tm - 1].clock;
183 }
184
185 if (!s->tm4[tm].freq)
186 return s->tm4[tm].clock;
187 return s->tm4[tm].clock + muldiv64(qemu_get_clock(vm_clock) -
188 s->tm4[tm].lastload, s->tm4[tm].freq, ticks_per_sec);
189 case OIER:
190 return s->irq_enabled;
191 case OSSR: /* Status register */
192 return s->events;
193 case OWER:
194 return s->reset3;
195 case OMCR11: tm ++;
196 case OMCR10: tm ++;
197 case OMCR9: tm ++;
198 case OMCR8: tm ++;
199 case OMCR7: tm ++;
200 case OMCR6: tm ++;
201 case OMCR5: tm ++;
202 case OMCR4:
203 if (!s->tm4)
204 goto badreg;
205 return s->tm4[tm].control;
206 case OSNR:
207 return s->snapshot;
208 default:
209 badreg:
210 cpu_abort(cpu_single_env, "pxa2xx_timer_read: Bad offset "
211 REG_FMT "\n", offset);
212 }
213
214 return 0;
215 }
216
217 static void pxa2xx_timer_write(void *opaque, target_phys_addr_t offset,
218 uint32_t value)
219 {
220 int i, tm = 0;
221 pxa2xx_timer_info *s = (pxa2xx_timer_info *) opaque;
222
223 offset -= s->base;
224
225 switch (offset) {
226 case OSMR3: tm ++;
227 case OSMR2: tm ++;
228 case OSMR1: tm ++;
229 case OSMR0:
230 s->timer[tm].value = value;
231 pxa2xx_timer_update(s, qemu_get_clock(vm_clock));
232 break;
233 case OSMR11: tm ++;
234 case OSMR10: tm ++;
235 case OSMR9: tm ++;
236 case OSMR8: tm ++;
237 case OSMR7: tm ++;
238 case OSMR6: tm ++;
239 case OSMR5: tm ++;
240 case OSMR4:
241 if (!s->tm4)
242 goto badreg;
243 s->tm4[tm].tm.value = value;
244 pxa2xx_timer_update4(s, qemu_get_clock(vm_clock), tm);
245 break;
246 case OSCR:
247 s->oldclock = s->clock;
248 s->lastload = qemu_get_clock(vm_clock);
249 s->clock = value;
250 pxa2xx_timer_update(s, s->lastload);
251 break;
252 case OSCR11: tm ++;
253 case OSCR10: tm ++;
254 case OSCR9: tm ++;
255 case OSCR8: tm ++;
256 case OSCR7: tm ++;
257 case OSCR6: tm ++;
258 case OSCR5: tm ++;
259 case OSCR4:
260 if (!s->tm4)
261 goto badreg;
262 s->tm4[tm].oldclock = s->tm4[tm].clock;
263 s->tm4[tm].lastload = qemu_get_clock(vm_clock);
264 s->tm4[tm].clock = value;
265 pxa2xx_timer_update4(s, s->tm4[tm].lastload, tm);
266 break;
267 case OIER:
268 s->irq_enabled = value & 0xfff;
269 break;
270 case OSSR: /* Status register */
271 s->events &= ~value;
272 for (i = 0; i < 4; i ++, value >>= 1) {
273 if (s->timer[i].level && (value & 1)) {
274 s->timer[i].level = 0;
275 qemu_irq_lower(s->timer[i].irq);
276 }
277 }
278 if (s->tm4) {
279 for (i = 0; i < 8; i ++, value >>= 1)
280 if (s->tm4[i].tm.level && (value & 1))
281 s->tm4[i].tm.level = 0;
282 if (!(s->events & 0xff0))
283 qemu_irq_lower(s->tm4->tm.irq);
284 }
285 break;
286 case OWER: /* XXX: Reset on OSMR3 match? */
287 s->reset3 = value;
288 break;
289 case OMCR7: tm ++;
290 case OMCR6: tm ++;
291 case OMCR5: tm ++;
292 case OMCR4:
293 if (!s->tm4)
294 goto badreg;
295 s->tm4[tm].control = value & 0x0ff;
296 /* XXX Stop if running (shouldn't happen) */
297 if ((value & (1 << 7)) || tm == 0)
298 s->tm4[tm].freq = pxa2xx_timer4_freq[value & 7];
299 else {
300 s->tm4[tm].freq = 0;
301 pxa2xx_timer_update4(s, qemu_get_clock(vm_clock), tm);
302 }
303 break;
304 case OMCR11: tm ++;
305 case OMCR10: tm ++;
306 case OMCR9: tm ++;
307 case OMCR8: tm += 4;
308 if (!s->tm4)
309 goto badreg;
310 s->tm4[tm].control = value & 0x3ff;
311 /* XXX Stop if running (shouldn't happen) */
312 if ((value & (1 << 7)) || !(tm & 1))
313 s->tm4[tm].freq =
314 pxa2xx_timer4_freq[(value & (1 << 8)) ? 0 : (value & 7)];
315 else {
316 s->tm4[tm].freq = 0;
317 pxa2xx_timer_update4(s, qemu_get_clock(vm_clock), tm);
318 }
319 break;
320 default:
321 badreg:
322 cpu_abort(cpu_single_env, "pxa2xx_timer_write: Bad offset "
323 REG_FMT "\n", offset);
324 }
325 }
326
327 static CPUReadMemoryFunc *pxa2xx_timer_readfn[] = {
328 pxa2xx_timer_read,
329 pxa2xx_timer_read,
330 pxa2xx_timer_read,
331 };
332
333 static CPUWriteMemoryFunc *pxa2xx_timer_writefn[] = {
334 pxa2xx_timer_write,
335 pxa2xx_timer_write,
336 pxa2xx_timer_write,
337 };
338
339 static void pxa2xx_timer_tick(void *opaque)
340 {
341 struct pxa2xx_timer0_s *t = (struct pxa2xx_timer0_s *) opaque;
342 pxa2xx_timer_info *i = (pxa2xx_timer_info *) t->info;
343
344 if (i->irq_enabled & (1 << t->num)) {
345 t->level = 1;
346 i->events |= 1 << t->num;
347 qemu_irq_raise(t->irq);
348 }
349
350 if (t->num == 3)
351 if (i->reset3 & 1) {
352 i->reset3 = 0;
353 cpu_reset(i->cpustate);
354 }
355 }
356
357 static void pxa2xx_timer_tick4(void *opaque)
358 {
359 struct pxa2xx_timer4_s *t = (struct pxa2xx_timer4_s *) opaque;
360 pxa2xx_timer_info *i = (pxa2xx_timer_info *) t->tm.info;
361
362 pxa2xx_timer_tick(&t->tm);
363 if (t->control & (1 << 3))
364 t->clock = 0;
365 if (t->control & (1 << 6))
366 pxa2xx_timer_update4(i, qemu_get_clock(vm_clock), t->tm.num - 4);
367 }
368
369 static pxa2xx_timer_info *pxa2xx_timer_init(target_phys_addr_t base,
370 qemu_irq *irqs, CPUState *cpustate)
371 {
372 int i;
373 int iomemtype;
374 pxa2xx_timer_info *s;
375
376 s = (pxa2xx_timer_info *) qemu_mallocz(sizeof(pxa2xx_timer_info));
377 s->base = base;
378 s->irq_enabled = 0;
379 s->oldclock = 0;
380 s->clock = 0;
381 s->lastload = qemu_get_clock(vm_clock);
382 s->reset3 = 0;
383 s->cpustate = cpustate;
384
385 for (i = 0; i < 4; i ++) {
386 s->timer[i].value = 0;
387 s->timer[i].irq = irqs[i];
388 s->timer[i].info = s;
389 s->timer[i].num = i;
390 s->timer[i].level = 0;
391 s->timer[i].qtimer = qemu_new_timer(vm_clock,
392 pxa2xx_timer_tick, &s->timer[i]);
393 }
394
395 iomemtype = cpu_register_io_memory(0, pxa2xx_timer_readfn,
396 pxa2xx_timer_writefn, s);
397 cpu_register_physical_memory(base, 0x00000fff, iomemtype);
398 return s;
399 }
400
401 void pxa25x_timer_init(target_phys_addr_t base,
402 qemu_irq *irqs, CPUState *cpustate)
403 {
404 pxa2xx_timer_info *s = pxa2xx_timer_init(base, irqs, cpustate);
405 s->freq = PXA25X_FREQ;
406 s->tm4 = 0;
407 }
408
409 void pxa27x_timer_init(target_phys_addr_t base,
410 qemu_irq *irqs, qemu_irq irq4, CPUState *cpustate)
411 {
412 pxa2xx_timer_info *s = pxa2xx_timer_init(base, irqs, cpustate);
413 int i;
414 s->freq = PXA27X_FREQ;
415 s->tm4 = (struct pxa2xx_timer4_s *) qemu_mallocz(8 *
416 sizeof(struct pxa2xx_timer4_s));
417 for (i = 0; i < 8; i ++) {
418 s->tm4[i].tm.value = 0;
419 s->tm4[i].tm.irq = irq4;
420 s->tm4[i].tm.info = s;
421 s->tm4[i].tm.num = i + 4;
422 s->tm4[i].tm.level = 0;
423 s->tm4[i].freq = 0;
424 s->tm4[i].control = 0x0;
425 s->tm4[i].tm.qtimer = qemu_new_timer(vm_clock,
426 pxa2xx_timer_tick4, &s->tm4[i]);
427 }
428 }