]> git.proxmox.com Git - qemu.git/blob - hw/rtl8139.c
Revert "rtl8139: do the network/host communication only in normal operating mode"
[qemu.git] / hw / rtl8139.c
1 /**
2 * QEMU RTL8139 emulation
3 *
4 * Copyright (c) 2006 Igor Kovalenko
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23
24 * Modifications:
25 * 2006-Jan-28 Mark Malakanov : TSAD and CSCR implementation (for Windows driver)
26 *
27 * 2006-Apr-28 Juergen Lock : EEPROM emulation changes for FreeBSD driver
28 * HW revision ID changes for FreeBSD driver
29 *
30 * 2006-Jul-01 Igor Kovalenko : Implemented loopback mode for FreeBSD driver
31 * Corrected packet transfer reassembly routine for 8139C+ mode
32 * Rearranged debugging print statements
33 * Implemented PCI timer interrupt (disabled by default)
34 * Implemented Tally Counters, increased VM load/save version
35 * Implemented IP/TCP/UDP checksum task offloading
36 *
37 * 2006-Jul-04 Igor Kovalenko : Implemented TCP segmentation offloading
38 * Fixed MTU=1500 for produced ethernet frames
39 *
40 * 2006-Jul-09 Igor Kovalenko : Fixed TCP header length calculation while processing
41 * segmentation offloading
42 * Removed slirp.h dependency
43 * Added rx/tx buffer reset when enabling rx/tx operation
44 *
45 * 2010-Feb-04 Frediano Ziglio: Rewrote timer support using QEMU timer only
46 * when strictly needed (required for for
47 * Darwin)
48 * 2011-Mar-22 Benjamin Poirier: Implemented VLAN offloading
49 */
50
51 /* For crc32 */
52 #include <zlib.h>
53
54 #include "hw.h"
55 #include "pci.h"
56 #include "dma.h"
57 #include "qemu-timer.h"
58 #include "net.h"
59 #include "loader.h"
60 #include "sysemu.h"
61 #include "iov.h"
62
63 /* debug RTL8139 card */
64 //#define DEBUG_RTL8139 1
65
66 #define PCI_FREQUENCY 33000000L
67
68 #define SET_MASKED(input, mask, curr) \
69 ( ( (input) & ~(mask) ) | ( (curr) & (mask) ) )
70
71 /* arg % size for size which is a power of 2 */
72 #define MOD2(input, size) \
73 ( ( input ) & ( size - 1 ) )
74
75 #define ETHER_ADDR_LEN 6
76 #define ETHER_TYPE_LEN 2
77 #define ETH_HLEN (ETHER_ADDR_LEN * 2 + ETHER_TYPE_LEN)
78 #define ETH_P_IP 0x0800 /* Internet Protocol packet */
79 #define ETH_P_8021Q 0x8100 /* 802.1Q VLAN Extended Header */
80 #define ETH_MTU 1500
81
82 #define VLAN_TCI_LEN 2
83 #define VLAN_HLEN (ETHER_TYPE_LEN + VLAN_TCI_LEN)
84
85 #if defined (DEBUG_RTL8139)
86 # define DPRINTF(fmt, ...) \
87 do { fprintf(stderr, "RTL8139: " fmt, ## __VA_ARGS__); } while (0)
88 #else
89 static inline GCC_FMT_ATTR(1, 2) int DPRINTF(const char *fmt, ...)
90 {
91 return 0;
92 }
93 #endif
94
95 /* Symbolic offsets to registers. */
96 enum RTL8139_registers {
97 MAC0 = 0, /* Ethernet hardware address. */
98 MAR0 = 8, /* Multicast filter. */
99 TxStatus0 = 0x10,/* Transmit status (Four 32bit registers). C mode only */
100 /* Dump Tally Conter control register(64bit). C+ mode only */
101 TxAddr0 = 0x20, /* Tx descriptors (also four 32bit). */
102 RxBuf = 0x30,
103 ChipCmd = 0x37,
104 RxBufPtr = 0x38,
105 RxBufAddr = 0x3A,
106 IntrMask = 0x3C,
107 IntrStatus = 0x3E,
108 TxConfig = 0x40,
109 RxConfig = 0x44,
110 Timer = 0x48, /* A general-purpose counter. */
111 RxMissed = 0x4C, /* 24 bits valid, write clears. */
112 Cfg9346 = 0x50,
113 Config0 = 0x51,
114 Config1 = 0x52,
115 FlashReg = 0x54,
116 MediaStatus = 0x58,
117 Config3 = 0x59,
118 Config4 = 0x5A, /* absent on RTL-8139A */
119 HltClk = 0x5B,
120 MultiIntr = 0x5C,
121 PCIRevisionID = 0x5E,
122 TxSummary = 0x60, /* TSAD register. Transmit Status of All Descriptors*/
123 BasicModeCtrl = 0x62,
124 BasicModeStatus = 0x64,
125 NWayAdvert = 0x66,
126 NWayLPAR = 0x68,
127 NWayExpansion = 0x6A,
128 /* Undocumented registers, but required for proper operation. */
129 FIFOTMS = 0x70, /* FIFO Control and test. */
130 CSCR = 0x74, /* Chip Status and Configuration Register. */
131 PARA78 = 0x78,
132 PARA7c = 0x7c, /* Magic transceiver parameter register. */
133 Config5 = 0xD8, /* absent on RTL-8139A */
134 /* C+ mode */
135 TxPoll = 0xD9, /* Tell chip to check Tx descriptors for work */
136 RxMaxSize = 0xDA, /* Max size of an Rx packet (8169 only) */
137 CpCmd = 0xE0, /* C+ Command register (C+ mode only) */
138 IntrMitigate = 0xE2, /* rx/tx interrupt mitigation control */
139 RxRingAddrLO = 0xE4, /* 64-bit start addr of Rx ring */
140 RxRingAddrHI = 0xE8, /* 64-bit start addr of Rx ring */
141 TxThresh = 0xEC, /* Early Tx threshold */
142 };
143
144 enum ClearBitMasks {
145 MultiIntrClear = 0xF000,
146 ChipCmdClear = 0xE2,
147 Config1Clear = (1<<7)|(1<<6)|(1<<3)|(1<<2)|(1<<1),
148 };
149
150 enum ChipCmdBits {
151 CmdReset = 0x10,
152 CmdRxEnb = 0x08,
153 CmdTxEnb = 0x04,
154 RxBufEmpty = 0x01,
155 };
156
157 /* C+ mode */
158 enum CplusCmdBits {
159 CPlusRxVLAN = 0x0040, /* enable receive VLAN detagging */
160 CPlusRxChkSum = 0x0020, /* enable receive checksum offloading */
161 CPlusRxEnb = 0x0002,
162 CPlusTxEnb = 0x0001,
163 };
164
165 /* Interrupt register bits, using my own meaningful names. */
166 enum IntrStatusBits {
167 PCIErr = 0x8000,
168 PCSTimeout = 0x4000,
169 RxFIFOOver = 0x40,
170 RxUnderrun = 0x20,
171 RxOverflow = 0x10,
172 TxErr = 0x08,
173 TxOK = 0x04,
174 RxErr = 0x02,
175 RxOK = 0x01,
176
177 RxAckBits = RxFIFOOver | RxOverflow | RxOK,
178 };
179
180 enum TxStatusBits {
181 TxHostOwns = 0x2000,
182 TxUnderrun = 0x4000,
183 TxStatOK = 0x8000,
184 TxOutOfWindow = 0x20000000,
185 TxAborted = 0x40000000,
186 TxCarrierLost = 0x80000000,
187 };
188 enum RxStatusBits {
189 RxMulticast = 0x8000,
190 RxPhysical = 0x4000,
191 RxBroadcast = 0x2000,
192 RxBadSymbol = 0x0020,
193 RxRunt = 0x0010,
194 RxTooLong = 0x0008,
195 RxCRCErr = 0x0004,
196 RxBadAlign = 0x0002,
197 RxStatusOK = 0x0001,
198 };
199
200 /* Bits in RxConfig. */
201 enum rx_mode_bits {
202 AcceptErr = 0x20,
203 AcceptRunt = 0x10,
204 AcceptBroadcast = 0x08,
205 AcceptMulticast = 0x04,
206 AcceptMyPhys = 0x02,
207 AcceptAllPhys = 0x01,
208 };
209
210 /* Bits in TxConfig. */
211 enum tx_config_bits {
212
213 /* Interframe Gap Time. Only TxIFG96 doesn't violate IEEE 802.3 */
214 TxIFGShift = 24,
215 TxIFG84 = (0 << TxIFGShift), /* 8.4us / 840ns (10 / 100Mbps) */
216 TxIFG88 = (1 << TxIFGShift), /* 8.8us / 880ns (10 / 100Mbps) */
217 TxIFG92 = (2 << TxIFGShift), /* 9.2us / 920ns (10 / 100Mbps) */
218 TxIFG96 = (3 << TxIFGShift), /* 9.6us / 960ns (10 / 100Mbps) */
219
220 TxLoopBack = (1 << 18) | (1 << 17), /* enable loopback test mode */
221 TxCRC = (1 << 16), /* DISABLE appending CRC to end of Tx packets */
222 TxClearAbt = (1 << 0), /* Clear abort (WO) */
223 TxDMAShift = 8, /* DMA burst value (0-7) is shifted this many bits */
224 TxRetryShift = 4, /* TXRR value (0-15) is shifted this many bits */
225
226 TxVersionMask = 0x7C800000, /* mask out version bits 30-26, 23 */
227 };
228
229
230 /* Transmit Status of All Descriptors (TSAD) Register */
231 enum TSAD_bits {
232 TSAD_TOK3 = 1<<15, // TOK bit of Descriptor 3
233 TSAD_TOK2 = 1<<14, // TOK bit of Descriptor 2
234 TSAD_TOK1 = 1<<13, // TOK bit of Descriptor 1
235 TSAD_TOK0 = 1<<12, // TOK bit of Descriptor 0
236 TSAD_TUN3 = 1<<11, // TUN bit of Descriptor 3
237 TSAD_TUN2 = 1<<10, // TUN bit of Descriptor 2
238 TSAD_TUN1 = 1<<9, // TUN bit of Descriptor 1
239 TSAD_TUN0 = 1<<8, // TUN bit of Descriptor 0
240 TSAD_TABT3 = 1<<07, // TABT bit of Descriptor 3
241 TSAD_TABT2 = 1<<06, // TABT bit of Descriptor 2
242 TSAD_TABT1 = 1<<05, // TABT bit of Descriptor 1
243 TSAD_TABT0 = 1<<04, // TABT bit of Descriptor 0
244 TSAD_OWN3 = 1<<03, // OWN bit of Descriptor 3
245 TSAD_OWN2 = 1<<02, // OWN bit of Descriptor 2
246 TSAD_OWN1 = 1<<01, // OWN bit of Descriptor 1
247 TSAD_OWN0 = 1<<00, // OWN bit of Descriptor 0
248 };
249
250
251 /* Bits in Config1 */
252 enum Config1Bits {
253 Cfg1_PM_Enable = 0x01,
254 Cfg1_VPD_Enable = 0x02,
255 Cfg1_PIO = 0x04,
256 Cfg1_MMIO = 0x08,
257 LWAKE = 0x10, /* not on 8139, 8139A */
258 Cfg1_Driver_Load = 0x20,
259 Cfg1_LED0 = 0x40,
260 Cfg1_LED1 = 0x80,
261 SLEEP = (1 << 1), /* only on 8139, 8139A */
262 PWRDN = (1 << 0), /* only on 8139, 8139A */
263 };
264
265 /* Bits in Config3 */
266 enum Config3Bits {
267 Cfg3_FBtBEn = (1 << 0), /* 1 = Fast Back to Back */
268 Cfg3_FuncRegEn = (1 << 1), /* 1 = enable CardBus Function registers */
269 Cfg3_CLKRUN_En = (1 << 2), /* 1 = enable CLKRUN */
270 Cfg3_CardB_En = (1 << 3), /* 1 = enable CardBus registers */
271 Cfg3_LinkUp = (1 << 4), /* 1 = wake up on link up */
272 Cfg3_Magic = (1 << 5), /* 1 = wake up on Magic Packet (tm) */
273 Cfg3_PARM_En = (1 << 6), /* 0 = software can set twister parameters */
274 Cfg3_GNTSel = (1 << 7), /* 1 = delay 1 clock from PCI GNT signal */
275 };
276
277 /* Bits in Config4 */
278 enum Config4Bits {
279 LWPTN = (1 << 2), /* not on 8139, 8139A */
280 };
281
282 /* Bits in Config5 */
283 enum Config5Bits {
284 Cfg5_PME_STS = (1 << 0), /* 1 = PCI reset resets PME_Status */
285 Cfg5_LANWake = (1 << 1), /* 1 = enable LANWake signal */
286 Cfg5_LDPS = (1 << 2), /* 0 = save power when link is down */
287 Cfg5_FIFOAddrPtr = (1 << 3), /* Realtek internal SRAM testing */
288 Cfg5_UWF = (1 << 4), /* 1 = accept unicast wakeup frame */
289 Cfg5_MWF = (1 << 5), /* 1 = accept multicast wakeup frame */
290 Cfg5_BWF = (1 << 6), /* 1 = accept broadcast wakeup frame */
291 };
292
293 enum RxConfigBits {
294 /* rx fifo threshold */
295 RxCfgFIFOShift = 13,
296 RxCfgFIFONone = (7 << RxCfgFIFOShift),
297
298 /* Max DMA burst */
299 RxCfgDMAShift = 8,
300 RxCfgDMAUnlimited = (7 << RxCfgDMAShift),
301
302 /* rx ring buffer length */
303 RxCfgRcv8K = 0,
304 RxCfgRcv16K = (1 << 11),
305 RxCfgRcv32K = (1 << 12),
306 RxCfgRcv64K = (1 << 11) | (1 << 12),
307
308 /* Disable packet wrap at end of Rx buffer. (not possible with 64k) */
309 RxNoWrap = (1 << 7),
310 };
311
312 /* Twister tuning parameters from RealTek.
313 Completely undocumented, but required to tune bad links on some boards. */
314 /*
315 enum CSCRBits {
316 CSCR_LinkOKBit = 0x0400,
317 CSCR_LinkChangeBit = 0x0800,
318 CSCR_LinkStatusBits = 0x0f000,
319 CSCR_LinkDownOffCmd = 0x003c0,
320 CSCR_LinkDownCmd = 0x0f3c0,
321 */
322 enum CSCRBits {
323 CSCR_Testfun = 1<<15, /* 1 = Auto-neg speeds up internal timer, WO, def 0 */
324 CSCR_LD = 1<<9, /* Active low TPI link disable signal. When low, TPI still transmits link pulses and TPI stays in good link state. def 1*/
325 CSCR_HEART_BIT = 1<<8, /* 1 = HEART BEAT enable, 0 = HEART BEAT disable. HEART BEAT function is only valid in 10Mbps mode. def 1*/
326 CSCR_JBEN = 1<<7, /* 1 = enable jabber function. 0 = disable jabber function, def 1*/
327 CSCR_F_LINK_100 = 1<<6, /* Used to login force good link in 100Mbps for diagnostic purposes. 1 = DISABLE, 0 = ENABLE. def 1*/
328 CSCR_F_Connect = 1<<5, /* Assertion of this bit forces the disconnect function to be bypassed. def 0*/
329 CSCR_Con_status = 1<<3, /* This bit indicates the status of the connection. 1 = valid connected link detected; 0 = disconnected link detected. RO def 0*/
330 CSCR_Con_status_En = 1<<2, /* Assertion of this bit configures LED1 pin to indicate connection status. def 0*/
331 CSCR_PASS_SCR = 1<<0, /* Bypass Scramble, def 0*/
332 };
333
334 enum Cfg9346Bits {
335 Cfg9346_Normal = 0x00,
336 Cfg9346_Autoload = 0x40,
337 Cfg9346_Programming = 0x80,
338 Cfg9346_ConfigWrite = 0xC0,
339 };
340
341 typedef enum {
342 CH_8139 = 0,
343 CH_8139_K,
344 CH_8139A,
345 CH_8139A_G,
346 CH_8139B,
347 CH_8130,
348 CH_8139C,
349 CH_8100,
350 CH_8100B_8139D,
351 CH_8101,
352 } chip_t;
353
354 enum chip_flags {
355 HasHltClk = (1 << 0),
356 HasLWake = (1 << 1),
357 };
358
359 #define HW_REVID(b30, b29, b28, b27, b26, b23, b22) \
360 (b30<<30 | b29<<29 | b28<<28 | b27<<27 | b26<<26 | b23<<23 | b22<<22)
361 #define HW_REVID_MASK HW_REVID(1, 1, 1, 1, 1, 1, 1)
362
363 #define RTL8139_PCI_REVID_8139 0x10
364 #define RTL8139_PCI_REVID_8139CPLUS 0x20
365
366 #define RTL8139_PCI_REVID RTL8139_PCI_REVID_8139CPLUS
367
368 /* Size is 64 * 16bit words */
369 #define EEPROM_9346_ADDR_BITS 6
370 #define EEPROM_9346_SIZE (1 << EEPROM_9346_ADDR_BITS)
371 #define EEPROM_9346_ADDR_MASK (EEPROM_9346_SIZE - 1)
372
373 enum Chip9346Operation
374 {
375 Chip9346_op_mask = 0xc0, /* 10 zzzzzz */
376 Chip9346_op_read = 0x80, /* 10 AAAAAA */
377 Chip9346_op_write = 0x40, /* 01 AAAAAA D(15)..D(0) */
378 Chip9346_op_ext_mask = 0xf0, /* 11 zzzzzz */
379 Chip9346_op_write_enable = 0x30, /* 00 11zzzz */
380 Chip9346_op_write_all = 0x10, /* 00 01zzzz */
381 Chip9346_op_write_disable = 0x00, /* 00 00zzzz */
382 };
383
384 enum Chip9346Mode
385 {
386 Chip9346_none = 0,
387 Chip9346_enter_command_mode,
388 Chip9346_read_command,
389 Chip9346_data_read, /* from output register */
390 Chip9346_data_write, /* to input register, then to contents at specified address */
391 Chip9346_data_write_all, /* to input register, then filling contents */
392 };
393
394 typedef struct EEprom9346
395 {
396 uint16_t contents[EEPROM_9346_SIZE];
397 int mode;
398 uint32_t tick;
399 uint8_t address;
400 uint16_t input;
401 uint16_t output;
402
403 uint8_t eecs;
404 uint8_t eesk;
405 uint8_t eedi;
406 uint8_t eedo;
407 } EEprom9346;
408
409 typedef struct RTL8139TallyCounters
410 {
411 /* Tally counters */
412 uint64_t TxOk;
413 uint64_t RxOk;
414 uint64_t TxERR;
415 uint32_t RxERR;
416 uint16_t MissPkt;
417 uint16_t FAE;
418 uint32_t Tx1Col;
419 uint32_t TxMCol;
420 uint64_t RxOkPhy;
421 uint64_t RxOkBrd;
422 uint32_t RxOkMul;
423 uint16_t TxAbt;
424 uint16_t TxUndrn;
425 } RTL8139TallyCounters;
426
427 /* Clears all tally counters */
428 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters);
429
430 typedef struct RTL8139State {
431 PCIDevice dev;
432 uint8_t phys[8]; /* mac address */
433 uint8_t mult[8]; /* multicast mask array */
434
435 uint32_t TxStatus[4]; /* TxStatus0 in C mode*/ /* also DTCCR[0] and DTCCR[1] in C+ mode */
436 uint32_t TxAddr[4]; /* TxAddr0 */
437 uint32_t RxBuf; /* Receive buffer */
438 uint32_t RxBufferSize;/* internal variable, receive ring buffer size in C mode */
439 uint32_t RxBufPtr;
440 uint32_t RxBufAddr;
441
442 uint16_t IntrStatus;
443 uint16_t IntrMask;
444
445 uint32_t TxConfig;
446 uint32_t RxConfig;
447 uint32_t RxMissed;
448
449 uint16_t CSCR;
450
451 uint8_t Cfg9346;
452 uint8_t Config0;
453 uint8_t Config1;
454 uint8_t Config3;
455 uint8_t Config4;
456 uint8_t Config5;
457
458 uint8_t clock_enabled;
459 uint8_t bChipCmdState;
460
461 uint16_t MultiIntr;
462
463 uint16_t BasicModeCtrl;
464 uint16_t BasicModeStatus;
465 uint16_t NWayAdvert;
466 uint16_t NWayLPAR;
467 uint16_t NWayExpansion;
468
469 uint16_t CpCmd;
470 uint8_t TxThresh;
471
472 NICState *nic;
473 NICConf conf;
474
475 /* C ring mode */
476 uint32_t currTxDesc;
477
478 /* C+ mode */
479 uint32_t cplus_enabled;
480
481 uint32_t currCPlusRxDesc;
482 uint32_t currCPlusTxDesc;
483
484 uint32_t RxRingAddrLO;
485 uint32_t RxRingAddrHI;
486
487 EEprom9346 eeprom;
488
489 uint32_t TCTR;
490 uint32_t TimerInt;
491 int64_t TCTR_base;
492
493 /* Tally counters */
494 RTL8139TallyCounters tally_counters;
495
496 /* Non-persistent data */
497 uint8_t *cplus_txbuffer;
498 int cplus_txbuffer_len;
499 int cplus_txbuffer_offset;
500
501 /* PCI interrupt timer */
502 QEMUTimer *timer;
503 int64_t TimerExpire;
504
505 MemoryRegion bar_io;
506 MemoryRegion bar_mem;
507
508 /* Support migration to/from old versions */
509 int rtl8139_mmio_io_addr_dummy;
510 } RTL8139State;
511
512 /* Writes tally counters to memory via DMA */
513 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr);
514
515 static void rtl8139_set_next_tctr_time(RTL8139State *s, int64_t current_time);
516
517 static void prom9346_decode_command(EEprom9346 *eeprom, uint8_t command)
518 {
519 DPRINTF("eeprom command 0x%02x\n", command);
520
521 switch (command & Chip9346_op_mask)
522 {
523 case Chip9346_op_read:
524 {
525 eeprom->address = command & EEPROM_9346_ADDR_MASK;
526 eeprom->output = eeprom->contents[eeprom->address];
527 eeprom->eedo = 0;
528 eeprom->tick = 0;
529 eeprom->mode = Chip9346_data_read;
530 DPRINTF("eeprom read from address 0x%02x data=0x%04x\n",
531 eeprom->address, eeprom->output);
532 }
533 break;
534
535 case Chip9346_op_write:
536 {
537 eeprom->address = command & EEPROM_9346_ADDR_MASK;
538 eeprom->input = 0;
539 eeprom->tick = 0;
540 eeprom->mode = Chip9346_none; /* Chip9346_data_write */
541 DPRINTF("eeprom begin write to address 0x%02x\n",
542 eeprom->address);
543 }
544 break;
545 default:
546 eeprom->mode = Chip9346_none;
547 switch (command & Chip9346_op_ext_mask)
548 {
549 case Chip9346_op_write_enable:
550 DPRINTF("eeprom write enabled\n");
551 break;
552 case Chip9346_op_write_all:
553 DPRINTF("eeprom begin write all\n");
554 break;
555 case Chip9346_op_write_disable:
556 DPRINTF("eeprom write disabled\n");
557 break;
558 }
559 break;
560 }
561 }
562
563 static void prom9346_shift_clock(EEprom9346 *eeprom)
564 {
565 int bit = eeprom->eedi?1:0;
566
567 ++ eeprom->tick;
568
569 DPRINTF("eeprom: tick %d eedi=%d eedo=%d\n", eeprom->tick, eeprom->eedi,
570 eeprom->eedo);
571
572 switch (eeprom->mode)
573 {
574 case Chip9346_enter_command_mode:
575 if (bit)
576 {
577 eeprom->mode = Chip9346_read_command;
578 eeprom->tick = 0;
579 eeprom->input = 0;
580 DPRINTF("eeprom: +++ synchronized, begin command read\n");
581 }
582 break;
583
584 case Chip9346_read_command:
585 eeprom->input = (eeprom->input << 1) | (bit & 1);
586 if (eeprom->tick == 8)
587 {
588 prom9346_decode_command(eeprom, eeprom->input & 0xff);
589 }
590 break;
591
592 case Chip9346_data_read:
593 eeprom->eedo = (eeprom->output & 0x8000)?1:0;
594 eeprom->output <<= 1;
595 if (eeprom->tick == 16)
596 {
597 #if 1
598 // the FreeBSD drivers (rl and re) don't explicitly toggle
599 // CS between reads (or does setting Cfg9346 to 0 count too?),
600 // so we need to enter wait-for-command state here
601 eeprom->mode = Chip9346_enter_command_mode;
602 eeprom->input = 0;
603 eeprom->tick = 0;
604
605 DPRINTF("eeprom: +++ end of read, awaiting next command\n");
606 #else
607 // original behaviour
608 ++eeprom->address;
609 eeprom->address &= EEPROM_9346_ADDR_MASK;
610 eeprom->output = eeprom->contents[eeprom->address];
611 eeprom->tick = 0;
612
613 DPRINTF("eeprom: +++ read next address 0x%02x data=0x%04x\n",
614 eeprom->address, eeprom->output);
615 #endif
616 }
617 break;
618
619 case Chip9346_data_write:
620 eeprom->input = (eeprom->input << 1) | (bit & 1);
621 if (eeprom->tick == 16)
622 {
623 DPRINTF("eeprom write to address 0x%02x data=0x%04x\n",
624 eeprom->address, eeprom->input);
625
626 eeprom->contents[eeprom->address] = eeprom->input;
627 eeprom->mode = Chip9346_none; /* waiting for next command after CS cycle */
628 eeprom->tick = 0;
629 eeprom->input = 0;
630 }
631 break;
632
633 case Chip9346_data_write_all:
634 eeprom->input = (eeprom->input << 1) | (bit & 1);
635 if (eeprom->tick == 16)
636 {
637 int i;
638 for (i = 0; i < EEPROM_9346_SIZE; i++)
639 {
640 eeprom->contents[i] = eeprom->input;
641 }
642 DPRINTF("eeprom filled with data=0x%04x\n", eeprom->input);
643
644 eeprom->mode = Chip9346_enter_command_mode;
645 eeprom->tick = 0;
646 eeprom->input = 0;
647 }
648 break;
649
650 default:
651 break;
652 }
653 }
654
655 static int prom9346_get_wire(RTL8139State *s)
656 {
657 EEprom9346 *eeprom = &s->eeprom;
658 if (!eeprom->eecs)
659 return 0;
660
661 return eeprom->eedo;
662 }
663
664 /* FIXME: This should be merged into/replaced by eeprom93xx.c. */
665 static void prom9346_set_wire(RTL8139State *s, int eecs, int eesk, int eedi)
666 {
667 EEprom9346 *eeprom = &s->eeprom;
668 uint8_t old_eecs = eeprom->eecs;
669 uint8_t old_eesk = eeprom->eesk;
670
671 eeprom->eecs = eecs;
672 eeprom->eesk = eesk;
673 eeprom->eedi = eedi;
674
675 DPRINTF("eeprom: +++ wires CS=%d SK=%d DI=%d DO=%d\n", eeprom->eecs,
676 eeprom->eesk, eeprom->eedi, eeprom->eedo);
677
678 if (!old_eecs && eecs)
679 {
680 /* Synchronize start */
681 eeprom->tick = 0;
682 eeprom->input = 0;
683 eeprom->output = 0;
684 eeprom->mode = Chip9346_enter_command_mode;
685
686 DPRINTF("=== eeprom: begin access, enter command mode\n");
687 }
688
689 if (!eecs)
690 {
691 DPRINTF("=== eeprom: end access\n");
692 return;
693 }
694
695 if (!old_eesk && eesk)
696 {
697 /* SK front rules */
698 prom9346_shift_clock(eeprom);
699 }
700 }
701
702 static void rtl8139_update_irq(RTL8139State *s)
703 {
704 int isr;
705 isr = (s->IntrStatus & s->IntrMask) & 0xffff;
706
707 DPRINTF("Set IRQ to %d (%04x %04x)\n", isr ? 1 : 0, s->IntrStatus,
708 s->IntrMask);
709
710 qemu_set_irq(s->dev.irq[0], (isr != 0));
711 }
712
713 static int rtl8139_RxWrap(RTL8139State *s)
714 {
715 /* wrapping enabled; assume 1.5k more buffer space if size < 65536 */
716 return (s->RxConfig & (1 << 7));
717 }
718
719 static int rtl8139_receiver_enabled(RTL8139State *s)
720 {
721 return s->bChipCmdState & CmdRxEnb;
722 }
723
724 static int rtl8139_transmitter_enabled(RTL8139State *s)
725 {
726 return s->bChipCmdState & CmdTxEnb;
727 }
728
729 static int rtl8139_cp_receiver_enabled(RTL8139State *s)
730 {
731 return s->CpCmd & CPlusRxEnb;
732 }
733
734 static int rtl8139_cp_transmitter_enabled(RTL8139State *s)
735 {
736 return s->CpCmd & CPlusTxEnb;
737 }
738
739 static void rtl8139_write_buffer(RTL8139State *s, const void *buf, int size)
740 {
741 if (s->RxBufAddr + size > s->RxBufferSize)
742 {
743 int wrapped = MOD2(s->RxBufAddr + size, s->RxBufferSize);
744
745 /* write packet data */
746 if (wrapped && !(s->RxBufferSize < 65536 && rtl8139_RxWrap(s)))
747 {
748 DPRINTF(">>> rx packet wrapped in buffer at %d\n", size - wrapped);
749
750 if (size > wrapped)
751 {
752 pci_dma_write(&s->dev, s->RxBuf + s->RxBufAddr,
753 buf, size-wrapped);
754 }
755
756 /* reset buffer pointer */
757 s->RxBufAddr = 0;
758
759 pci_dma_write(&s->dev, s->RxBuf + s->RxBufAddr,
760 buf + (size-wrapped), wrapped);
761
762 s->RxBufAddr = wrapped;
763
764 return;
765 }
766 }
767
768 /* non-wrapping path or overwrapping enabled */
769 pci_dma_write(&s->dev, s->RxBuf + s->RxBufAddr, buf, size);
770
771 s->RxBufAddr += size;
772 }
773
774 #define MIN_BUF_SIZE 60
775 static inline dma_addr_t rtl8139_addr64(uint32_t low, uint32_t high)
776 {
777 #if TARGET_PHYS_ADDR_BITS > 32
778 return low | ((target_phys_addr_t)high << 32);
779 #else
780 return low;
781 #endif
782 }
783
784 static int rtl8139_can_receive(VLANClientState *nc)
785 {
786 RTL8139State *s = DO_UPCAST(NICState, nc, nc)->opaque;
787 int avail;
788
789 /* Receive (drop) packets if card is disabled. */
790 if (!s->clock_enabled)
791 return 1;
792 if (!rtl8139_receiver_enabled(s))
793 return 1;
794
795 if (rtl8139_cp_receiver_enabled(s)) {
796 /* ??? Flow control not implemented in c+ mode.
797 This is a hack to work around slirp deficiencies anyway. */
798 return 1;
799 } else {
800 avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr,
801 s->RxBufferSize);
802 return (avail == 0 || avail >= 1514);
803 }
804 }
805
806 static ssize_t rtl8139_do_receive(VLANClientState *nc, const uint8_t *buf, size_t size_, int do_interrupt)
807 {
808 RTL8139State *s = DO_UPCAST(NICState, nc, nc)->opaque;
809 /* size is the length of the buffer passed to the driver */
810 int size = size_;
811 const uint8_t *dot1q_buf = NULL;
812
813 uint32_t packet_header = 0;
814
815 uint8_t buf1[MIN_BUF_SIZE + VLAN_HLEN];
816 static const uint8_t broadcast_macaddr[6] =
817 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
818
819 DPRINTF(">>> received len=%d\n", size);
820
821 /* test if board clock is stopped */
822 if (!s->clock_enabled)
823 {
824 DPRINTF("stopped ==========================\n");
825 return -1;
826 }
827
828 /* first check if receiver is enabled */
829
830 if (!rtl8139_receiver_enabled(s))
831 {
832 DPRINTF("receiver disabled ================\n");
833 return -1;
834 }
835
836 /* XXX: check this */
837 if (s->RxConfig & AcceptAllPhys) {
838 /* promiscuous: receive all */
839 DPRINTF(">>> packet received in promiscuous mode\n");
840
841 } else {
842 if (!memcmp(buf, broadcast_macaddr, 6)) {
843 /* broadcast address */
844 if (!(s->RxConfig & AcceptBroadcast))
845 {
846 DPRINTF(">>> broadcast packet rejected\n");
847
848 /* update tally counter */
849 ++s->tally_counters.RxERR;
850
851 return size;
852 }
853
854 packet_header |= RxBroadcast;
855
856 DPRINTF(">>> broadcast packet received\n");
857
858 /* update tally counter */
859 ++s->tally_counters.RxOkBrd;
860
861 } else if (buf[0] & 0x01) {
862 /* multicast */
863 if (!(s->RxConfig & AcceptMulticast))
864 {
865 DPRINTF(">>> multicast packet rejected\n");
866
867 /* update tally counter */
868 ++s->tally_counters.RxERR;
869
870 return size;
871 }
872
873 int mcast_idx = compute_mcast_idx(buf);
874
875 if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
876 {
877 DPRINTF(">>> multicast address mismatch\n");
878
879 /* update tally counter */
880 ++s->tally_counters.RxERR;
881
882 return size;
883 }
884
885 packet_header |= RxMulticast;
886
887 DPRINTF(">>> multicast packet received\n");
888
889 /* update tally counter */
890 ++s->tally_counters.RxOkMul;
891
892 } else if (s->phys[0] == buf[0] &&
893 s->phys[1] == buf[1] &&
894 s->phys[2] == buf[2] &&
895 s->phys[3] == buf[3] &&
896 s->phys[4] == buf[4] &&
897 s->phys[5] == buf[5]) {
898 /* match */
899 if (!(s->RxConfig & AcceptMyPhys))
900 {
901 DPRINTF(">>> rejecting physical address matching packet\n");
902
903 /* update tally counter */
904 ++s->tally_counters.RxERR;
905
906 return size;
907 }
908
909 packet_header |= RxPhysical;
910
911 DPRINTF(">>> physical address matching packet received\n");
912
913 /* update tally counter */
914 ++s->tally_counters.RxOkPhy;
915
916 } else {
917
918 DPRINTF(">>> unknown packet\n");
919
920 /* update tally counter */
921 ++s->tally_counters.RxERR;
922
923 return size;
924 }
925 }
926
927 /* if too small buffer, then expand it
928 * Include some tailroom in case a vlan tag is later removed. */
929 if (size < MIN_BUF_SIZE + VLAN_HLEN) {
930 memcpy(buf1, buf, size);
931 memset(buf1 + size, 0, MIN_BUF_SIZE + VLAN_HLEN - size);
932 buf = buf1;
933 if (size < MIN_BUF_SIZE) {
934 size = MIN_BUF_SIZE;
935 }
936 }
937
938 if (rtl8139_cp_receiver_enabled(s))
939 {
940 DPRINTF("in C+ Rx mode ================\n");
941
942 /* begin C+ receiver mode */
943
944 /* w0 ownership flag */
945 #define CP_RX_OWN (1<<31)
946 /* w0 end of ring flag */
947 #define CP_RX_EOR (1<<30)
948 /* w0 bits 0...12 : buffer size */
949 #define CP_RX_BUFFER_SIZE_MASK ((1<<13) - 1)
950 /* w1 tag available flag */
951 #define CP_RX_TAVA (1<<16)
952 /* w1 bits 0...15 : VLAN tag */
953 #define CP_RX_VLAN_TAG_MASK ((1<<16) - 1)
954 /* w2 low 32bit of Rx buffer ptr */
955 /* w3 high 32bit of Rx buffer ptr */
956
957 int descriptor = s->currCPlusRxDesc;
958 dma_addr_t cplus_rx_ring_desc;
959
960 cplus_rx_ring_desc = rtl8139_addr64(s->RxRingAddrLO, s->RxRingAddrHI);
961 cplus_rx_ring_desc += 16 * descriptor;
962
963 DPRINTF("+++ C+ mode reading RX descriptor %d from host memory at "
964 "%08x %08x = "DMA_ADDR_FMT"\n", descriptor, s->RxRingAddrHI,
965 s->RxRingAddrLO, cplus_rx_ring_desc);
966
967 uint32_t val, rxdw0,rxdw1,rxbufLO,rxbufHI;
968
969 pci_dma_read(&s->dev, cplus_rx_ring_desc, &val, 4);
970 rxdw0 = le32_to_cpu(val);
971 pci_dma_read(&s->dev, cplus_rx_ring_desc+4, &val, 4);
972 rxdw1 = le32_to_cpu(val);
973 pci_dma_read(&s->dev, cplus_rx_ring_desc+8, &val, 4);
974 rxbufLO = le32_to_cpu(val);
975 pci_dma_read(&s->dev, cplus_rx_ring_desc+12, &val, 4);
976 rxbufHI = le32_to_cpu(val);
977
978 DPRINTF("+++ C+ mode RX descriptor %d %08x %08x %08x %08x\n",
979 descriptor, rxdw0, rxdw1, rxbufLO, rxbufHI);
980
981 if (!(rxdw0 & CP_RX_OWN))
982 {
983 DPRINTF("C+ Rx mode : descriptor %d is owned by host\n",
984 descriptor);
985
986 s->IntrStatus |= RxOverflow;
987 ++s->RxMissed;
988
989 /* update tally counter */
990 ++s->tally_counters.RxERR;
991 ++s->tally_counters.MissPkt;
992
993 rtl8139_update_irq(s);
994 return size_;
995 }
996
997 uint32_t rx_space = rxdw0 & CP_RX_BUFFER_SIZE_MASK;
998
999 /* write VLAN info to descriptor variables. */
1000 if (s->CpCmd & CPlusRxVLAN && be16_to_cpup((uint16_t *)
1001 &buf[ETHER_ADDR_LEN * 2]) == ETH_P_8021Q) {
1002 dot1q_buf = &buf[ETHER_ADDR_LEN * 2];
1003 size -= VLAN_HLEN;
1004 /* if too small buffer, use the tailroom added duing expansion */
1005 if (size < MIN_BUF_SIZE) {
1006 size = MIN_BUF_SIZE;
1007 }
1008
1009 rxdw1 &= ~CP_RX_VLAN_TAG_MASK;
1010 /* BE + ~le_to_cpu()~ + cpu_to_le() = BE */
1011 rxdw1 |= CP_RX_TAVA | le16_to_cpup((uint16_t *)
1012 &dot1q_buf[ETHER_TYPE_LEN]);
1013
1014 DPRINTF("C+ Rx mode : extracted vlan tag with tci: ""%u\n",
1015 be16_to_cpup((uint16_t *)&dot1q_buf[ETHER_TYPE_LEN]));
1016 } else {
1017 /* reset VLAN tag flag */
1018 rxdw1 &= ~CP_RX_TAVA;
1019 }
1020
1021 /* TODO: scatter the packet over available receive ring descriptors space */
1022
1023 if (size+4 > rx_space)
1024 {
1025 DPRINTF("C+ Rx mode : descriptor %d size %d received %d + 4\n",
1026 descriptor, rx_space, size);
1027
1028 s->IntrStatus |= RxOverflow;
1029 ++s->RxMissed;
1030
1031 /* update tally counter */
1032 ++s->tally_counters.RxERR;
1033 ++s->tally_counters.MissPkt;
1034
1035 rtl8139_update_irq(s);
1036 return size_;
1037 }
1038
1039 dma_addr_t rx_addr = rtl8139_addr64(rxbufLO, rxbufHI);
1040
1041 /* receive/copy to target memory */
1042 if (dot1q_buf) {
1043 pci_dma_write(&s->dev, rx_addr, buf, 2 * ETHER_ADDR_LEN);
1044 pci_dma_write(&s->dev, rx_addr + 2 * ETHER_ADDR_LEN,
1045 buf + 2 * ETHER_ADDR_LEN + VLAN_HLEN,
1046 size - 2 * ETHER_ADDR_LEN);
1047 } else {
1048 pci_dma_write(&s->dev, rx_addr, buf, size);
1049 }
1050
1051 if (s->CpCmd & CPlusRxChkSum)
1052 {
1053 /* do some packet checksumming */
1054 }
1055
1056 /* write checksum */
1057 val = cpu_to_le32(crc32(0, buf, size_));
1058 pci_dma_write(&s->dev, rx_addr+size, (uint8_t *)&val, 4);
1059
1060 /* first segment of received packet flag */
1061 #define CP_RX_STATUS_FS (1<<29)
1062 /* last segment of received packet flag */
1063 #define CP_RX_STATUS_LS (1<<28)
1064 /* multicast packet flag */
1065 #define CP_RX_STATUS_MAR (1<<26)
1066 /* physical-matching packet flag */
1067 #define CP_RX_STATUS_PAM (1<<25)
1068 /* broadcast packet flag */
1069 #define CP_RX_STATUS_BAR (1<<24)
1070 /* runt packet flag */
1071 #define CP_RX_STATUS_RUNT (1<<19)
1072 /* crc error flag */
1073 #define CP_RX_STATUS_CRC (1<<18)
1074 /* IP checksum error flag */
1075 #define CP_RX_STATUS_IPF (1<<15)
1076 /* UDP checksum error flag */
1077 #define CP_RX_STATUS_UDPF (1<<14)
1078 /* TCP checksum error flag */
1079 #define CP_RX_STATUS_TCPF (1<<13)
1080
1081 /* transfer ownership to target */
1082 rxdw0 &= ~CP_RX_OWN;
1083
1084 /* set first segment bit */
1085 rxdw0 |= CP_RX_STATUS_FS;
1086
1087 /* set last segment bit */
1088 rxdw0 |= CP_RX_STATUS_LS;
1089
1090 /* set received packet type flags */
1091 if (packet_header & RxBroadcast)
1092 rxdw0 |= CP_RX_STATUS_BAR;
1093 if (packet_header & RxMulticast)
1094 rxdw0 |= CP_RX_STATUS_MAR;
1095 if (packet_header & RxPhysical)
1096 rxdw0 |= CP_RX_STATUS_PAM;
1097
1098 /* set received size */
1099 rxdw0 &= ~CP_RX_BUFFER_SIZE_MASK;
1100 rxdw0 |= (size+4);
1101
1102 /* update ring data */
1103 val = cpu_to_le32(rxdw0);
1104 pci_dma_write(&s->dev, cplus_rx_ring_desc, (uint8_t *)&val, 4);
1105 val = cpu_to_le32(rxdw1);
1106 pci_dma_write(&s->dev, cplus_rx_ring_desc+4, (uint8_t *)&val, 4);
1107
1108 /* update tally counter */
1109 ++s->tally_counters.RxOk;
1110
1111 /* seek to next Rx descriptor */
1112 if (rxdw0 & CP_RX_EOR)
1113 {
1114 s->currCPlusRxDesc = 0;
1115 }
1116 else
1117 {
1118 ++s->currCPlusRxDesc;
1119 }
1120
1121 DPRINTF("done C+ Rx mode ----------------\n");
1122
1123 }
1124 else
1125 {
1126 DPRINTF("in ring Rx mode ================\n");
1127
1128 /* begin ring receiver mode */
1129 int avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr, s->RxBufferSize);
1130
1131 /* if receiver buffer is empty then avail == 0 */
1132
1133 if (avail != 0 && size + 8 >= avail)
1134 {
1135 DPRINTF("rx overflow: rx buffer length %d head 0x%04x "
1136 "read 0x%04x === available 0x%04x need 0x%04x\n",
1137 s->RxBufferSize, s->RxBufAddr, s->RxBufPtr, avail, size + 8);
1138
1139 s->IntrStatus |= RxOverflow;
1140 ++s->RxMissed;
1141 rtl8139_update_irq(s);
1142 return size_;
1143 }
1144
1145 packet_header |= RxStatusOK;
1146
1147 packet_header |= (((size+4) << 16) & 0xffff0000);
1148
1149 /* write header */
1150 uint32_t val = cpu_to_le32(packet_header);
1151
1152 rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1153
1154 rtl8139_write_buffer(s, buf, size);
1155
1156 /* write checksum */
1157 val = cpu_to_le32(crc32(0, buf, size));
1158 rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1159
1160 /* correct buffer write pointer */
1161 s->RxBufAddr = MOD2((s->RxBufAddr + 3) & ~0x3, s->RxBufferSize);
1162
1163 /* now we can signal we have received something */
1164
1165 DPRINTF("received: rx buffer length %d head 0x%04x read 0x%04x\n",
1166 s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
1167 }
1168
1169 s->IntrStatus |= RxOK;
1170
1171 if (do_interrupt)
1172 {
1173 rtl8139_update_irq(s);
1174 }
1175
1176 return size_;
1177 }
1178
1179 static ssize_t rtl8139_receive(VLANClientState *nc, const uint8_t *buf, size_t size)
1180 {
1181 return rtl8139_do_receive(nc, buf, size, 1);
1182 }
1183
1184 static void rtl8139_reset_rxring(RTL8139State *s, uint32_t bufferSize)
1185 {
1186 s->RxBufferSize = bufferSize;
1187 s->RxBufPtr = 0;
1188 s->RxBufAddr = 0;
1189 }
1190
1191 static void rtl8139_reset(DeviceState *d)
1192 {
1193 RTL8139State *s = container_of(d, RTL8139State, dev.qdev);
1194 int i;
1195
1196 /* restore MAC address */
1197 memcpy(s->phys, s->conf.macaddr.a, 6);
1198
1199 /* reset interrupt mask */
1200 s->IntrStatus = 0;
1201 s->IntrMask = 0;
1202
1203 rtl8139_update_irq(s);
1204
1205 /* mark all status registers as owned by host */
1206 for (i = 0; i < 4; ++i)
1207 {
1208 s->TxStatus[i] = TxHostOwns;
1209 }
1210
1211 s->currTxDesc = 0;
1212 s->currCPlusRxDesc = 0;
1213 s->currCPlusTxDesc = 0;
1214
1215 s->RxRingAddrLO = 0;
1216 s->RxRingAddrHI = 0;
1217
1218 s->RxBuf = 0;
1219
1220 rtl8139_reset_rxring(s, 8192);
1221
1222 /* ACK the reset */
1223 s->TxConfig = 0;
1224
1225 #if 0
1226 // s->TxConfig |= HW_REVID(1, 0, 0, 0, 0, 0, 0); // RTL-8139 HasHltClk
1227 s->clock_enabled = 0;
1228 #else
1229 s->TxConfig |= HW_REVID(1, 1, 1, 0, 1, 1, 0); // RTL-8139C+ HasLWake
1230 s->clock_enabled = 1;
1231 #endif
1232
1233 s->bChipCmdState = CmdReset; /* RxBufEmpty bit is calculated on read from ChipCmd */;
1234
1235 /* set initial state data */
1236 s->Config0 = 0x0; /* No boot ROM */
1237 s->Config1 = 0xC; /* IO mapped and MEM mapped registers available */
1238 s->Config3 = 0x1; /* fast back-to-back compatible */
1239 s->Config5 = 0x0;
1240
1241 s->CSCR = CSCR_F_LINK_100 | CSCR_HEART_BIT | CSCR_LD;
1242
1243 s->CpCmd = 0x0; /* reset C+ mode */
1244 s->cplus_enabled = 0;
1245
1246
1247 // s->BasicModeCtrl = 0x3100; // 100Mbps, full duplex, autonegotiation
1248 // s->BasicModeCtrl = 0x2100; // 100Mbps, full duplex
1249 s->BasicModeCtrl = 0x1000; // autonegotiation
1250
1251 s->BasicModeStatus = 0x7809;
1252 //s->BasicModeStatus |= 0x0040; /* UTP medium */
1253 s->BasicModeStatus |= 0x0020; /* autonegotiation completed */
1254 s->BasicModeStatus |= 0x0004; /* link is up */
1255
1256 s->NWayAdvert = 0x05e1; /* all modes, full duplex */
1257 s->NWayLPAR = 0x05e1; /* all modes, full duplex */
1258 s->NWayExpansion = 0x0001; /* autonegotiation supported */
1259
1260 /* also reset timer and disable timer interrupt */
1261 s->TCTR = 0;
1262 s->TimerInt = 0;
1263 s->TCTR_base = 0;
1264
1265 /* reset tally counters */
1266 RTL8139TallyCounters_clear(&s->tally_counters);
1267 }
1268
1269 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters)
1270 {
1271 counters->TxOk = 0;
1272 counters->RxOk = 0;
1273 counters->TxERR = 0;
1274 counters->RxERR = 0;
1275 counters->MissPkt = 0;
1276 counters->FAE = 0;
1277 counters->Tx1Col = 0;
1278 counters->TxMCol = 0;
1279 counters->RxOkPhy = 0;
1280 counters->RxOkBrd = 0;
1281 counters->RxOkMul = 0;
1282 counters->TxAbt = 0;
1283 counters->TxUndrn = 0;
1284 }
1285
1286 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr)
1287 {
1288 RTL8139TallyCounters *tally_counters = &s->tally_counters;
1289 uint16_t val16;
1290 uint32_t val32;
1291 uint64_t val64;
1292
1293 val64 = cpu_to_le64(tally_counters->TxOk);
1294 pci_dma_write(&s->dev, tc_addr + 0, (uint8_t *)&val64, 8);
1295
1296 val64 = cpu_to_le64(tally_counters->RxOk);
1297 pci_dma_write(&s->dev, tc_addr + 8, (uint8_t *)&val64, 8);
1298
1299 val64 = cpu_to_le64(tally_counters->TxERR);
1300 pci_dma_write(&s->dev, tc_addr + 16, (uint8_t *)&val64, 8);
1301
1302 val32 = cpu_to_le32(tally_counters->RxERR);
1303 pci_dma_write(&s->dev, tc_addr + 24, (uint8_t *)&val32, 4);
1304
1305 val16 = cpu_to_le16(tally_counters->MissPkt);
1306 pci_dma_write(&s->dev, tc_addr + 28, (uint8_t *)&val16, 2);
1307
1308 val16 = cpu_to_le16(tally_counters->FAE);
1309 pci_dma_write(&s->dev, tc_addr + 30, (uint8_t *)&val16, 2);
1310
1311 val32 = cpu_to_le32(tally_counters->Tx1Col);
1312 pci_dma_write(&s->dev, tc_addr + 32, (uint8_t *)&val32, 4);
1313
1314 val32 = cpu_to_le32(tally_counters->TxMCol);
1315 pci_dma_write(&s->dev, tc_addr + 36, (uint8_t *)&val32, 4);
1316
1317 val64 = cpu_to_le64(tally_counters->RxOkPhy);
1318 pci_dma_write(&s->dev, tc_addr + 40, (uint8_t *)&val64, 8);
1319
1320 val64 = cpu_to_le64(tally_counters->RxOkBrd);
1321 pci_dma_write(&s->dev, tc_addr + 48, (uint8_t *)&val64, 8);
1322
1323 val32 = cpu_to_le32(tally_counters->RxOkMul);
1324 pci_dma_write(&s->dev, tc_addr + 56, (uint8_t *)&val32, 4);
1325
1326 val16 = cpu_to_le16(tally_counters->TxAbt);
1327 pci_dma_write(&s->dev, tc_addr + 60, (uint8_t *)&val16, 2);
1328
1329 val16 = cpu_to_le16(tally_counters->TxUndrn);
1330 pci_dma_write(&s->dev, tc_addr + 62, (uint8_t *)&val16, 2);
1331 }
1332
1333 /* Loads values of tally counters from VM state file */
1334
1335 static const VMStateDescription vmstate_tally_counters = {
1336 .name = "tally_counters",
1337 .version_id = 1,
1338 .minimum_version_id = 1,
1339 .minimum_version_id_old = 1,
1340 .fields = (VMStateField []) {
1341 VMSTATE_UINT64(TxOk, RTL8139TallyCounters),
1342 VMSTATE_UINT64(RxOk, RTL8139TallyCounters),
1343 VMSTATE_UINT64(TxERR, RTL8139TallyCounters),
1344 VMSTATE_UINT32(RxERR, RTL8139TallyCounters),
1345 VMSTATE_UINT16(MissPkt, RTL8139TallyCounters),
1346 VMSTATE_UINT16(FAE, RTL8139TallyCounters),
1347 VMSTATE_UINT32(Tx1Col, RTL8139TallyCounters),
1348 VMSTATE_UINT32(TxMCol, RTL8139TallyCounters),
1349 VMSTATE_UINT64(RxOkPhy, RTL8139TallyCounters),
1350 VMSTATE_UINT64(RxOkBrd, RTL8139TallyCounters),
1351 VMSTATE_UINT16(TxAbt, RTL8139TallyCounters),
1352 VMSTATE_UINT16(TxUndrn, RTL8139TallyCounters),
1353 VMSTATE_END_OF_LIST()
1354 }
1355 };
1356
1357 static void rtl8139_ChipCmd_write(RTL8139State *s, uint32_t val)
1358 {
1359 val &= 0xff;
1360
1361 DPRINTF("ChipCmd write val=0x%08x\n", val);
1362
1363 if (val & CmdReset)
1364 {
1365 DPRINTF("ChipCmd reset\n");
1366 rtl8139_reset(&s->dev.qdev);
1367 }
1368 if (val & CmdRxEnb)
1369 {
1370 DPRINTF("ChipCmd enable receiver\n");
1371
1372 s->currCPlusRxDesc = 0;
1373 }
1374 if (val & CmdTxEnb)
1375 {
1376 DPRINTF("ChipCmd enable transmitter\n");
1377
1378 s->currCPlusTxDesc = 0;
1379 }
1380
1381 /* mask unwritable bits */
1382 val = SET_MASKED(val, 0xe3, s->bChipCmdState);
1383
1384 /* Deassert reset pin before next read */
1385 val &= ~CmdReset;
1386
1387 s->bChipCmdState = val;
1388 }
1389
1390 static int rtl8139_RxBufferEmpty(RTL8139State *s)
1391 {
1392 int unread = MOD2(s->RxBufferSize + s->RxBufAddr - s->RxBufPtr, s->RxBufferSize);
1393
1394 if (unread != 0)
1395 {
1396 DPRINTF("receiver buffer data available 0x%04x\n", unread);
1397 return 0;
1398 }
1399
1400 DPRINTF("receiver buffer is empty\n");
1401
1402 return 1;
1403 }
1404
1405 static uint32_t rtl8139_ChipCmd_read(RTL8139State *s)
1406 {
1407 uint32_t ret = s->bChipCmdState;
1408
1409 if (rtl8139_RxBufferEmpty(s))
1410 ret |= RxBufEmpty;
1411
1412 DPRINTF("ChipCmd read val=0x%04x\n", ret);
1413
1414 return ret;
1415 }
1416
1417 static void rtl8139_CpCmd_write(RTL8139State *s, uint32_t val)
1418 {
1419 val &= 0xffff;
1420
1421 DPRINTF("C+ command register write(w) val=0x%04x\n", val);
1422
1423 s->cplus_enabled = 1;
1424
1425 /* mask unwritable bits */
1426 val = SET_MASKED(val, 0xff84, s->CpCmd);
1427
1428 s->CpCmd = val;
1429 }
1430
1431 static uint32_t rtl8139_CpCmd_read(RTL8139State *s)
1432 {
1433 uint32_t ret = s->CpCmd;
1434
1435 DPRINTF("C+ command register read(w) val=0x%04x\n", ret);
1436
1437 return ret;
1438 }
1439
1440 static void rtl8139_IntrMitigate_write(RTL8139State *s, uint32_t val)
1441 {
1442 DPRINTF("C+ IntrMitigate register write(w) val=0x%04x\n", val);
1443 }
1444
1445 static uint32_t rtl8139_IntrMitigate_read(RTL8139State *s)
1446 {
1447 uint32_t ret = 0;
1448
1449 DPRINTF("C+ IntrMitigate register read(w) val=0x%04x\n", ret);
1450
1451 return ret;
1452 }
1453
1454 static int rtl8139_config_writable(RTL8139State *s)
1455 {
1456 if ((s->Cfg9346 & Chip9346_op_mask) == Cfg9346_ConfigWrite)
1457 {
1458 return 1;
1459 }
1460
1461 DPRINTF("Configuration registers are write-protected\n");
1462
1463 return 0;
1464 }
1465
1466 static void rtl8139_BasicModeCtrl_write(RTL8139State *s, uint32_t val)
1467 {
1468 val &= 0xffff;
1469
1470 DPRINTF("BasicModeCtrl register write(w) val=0x%04x\n", val);
1471
1472 /* mask unwritable bits */
1473 uint32_t mask = 0x4cff;
1474
1475 if (1 || !rtl8139_config_writable(s))
1476 {
1477 /* Speed setting and autonegotiation enable bits are read-only */
1478 mask |= 0x3000;
1479 /* Duplex mode setting is read-only */
1480 mask |= 0x0100;
1481 }
1482
1483 val = SET_MASKED(val, mask, s->BasicModeCtrl);
1484
1485 s->BasicModeCtrl = val;
1486 }
1487
1488 static uint32_t rtl8139_BasicModeCtrl_read(RTL8139State *s)
1489 {
1490 uint32_t ret = s->BasicModeCtrl;
1491
1492 DPRINTF("BasicModeCtrl register read(w) val=0x%04x\n", ret);
1493
1494 return ret;
1495 }
1496
1497 static void rtl8139_BasicModeStatus_write(RTL8139State *s, uint32_t val)
1498 {
1499 val &= 0xffff;
1500
1501 DPRINTF("BasicModeStatus register write(w) val=0x%04x\n", val);
1502
1503 /* mask unwritable bits */
1504 val = SET_MASKED(val, 0xff3f, s->BasicModeStatus);
1505
1506 s->BasicModeStatus = val;
1507 }
1508
1509 static uint32_t rtl8139_BasicModeStatus_read(RTL8139State *s)
1510 {
1511 uint32_t ret = s->BasicModeStatus;
1512
1513 DPRINTF("BasicModeStatus register read(w) val=0x%04x\n", ret);
1514
1515 return ret;
1516 }
1517
1518 static void rtl8139_Cfg9346_write(RTL8139State *s, uint32_t val)
1519 {
1520 val &= 0xff;
1521
1522 DPRINTF("Cfg9346 write val=0x%02x\n", val);
1523
1524 /* mask unwritable bits */
1525 val = SET_MASKED(val, 0x31, s->Cfg9346);
1526
1527 uint32_t opmode = val & 0xc0;
1528 uint32_t eeprom_val = val & 0xf;
1529
1530 if (opmode == 0x80) {
1531 /* eeprom access */
1532 int eecs = (eeprom_val & 0x08)?1:0;
1533 int eesk = (eeprom_val & 0x04)?1:0;
1534 int eedi = (eeprom_val & 0x02)?1:0;
1535 prom9346_set_wire(s, eecs, eesk, eedi);
1536 } else if (opmode == 0x40) {
1537 /* Reset. */
1538 val = 0;
1539 rtl8139_reset(&s->dev.qdev);
1540 }
1541
1542 s->Cfg9346 = val;
1543 }
1544
1545 static uint32_t rtl8139_Cfg9346_read(RTL8139State *s)
1546 {
1547 uint32_t ret = s->Cfg9346;
1548
1549 uint32_t opmode = ret & 0xc0;
1550
1551 if (opmode == 0x80)
1552 {
1553 /* eeprom access */
1554 int eedo = prom9346_get_wire(s);
1555 if (eedo)
1556 {
1557 ret |= 0x01;
1558 }
1559 else
1560 {
1561 ret &= ~0x01;
1562 }
1563 }
1564
1565 DPRINTF("Cfg9346 read val=0x%02x\n", ret);
1566
1567 return ret;
1568 }
1569
1570 static void rtl8139_Config0_write(RTL8139State *s, uint32_t val)
1571 {
1572 val &= 0xff;
1573
1574 DPRINTF("Config0 write val=0x%02x\n", val);
1575
1576 if (!rtl8139_config_writable(s)) {
1577 return;
1578 }
1579
1580 /* mask unwritable bits */
1581 val = SET_MASKED(val, 0xf8, s->Config0);
1582
1583 s->Config0 = val;
1584 }
1585
1586 static uint32_t rtl8139_Config0_read(RTL8139State *s)
1587 {
1588 uint32_t ret = s->Config0;
1589
1590 DPRINTF("Config0 read val=0x%02x\n", ret);
1591
1592 return ret;
1593 }
1594
1595 static void rtl8139_Config1_write(RTL8139State *s, uint32_t val)
1596 {
1597 val &= 0xff;
1598
1599 DPRINTF("Config1 write val=0x%02x\n", val);
1600
1601 if (!rtl8139_config_writable(s)) {
1602 return;
1603 }
1604
1605 /* mask unwritable bits */
1606 val = SET_MASKED(val, 0xC, s->Config1);
1607
1608 s->Config1 = val;
1609 }
1610
1611 static uint32_t rtl8139_Config1_read(RTL8139State *s)
1612 {
1613 uint32_t ret = s->Config1;
1614
1615 DPRINTF("Config1 read val=0x%02x\n", ret);
1616
1617 return ret;
1618 }
1619
1620 static void rtl8139_Config3_write(RTL8139State *s, uint32_t val)
1621 {
1622 val &= 0xff;
1623
1624 DPRINTF("Config3 write val=0x%02x\n", val);
1625
1626 if (!rtl8139_config_writable(s)) {
1627 return;
1628 }
1629
1630 /* mask unwritable bits */
1631 val = SET_MASKED(val, 0x8F, s->Config3);
1632
1633 s->Config3 = val;
1634 }
1635
1636 static uint32_t rtl8139_Config3_read(RTL8139State *s)
1637 {
1638 uint32_t ret = s->Config3;
1639
1640 DPRINTF("Config3 read val=0x%02x\n", ret);
1641
1642 return ret;
1643 }
1644
1645 static void rtl8139_Config4_write(RTL8139State *s, uint32_t val)
1646 {
1647 val &= 0xff;
1648
1649 DPRINTF("Config4 write val=0x%02x\n", val);
1650
1651 if (!rtl8139_config_writable(s)) {
1652 return;
1653 }
1654
1655 /* mask unwritable bits */
1656 val = SET_MASKED(val, 0x0a, s->Config4);
1657
1658 s->Config4 = val;
1659 }
1660
1661 static uint32_t rtl8139_Config4_read(RTL8139State *s)
1662 {
1663 uint32_t ret = s->Config4;
1664
1665 DPRINTF("Config4 read val=0x%02x\n", ret);
1666
1667 return ret;
1668 }
1669
1670 static void rtl8139_Config5_write(RTL8139State *s, uint32_t val)
1671 {
1672 val &= 0xff;
1673
1674 DPRINTF("Config5 write val=0x%02x\n", val);
1675
1676 /* mask unwritable bits */
1677 val = SET_MASKED(val, 0x80, s->Config5);
1678
1679 s->Config5 = val;
1680 }
1681
1682 static uint32_t rtl8139_Config5_read(RTL8139State *s)
1683 {
1684 uint32_t ret = s->Config5;
1685
1686 DPRINTF("Config5 read val=0x%02x\n", ret);
1687
1688 return ret;
1689 }
1690
1691 static void rtl8139_TxConfig_write(RTL8139State *s, uint32_t val)
1692 {
1693 if (!rtl8139_transmitter_enabled(s))
1694 {
1695 DPRINTF("transmitter disabled; no TxConfig write val=0x%08x\n", val);
1696 return;
1697 }
1698
1699 DPRINTF("TxConfig write val=0x%08x\n", val);
1700
1701 val = SET_MASKED(val, TxVersionMask | 0x8070f80f, s->TxConfig);
1702
1703 s->TxConfig = val;
1704 }
1705
1706 static void rtl8139_TxConfig_writeb(RTL8139State *s, uint32_t val)
1707 {
1708 DPRINTF("RTL8139C TxConfig via write(b) val=0x%02x\n", val);
1709
1710 uint32_t tc = s->TxConfig;
1711 tc &= 0xFFFFFF00;
1712 tc |= (val & 0x000000FF);
1713 rtl8139_TxConfig_write(s, tc);
1714 }
1715
1716 static uint32_t rtl8139_TxConfig_read(RTL8139State *s)
1717 {
1718 uint32_t ret = s->TxConfig;
1719
1720 DPRINTF("TxConfig read val=0x%04x\n", ret);
1721
1722 return ret;
1723 }
1724
1725 static void rtl8139_RxConfig_write(RTL8139State *s, uint32_t val)
1726 {
1727 DPRINTF("RxConfig write val=0x%08x\n", val);
1728
1729 /* mask unwritable bits */
1730 val = SET_MASKED(val, 0xf0fc0040, s->RxConfig);
1731
1732 s->RxConfig = val;
1733
1734 /* reset buffer size and read/write pointers */
1735 rtl8139_reset_rxring(s, 8192 << ((s->RxConfig >> 11) & 0x3));
1736
1737 DPRINTF("RxConfig write reset buffer size to %d\n", s->RxBufferSize);
1738 }
1739
1740 static uint32_t rtl8139_RxConfig_read(RTL8139State *s)
1741 {
1742 uint32_t ret = s->RxConfig;
1743
1744 DPRINTF("RxConfig read val=0x%08x\n", ret);
1745
1746 return ret;
1747 }
1748
1749 static void rtl8139_transfer_frame(RTL8139State *s, uint8_t *buf, int size,
1750 int do_interrupt, const uint8_t *dot1q_buf)
1751 {
1752 struct iovec *iov = NULL;
1753
1754 if (!size)
1755 {
1756 DPRINTF("+++ empty ethernet frame\n");
1757 return;
1758 }
1759
1760 if (dot1q_buf && size >= ETHER_ADDR_LEN * 2) {
1761 iov = (struct iovec[3]) {
1762 { .iov_base = buf, .iov_len = ETHER_ADDR_LEN * 2 },
1763 { .iov_base = (void *) dot1q_buf, .iov_len = VLAN_HLEN },
1764 { .iov_base = buf + ETHER_ADDR_LEN * 2,
1765 .iov_len = size - ETHER_ADDR_LEN * 2 },
1766 };
1767 }
1768
1769 if (TxLoopBack == (s->TxConfig & TxLoopBack))
1770 {
1771 size_t buf2_size;
1772 uint8_t *buf2;
1773
1774 if (iov) {
1775 buf2_size = iov_size(iov, 3);
1776 buf2 = g_malloc(buf2_size);
1777 iov_to_buf(iov, 3, buf2, 0, buf2_size);
1778 buf = buf2;
1779 }
1780
1781 DPRINTF("+++ transmit loopback mode\n");
1782 rtl8139_do_receive(&s->nic->nc, buf, size, do_interrupt);
1783
1784 if (iov) {
1785 g_free(buf2);
1786 }
1787 }
1788 else
1789 {
1790 if (iov) {
1791 qemu_sendv_packet(&s->nic->nc, iov, 3);
1792 } else {
1793 qemu_send_packet(&s->nic->nc, buf, size);
1794 }
1795 }
1796 }
1797
1798 static int rtl8139_transmit_one(RTL8139State *s, int descriptor)
1799 {
1800 if (!rtl8139_transmitter_enabled(s))
1801 {
1802 DPRINTF("+++ cannot transmit from descriptor %d: transmitter "
1803 "disabled\n", descriptor);
1804 return 0;
1805 }
1806
1807 if (s->TxStatus[descriptor] & TxHostOwns)
1808 {
1809 DPRINTF("+++ cannot transmit from descriptor %d: owned by host "
1810 "(%08x)\n", descriptor, s->TxStatus[descriptor]);
1811 return 0;
1812 }
1813
1814 DPRINTF("+++ transmitting from descriptor %d\n", descriptor);
1815
1816 int txsize = s->TxStatus[descriptor] & 0x1fff;
1817 uint8_t txbuffer[0x2000];
1818
1819 DPRINTF("+++ transmit reading %d bytes from host memory at 0x%08x\n",
1820 txsize, s->TxAddr[descriptor]);
1821
1822 pci_dma_read(&s->dev, s->TxAddr[descriptor], txbuffer, txsize);
1823
1824 /* Mark descriptor as transferred */
1825 s->TxStatus[descriptor] |= TxHostOwns;
1826 s->TxStatus[descriptor] |= TxStatOK;
1827
1828 rtl8139_transfer_frame(s, txbuffer, txsize, 0, NULL);
1829
1830 DPRINTF("+++ transmitted %d bytes from descriptor %d\n", txsize,
1831 descriptor);
1832
1833 /* update interrupt */
1834 s->IntrStatus |= TxOK;
1835 rtl8139_update_irq(s);
1836
1837 return 1;
1838 }
1839
1840 /* structures and macros for task offloading */
1841 typedef struct ip_header
1842 {
1843 uint8_t ip_ver_len; /* version and header length */
1844 uint8_t ip_tos; /* type of service */
1845 uint16_t ip_len; /* total length */
1846 uint16_t ip_id; /* identification */
1847 uint16_t ip_off; /* fragment offset field */
1848 uint8_t ip_ttl; /* time to live */
1849 uint8_t ip_p; /* protocol */
1850 uint16_t ip_sum; /* checksum */
1851 uint32_t ip_src,ip_dst; /* source and dest address */
1852 } ip_header;
1853
1854 #define IP_HEADER_VERSION_4 4
1855 #define IP_HEADER_VERSION(ip) ((ip->ip_ver_len >> 4)&0xf)
1856 #define IP_HEADER_LENGTH(ip) (((ip->ip_ver_len)&0xf) << 2)
1857
1858 typedef struct tcp_header
1859 {
1860 uint16_t th_sport; /* source port */
1861 uint16_t th_dport; /* destination port */
1862 uint32_t th_seq; /* sequence number */
1863 uint32_t th_ack; /* acknowledgement number */
1864 uint16_t th_offset_flags; /* data offset, reserved 6 bits, TCP protocol flags */
1865 uint16_t th_win; /* window */
1866 uint16_t th_sum; /* checksum */
1867 uint16_t th_urp; /* urgent pointer */
1868 } tcp_header;
1869
1870 typedef struct udp_header
1871 {
1872 uint16_t uh_sport; /* source port */
1873 uint16_t uh_dport; /* destination port */
1874 uint16_t uh_ulen; /* udp length */
1875 uint16_t uh_sum; /* udp checksum */
1876 } udp_header;
1877
1878 typedef struct ip_pseudo_header
1879 {
1880 uint32_t ip_src;
1881 uint32_t ip_dst;
1882 uint8_t zeros;
1883 uint8_t ip_proto;
1884 uint16_t ip_payload;
1885 } ip_pseudo_header;
1886
1887 #define IP_PROTO_TCP 6
1888 #define IP_PROTO_UDP 17
1889
1890 #define TCP_HEADER_DATA_OFFSET(tcp) (((be16_to_cpu(tcp->th_offset_flags) >> 12)&0xf) << 2)
1891 #define TCP_FLAGS_ONLY(flags) ((flags)&0x3f)
1892 #define TCP_HEADER_FLAGS(tcp) TCP_FLAGS_ONLY(be16_to_cpu(tcp->th_offset_flags))
1893
1894 #define TCP_HEADER_CLEAR_FLAGS(tcp, off) ((tcp)->th_offset_flags &= cpu_to_be16(~TCP_FLAGS_ONLY(off)))
1895
1896 #define TCP_FLAG_FIN 0x01
1897 #define TCP_FLAG_PUSH 0x08
1898
1899 /* produces ones' complement sum of data */
1900 static uint16_t ones_complement_sum(uint8_t *data, size_t len)
1901 {
1902 uint32_t result = 0;
1903
1904 for (; len > 1; data+=2, len-=2)
1905 {
1906 result += *(uint16_t*)data;
1907 }
1908
1909 /* add the remainder byte */
1910 if (len)
1911 {
1912 uint8_t odd[2] = {*data, 0};
1913 result += *(uint16_t*)odd;
1914 }
1915
1916 while (result>>16)
1917 result = (result & 0xffff) + (result >> 16);
1918
1919 return result;
1920 }
1921
1922 static uint16_t ip_checksum(void *data, size_t len)
1923 {
1924 return ~ones_complement_sum((uint8_t*)data, len);
1925 }
1926
1927 static int rtl8139_cplus_transmit_one(RTL8139State *s)
1928 {
1929 if (!rtl8139_transmitter_enabled(s))
1930 {
1931 DPRINTF("+++ C+ mode: transmitter disabled\n");
1932 return 0;
1933 }
1934
1935 if (!rtl8139_cp_transmitter_enabled(s))
1936 {
1937 DPRINTF("+++ C+ mode: C+ transmitter disabled\n");
1938 return 0 ;
1939 }
1940
1941 int descriptor = s->currCPlusTxDesc;
1942
1943 dma_addr_t cplus_tx_ring_desc = rtl8139_addr64(s->TxAddr[0], s->TxAddr[1]);
1944
1945 /* Normal priority ring */
1946 cplus_tx_ring_desc += 16 * descriptor;
1947
1948 DPRINTF("+++ C+ mode reading TX descriptor %d from host memory at "
1949 "%08x %08x = 0x"DMA_ADDR_FMT"\n", descriptor, s->TxAddr[1],
1950 s->TxAddr[0], cplus_tx_ring_desc);
1951
1952 uint32_t val, txdw0,txdw1,txbufLO,txbufHI;
1953
1954 pci_dma_read(&s->dev, cplus_tx_ring_desc, (uint8_t *)&val, 4);
1955 txdw0 = le32_to_cpu(val);
1956 pci_dma_read(&s->dev, cplus_tx_ring_desc+4, (uint8_t *)&val, 4);
1957 txdw1 = le32_to_cpu(val);
1958 pci_dma_read(&s->dev, cplus_tx_ring_desc+8, (uint8_t *)&val, 4);
1959 txbufLO = le32_to_cpu(val);
1960 pci_dma_read(&s->dev, cplus_tx_ring_desc+12, (uint8_t *)&val, 4);
1961 txbufHI = le32_to_cpu(val);
1962
1963 DPRINTF("+++ C+ mode TX descriptor %d %08x %08x %08x %08x\n", descriptor,
1964 txdw0, txdw1, txbufLO, txbufHI);
1965
1966 /* w0 ownership flag */
1967 #define CP_TX_OWN (1<<31)
1968 /* w0 end of ring flag */
1969 #define CP_TX_EOR (1<<30)
1970 /* first segment of received packet flag */
1971 #define CP_TX_FS (1<<29)
1972 /* last segment of received packet flag */
1973 #define CP_TX_LS (1<<28)
1974 /* large send packet flag */
1975 #define CP_TX_LGSEN (1<<27)
1976 /* large send MSS mask, bits 16...25 */
1977 #define CP_TC_LGSEN_MSS_MASK ((1 << 12) - 1)
1978
1979 /* IP checksum offload flag */
1980 #define CP_TX_IPCS (1<<18)
1981 /* UDP checksum offload flag */
1982 #define CP_TX_UDPCS (1<<17)
1983 /* TCP checksum offload flag */
1984 #define CP_TX_TCPCS (1<<16)
1985
1986 /* w0 bits 0...15 : buffer size */
1987 #define CP_TX_BUFFER_SIZE (1<<16)
1988 #define CP_TX_BUFFER_SIZE_MASK (CP_TX_BUFFER_SIZE - 1)
1989 /* w1 add tag flag */
1990 #define CP_TX_TAGC (1<<17)
1991 /* w1 bits 0...15 : VLAN tag (big endian) */
1992 #define CP_TX_VLAN_TAG_MASK ((1<<16) - 1)
1993 /* w2 low 32bit of Rx buffer ptr */
1994 /* w3 high 32bit of Rx buffer ptr */
1995
1996 /* set after transmission */
1997 /* FIFO underrun flag */
1998 #define CP_TX_STATUS_UNF (1<<25)
1999 /* transmit error summary flag, valid if set any of three below */
2000 #define CP_TX_STATUS_TES (1<<23)
2001 /* out-of-window collision flag */
2002 #define CP_TX_STATUS_OWC (1<<22)
2003 /* link failure flag */
2004 #define CP_TX_STATUS_LNKF (1<<21)
2005 /* excessive collisions flag */
2006 #define CP_TX_STATUS_EXC (1<<20)
2007
2008 if (!(txdw0 & CP_TX_OWN))
2009 {
2010 DPRINTF("C+ Tx mode : descriptor %d is owned by host\n", descriptor);
2011 return 0 ;
2012 }
2013
2014 DPRINTF("+++ C+ Tx mode : transmitting from descriptor %d\n", descriptor);
2015
2016 if (txdw0 & CP_TX_FS)
2017 {
2018 DPRINTF("+++ C+ Tx mode : descriptor %d is first segment "
2019 "descriptor\n", descriptor);
2020
2021 /* reset internal buffer offset */
2022 s->cplus_txbuffer_offset = 0;
2023 }
2024
2025 int txsize = txdw0 & CP_TX_BUFFER_SIZE_MASK;
2026 dma_addr_t tx_addr = rtl8139_addr64(txbufLO, txbufHI);
2027
2028 /* make sure we have enough space to assemble the packet */
2029 if (!s->cplus_txbuffer)
2030 {
2031 s->cplus_txbuffer_len = CP_TX_BUFFER_SIZE;
2032 s->cplus_txbuffer = g_malloc(s->cplus_txbuffer_len);
2033 s->cplus_txbuffer_offset = 0;
2034
2035 DPRINTF("+++ C+ mode transmission buffer allocated space %d\n",
2036 s->cplus_txbuffer_len);
2037 }
2038
2039 if (s->cplus_txbuffer_offset + txsize >= s->cplus_txbuffer_len)
2040 {
2041 /* The spec didn't tell the maximum size, stick to CP_TX_BUFFER_SIZE */
2042 txsize = s->cplus_txbuffer_len - s->cplus_txbuffer_offset;
2043 DPRINTF("+++ C+ mode transmission buffer overrun, truncated descriptor"
2044 "length to %d\n", txsize);
2045 }
2046
2047 if (!s->cplus_txbuffer)
2048 {
2049 /* out of memory */
2050
2051 DPRINTF("+++ C+ mode transmiter failed to reallocate %d bytes\n",
2052 s->cplus_txbuffer_len);
2053
2054 /* update tally counter */
2055 ++s->tally_counters.TxERR;
2056 ++s->tally_counters.TxAbt;
2057
2058 return 0;
2059 }
2060
2061 /* append more data to the packet */
2062
2063 DPRINTF("+++ C+ mode transmit reading %d bytes from host memory at "
2064 DMA_ADDR_FMT" to offset %d\n", txsize, tx_addr,
2065 s->cplus_txbuffer_offset);
2066
2067 pci_dma_read(&s->dev, tx_addr,
2068 s->cplus_txbuffer + s->cplus_txbuffer_offset, txsize);
2069 s->cplus_txbuffer_offset += txsize;
2070
2071 /* seek to next Rx descriptor */
2072 if (txdw0 & CP_TX_EOR)
2073 {
2074 s->currCPlusTxDesc = 0;
2075 }
2076 else
2077 {
2078 ++s->currCPlusTxDesc;
2079 if (s->currCPlusTxDesc >= 64)
2080 s->currCPlusTxDesc = 0;
2081 }
2082
2083 /* transfer ownership to target */
2084 txdw0 &= ~CP_RX_OWN;
2085
2086 /* reset error indicator bits */
2087 txdw0 &= ~CP_TX_STATUS_UNF;
2088 txdw0 &= ~CP_TX_STATUS_TES;
2089 txdw0 &= ~CP_TX_STATUS_OWC;
2090 txdw0 &= ~CP_TX_STATUS_LNKF;
2091 txdw0 &= ~CP_TX_STATUS_EXC;
2092
2093 /* update ring data */
2094 val = cpu_to_le32(txdw0);
2095 pci_dma_write(&s->dev, cplus_tx_ring_desc, (uint8_t *)&val, 4);
2096
2097 /* Now decide if descriptor being processed is holding the last segment of packet */
2098 if (txdw0 & CP_TX_LS)
2099 {
2100 uint8_t dot1q_buffer_space[VLAN_HLEN];
2101 uint16_t *dot1q_buffer;
2102
2103 DPRINTF("+++ C+ Tx mode : descriptor %d is last segment descriptor\n",
2104 descriptor);
2105
2106 /* can transfer fully assembled packet */
2107
2108 uint8_t *saved_buffer = s->cplus_txbuffer;
2109 int saved_size = s->cplus_txbuffer_offset;
2110 int saved_buffer_len = s->cplus_txbuffer_len;
2111
2112 /* create vlan tag */
2113 if (txdw1 & CP_TX_TAGC) {
2114 /* the vlan tag is in BE byte order in the descriptor
2115 * BE + le_to_cpu() + ~swap()~ = cpu */
2116 DPRINTF("+++ C+ Tx mode : inserting vlan tag with ""tci: %u\n",
2117 bswap16(txdw1 & CP_TX_VLAN_TAG_MASK));
2118
2119 dot1q_buffer = (uint16_t *) dot1q_buffer_space;
2120 dot1q_buffer[0] = cpu_to_be16(ETH_P_8021Q);
2121 /* BE + le_to_cpu() + ~cpu_to_le()~ = BE */
2122 dot1q_buffer[1] = cpu_to_le16(txdw1 & CP_TX_VLAN_TAG_MASK);
2123 } else {
2124 dot1q_buffer = NULL;
2125 }
2126
2127 /* reset the card space to protect from recursive call */
2128 s->cplus_txbuffer = NULL;
2129 s->cplus_txbuffer_offset = 0;
2130 s->cplus_txbuffer_len = 0;
2131
2132 if (txdw0 & (CP_TX_IPCS | CP_TX_UDPCS | CP_TX_TCPCS | CP_TX_LGSEN))
2133 {
2134 DPRINTF("+++ C+ mode offloaded task checksum\n");
2135
2136 /* ip packet header */
2137 ip_header *ip = NULL;
2138 int hlen = 0;
2139 uint8_t ip_protocol = 0;
2140 uint16_t ip_data_len = 0;
2141
2142 uint8_t *eth_payload_data = NULL;
2143 size_t eth_payload_len = 0;
2144
2145 int proto = be16_to_cpu(*(uint16_t *)(saved_buffer + 12));
2146 if (proto == ETH_P_IP)
2147 {
2148 DPRINTF("+++ C+ mode has IP packet\n");
2149
2150 /* not aligned */
2151 eth_payload_data = saved_buffer + ETH_HLEN;
2152 eth_payload_len = saved_size - ETH_HLEN;
2153
2154 ip = (ip_header*)eth_payload_data;
2155
2156 if (IP_HEADER_VERSION(ip) != IP_HEADER_VERSION_4) {
2157 DPRINTF("+++ C+ mode packet has bad IP version %d "
2158 "expected %d\n", IP_HEADER_VERSION(ip),
2159 IP_HEADER_VERSION_4);
2160 ip = NULL;
2161 } else {
2162 hlen = IP_HEADER_LENGTH(ip);
2163 ip_protocol = ip->ip_p;
2164 ip_data_len = be16_to_cpu(ip->ip_len) - hlen;
2165 }
2166 }
2167
2168 if (ip)
2169 {
2170 if (txdw0 & CP_TX_IPCS)
2171 {
2172 DPRINTF("+++ C+ mode need IP checksum\n");
2173
2174 if (hlen<sizeof(ip_header) || hlen>eth_payload_len) {/* min header length */
2175 /* bad packet header len */
2176 /* or packet too short */
2177 }
2178 else
2179 {
2180 ip->ip_sum = 0;
2181 ip->ip_sum = ip_checksum(ip, hlen);
2182 DPRINTF("+++ C+ mode IP header len=%d checksum=%04x\n",
2183 hlen, ip->ip_sum);
2184 }
2185 }
2186
2187 if ((txdw0 & CP_TX_LGSEN) && ip_protocol == IP_PROTO_TCP)
2188 {
2189 int large_send_mss = (txdw0 >> 16) & CP_TC_LGSEN_MSS_MASK;
2190
2191 DPRINTF("+++ C+ mode offloaded task TSO MTU=%d IP data %d "
2192 "frame data %d specified MSS=%d\n", ETH_MTU,
2193 ip_data_len, saved_size - ETH_HLEN, large_send_mss);
2194
2195 int tcp_send_offset = 0;
2196 int send_count = 0;
2197
2198 /* maximum IP header length is 60 bytes */
2199 uint8_t saved_ip_header[60];
2200
2201 /* save IP header template; data area is used in tcp checksum calculation */
2202 memcpy(saved_ip_header, eth_payload_data, hlen);
2203
2204 /* a placeholder for checksum calculation routine in tcp case */
2205 uint8_t *data_to_checksum = eth_payload_data + hlen - 12;
2206 // size_t data_to_checksum_len = eth_payload_len - hlen + 12;
2207
2208 /* pointer to TCP header */
2209 tcp_header *p_tcp_hdr = (tcp_header*)(eth_payload_data + hlen);
2210
2211 int tcp_hlen = TCP_HEADER_DATA_OFFSET(p_tcp_hdr);
2212
2213 /* ETH_MTU = ip header len + tcp header len + payload */
2214 int tcp_data_len = ip_data_len - tcp_hlen;
2215 int tcp_chunk_size = ETH_MTU - hlen - tcp_hlen;
2216
2217 DPRINTF("+++ C+ mode TSO IP data len %d TCP hlen %d TCP "
2218 "data len %d TCP chunk size %d\n", ip_data_len,
2219 tcp_hlen, tcp_data_len, tcp_chunk_size);
2220
2221 /* note the cycle below overwrites IP header data,
2222 but restores it from saved_ip_header before sending packet */
2223
2224 int is_last_frame = 0;
2225
2226 for (tcp_send_offset = 0; tcp_send_offset < tcp_data_len; tcp_send_offset += tcp_chunk_size)
2227 {
2228 uint16_t chunk_size = tcp_chunk_size;
2229
2230 /* check if this is the last frame */
2231 if (tcp_send_offset + tcp_chunk_size >= tcp_data_len)
2232 {
2233 is_last_frame = 1;
2234 chunk_size = tcp_data_len - tcp_send_offset;
2235 }
2236
2237 DPRINTF("+++ C+ mode TSO TCP seqno %08x\n",
2238 be32_to_cpu(p_tcp_hdr->th_seq));
2239
2240 /* add 4 TCP pseudoheader fields */
2241 /* copy IP source and destination fields */
2242 memcpy(data_to_checksum, saved_ip_header + 12, 8);
2243
2244 DPRINTF("+++ C+ mode TSO calculating TCP checksum for "
2245 "packet with %d bytes data\n", tcp_hlen +
2246 chunk_size);
2247
2248 if (tcp_send_offset)
2249 {
2250 memcpy((uint8_t*)p_tcp_hdr + tcp_hlen, (uint8_t*)p_tcp_hdr + tcp_hlen + tcp_send_offset, chunk_size);
2251 }
2252
2253 /* keep PUSH and FIN flags only for the last frame */
2254 if (!is_last_frame)
2255 {
2256 TCP_HEADER_CLEAR_FLAGS(p_tcp_hdr, TCP_FLAG_PUSH|TCP_FLAG_FIN);
2257 }
2258
2259 /* recalculate TCP checksum */
2260 ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2261 p_tcpip_hdr->zeros = 0;
2262 p_tcpip_hdr->ip_proto = IP_PROTO_TCP;
2263 p_tcpip_hdr->ip_payload = cpu_to_be16(tcp_hlen + chunk_size);
2264
2265 p_tcp_hdr->th_sum = 0;
2266
2267 int tcp_checksum = ip_checksum(data_to_checksum, tcp_hlen + chunk_size + 12);
2268 DPRINTF("+++ C+ mode TSO TCP checksum %04x\n",
2269 tcp_checksum);
2270
2271 p_tcp_hdr->th_sum = tcp_checksum;
2272
2273 /* restore IP header */
2274 memcpy(eth_payload_data, saved_ip_header, hlen);
2275
2276 /* set IP data length and recalculate IP checksum */
2277 ip->ip_len = cpu_to_be16(hlen + tcp_hlen + chunk_size);
2278
2279 /* increment IP id for subsequent frames */
2280 ip->ip_id = cpu_to_be16(tcp_send_offset/tcp_chunk_size + be16_to_cpu(ip->ip_id));
2281
2282 ip->ip_sum = 0;
2283 ip->ip_sum = ip_checksum(eth_payload_data, hlen);
2284 DPRINTF("+++ C+ mode TSO IP header len=%d "
2285 "checksum=%04x\n", hlen, ip->ip_sum);
2286
2287 int tso_send_size = ETH_HLEN + hlen + tcp_hlen + chunk_size;
2288 DPRINTF("+++ C+ mode TSO transferring packet size "
2289 "%d\n", tso_send_size);
2290 rtl8139_transfer_frame(s, saved_buffer, tso_send_size,
2291 0, (uint8_t *) dot1q_buffer);
2292
2293 /* add transferred count to TCP sequence number */
2294 p_tcp_hdr->th_seq = cpu_to_be32(chunk_size + be32_to_cpu(p_tcp_hdr->th_seq));
2295 ++send_count;
2296 }
2297
2298 /* Stop sending this frame */
2299 saved_size = 0;
2300 }
2301 else if (txdw0 & (CP_TX_TCPCS|CP_TX_UDPCS))
2302 {
2303 DPRINTF("+++ C+ mode need TCP or UDP checksum\n");
2304
2305 /* maximum IP header length is 60 bytes */
2306 uint8_t saved_ip_header[60];
2307 memcpy(saved_ip_header, eth_payload_data, hlen);
2308
2309 uint8_t *data_to_checksum = eth_payload_data + hlen - 12;
2310 // size_t data_to_checksum_len = eth_payload_len - hlen + 12;
2311
2312 /* add 4 TCP pseudoheader fields */
2313 /* copy IP source and destination fields */
2314 memcpy(data_to_checksum, saved_ip_header + 12, 8);
2315
2316 if ((txdw0 & CP_TX_TCPCS) && ip_protocol == IP_PROTO_TCP)
2317 {
2318 DPRINTF("+++ C+ mode calculating TCP checksum for "
2319 "packet with %d bytes data\n", ip_data_len);
2320
2321 ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2322 p_tcpip_hdr->zeros = 0;
2323 p_tcpip_hdr->ip_proto = IP_PROTO_TCP;
2324 p_tcpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2325
2326 tcp_header* p_tcp_hdr = (tcp_header *) (data_to_checksum+12);
2327
2328 p_tcp_hdr->th_sum = 0;
2329
2330 int tcp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2331 DPRINTF("+++ C+ mode TCP checksum %04x\n",
2332 tcp_checksum);
2333
2334 p_tcp_hdr->th_sum = tcp_checksum;
2335 }
2336 else if ((txdw0 & CP_TX_UDPCS) && ip_protocol == IP_PROTO_UDP)
2337 {
2338 DPRINTF("+++ C+ mode calculating UDP checksum for "
2339 "packet with %d bytes data\n", ip_data_len);
2340
2341 ip_pseudo_header *p_udpip_hdr = (ip_pseudo_header *)data_to_checksum;
2342 p_udpip_hdr->zeros = 0;
2343 p_udpip_hdr->ip_proto = IP_PROTO_UDP;
2344 p_udpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2345
2346 udp_header *p_udp_hdr = (udp_header *) (data_to_checksum+12);
2347
2348 p_udp_hdr->uh_sum = 0;
2349
2350 int udp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2351 DPRINTF("+++ C+ mode UDP checksum %04x\n",
2352 udp_checksum);
2353
2354 p_udp_hdr->uh_sum = udp_checksum;
2355 }
2356
2357 /* restore IP header */
2358 memcpy(eth_payload_data, saved_ip_header, hlen);
2359 }
2360 }
2361 }
2362
2363 /* update tally counter */
2364 ++s->tally_counters.TxOk;
2365
2366 DPRINTF("+++ C+ mode transmitting %d bytes packet\n", saved_size);
2367
2368 rtl8139_transfer_frame(s, saved_buffer, saved_size, 1,
2369 (uint8_t *) dot1q_buffer);
2370
2371 /* restore card space if there was no recursion and reset offset */
2372 if (!s->cplus_txbuffer)
2373 {
2374 s->cplus_txbuffer = saved_buffer;
2375 s->cplus_txbuffer_len = saved_buffer_len;
2376 s->cplus_txbuffer_offset = 0;
2377 }
2378 else
2379 {
2380 g_free(saved_buffer);
2381 }
2382 }
2383 else
2384 {
2385 DPRINTF("+++ C+ mode transmission continue to next descriptor\n");
2386 }
2387
2388 return 1;
2389 }
2390
2391 static void rtl8139_cplus_transmit(RTL8139State *s)
2392 {
2393 int txcount = 0;
2394
2395 while (rtl8139_cplus_transmit_one(s))
2396 {
2397 ++txcount;
2398 }
2399
2400 /* Mark transfer completed */
2401 if (!txcount)
2402 {
2403 DPRINTF("C+ mode : transmitter queue stalled, current TxDesc = %d\n",
2404 s->currCPlusTxDesc);
2405 }
2406 else
2407 {
2408 /* update interrupt status */
2409 s->IntrStatus |= TxOK;
2410 rtl8139_update_irq(s);
2411 }
2412 }
2413
2414 static void rtl8139_transmit(RTL8139State *s)
2415 {
2416 int descriptor = s->currTxDesc, txcount = 0;
2417
2418 /*while*/
2419 if (rtl8139_transmit_one(s, descriptor))
2420 {
2421 ++s->currTxDesc;
2422 s->currTxDesc %= 4;
2423 ++txcount;
2424 }
2425
2426 /* Mark transfer completed */
2427 if (!txcount)
2428 {
2429 DPRINTF("transmitter queue stalled, current TxDesc = %d\n",
2430 s->currTxDesc);
2431 }
2432 }
2433
2434 static void rtl8139_TxStatus_write(RTL8139State *s, uint32_t txRegOffset, uint32_t val)
2435 {
2436
2437 int descriptor = txRegOffset/4;
2438
2439 /* handle C+ transmit mode register configuration */
2440
2441 if (s->cplus_enabled)
2442 {
2443 DPRINTF("RTL8139C+ DTCCR write offset=0x%x val=0x%08x "
2444 "descriptor=%d\n", txRegOffset, val, descriptor);
2445
2446 /* handle Dump Tally Counters command */
2447 s->TxStatus[descriptor] = val;
2448
2449 if (descriptor == 0 && (val & 0x8))
2450 {
2451 target_phys_addr_t tc_addr = rtl8139_addr64(s->TxStatus[0] & ~0x3f, s->TxStatus[1]);
2452
2453 /* dump tally counters to specified memory location */
2454 RTL8139TallyCounters_dma_write(s, tc_addr);
2455
2456 /* mark dump completed */
2457 s->TxStatus[0] &= ~0x8;
2458 }
2459
2460 return;
2461 }
2462
2463 DPRINTF("TxStatus write offset=0x%x val=0x%08x descriptor=%d\n",
2464 txRegOffset, val, descriptor);
2465
2466 /* mask only reserved bits */
2467 val &= ~0xff00c000; /* these bits are reset on write */
2468 val = SET_MASKED(val, 0x00c00000, s->TxStatus[descriptor]);
2469
2470 s->TxStatus[descriptor] = val;
2471
2472 /* attempt to start transmission */
2473 rtl8139_transmit(s);
2474 }
2475
2476 static uint32_t rtl8139_TxStatus_TxAddr_read(RTL8139State *s, uint32_t regs[],
2477 uint32_t base, uint8_t addr,
2478 int size)
2479 {
2480 uint32_t reg = (addr - base) / 4;
2481 uint32_t offset = addr & 0x3;
2482 uint32_t ret = 0;
2483
2484 if (addr & (size - 1)) {
2485 DPRINTF("not implemented read for TxStatus/TxAddr "
2486 "addr=0x%x size=0x%x\n", addr, size);
2487 return ret;
2488 }
2489
2490 switch (size) {
2491 case 1: /* fall through */
2492 case 2: /* fall through */
2493 case 4:
2494 ret = (regs[reg] >> offset * 8) & (((uint64_t)1 << (size * 8)) - 1);
2495 DPRINTF("TxStatus/TxAddr[%d] read addr=0x%x size=0x%x val=0x%08x\n",
2496 reg, addr, size, ret);
2497 break;
2498 default:
2499 DPRINTF("unsupported size 0x%x of TxStatus/TxAddr reading\n", size);
2500 break;
2501 }
2502
2503 return ret;
2504 }
2505
2506 static uint16_t rtl8139_TSAD_read(RTL8139State *s)
2507 {
2508 uint16_t ret = 0;
2509
2510 /* Simulate TSAD, it is read only anyway */
2511
2512 ret = ((s->TxStatus[3] & TxStatOK )?TSAD_TOK3:0)
2513 |((s->TxStatus[2] & TxStatOK )?TSAD_TOK2:0)
2514 |((s->TxStatus[1] & TxStatOK )?TSAD_TOK1:0)
2515 |((s->TxStatus[0] & TxStatOK )?TSAD_TOK0:0)
2516
2517 |((s->TxStatus[3] & TxUnderrun)?TSAD_TUN3:0)
2518 |((s->TxStatus[2] & TxUnderrun)?TSAD_TUN2:0)
2519 |((s->TxStatus[1] & TxUnderrun)?TSAD_TUN1:0)
2520 |((s->TxStatus[0] & TxUnderrun)?TSAD_TUN0:0)
2521
2522 |((s->TxStatus[3] & TxAborted )?TSAD_TABT3:0)
2523 |((s->TxStatus[2] & TxAborted )?TSAD_TABT2:0)
2524 |((s->TxStatus[1] & TxAborted )?TSAD_TABT1:0)
2525 |((s->TxStatus[0] & TxAborted )?TSAD_TABT0:0)
2526
2527 |((s->TxStatus[3] & TxHostOwns )?TSAD_OWN3:0)
2528 |((s->TxStatus[2] & TxHostOwns )?TSAD_OWN2:0)
2529 |((s->TxStatus[1] & TxHostOwns )?TSAD_OWN1:0)
2530 |((s->TxStatus[0] & TxHostOwns )?TSAD_OWN0:0) ;
2531
2532
2533 DPRINTF("TSAD read val=0x%04x\n", ret);
2534
2535 return ret;
2536 }
2537
2538 static uint16_t rtl8139_CSCR_read(RTL8139State *s)
2539 {
2540 uint16_t ret = s->CSCR;
2541
2542 DPRINTF("CSCR read val=0x%04x\n", ret);
2543
2544 return ret;
2545 }
2546
2547 static void rtl8139_TxAddr_write(RTL8139State *s, uint32_t txAddrOffset, uint32_t val)
2548 {
2549 DPRINTF("TxAddr write offset=0x%x val=0x%08x\n", txAddrOffset, val);
2550
2551 s->TxAddr[txAddrOffset/4] = val;
2552 }
2553
2554 static uint32_t rtl8139_TxAddr_read(RTL8139State *s, uint32_t txAddrOffset)
2555 {
2556 uint32_t ret = s->TxAddr[txAddrOffset/4];
2557
2558 DPRINTF("TxAddr read offset=0x%x val=0x%08x\n", txAddrOffset, ret);
2559
2560 return ret;
2561 }
2562
2563 static void rtl8139_RxBufPtr_write(RTL8139State *s, uint32_t val)
2564 {
2565 DPRINTF("RxBufPtr write val=0x%04x\n", val);
2566
2567 /* this value is off by 16 */
2568 s->RxBufPtr = MOD2(val + 0x10, s->RxBufferSize);
2569
2570 DPRINTF(" CAPR write: rx buffer length %d head 0x%04x read 0x%04x\n",
2571 s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
2572 }
2573
2574 static uint32_t rtl8139_RxBufPtr_read(RTL8139State *s)
2575 {
2576 /* this value is off by 16 */
2577 uint32_t ret = s->RxBufPtr - 0x10;
2578
2579 DPRINTF("RxBufPtr read val=0x%04x\n", ret);
2580
2581 return ret;
2582 }
2583
2584 static uint32_t rtl8139_RxBufAddr_read(RTL8139State *s)
2585 {
2586 /* this value is NOT off by 16 */
2587 uint32_t ret = s->RxBufAddr;
2588
2589 DPRINTF("RxBufAddr read val=0x%04x\n", ret);
2590
2591 return ret;
2592 }
2593
2594 static void rtl8139_RxBuf_write(RTL8139State *s, uint32_t val)
2595 {
2596 DPRINTF("RxBuf write val=0x%08x\n", val);
2597
2598 s->RxBuf = val;
2599
2600 /* may need to reset rxring here */
2601 }
2602
2603 static uint32_t rtl8139_RxBuf_read(RTL8139State *s)
2604 {
2605 uint32_t ret = s->RxBuf;
2606
2607 DPRINTF("RxBuf read val=0x%08x\n", ret);
2608
2609 return ret;
2610 }
2611
2612 static void rtl8139_IntrMask_write(RTL8139State *s, uint32_t val)
2613 {
2614 DPRINTF("IntrMask write(w) val=0x%04x\n", val);
2615
2616 /* mask unwritable bits */
2617 val = SET_MASKED(val, 0x1e00, s->IntrMask);
2618
2619 s->IntrMask = val;
2620
2621 rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
2622 rtl8139_update_irq(s);
2623
2624 }
2625
2626 static uint32_t rtl8139_IntrMask_read(RTL8139State *s)
2627 {
2628 uint32_t ret = s->IntrMask;
2629
2630 DPRINTF("IntrMask read(w) val=0x%04x\n", ret);
2631
2632 return ret;
2633 }
2634
2635 static void rtl8139_IntrStatus_write(RTL8139State *s, uint32_t val)
2636 {
2637 DPRINTF("IntrStatus write(w) val=0x%04x\n", val);
2638
2639 #if 0
2640
2641 /* writing to ISR has no effect */
2642
2643 return;
2644
2645 #else
2646 uint16_t newStatus = s->IntrStatus & ~val;
2647
2648 /* mask unwritable bits */
2649 newStatus = SET_MASKED(newStatus, 0x1e00, s->IntrStatus);
2650
2651 /* writing 1 to interrupt status register bit clears it */
2652 s->IntrStatus = 0;
2653 rtl8139_update_irq(s);
2654
2655 s->IntrStatus = newStatus;
2656 /*
2657 * Computing if we miss an interrupt here is not that correct but
2658 * considered that we should have had already an interrupt
2659 * and probably emulated is slower is better to assume this resetting was
2660 * done before testing on previous rtl8139_update_irq lead to IRQ losing
2661 */
2662 rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
2663 rtl8139_update_irq(s);
2664
2665 #endif
2666 }
2667
2668 static uint32_t rtl8139_IntrStatus_read(RTL8139State *s)
2669 {
2670 rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
2671
2672 uint32_t ret = s->IntrStatus;
2673
2674 DPRINTF("IntrStatus read(w) val=0x%04x\n", ret);
2675
2676 #if 0
2677
2678 /* reading ISR clears all interrupts */
2679 s->IntrStatus = 0;
2680
2681 rtl8139_update_irq(s);
2682
2683 #endif
2684
2685 return ret;
2686 }
2687
2688 static void rtl8139_MultiIntr_write(RTL8139State *s, uint32_t val)
2689 {
2690 DPRINTF("MultiIntr write(w) val=0x%04x\n", val);
2691
2692 /* mask unwritable bits */
2693 val = SET_MASKED(val, 0xf000, s->MultiIntr);
2694
2695 s->MultiIntr = val;
2696 }
2697
2698 static uint32_t rtl8139_MultiIntr_read(RTL8139State *s)
2699 {
2700 uint32_t ret = s->MultiIntr;
2701
2702 DPRINTF("MultiIntr read(w) val=0x%04x\n", ret);
2703
2704 return ret;
2705 }
2706
2707 static void rtl8139_io_writeb(void *opaque, uint8_t addr, uint32_t val)
2708 {
2709 RTL8139State *s = opaque;
2710
2711 switch (addr)
2712 {
2713 case MAC0 ... MAC0+5:
2714 s->phys[addr - MAC0] = val;
2715 break;
2716 case MAC0+6 ... MAC0+7:
2717 /* reserved */
2718 break;
2719 case MAR0 ... MAR0+7:
2720 s->mult[addr - MAR0] = val;
2721 break;
2722 case ChipCmd:
2723 rtl8139_ChipCmd_write(s, val);
2724 break;
2725 case Cfg9346:
2726 rtl8139_Cfg9346_write(s, val);
2727 break;
2728 case TxConfig: /* windows driver sometimes writes using byte-lenth call */
2729 rtl8139_TxConfig_writeb(s, val);
2730 break;
2731 case Config0:
2732 rtl8139_Config0_write(s, val);
2733 break;
2734 case Config1:
2735 rtl8139_Config1_write(s, val);
2736 break;
2737 case Config3:
2738 rtl8139_Config3_write(s, val);
2739 break;
2740 case Config4:
2741 rtl8139_Config4_write(s, val);
2742 break;
2743 case Config5:
2744 rtl8139_Config5_write(s, val);
2745 break;
2746 case MediaStatus:
2747 /* ignore */
2748 DPRINTF("not implemented write(b) to MediaStatus val=0x%02x\n",
2749 val);
2750 break;
2751
2752 case HltClk:
2753 DPRINTF("HltClk write val=0x%08x\n", val);
2754 if (val == 'R')
2755 {
2756 s->clock_enabled = 1;
2757 }
2758 else if (val == 'H')
2759 {
2760 s->clock_enabled = 0;
2761 }
2762 break;
2763
2764 case TxThresh:
2765 DPRINTF("C+ TxThresh write(b) val=0x%02x\n", val);
2766 s->TxThresh = val;
2767 break;
2768
2769 case TxPoll:
2770 DPRINTF("C+ TxPoll write(b) val=0x%02x\n", val);
2771 if (val & (1 << 7))
2772 {
2773 DPRINTF("C+ TxPoll high priority transmission (not "
2774 "implemented)\n");
2775 //rtl8139_cplus_transmit(s);
2776 }
2777 if (val & (1 << 6))
2778 {
2779 DPRINTF("C+ TxPoll normal priority transmission\n");
2780 rtl8139_cplus_transmit(s);
2781 }
2782
2783 break;
2784
2785 default:
2786 DPRINTF("not implemented write(b) addr=0x%x val=0x%02x\n", addr,
2787 val);
2788 break;
2789 }
2790 }
2791
2792 static void rtl8139_io_writew(void *opaque, uint8_t addr, uint32_t val)
2793 {
2794 RTL8139State *s = opaque;
2795
2796 switch (addr)
2797 {
2798 case IntrMask:
2799 rtl8139_IntrMask_write(s, val);
2800 break;
2801
2802 case IntrStatus:
2803 rtl8139_IntrStatus_write(s, val);
2804 break;
2805
2806 case MultiIntr:
2807 rtl8139_MultiIntr_write(s, val);
2808 break;
2809
2810 case RxBufPtr:
2811 rtl8139_RxBufPtr_write(s, val);
2812 break;
2813
2814 case BasicModeCtrl:
2815 rtl8139_BasicModeCtrl_write(s, val);
2816 break;
2817 case BasicModeStatus:
2818 rtl8139_BasicModeStatus_write(s, val);
2819 break;
2820 case NWayAdvert:
2821 DPRINTF("NWayAdvert write(w) val=0x%04x\n", val);
2822 s->NWayAdvert = val;
2823 break;
2824 case NWayLPAR:
2825 DPRINTF("forbidden NWayLPAR write(w) val=0x%04x\n", val);
2826 break;
2827 case NWayExpansion:
2828 DPRINTF("NWayExpansion write(w) val=0x%04x\n", val);
2829 s->NWayExpansion = val;
2830 break;
2831
2832 case CpCmd:
2833 rtl8139_CpCmd_write(s, val);
2834 break;
2835
2836 case IntrMitigate:
2837 rtl8139_IntrMitigate_write(s, val);
2838 break;
2839
2840 default:
2841 DPRINTF("ioport write(w) addr=0x%x val=0x%04x via write(b)\n",
2842 addr, val);
2843
2844 rtl8139_io_writeb(opaque, addr, val & 0xff);
2845 rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2846 break;
2847 }
2848 }
2849
2850 static void rtl8139_set_next_tctr_time(RTL8139State *s, int64_t current_time)
2851 {
2852 int64_t pci_time, next_time;
2853 uint32_t low_pci;
2854
2855 DPRINTF("entered rtl8139_set_next_tctr_time\n");
2856
2857 if (s->TimerExpire && current_time >= s->TimerExpire) {
2858 s->IntrStatus |= PCSTimeout;
2859 rtl8139_update_irq(s);
2860 }
2861
2862 /* Set QEMU timer only if needed that is
2863 * - TimerInt <> 0 (we have a timer)
2864 * - mask = 1 (we want an interrupt timer)
2865 * - irq = 0 (irq is not already active)
2866 * If any of above change we need to compute timer again
2867 * Also we must check if timer is passed without QEMU timer
2868 */
2869 s->TimerExpire = 0;
2870 if (!s->TimerInt) {
2871 return;
2872 }
2873
2874 pci_time = muldiv64(current_time - s->TCTR_base, PCI_FREQUENCY,
2875 get_ticks_per_sec());
2876 low_pci = pci_time & 0xffffffff;
2877 pci_time = pci_time - low_pci + s->TimerInt;
2878 if (low_pci >= s->TimerInt) {
2879 pci_time += 0x100000000LL;
2880 }
2881 next_time = s->TCTR_base + muldiv64(pci_time, get_ticks_per_sec(),
2882 PCI_FREQUENCY);
2883 s->TimerExpire = next_time;
2884
2885 if ((s->IntrMask & PCSTimeout) != 0 && (s->IntrStatus & PCSTimeout) == 0) {
2886 qemu_mod_timer(s->timer, next_time);
2887 }
2888 }
2889
2890 static void rtl8139_io_writel(void *opaque, uint8_t addr, uint32_t val)
2891 {
2892 RTL8139State *s = opaque;
2893
2894 switch (addr)
2895 {
2896 case RxMissed:
2897 DPRINTF("RxMissed clearing on write\n");
2898 s->RxMissed = 0;
2899 break;
2900
2901 case TxConfig:
2902 rtl8139_TxConfig_write(s, val);
2903 break;
2904
2905 case RxConfig:
2906 rtl8139_RxConfig_write(s, val);
2907 break;
2908
2909 case TxStatus0 ... TxStatus0+4*4-1:
2910 rtl8139_TxStatus_write(s, addr-TxStatus0, val);
2911 break;
2912
2913 case TxAddr0 ... TxAddr0+4*4-1:
2914 rtl8139_TxAddr_write(s, addr-TxAddr0, val);
2915 break;
2916
2917 case RxBuf:
2918 rtl8139_RxBuf_write(s, val);
2919 break;
2920
2921 case RxRingAddrLO:
2922 DPRINTF("C+ RxRing low bits write val=0x%08x\n", val);
2923 s->RxRingAddrLO = val;
2924 break;
2925
2926 case RxRingAddrHI:
2927 DPRINTF("C+ RxRing high bits write val=0x%08x\n", val);
2928 s->RxRingAddrHI = val;
2929 break;
2930
2931 case Timer:
2932 DPRINTF("TCTR Timer reset on write\n");
2933 s->TCTR_base = qemu_get_clock_ns(vm_clock);
2934 rtl8139_set_next_tctr_time(s, s->TCTR_base);
2935 break;
2936
2937 case FlashReg:
2938 DPRINTF("FlashReg TimerInt write val=0x%08x\n", val);
2939 if (s->TimerInt != val) {
2940 s->TimerInt = val;
2941 rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
2942 }
2943 break;
2944
2945 default:
2946 DPRINTF("ioport write(l) addr=0x%x val=0x%08x via write(b)\n",
2947 addr, val);
2948 rtl8139_io_writeb(opaque, addr, val & 0xff);
2949 rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2950 rtl8139_io_writeb(opaque, addr + 2, (val >> 16) & 0xff);
2951 rtl8139_io_writeb(opaque, addr + 3, (val >> 24) & 0xff);
2952 break;
2953 }
2954 }
2955
2956 static uint32_t rtl8139_io_readb(void *opaque, uint8_t addr)
2957 {
2958 RTL8139State *s = opaque;
2959 int ret;
2960
2961 switch (addr)
2962 {
2963 case MAC0 ... MAC0+5:
2964 ret = s->phys[addr - MAC0];
2965 break;
2966 case MAC0+6 ... MAC0+7:
2967 ret = 0;
2968 break;
2969 case MAR0 ... MAR0+7:
2970 ret = s->mult[addr - MAR0];
2971 break;
2972 case TxStatus0 ... TxStatus0+4*4-1:
2973 ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
2974 addr, 1);
2975 break;
2976 case ChipCmd:
2977 ret = rtl8139_ChipCmd_read(s);
2978 break;
2979 case Cfg9346:
2980 ret = rtl8139_Cfg9346_read(s);
2981 break;
2982 case Config0:
2983 ret = rtl8139_Config0_read(s);
2984 break;
2985 case Config1:
2986 ret = rtl8139_Config1_read(s);
2987 break;
2988 case Config3:
2989 ret = rtl8139_Config3_read(s);
2990 break;
2991 case Config4:
2992 ret = rtl8139_Config4_read(s);
2993 break;
2994 case Config5:
2995 ret = rtl8139_Config5_read(s);
2996 break;
2997
2998 case MediaStatus:
2999 ret = 0xd0;
3000 DPRINTF("MediaStatus read 0x%x\n", ret);
3001 break;
3002
3003 case HltClk:
3004 ret = s->clock_enabled;
3005 DPRINTF("HltClk read 0x%x\n", ret);
3006 break;
3007
3008 case PCIRevisionID:
3009 ret = RTL8139_PCI_REVID;
3010 DPRINTF("PCI Revision ID read 0x%x\n", ret);
3011 break;
3012
3013 case TxThresh:
3014 ret = s->TxThresh;
3015 DPRINTF("C+ TxThresh read(b) val=0x%02x\n", ret);
3016 break;
3017
3018 case 0x43: /* Part of TxConfig register. Windows driver tries to read it */
3019 ret = s->TxConfig >> 24;
3020 DPRINTF("RTL8139C TxConfig at 0x43 read(b) val=0x%02x\n", ret);
3021 break;
3022
3023 default:
3024 DPRINTF("not implemented read(b) addr=0x%x\n", addr);
3025 ret = 0;
3026 break;
3027 }
3028
3029 return ret;
3030 }
3031
3032 static uint32_t rtl8139_io_readw(void *opaque, uint8_t addr)
3033 {
3034 RTL8139State *s = opaque;
3035 uint32_t ret;
3036
3037 switch (addr)
3038 {
3039 case TxAddr0 ... TxAddr0+4*4-1:
3040 ret = rtl8139_TxStatus_TxAddr_read(s, s->TxAddr, TxAddr0, addr, 2);
3041 break;
3042 case IntrMask:
3043 ret = rtl8139_IntrMask_read(s);
3044 break;
3045
3046 case IntrStatus:
3047 ret = rtl8139_IntrStatus_read(s);
3048 break;
3049
3050 case MultiIntr:
3051 ret = rtl8139_MultiIntr_read(s);
3052 break;
3053
3054 case RxBufPtr:
3055 ret = rtl8139_RxBufPtr_read(s);
3056 break;
3057
3058 case RxBufAddr:
3059 ret = rtl8139_RxBufAddr_read(s);
3060 break;
3061
3062 case BasicModeCtrl:
3063 ret = rtl8139_BasicModeCtrl_read(s);
3064 break;
3065 case BasicModeStatus:
3066 ret = rtl8139_BasicModeStatus_read(s);
3067 break;
3068 case NWayAdvert:
3069 ret = s->NWayAdvert;
3070 DPRINTF("NWayAdvert read(w) val=0x%04x\n", ret);
3071 break;
3072 case NWayLPAR:
3073 ret = s->NWayLPAR;
3074 DPRINTF("NWayLPAR read(w) val=0x%04x\n", ret);
3075 break;
3076 case NWayExpansion:
3077 ret = s->NWayExpansion;
3078 DPRINTF("NWayExpansion read(w) val=0x%04x\n", ret);
3079 break;
3080
3081 case CpCmd:
3082 ret = rtl8139_CpCmd_read(s);
3083 break;
3084
3085 case IntrMitigate:
3086 ret = rtl8139_IntrMitigate_read(s);
3087 break;
3088
3089 case TxSummary:
3090 ret = rtl8139_TSAD_read(s);
3091 break;
3092
3093 case CSCR:
3094 ret = rtl8139_CSCR_read(s);
3095 break;
3096
3097 default:
3098 DPRINTF("ioport read(w) addr=0x%x via read(b)\n", addr);
3099
3100 ret = rtl8139_io_readb(opaque, addr);
3101 ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3102
3103 DPRINTF("ioport read(w) addr=0x%x val=0x%04x\n", addr, ret);
3104 break;
3105 }
3106
3107 return ret;
3108 }
3109
3110 static uint32_t rtl8139_io_readl(void *opaque, uint8_t addr)
3111 {
3112 RTL8139State *s = opaque;
3113 uint32_t ret;
3114
3115 switch (addr)
3116 {
3117 case RxMissed:
3118 ret = s->RxMissed;
3119
3120 DPRINTF("RxMissed read val=0x%08x\n", ret);
3121 break;
3122
3123 case TxConfig:
3124 ret = rtl8139_TxConfig_read(s);
3125 break;
3126
3127 case RxConfig:
3128 ret = rtl8139_RxConfig_read(s);
3129 break;
3130
3131 case TxStatus0 ... TxStatus0+4*4-1:
3132 ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
3133 addr, 4);
3134 break;
3135
3136 case TxAddr0 ... TxAddr0+4*4-1:
3137 ret = rtl8139_TxAddr_read(s, addr-TxAddr0);
3138 break;
3139
3140 case RxBuf:
3141 ret = rtl8139_RxBuf_read(s);
3142 break;
3143
3144 case RxRingAddrLO:
3145 ret = s->RxRingAddrLO;
3146 DPRINTF("C+ RxRing low bits read val=0x%08x\n", ret);
3147 break;
3148
3149 case RxRingAddrHI:
3150 ret = s->RxRingAddrHI;
3151 DPRINTF("C+ RxRing high bits read val=0x%08x\n", ret);
3152 break;
3153
3154 case Timer:
3155 ret = muldiv64(qemu_get_clock_ns(vm_clock) - s->TCTR_base,
3156 PCI_FREQUENCY, get_ticks_per_sec());
3157 DPRINTF("TCTR Timer read val=0x%08x\n", ret);
3158 break;
3159
3160 case FlashReg:
3161 ret = s->TimerInt;
3162 DPRINTF("FlashReg TimerInt read val=0x%08x\n", ret);
3163 break;
3164
3165 default:
3166 DPRINTF("ioport read(l) addr=0x%x via read(b)\n", addr);
3167
3168 ret = rtl8139_io_readb(opaque, addr);
3169 ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3170 ret |= rtl8139_io_readb(opaque, addr + 2) << 16;
3171 ret |= rtl8139_io_readb(opaque, addr + 3) << 24;
3172
3173 DPRINTF("read(l) addr=0x%x val=%08x\n", addr, ret);
3174 break;
3175 }
3176
3177 return ret;
3178 }
3179
3180 /* */
3181
3182 static void rtl8139_ioport_writeb(void *opaque, uint32_t addr, uint32_t val)
3183 {
3184 rtl8139_io_writeb(opaque, addr & 0xFF, val);
3185 }
3186
3187 static void rtl8139_ioport_writew(void *opaque, uint32_t addr, uint32_t val)
3188 {
3189 rtl8139_io_writew(opaque, addr & 0xFF, val);
3190 }
3191
3192 static void rtl8139_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
3193 {
3194 rtl8139_io_writel(opaque, addr & 0xFF, val);
3195 }
3196
3197 static uint32_t rtl8139_ioport_readb(void *opaque, uint32_t addr)
3198 {
3199 return rtl8139_io_readb(opaque, addr & 0xFF);
3200 }
3201
3202 static uint32_t rtl8139_ioport_readw(void *opaque, uint32_t addr)
3203 {
3204 return rtl8139_io_readw(opaque, addr & 0xFF);
3205 }
3206
3207 static uint32_t rtl8139_ioport_readl(void *opaque, uint32_t addr)
3208 {
3209 return rtl8139_io_readl(opaque, addr & 0xFF);
3210 }
3211
3212 /* */
3213
3214 static void rtl8139_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
3215 {
3216 rtl8139_io_writeb(opaque, addr & 0xFF, val);
3217 }
3218
3219 static void rtl8139_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
3220 {
3221 rtl8139_io_writew(opaque, addr & 0xFF, val);
3222 }
3223
3224 static void rtl8139_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
3225 {
3226 rtl8139_io_writel(opaque, addr & 0xFF, val);
3227 }
3228
3229 static uint32_t rtl8139_mmio_readb(void *opaque, target_phys_addr_t addr)
3230 {
3231 return rtl8139_io_readb(opaque, addr & 0xFF);
3232 }
3233
3234 static uint32_t rtl8139_mmio_readw(void *opaque, target_phys_addr_t addr)
3235 {
3236 uint32_t val = rtl8139_io_readw(opaque, addr & 0xFF);
3237 return val;
3238 }
3239
3240 static uint32_t rtl8139_mmio_readl(void *opaque, target_phys_addr_t addr)
3241 {
3242 uint32_t val = rtl8139_io_readl(opaque, addr & 0xFF);
3243 return val;
3244 }
3245
3246 static int rtl8139_post_load(void *opaque, int version_id)
3247 {
3248 RTL8139State* s = opaque;
3249 rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
3250 if (version_id < 4) {
3251 s->cplus_enabled = s->CpCmd != 0;
3252 }
3253
3254 return 0;
3255 }
3256
3257 static bool rtl8139_hotplug_ready_needed(void *opaque)
3258 {
3259 return qdev_machine_modified();
3260 }
3261
3262 static const VMStateDescription vmstate_rtl8139_hotplug_ready ={
3263 .name = "rtl8139/hotplug_ready",
3264 .version_id = 1,
3265 .minimum_version_id = 1,
3266 .minimum_version_id_old = 1,
3267 .fields = (VMStateField []) {
3268 VMSTATE_END_OF_LIST()
3269 }
3270 };
3271
3272 static void rtl8139_pre_save(void *opaque)
3273 {
3274 RTL8139State* s = opaque;
3275 int64_t current_time = qemu_get_clock_ns(vm_clock);
3276
3277 /* set IntrStatus correctly */
3278 rtl8139_set_next_tctr_time(s, current_time);
3279 s->TCTR = muldiv64(current_time - s->TCTR_base, PCI_FREQUENCY,
3280 get_ticks_per_sec());
3281 s->rtl8139_mmio_io_addr_dummy = 0;
3282 }
3283
3284 static const VMStateDescription vmstate_rtl8139 = {
3285 .name = "rtl8139",
3286 .version_id = 4,
3287 .minimum_version_id = 3,
3288 .minimum_version_id_old = 3,
3289 .post_load = rtl8139_post_load,
3290 .pre_save = rtl8139_pre_save,
3291 .fields = (VMStateField []) {
3292 VMSTATE_PCI_DEVICE(dev, RTL8139State),
3293 VMSTATE_PARTIAL_BUFFER(phys, RTL8139State, 6),
3294 VMSTATE_BUFFER(mult, RTL8139State),
3295 VMSTATE_UINT32_ARRAY(TxStatus, RTL8139State, 4),
3296 VMSTATE_UINT32_ARRAY(TxAddr, RTL8139State, 4),
3297
3298 VMSTATE_UINT32(RxBuf, RTL8139State),
3299 VMSTATE_UINT32(RxBufferSize, RTL8139State),
3300 VMSTATE_UINT32(RxBufPtr, RTL8139State),
3301 VMSTATE_UINT32(RxBufAddr, RTL8139State),
3302
3303 VMSTATE_UINT16(IntrStatus, RTL8139State),
3304 VMSTATE_UINT16(IntrMask, RTL8139State),
3305
3306 VMSTATE_UINT32(TxConfig, RTL8139State),
3307 VMSTATE_UINT32(RxConfig, RTL8139State),
3308 VMSTATE_UINT32(RxMissed, RTL8139State),
3309 VMSTATE_UINT16(CSCR, RTL8139State),
3310
3311 VMSTATE_UINT8(Cfg9346, RTL8139State),
3312 VMSTATE_UINT8(Config0, RTL8139State),
3313 VMSTATE_UINT8(Config1, RTL8139State),
3314 VMSTATE_UINT8(Config3, RTL8139State),
3315 VMSTATE_UINT8(Config4, RTL8139State),
3316 VMSTATE_UINT8(Config5, RTL8139State),
3317
3318 VMSTATE_UINT8(clock_enabled, RTL8139State),
3319 VMSTATE_UINT8(bChipCmdState, RTL8139State),
3320
3321 VMSTATE_UINT16(MultiIntr, RTL8139State),
3322
3323 VMSTATE_UINT16(BasicModeCtrl, RTL8139State),
3324 VMSTATE_UINT16(BasicModeStatus, RTL8139State),
3325 VMSTATE_UINT16(NWayAdvert, RTL8139State),
3326 VMSTATE_UINT16(NWayLPAR, RTL8139State),
3327 VMSTATE_UINT16(NWayExpansion, RTL8139State),
3328
3329 VMSTATE_UINT16(CpCmd, RTL8139State),
3330 VMSTATE_UINT8(TxThresh, RTL8139State),
3331
3332 VMSTATE_UNUSED(4),
3333 VMSTATE_MACADDR(conf.macaddr, RTL8139State),
3334 VMSTATE_INT32(rtl8139_mmio_io_addr_dummy, RTL8139State),
3335
3336 VMSTATE_UINT32(currTxDesc, RTL8139State),
3337 VMSTATE_UINT32(currCPlusRxDesc, RTL8139State),
3338 VMSTATE_UINT32(currCPlusTxDesc, RTL8139State),
3339 VMSTATE_UINT32(RxRingAddrLO, RTL8139State),
3340 VMSTATE_UINT32(RxRingAddrHI, RTL8139State),
3341
3342 VMSTATE_UINT16_ARRAY(eeprom.contents, RTL8139State, EEPROM_9346_SIZE),
3343 VMSTATE_INT32(eeprom.mode, RTL8139State),
3344 VMSTATE_UINT32(eeprom.tick, RTL8139State),
3345 VMSTATE_UINT8(eeprom.address, RTL8139State),
3346 VMSTATE_UINT16(eeprom.input, RTL8139State),
3347 VMSTATE_UINT16(eeprom.output, RTL8139State),
3348
3349 VMSTATE_UINT8(eeprom.eecs, RTL8139State),
3350 VMSTATE_UINT8(eeprom.eesk, RTL8139State),
3351 VMSTATE_UINT8(eeprom.eedi, RTL8139State),
3352 VMSTATE_UINT8(eeprom.eedo, RTL8139State),
3353
3354 VMSTATE_UINT32(TCTR, RTL8139State),
3355 VMSTATE_UINT32(TimerInt, RTL8139State),
3356 VMSTATE_INT64(TCTR_base, RTL8139State),
3357
3358 VMSTATE_STRUCT(tally_counters, RTL8139State, 0,
3359 vmstate_tally_counters, RTL8139TallyCounters),
3360
3361 VMSTATE_UINT32_V(cplus_enabled, RTL8139State, 4),
3362 VMSTATE_END_OF_LIST()
3363 },
3364 .subsections = (VMStateSubsection []) {
3365 {
3366 .vmsd = &vmstate_rtl8139_hotplug_ready,
3367 .needed = rtl8139_hotplug_ready_needed,
3368 }, {
3369 /* empty */
3370 }
3371 }
3372 };
3373
3374 /***********************************************************/
3375 /* PCI RTL8139 definitions */
3376
3377 static const MemoryRegionPortio rtl8139_portio[] = {
3378 { 0, 0x100, 1, .read = rtl8139_ioport_readb, },
3379 { 0, 0x100, 1, .write = rtl8139_ioport_writeb, },
3380 { 0, 0x100, 2, .read = rtl8139_ioport_readw, },
3381 { 0, 0x100, 2, .write = rtl8139_ioport_writew, },
3382 { 0, 0x100, 4, .read = rtl8139_ioport_readl, },
3383 { 0, 0x100, 4, .write = rtl8139_ioport_writel, },
3384 PORTIO_END_OF_LIST()
3385 };
3386
3387 static const MemoryRegionOps rtl8139_io_ops = {
3388 .old_portio = rtl8139_portio,
3389 .endianness = DEVICE_LITTLE_ENDIAN,
3390 };
3391
3392 static const MemoryRegionOps rtl8139_mmio_ops = {
3393 .old_mmio = {
3394 .read = {
3395 rtl8139_mmio_readb,
3396 rtl8139_mmio_readw,
3397 rtl8139_mmio_readl,
3398 },
3399 .write = {
3400 rtl8139_mmio_writeb,
3401 rtl8139_mmio_writew,
3402 rtl8139_mmio_writel,
3403 },
3404 },
3405 .endianness = DEVICE_LITTLE_ENDIAN,
3406 };
3407
3408 static void rtl8139_timer(void *opaque)
3409 {
3410 RTL8139State *s = opaque;
3411
3412 if (!s->clock_enabled)
3413 {
3414 DPRINTF(">>> timer: clock is not running\n");
3415 return;
3416 }
3417
3418 s->IntrStatus |= PCSTimeout;
3419 rtl8139_update_irq(s);
3420 rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
3421 }
3422
3423 static void rtl8139_cleanup(VLANClientState *nc)
3424 {
3425 RTL8139State *s = DO_UPCAST(NICState, nc, nc)->opaque;
3426
3427 s->nic = NULL;
3428 }
3429
3430 static int pci_rtl8139_uninit(PCIDevice *dev)
3431 {
3432 RTL8139State *s = DO_UPCAST(RTL8139State, dev, dev);
3433
3434 memory_region_destroy(&s->bar_io);
3435 memory_region_destroy(&s->bar_mem);
3436 if (s->cplus_txbuffer) {
3437 g_free(s->cplus_txbuffer);
3438 s->cplus_txbuffer = NULL;
3439 }
3440 qemu_del_timer(s->timer);
3441 qemu_free_timer(s->timer);
3442 qemu_del_vlan_client(&s->nic->nc);
3443 return 0;
3444 }
3445
3446 static NetClientInfo net_rtl8139_info = {
3447 .type = NET_CLIENT_TYPE_NIC,
3448 .size = sizeof(NICState),
3449 .can_receive = rtl8139_can_receive,
3450 .receive = rtl8139_receive,
3451 .cleanup = rtl8139_cleanup,
3452 };
3453
3454 static int pci_rtl8139_init(PCIDevice *dev)
3455 {
3456 RTL8139State * s = DO_UPCAST(RTL8139State, dev, dev);
3457 uint8_t *pci_conf;
3458
3459 pci_conf = s->dev.config;
3460 pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
3461 /* TODO: start of capability list, but no capability
3462 * list bit in status register, and offset 0xdc seems unused. */
3463 pci_conf[PCI_CAPABILITY_LIST] = 0xdc;
3464
3465 memory_region_init_io(&s->bar_io, &rtl8139_io_ops, s, "rtl8139", 0x100);
3466 memory_region_init_io(&s->bar_mem, &rtl8139_mmio_ops, s, "rtl8139", 0x100);
3467 pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->bar_io);
3468 pci_register_bar(&s->dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar_mem);
3469
3470 qemu_macaddr_default_if_unset(&s->conf.macaddr);
3471
3472 /* prepare eeprom */
3473 s->eeprom.contents[0] = 0x8129;
3474 #if 1
3475 /* PCI vendor and device ID should be mirrored here */
3476 s->eeprom.contents[1] = PCI_VENDOR_ID_REALTEK;
3477 s->eeprom.contents[2] = PCI_DEVICE_ID_REALTEK_8139;
3478 #endif
3479 s->eeprom.contents[7] = s->conf.macaddr.a[0] | s->conf.macaddr.a[1] << 8;
3480 s->eeprom.contents[8] = s->conf.macaddr.a[2] | s->conf.macaddr.a[3] << 8;
3481 s->eeprom.contents[9] = s->conf.macaddr.a[4] | s->conf.macaddr.a[5] << 8;
3482
3483 s->nic = qemu_new_nic(&net_rtl8139_info, &s->conf,
3484 object_get_typename(OBJECT(dev)), dev->qdev.id, s);
3485 qemu_format_nic_info_str(&s->nic->nc, s->conf.macaddr.a);
3486
3487 s->cplus_txbuffer = NULL;
3488 s->cplus_txbuffer_len = 0;
3489 s->cplus_txbuffer_offset = 0;
3490
3491 s->TimerExpire = 0;
3492 s->timer = qemu_new_timer_ns(vm_clock, rtl8139_timer, s);
3493 rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
3494
3495 add_boot_device_path(s->conf.bootindex, &dev->qdev, "/ethernet-phy@0");
3496
3497 return 0;
3498 }
3499
3500 static Property rtl8139_properties[] = {
3501 DEFINE_NIC_PROPERTIES(RTL8139State, conf),
3502 DEFINE_PROP_END_OF_LIST(),
3503 };
3504
3505 static void rtl8139_class_init(ObjectClass *klass, void *data)
3506 {
3507 DeviceClass *dc = DEVICE_CLASS(klass);
3508 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
3509
3510 k->init = pci_rtl8139_init;
3511 k->exit = pci_rtl8139_uninit;
3512 k->romfile = "pxe-rtl8139.rom";
3513 k->vendor_id = PCI_VENDOR_ID_REALTEK;
3514 k->device_id = PCI_DEVICE_ID_REALTEK_8139;
3515 k->revision = RTL8139_PCI_REVID; /* >=0x20 is for 8139C+ */
3516 k->class_id = PCI_CLASS_NETWORK_ETHERNET;
3517 dc->reset = rtl8139_reset;
3518 dc->vmsd = &vmstate_rtl8139;
3519 dc->props = rtl8139_properties;
3520 }
3521
3522 static TypeInfo rtl8139_info = {
3523 .name = "rtl8139",
3524 .parent = TYPE_PCI_DEVICE,
3525 .instance_size = sizeof(RTL8139State),
3526 .class_init = rtl8139_class_init,
3527 };
3528
3529 static void rtl8139_register_types(void)
3530 {
3531 type_register_static(&rtl8139_info);
3532 }
3533
3534 type_init(rtl8139_register_types)