]> git.proxmox.com Git - qemu.git/blob - hw/slavio_intctl.c
Break up vl.h.
[qemu.git] / hw / slavio_intctl.c
1 /*
2 * QEMU Sparc SLAVIO interrupt controller emulation
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw.h"
25 #include "sun4m.h"
26 #include "console.h"
27
28 //#define DEBUG_IRQ_COUNT
29 //#define DEBUG_IRQ
30
31 #ifdef DEBUG_IRQ
32 #define DPRINTF(fmt, args...) \
33 do { printf("IRQ: " fmt , ##args); } while (0)
34 #else
35 #define DPRINTF(fmt, args...)
36 #endif
37
38 /*
39 * Registers of interrupt controller in sun4m.
40 *
41 * This is the interrupt controller part of chip STP2001 (Slave I/O), also
42 * produced as NCR89C105. See
43 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
44 *
45 * There is a system master controller and one for each cpu.
46 *
47 */
48
49 #define MAX_CPUS 16
50 #define MAX_PILS 16
51
52 typedef struct SLAVIO_INTCTLState {
53 uint32_t intreg_pending[MAX_CPUS];
54 uint32_t intregm_pending;
55 uint32_t intregm_disabled;
56 uint32_t target_cpu;
57 #ifdef DEBUG_IRQ_COUNT
58 uint64_t irq_count[32];
59 #endif
60 qemu_irq *cpu_irqs[MAX_CPUS];
61 const uint32_t *intbit_to_level;
62 uint32_t cputimer_bit;
63 uint32_t pil_out[MAX_CPUS];
64 } SLAVIO_INTCTLState;
65
66 #define INTCTL_MAXADDR 0xf
67 #define INTCTL_SIZE (INTCTL_MAXADDR + 1)
68 #define INTCTLM_MAXADDR 0x13
69 #define INTCTLM_SIZE (INTCTLM_MAXADDR + 1)
70 #define INTCTLM_MASK 0x1f
71 static void slavio_check_interrupts(void *opaque);
72
73 // per-cpu interrupt controller
74 static uint32_t slavio_intctl_mem_readl(void *opaque, target_phys_addr_t addr)
75 {
76 SLAVIO_INTCTLState *s = opaque;
77 uint32_t saddr, ret;
78 int cpu;
79
80 cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
81 saddr = (addr & INTCTL_MAXADDR) >> 2;
82 switch (saddr) {
83 case 0:
84 ret = s->intreg_pending[cpu];
85 break;
86 default:
87 ret = 0;
88 break;
89 }
90 DPRINTF("read cpu %d reg 0x" TARGET_FMT_plx " = %x\n", cpu, addr, ret);
91
92 return ret;
93 }
94
95 static void slavio_intctl_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
96 {
97 SLAVIO_INTCTLState *s = opaque;
98 uint32_t saddr;
99 int cpu;
100
101 cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
102 saddr = (addr & INTCTL_MAXADDR) >> 2;
103 DPRINTF("write cpu %d reg 0x" TARGET_FMT_plx " = %x\n", cpu, addr, val);
104 switch (saddr) {
105 case 1: // clear pending softints
106 if (val & 0x4000)
107 val |= 80000000;
108 val &= 0xfffe0000;
109 s->intreg_pending[cpu] &= ~val;
110 slavio_check_interrupts(s);
111 DPRINTF("Cleared cpu %d irq mask %x, curmask %x\n", cpu, val, s->intreg_pending[cpu]);
112 break;
113 case 2: // set softint
114 val &= 0xfffe0000;
115 s->intreg_pending[cpu] |= val;
116 slavio_check_interrupts(s);
117 DPRINTF("Set cpu %d irq mask %x, curmask %x\n", cpu, val, s->intreg_pending[cpu]);
118 break;
119 default:
120 break;
121 }
122 }
123
124 static CPUReadMemoryFunc *slavio_intctl_mem_read[3] = {
125 slavio_intctl_mem_readl,
126 slavio_intctl_mem_readl,
127 slavio_intctl_mem_readl,
128 };
129
130 static CPUWriteMemoryFunc *slavio_intctl_mem_write[3] = {
131 slavio_intctl_mem_writel,
132 slavio_intctl_mem_writel,
133 slavio_intctl_mem_writel,
134 };
135
136 // master system interrupt controller
137 static uint32_t slavio_intctlm_mem_readl(void *opaque, target_phys_addr_t addr)
138 {
139 SLAVIO_INTCTLState *s = opaque;
140 uint32_t saddr, ret;
141
142 saddr = (addr & INTCTLM_MAXADDR) >> 2;
143 switch (saddr) {
144 case 0:
145 ret = s->intregm_pending & 0x7fffffff;
146 break;
147 case 1:
148 ret = s->intregm_disabled;
149 break;
150 case 4:
151 ret = s->target_cpu;
152 break;
153 default:
154 ret = 0;
155 break;
156 }
157 DPRINTF("read system reg 0x" TARGET_FMT_plx " = %x\n", addr, ret);
158
159 return ret;
160 }
161
162 static void slavio_intctlm_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
163 {
164 SLAVIO_INTCTLState *s = opaque;
165 uint32_t saddr;
166
167 saddr = (addr & INTCTLM_MASK) >> 2;
168 DPRINTF("write system reg 0x" TARGET_FMT_plx " = %x\n", addr, val);
169 switch (saddr) {
170 case 2: // clear (enable)
171 // Force clear unused bits
172 val &= ~0x4fb2007f;
173 s->intregm_disabled &= ~val;
174 DPRINTF("Enabled master irq mask %x, curmask %x\n", val, s->intregm_disabled);
175 slavio_check_interrupts(s);
176 break;
177 case 3: // set (disable, clear pending)
178 // Force clear unused bits
179 val &= ~0x4fb2007f;
180 s->intregm_disabled |= val;
181 s->intregm_pending &= ~val;
182 slavio_check_interrupts(s);
183 DPRINTF("Disabled master irq mask %x, curmask %x\n", val, s->intregm_disabled);
184 break;
185 case 4:
186 s->target_cpu = val & (MAX_CPUS - 1);
187 slavio_check_interrupts(s);
188 DPRINTF("Set master irq cpu %d\n", s->target_cpu);
189 break;
190 default:
191 break;
192 }
193 }
194
195 static CPUReadMemoryFunc *slavio_intctlm_mem_read[3] = {
196 slavio_intctlm_mem_readl,
197 slavio_intctlm_mem_readl,
198 slavio_intctlm_mem_readl,
199 };
200
201 static CPUWriteMemoryFunc *slavio_intctlm_mem_write[3] = {
202 slavio_intctlm_mem_writel,
203 slavio_intctlm_mem_writel,
204 slavio_intctlm_mem_writel,
205 };
206
207 void slavio_pic_info(void *opaque)
208 {
209 SLAVIO_INTCTLState *s = opaque;
210 int i;
211
212 for (i = 0; i < MAX_CPUS; i++) {
213 term_printf("per-cpu %d: pending 0x%08x\n", i, s->intreg_pending[i]);
214 }
215 term_printf("master: pending 0x%08x, disabled 0x%08x\n", s->intregm_pending, s->intregm_disabled);
216 }
217
218 void slavio_irq_info(void *opaque)
219 {
220 #ifndef DEBUG_IRQ_COUNT
221 term_printf("irq statistic code not compiled.\n");
222 #else
223 SLAVIO_INTCTLState *s = opaque;
224 int i;
225 int64_t count;
226
227 term_printf("IRQ statistics:\n");
228 for (i = 0; i < 32; i++) {
229 count = s->irq_count[i];
230 if (count > 0)
231 term_printf("%2d: %" PRId64 "\n", i, count);
232 }
233 #endif
234 }
235
236 static void slavio_check_interrupts(void *opaque)
237 {
238 SLAVIO_INTCTLState *s = opaque;
239 uint32_t pending = s->intregm_pending, pil_pending;
240 unsigned int i, j;
241
242 pending &= ~s->intregm_disabled;
243
244 DPRINTF("pending %x disabled %x\n", pending, s->intregm_disabled);
245 for (i = 0; i < MAX_CPUS; i++) {
246 pil_pending = 0;
247 if (pending && !(s->intregm_disabled & 0x80000000) &&
248 (i == s->target_cpu)) {
249 for (j = 0; j < 32; j++) {
250 if (pending & (1 << j))
251 pil_pending |= 1 << s->intbit_to_level[j];
252 }
253 }
254 pil_pending |= (s->intreg_pending[i] >> 16) & 0xfffe;
255
256 for (j = 0; j < MAX_PILS; j++) {
257 if (pil_pending & (1 << j)) {
258 if (!(s->pil_out[i] & (1 << j)))
259 qemu_irq_raise(s->cpu_irqs[i][j]);
260 } else {
261 if (s->pil_out[i] & (1 << j))
262 qemu_irq_lower(s->cpu_irqs[i][j]);
263 }
264 }
265 s->pil_out[i] = pil_pending;
266 }
267 }
268
269 /*
270 * "irq" here is the bit number in the system interrupt register to
271 * separate serial and keyboard interrupts sharing a level.
272 */
273 static void slavio_set_irq(void *opaque, int irq, int level)
274 {
275 SLAVIO_INTCTLState *s = opaque;
276 uint32_t mask = 1 << irq;
277 uint32_t pil = s->intbit_to_level[irq];
278
279 DPRINTF("Set cpu %d irq %d -> pil %d level %d\n", s->target_cpu, irq, pil,
280 level);
281 if (pil > 0) {
282 if (level) {
283 #ifdef DEBUG_IRQ_COUNT
284 s->irq_count[pil]++;
285 #endif
286 s->intregm_pending |= mask;
287 s->intreg_pending[s->target_cpu] |= 1 << pil;
288 } else {
289 s->intregm_pending &= ~mask;
290 s->intreg_pending[s->target_cpu] &= ~(1 << pil);
291 }
292 slavio_check_interrupts(s);
293 }
294 }
295
296 static void slavio_set_timer_irq_cpu(void *opaque, int cpu, int level)
297 {
298 SLAVIO_INTCTLState *s = opaque;
299
300 DPRINTF("Set cpu %d local timer level %d\n", cpu, level);
301
302 if (level)
303 s->intreg_pending[cpu] |= s->cputimer_bit;
304 else
305 s->intreg_pending[cpu] &= ~s->cputimer_bit;
306
307 slavio_check_interrupts(s);
308 }
309
310 static void slavio_intctl_save(QEMUFile *f, void *opaque)
311 {
312 SLAVIO_INTCTLState *s = opaque;
313 int i;
314
315 for (i = 0; i < MAX_CPUS; i++) {
316 qemu_put_be32s(f, &s->intreg_pending[i]);
317 }
318 qemu_put_be32s(f, &s->intregm_pending);
319 qemu_put_be32s(f, &s->intregm_disabled);
320 qemu_put_be32s(f, &s->target_cpu);
321 }
322
323 static int slavio_intctl_load(QEMUFile *f, void *opaque, int version_id)
324 {
325 SLAVIO_INTCTLState *s = opaque;
326 int i;
327
328 if (version_id != 1)
329 return -EINVAL;
330
331 for (i = 0; i < MAX_CPUS; i++) {
332 qemu_get_be32s(f, &s->intreg_pending[i]);
333 }
334 qemu_get_be32s(f, &s->intregm_pending);
335 qemu_get_be32s(f, &s->intregm_disabled);
336 qemu_get_be32s(f, &s->target_cpu);
337 slavio_check_interrupts(s);
338 return 0;
339 }
340
341 static void slavio_intctl_reset(void *opaque)
342 {
343 SLAVIO_INTCTLState *s = opaque;
344 int i;
345
346 for (i = 0; i < MAX_CPUS; i++) {
347 s->intreg_pending[i] = 0;
348 }
349 s->intregm_disabled = ~0xffb2007f;
350 s->intregm_pending = 0;
351 s->target_cpu = 0;
352 slavio_check_interrupts(s);
353 }
354
355 void *slavio_intctl_init(target_phys_addr_t addr, target_phys_addr_t addrg,
356 const uint32_t *intbit_to_level,
357 qemu_irq **irq, qemu_irq **cpu_irq,
358 qemu_irq **parent_irq, unsigned int cputimer)
359 {
360 int slavio_intctl_io_memory, slavio_intctlm_io_memory, i;
361 SLAVIO_INTCTLState *s;
362
363 s = qemu_mallocz(sizeof(SLAVIO_INTCTLState));
364 if (!s)
365 return NULL;
366
367 s->intbit_to_level = intbit_to_level;
368 for (i = 0; i < MAX_CPUS; i++) {
369 slavio_intctl_io_memory = cpu_register_io_memory(0, slavio_intctl_mem_read, slavio_intctl_mem_write, s);
370 cpu_register_physical_memory(addr + i * TARGET_PAGE_SIZE, INTCTL_SIZE,
371 slavio_intctl_io_memory);
372 s->cpu_irqs[i] = parent_irq[i];
373 }
374
375 slavio_intctlm_io_memory = cpu_register_io_memory(0, slavio_intctlm_mem_read, slavio_intctlm_mem_write, s);
376 cpu_register_physical_memory(addrg, INTCTLM_SIZE, slavio_intctlm_io_memory);
377
378 register_savevm("slavio_intctl", addr, 1, slavio_intctl_save, slavio_intctl_load, s);
379 qemu_register_reset(slavio_intctl_reset, s);
380 *irq = qemu_allocate_irqs(slavio_set_irq, s, 32);
381
382 *cpu_irq = qemu_allocate_irqs(slavio_set_timer_irq_cpu, s, MAX_CPUS);
383 s->cputimer_bit = 1 << s->intbit_to_level[cputimer];
384 slavio_intctl_reset(s);
385 return s;
386 }
387