]> git.proxmox.com Git - qemu.git/blob - hw/slavio_intctl.c
Update for 0.12.4 release
[qemu.git] / hw / slavio_intctl.c
1 /*
2 * QEMU Sparc SLAVIO interrupt controller emulation
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "sun4m.h"
26 #include "monitor.h"
27 #include "sysbus.h"
28
29 //#define DEBUG_IRQ_COUNT
30 //#define DEBUG_IRQ
31
32 #ifdef DEBUG_IRQ
33 #define DPRINTF(fmt, ...) \
34 do { printf("IRQ: " fmt , ## __VA_ARGS__); } while (0)
35 #else
36 #define DPRINTF(fmt, ...)
37 #endif
38
39 /*
40 * Registers of interrupt controller in sun4m.
41 *
42 * This is the interrupt controller part of chip STP2001 (Slave I/O), also
43 * produced as NCR89C105. See
44 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
45 *
46 * There is a system master controller and one for each cpu.
47 *
48 */
49
50 #define MAX_CPUS 16
51 #define MAX_PILS 16
52
53 struct SLAVIO_INTCTLState;
54
55 typedef struct SLAVIO_CPUINTCTLState {
56 uint32_t intreg_pending;
57 struct SLAVIO_INTCTLState *master;
58 uint32_t cpu;
59 uint32_t irl_out;
60 } SLAVIO_CPUINTCTLState;
61
62 typedef struct SLAVIO_INTCTLState {
63 SysBusDevice busdev;
64 uint32_t intregm_pending;
65 uint32_t intregm_disabled;
66 uint32_t target_cpu;
67 #ifdef DEBUG_IRQ_COUNT
68 uint64_t irq_count[32];
69 #endif
70 qemu_irq cpu_irqs[MAX_CPUS][MAX_PILS];
71 SLAVIO_CPUINTCTLState slaves[MAX_CPUS];
72 } SLAVIO_INTCTLState;
73
74 #define INTCTL_MAXADDR 0xf
75 #define INTCTL_SIZE (INTCTL_MAXADDR + 1)
76 #define INTCTLM_SIZE 0x14
77 #define MASTER_IRQ_MASK ~0x0fa2007f
78 #define MASTER_DISABLE 0x80000000
79 #define CPU_SOFTIRQ_MASK 0xfffe0000
80 #define CPU_IRQ_INT15_IN (1 << 15)
81 #define CPU_IRQ_TIMER_IN (1 << 14)
82
83 static void slavio_check_interrupts(SLAVIO_INTCTLState *s, int set_irqs);
84
85 // per-cpu interrupt controller
86 static uint32_t slavio_intctl_mem_readl(void *opaque, target_phys_addr_t addr)
87 {
88 SLAVIO_CPUINTCTLState *s = opaque;
89 uint32_t saddr, ret;
90
91 saddr = addr >> 2;
92 switch (saddr) {
93 case 0:
94 ret = s->intreg_pending;
95 break;
96 default:
97 ret = 0;
98 break;
99 }
100 DPRINTF("read cpu %d reg 0x" TARGET_FMT_plx " = %x\n", s->cpu, addr, ret);
101
102 return ret;
103 }
104
105 static void slavio_intctl_mem_writel(void *opaque, target_phys_addr_t addr,
106 uint32_t val)
107 {
108 SLAVIO_CPUINTCTLState *s = opaque;
109 uint32_t saddr;
110
111 saddr = addr >> 2;
112 DPRINTF("write cpu %d reg 0x" TARGET_FMT_plx " = %x\n", s->cpu, addr, val);
113 switch (saddr) {
114 case 1: // clear pending softints
115 val &= CPU_SOFTIRQ_MASK | CPU_IRQ_INT15_IN;
116 s->intreg_pending &= ~val;
117 slavio_check_interrupts(s->master, 1);
118 DPRINTF("Cleared cpu %d irq mask %x, curmask %x\n", s->cpu, val,
119 s->intreg_pending);
120 break;
121 case 2: // set softint
122 val &= CPU_SOFTIRQ_MASK;
123 s->intreg_pending |= val;
124 slavio_check_interrupts(s->master, 1);
125 DPRINTF("Set cpu %d irq mask %x, curmask %x\n", s->cpu, val,
126 s->intreg_pending);
127 break;
128 default:
129 break;
130 }
131 }
132
133 static CPUReadMemoryFunc * const slavio_intctl_mem_read[3] = {
134 NULL,
135 NULL,
136 slavio_intctl_mem_readl,
137 };
138
139 static CPUWriteMemoryFunc * const slavio_intctl_mem_write[3] = {
140 NULL,
141 NULL,
142 slavio_intctl_mem_writel,
143 };
144
145 // master system interrupt controller
146 static uint32_t slavio_intctlm_mem_readl(void *opaque, target_phys_addr_t addr)
147 {
148 SLAVIO_INTCTLState *s = opaque;
149 uint32_t saddr, ret;
150
151 saddr = addr >> 2;
152 switch (saddr) {
153 case 0:
154 ret = s->intregm_pending & ~MASTER_DISABLE;
155 break;
156 case 1:
157 ret = s->intregm_disabled & MASTER_IRQ_MASK;
158 break;
159 case 4:
160 ret = s->target_cpu;
161 break;
162 default:
163 ret = 0;
164 break;
165 }
166 DPRINTF("read system reg 0x" TARGET_FMT_plx " = %x\n", addr, ret);
167
168 return ret;
169 }
170
171 static void slavio_intctlm_mem_writel(void *opaque, target_phys_addr_t addr,
172 uint32_t val)
173 {
174 SLAVIO_INTCTLState *s = opaque;
175 uint32_t saddr;
176
177 saddr = addr >> 2;
178 DPRINTF("write system reg 0x" TARGET_FMT_plx " = %x\n", addr, val);
179 switch (saddr) {
180 case 2: // clear (enable)
181 // Force clear unused bits
182 val &= MASTER_IRQ_MASK;
183 s->intregm_disabled &= ~val;
184 DPRINTF("Enabled master irq mask %x, curmask %x\n", val,
185 s->intregm_disabled);
186 slavio_check_interrupts(s, 1);
187 break;
188 case 3: // set (disable, clear pending)
189 // Force clear unused bits
190 val &= MASTER_IRQ_MASK;
191 s->intregm_disabled |= val;
192 s->intregm_pending &= ~val;
193 slavio_check_interrupts(s, 1);
194 DPRINTF("Disabled master irq mask %x, curmask %x\n", val,
195 s->intregm_disabled);
196 break;
197 case 4:
198 s->target_cpu = val & (MAX_CPUS - 1);
199 slavio_check_interrupts(s, 1);
200 DPRINTF("Set master irq cpu %d\n", s->target_cpu);
201 break;
202 default:
203 break;
204 }
205 }
206
207 static CPUReadMemoryFunc * const slavio_intctlm_mem_read[3] = {
208 NULL,
209 NULL,
210 slavio_intctlm_mem_readl,
211 };
212
213 static CPUWriteMemoryFunc * const slavio_intctlm_mem_write[3] = {
214 NULL,
215 NULL,
216 slavio_intctlm_mem_writel,
217 };
218
219 void slavio_pic_info(Monitor *mon, DeviceState *dev)
220 {
221 SysBusDevice *sd;
222 SLAVIO_INTCTLState *s;
223 int i;
224
225 sd = sysbus_from_qdev(dev);
226 s = FROM_SYSBUS(SLAVIO_INTCTLState, sd);
227 for (i = 0; i < MAX_CPUS; i++) {
228 monitor_printf(mon, "per-cpu %d: pending 0x%08x\n", i,
229 s->slaves[i].intreg_pending);
230 }
231 monitor_printf(mon, "master: pending 0x%08x, disabled 0x%08x\n",
232 s->intregm_pending, s->intregm_disabled);
233 }
234
235 void slavio_irq_info(Monitor *mon, DeviceState *dev)
236 {
237 #ifndef DEBUG_IRQ_COUNT
238 monitor_printf(mon, "irq statistic code not compiled.\n");
239 #else
240 SysBusDevice *sd;
241 SLAVIO_INTCTLState *s;
242 int i;
243 int64_t count;
244
245 sd = sysbus_from_qdev(dev);
246 s = FROM_SYSBUS(SLAVIO_INTCTLState, sd);
247 monitor_printf(mon, "IRQ statistics:\n");
248 for (i = 0; i < 32; i++) {
249 count = s->irq_count[i];
250 if (count > 0)
251 monitor_printf(mon, "%2d: %" PRId64 "\n", i, count);
252 }
253 #endif
254 }
255
256 static const uint32_t intbit_to_level[] = {
257 2, 3, 5, 7, 9, 11, 13, 2, 3, 5, 7, 9, 11, 13, 12, 12,
258 6, 13, 4, 10, 8, 9, 11, 0, 0, 0, 0, 15, 15, 15, 15, 0,
259 };
260
261 static void slavio_check_interrupts(SLAVIO_INTCTLState *s, int set_irqs)
262 {
263 uint32_t pending = s->intregm_pending, pil_pending;
264 unsigned int i, j;
265
266 pending &= ~s->intregm_disabled;
267
268 DPRINTF("pending %x disabled %x\n", pending, s->intregm_disabled);
269 for (i = 0; i < MAX_CPUS; i++) {
270 pil_pending = 0;
271
272 /* If we are the current interrupt target, get hard interrupts */
273 if (pending && !(s->intregm_disabled & MASTER_DISABLE) &&
274 (i == s->target_cpu)) {
275 for (j = 0; j < 32; j++) {
276 if ((pending & (1 << j)) && intbit_to_level[j]) {
277 pil_pending |= 1 << intbit_to_level[j];
278 }
279 }
280 }
281
282 /* Calculate current pending hard interrupts for display */
283 s->slaves[i].intreg_pending &= CPU_SOFTIRQ_MASK | CPU_IRQ_INT15_IN |
284 CPU_IRQ_TIMER_IN;
285 if (i == s->target_cpu) {
286 for (j = 0; j < 32; j++) {
287 if ((s->intregm_pending & (1 << j)) && intbit_to_level[j]) {
288 s->slaves[i].intreg_pending |= 1 << intbit_to_level[j];
289 }
290 }
291 }
292
293 /* Level 15 and CPU timer interrupts are not maskable */
294 pil_pending |= s->slaves[i].intreg_pending &
295 (CPU_IRQ_INT15_IN | CPU_IRQ_TIMER_IN);
296
297 /* Add soft interrupts */
298 pil_pending |= (s->slaves[i].intreg_pending & CPU_SOFTIRQ_MASK) >> 16;
299
300 if (set_irqs) {
301 for (j = MAX_PILS; j > 0; j--) {
302 if (pil_pending & (1 << j)) {
303 if (!(s->slaves[i].irl_out & (1 << j))) {
304 qemu_irq_raise(s->cpu_irqs[i][j]);
305 }
306 } else {
307 if (s->slaves[i].irl_out & (1 << j)) {
308 qemu_irq_lower(s->cpu_irqs[i][j]);
309 }
310 }
311 }
312 }
313 s->slaves[i].irl_out = pil_pending;
314 }
315 }
316
317 /*
318 * "irq" here is the bit number in the system interrupt register to
319 * separate serial and keyboard interrupts sharing a level.
320 */
321 static void slavio_set_irq(void *opaque, int irq, int level)
322 {
323 SLAVIO_INTCTLState *s = opaque;
324 uint32_t mask = 1 << irq;
325 uint32_t pil = intbit_to_level[irq];
326 unsigned int i;
327
328 DPRINTF("Set cpu %d irq %d -> pil %d level %d\n", s->target_cpu, irq, pil,
329 level);
330 if (pil > 0) {
331 if (level) {
332 #ifdef DEBUG_IRQ_COUNT
333 s->irq_count[pil]++;
334 #endif
335 s->intregm_pending |= mask;
336 if (pil == 15) {
337 for (i = 0; i < MAX_CPUS; i++) {
338 s->slaves[i].intreg_pending |= 1 << pil;
339 }
340 }
341 } else {
342 s->intregm_pending &= ~mask;
343 if (pil == 15) {
344 for (i = 0; i < MAX_CPUS; i++) {
345 s->slaves[i].intreg_pending &= ~(1 << pil);
346 }
347 }
348 }
349 slavio_check_interrupts(s, 1);
350 }
351 }
352
353 static void slavio_set_timer_irq_cpu(void *opaque, int cpu, int level)
354 {
355 SLAVIO_INTCTLState *s = opaque;
356
357 DPRINTF("Set cpu %d local timer level %d\n", cpu, level);
358
359 if (level) {
360 s->slaves[cpu].intreg_pending |= CPU_IRQ_TIMER_IN;
361 } else {
362 s->slaves[cpu].intreg_pending &= ~CPU_IRQ_TIMER_IN;
363 }
364
365 slavio_check_interrupts(s, 1);
366 }
367
368 static void slavio_set_irq_all(void *opaque, int irq, int level)
369 {
370 if (irq < 32) {
371 slavio_set_irq(opaque, irq, level);
372 } else {
373 slavio_set_timer_irq_cpu(opaque, irq - 32, level);
374 }
375 }
376
377 static int vmstate_intctl_post_load(void *opaque, int version_id)
378 {
379 SLAVIO_INTCTLState *s = opaque;
380
381 slavio_check_interrupts(s, 0);
382 return 0;
383 }
384
385 static const VMStateDescription vmstate_intctl_cpu = {
386 .name ="slavio_intctl_cpu",
387 .version_id = 1,
388 .minimum_version_id = 1,
389 .minimum_version_id_old = 1,
390 .fields = (VMStateField []) {
391 VMSTATE_UINT32(intreg_pending, SLAVIO_CPUINTCTLState),
392 VMSTATE_END_OF_LIST()
393 }
394 };
395
396 static const VMStateDescription vmstate_intctl = {
397 .name ="slavio_intctl",
398 .version_id = 1,
399 .minimum_version_id = 1,
400 .minimum_version_id_old = 1,
401 .post_load = vmstate_intctl_post_load,
402 .fields = (VMStateField []) {
403 VMSTATE_STRUCT_ARRAY(slaves, SLAVIO_INTCTLState, MAX_CPUS, 1,
404 vmstate_intctl_cpu, SLAVIO_CPUINTCTLState),
405 VMSTATE_UINT32(intregm_pending, SLAVIO_INTCTLState),
406 VMSTATE_UINT32(intregm_disabled, SLAVIO_INTCTLState),
407 VMSTATE_UINT32(target_cpu, SLAVIO_INTCTLState),
408 VMSTATE_END_OF_LIST()
409 }
410 };
411
412 static void slavio_intctl_reset(DeviceState *d)
413 {
414 SLAVIO_INTCTLState *s = container_of(d, SLAVIO_INTCTLState, busdev.qdev);
415 int i;
416
417 for (i = 0; i < MAX_CPUS; i++) {
418 s->slaves[i].intreg_pending = 0;
419 s->slaves[i].irl_out = 0;
420 }
421 s->intregm_disabled = ~MASTER_IRQ_MASK;
422 s->intregm_pending = 0;
423 s->target_cpu = 0;
424 slavio_check_interrupts(s, 0);
425 }
426
427 static int slavio_intctl_init1(SysBusDevice *dev)
428 {
429 SLAVIO_INTCTLState *s = FROM_SYSBUS(SLAVIO_INTCTLState, dev);
430 int io_memory;
431 unsigned int i, j;
432
433 qdev_init_gpio_in(&dev->qdev, slavio_set_irq_all, 32 + MAX_CPUS);
434 io_memory = cpu_register_io_memory(slavio_intctlm_mem_read,
435 slavio_intctlm_mem_write, s);
436 sysbus_init_mmio(dev, INTCTLM_SIZE, io_memory);
437
438 for (i = 0; i < MAX_CPUS; i++) {
439 for (j = 0; j < MAX_PILS; j++) {
440 sysbus_init_irq(dev, &s->cpu_irqs[i][j]);
441 }
442 io_memory = cpu_register_io_memory(slavio_intctl_mem_read,
443 slavio_intctl_mem_write,
444 &s->slaves[i]);
445 sysbus_init_mmio(dev, INTCTL_SIZE, io_memory);
446 s->slaves[i].cpu = i;
447 s->slaves[i].master = s;
448 }
449
450 return 0;
451 }
452
453 static SysBusDeviceInfo slavio_intctl_info = {
454 .init = slavio_intctl_init1,
455 .qdev.name = "slavio_intctl",
456 .qdev.size = sizeof(SLAVIO_INTCTLState),
457 .qdev.vmsd = &vmstate_intctl,
458 .qdev.reset = slavio_intctl_reset,
459 };
460
461 static void slavio_intctl_register_devices(void)
462 {
463 sysbus_register_withprop(&slavio_intctl_info);
464 }
465
466 device_init(slavio_intctl_register_devices)