]> git.proxmox.com Git - qemu.git/blob - hw/slavio_timer.c
Sparc32: move device instantiation to sun4m.c
[qemu.git] / hw / slavio_timer.c
1 /*
2 * QEMU Sparc SLAVIO timer controller emulation
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "sun4m.h"
26 #include "qemu-timer.h"
27 #include "sysbus.h"
28
29 //#define DEBUG_TIMER
30
31 #ifdef DEBUG_TIMER
32 #define DPRINTF(fmt, ...) \
33 do { printf("TIMER: " fmt , ## __VA_ARGS__); } while (0)
34 #else
35 #define DPRINTF(fmt, ...) do {} while (0)
36 #endif
37
38 /*
39 * Registers of hardware timer in sun4m.
40 *
41 * This is the timer/counter part of chip STP2001 (Slave I/O), also
42 * produced as NCR89C105. See
43 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
44 *
45 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
46 * are zero. Bit 31 is 1 when count has been reached.
47 *
48 * Per-CPU timers interrupt local CPU, system timer uses normal
49 * interrupt routing.
50 *
51 */
52
53 #define MAX_CPUS 16
54
55 typedef struct CPUTimerState {
56 qemu_irq irq;
57 ptimer_state *timer;
58 uint32_t count, counthigh, reached;
59 uint64_t limit;
60 // processor only
61 uint32_t running;
62 } CPUTimerState;
63
64 typedef struct SLAVIO_TIMERState {
65 SysBusDevice busdev;
66 uint32_t num_cpus;
67 CPUTimerState cputimer[MAX_CPUS + 1];
68 uint32_t cputimer_mode;
69 } SLAVIO_TIMERState;
70
71 typedef struct TimerContext {
72 SLAVIO_TIMERState *s;
73 unsigned int timer_index; /* 0 for system, 1 ... MAX_CPUS for CPU timers */
74 } TimerContext;
75
76 #define SYS_TIMER_SIZE 0x14
77 #define CPU_TIMER_SIZE 0x10
78
79 #define TIMER_LIMIT 0
80 #define TIMER_COUNTER 1
81 #define TIMER_COUNTER_NORST 2
82 #define TIMER_STATUS 3
83 #define TIMER_MODE 4
84
85 #define TIMER_COUNT_MASK32 0xfffffe00
86 #define TIMER_LIMIT_MASK32 0x7fffffff
87 #define TIMER_MAX_COUNT64 0x7ffffffffffffe00ULL
88 #define TIMER_MAX_COUNT32 0x7ffffe00ULL
89 #define TIMER_REACHED 0x80000000
90 #define TIMER_PERIOD 500ULL // 500ns
91 #define LIMIT_TO_PERIODS(l) ((l) >> 9)
92 #define PERIODS_TO_LIMIT(l) ((l) << 9)
93
94 static int slavio_timer_is_user(TimerContext *tc)
95 {
96 SLAVIO_TIMERState *s = tc->s;
97 unsigned int timer_index = tc->timer_index;
98
99 return timer_index != 0 && (s->cputimer_mode & (1 << (timer_index - 1)));
100 }
101
102 // Update count, set irq, update expire_time
103 // Convert from ptimer countdown units
104 static void slavio_timer_get_out(CPUTimerState *t)
105 {
106 uint64_t count, limit;
107
108 if (t->limit == 0) { /* free-run system or processor counter */
109 limit = TIMER_MAX_COUNT32;
110 } else {
111 limit = t->limit;
112 }
113 if (t->timer) {
114 count = limit - PERIODS_TO_LIMIT(ptimer_get_count(t->timer));
115 } else {
116 count = 0;
117 }
118 DPRINTF("get_out: limit %" PRIx64 " count %x%08x\n", t->limit, t->counthigh,
119 t->count);
120 t->count = count & TIMER_COUNT_MASK32;
121 t->counthigh = count >> 32;
122 }
123
124 // timer callback
125 static void slavio_timer_irq(void *opaque)
126 {
127 TimerContext *tc = opaque;
128 SLAVIO_TIMERState *s = tc->s;
129 CPUTimerState *t = &s->cputimer[tc->timer_index];
130
131 slavio_timer_get_out(t);
132 DPRINTF("callback: count %x%08x\n", t->counthigh, t->count);
133 t->reached = TIMER_REACHED;
134 if (!slavio_timer_is_user(tc)) {
135 qemu_irq_raise(t->irq);
136 }
137 }
138
139 static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
140 {
141 TimerContext *tc = opaque;
142 SLAVIO_TIMERState *s = tc->s;
143 uint32_t saddr, ret;
144 unsigned int timer_index = tc->timer_index;
145 CPUTimerState *t = &s->cputimer[timer_index];
146
147 saddr = addr >> 2;
148 switch (saddr) {
149 case TIMER_LIMIT:
150 // read limit (system counter mode) or read most signifying
151 // part of counter (user mode)
152 if (slavio_timer_is_user(tc)) {
153 // read user timer MSW
154 slavio_timer_get_out(t);
155 ret = t->counthigh | t->reached;
156 } else {
157 // read limit
158 // clear irq
159 qemu_irq_lower(t->irq);
160 t->reached = 0;
161 ret = t->limit & TIMER_LIMIT_MASK32;
162 }
163 break;
164 case TIMER_COUNTER:
165 // read counter and reached bit (system mode) or read lsbits
166 // of counter (user mode)
167 slavio_timer_get_out(t);
168 if (slavio_timer_is_user(tc)) { // read user timer LSW
169 ret = t->count & TIMER_MAX_COUNT64;
170 } else { // read limit
171 ret = (t->count & TIMER_MAX_COUNT32) |
172 t->reached;
173 }
174 break;
175 case TIMER_STATUS:
176 // only available in processor counter/timer
177 // read start/stop status
178 if (timer_index > 0) {
179 ret = t->running;
180 } else {
181 ret = 0;
182 }
183 break;
184 case TIMER_MODE:
185 // only available in system counter
186 // read user/system mode
187 ret = s->cputimer_mode;
188 break;
189 default:
190 DPRINTF("invalid read address " TARGET_FMT_plx "\n", addr);
191 ret = 0;
192 break;
193 }
194 DPRINTF("read " TARGET_FMT_plx " = %08x\n", addr, ret);
195
196 return ret;
197 }
198
199 static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr,
200 uint32_t val)
201 {
202 TimerContext *tc = opaque;
203 SLAVIO_TIMERState *s = tc->s;
204 uint32_t saddr;
205 unsigned int timer_index = tc->timer_index;
206 CPUTimerState *t = &s->cputimer[timer_index];
207
208 DPRINTF("write " TARGET_FMT_plx " %08x\n", addr, val);
209 saddr = addr >> 2;
210 switch (saddr) {
211 case TIMER_LIMIT:
212 if (slavio_timer_is_user(tc)) {
213 uint64_t count;
214
215 // set user counter MSW, reset counter
216 t->limit = TIMER_MAX_COUNT64;
217 t->counthigh = val & (TIMER_MAX_COUNT64 >> 32);
218 t->reached = 0;
219 count = ((uint64_t)t->counthigh << 32) | t->count;
220 DPRINTF("processor %d user timer set to %016" PRIx64 "\n",
221 timer_index, count);
222 if (t->timer) {
223 ptimer_set_count(t->timer, LIMIT_TO_PERIODS(t->limit - count));
224 }
225 } else {
226 // set limit, reset counter
227 qemu_irq_lower(t->irq);
228 t->limit = val & TIMER_MAX_COUNT32;
229 if (t->timer) {
230 if (t->limit == 0) { /* free-run */
231 ptimer_set_limit(t->timer,
232 LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
233 } else {
234 ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(t->limit), 1);
235 }
236 }
237 }
238 break;
239 case TIMER_COUNTER:
240 if (slavio_timer_is_user(tc)) {
241 uint64_t count;
242
243 // set user counter LSW, reset counter
244 t->limit = TIMER_MAX_COUNT64;
245 t->count = val & TIMER_MAX_COUNT64;
246 t->reached = 0;
247 count = ((uint64_t)t->counthigh) << 32 | t->count;
248 DPRINTF("processor %d user timer set to %016" PRIx64 "\n",
249 timer_index, count);
250 if (t->timer) {
251 ptimer_set_count(t->timer, LIMIT_TO_PERIODS(t->limit - count));
252 }
253 } else
254 DPRINTF("not user timer\n");
255 break;
256 case TIMER_COUNTER_NORST:
257 // set limit without resetting counter
258 t->limit = val & TIMER_MAX_COUNT32;
259 if (t->timer) {
260 if (t->limit == 0) { /* free-run */
261 ptimer_set_limit(t->timer,
262 LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 0);
263 } else {
264 ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(t->limit), 0);
265 }
266 }
267 break;
268 case TIMER_STATUS:
269 if (slavio_timer_is_user(tc)) {
270 // start/stop user counter
271 if ((val & 1) && !t->running) {
272 DPRINTF("processor %d user timer started\n",
273 timer_index);
274 if (t->timer) {
275 ptimer_run(t->timer, 0);
276 }
277 t->running = 1;
278 } else if (!(val & 1) && t->running) {
279 DPRINTF("processor %d user timer stopped\n",
280 timer_index);
281 if (t->timer) {
282 ptimer_stop(t->timer);
283 }
284 t->running = 0;
285 }
286 }
287 break;
288 case TIMER_MODE:
289 if (timer_index == 0) {
290 unsigned int i;
291
292 for (i = 0; i < s->num_cpus; i++) {
293 unsigned int processor = 1 << i;
294 CPUTimerState *curr_timer = &s->cputimer[i + 1];
295
296 // check for a change in timer mode for this processor
297 if ((val & processor) != (s->cputimer_mode & processor)) {
298 if (val & processor) { // counter -> user timer
299 qemu_irq_lower(curr_timer->irq);
300 // counters are always running
301 ptimer_stop(curr_timer->timer);
302 curr_timer->running = 0;
303 // user timer limit is always the same
304 curr_timer->limit = TIMER_MAX_COUNT64;
305 ptimer_set_limit(curr_timer->timer,
306 LIMIT_TO_PERIODS(curr_timer->limit),
307 1);
308 // set this processors user timer bit in config
309 // register
310 s->cputimer_mode |= processor;
311 DPRINTF("processor %d changed from counter to user "
312 "timer\n", timer_index);
313 } else { // user timer -> counter
314 // stop the user timer if it is running
315 if (curr_timer->running) {
316 ptimer_stop(curr_timer->timer);
317 }
318 // start the counter
319 ptimer_run(curr_timer->timer, 0);
320 curr_timer->running = 1;
321 // clear this processors user timer bit in config
322 // register
323 s->cputimer_mode &= ~processor;
324 DPRINTF("processor %d changed from user timer to "
325 "counter\n", timer_index);
326 }
327 }
328 }
329 } else {
330 DPRINTF("not system timer\n");
331 }
332 break;
333 default:
334 DPRINTF("invalid write address " TARGET_FMT_plx "\n", addr);
335 break;
336 }
337 }
338
339 static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {
340 NULL,
341 NULL,
342 slavio_timer_mem_readl,
343 };
344
345 static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {
346 NULL,
347 NULL,
348 slavio_timer_mem_writel,
349 };
350
351 static void slavio_timer_save(QEMUFile *f, void *opaque)
352 {
353 SLAVIO_TIMERState *s = opaque;
354 unsigned int i;
355 CPUTimerState *curr_timer;
356
357 for (i = 0; i <= MAX_CPUS; i++) {
358 curr_timer = &s->cputimer[i];
359 qemu_put_be64s(f, &curr_timer->limit);
360 qemu_put_be32s(f, &curr_timer->count);
361 qemu_put_be32s(f, &curr_timer->counthigh);
362 qemu_put_be32s(f, &curr_timer->reached);
363 qemu_put_be32s(f, &curr_timer->running);
364 if (curr_timer->timer) {
365 qemu_put_ptimer(f, curr_timer->timer);
366 }
367 }
368 }
369
370 static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
371 {
372 SLAVIO_TIMERState *s = opaque;
373 unsigned int i;
374 CPUTimerState *curr_timer;
375
376 if (version_id != 3)
377 return -EINVAL;
378
379 for (i = 0; i <= MAX_CPUS; i++) {
380 curr_timer = &s->cputimer[i];
381 qemu_get_be64s(f, &curr_timer->limit);
382 qemu_get_be32s(f, &curr_timer->count);
383 qemu_get_be32s(f, &curr_timer->counthigh);
384 qemu_get_be32s(f, &curr_timer->reached);
385 qemu_get_be32s(f, &curr_timer->running);
386 if (curr_timer->timer) {
387 qemu_get_ptimer(f, curr_timer->timer);
388 }
389 }
390
391 return 0;
392 }
393
394 static void slavio_timer_reset(void *opaque)
395 {
396 SLAVIO_TIMERState *s = opaque;
397 unsigned int i;
398 CPUTimerState *curr_timer;
399
400 for (i = 0; i <= MAX_CPUS; i++) {
401 curr_timer = &s->cputimer[i];
402 curr_timer->limit = 0;
403 curr_timer->count = 0;
404 curr_timer->reached = 0;
405 if (i < s->num_cpus) {
406 ptimer_set_limit(curr_timer->timer,
407 LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
408 ptimer_run(curr_timer->timer, 0);
409 }
410 curr_timer->running = 1;
411 }
412 s->cputimer_mode = 0;
413 }
414
415 static void slavio_timer_init1(SysBusDevice *dev)
416 {
417 int io;
418 SLAVIO_TIMERState *s = FROM_SYSBUS(SLAVIO_TIMERState, dev);
419 QEMUBH *bh;
420 unsigned int i;
421 TimerContext *tc;
422
423 for (i = 0; i <= MAX_CPUS; i++) {
424 tc = qemu_mallocz(sizeof(TimerContext));
425 tc->s = s;
426 tc->timer_index = i;
427
428 bh = qemu_bh_new(slavio_timer_irq, tc);
429 s->cputimer[i].timer = ptimer_init(bh);
430 ptimer_set_period(s->cputimer[i].timer, TIMER_PERIOD);
431
432 io = cpu_register_io_memory(slavio_timer_mem_read,
433 slavio_timer_mem_write, tc);
434 if (i == 0) {
435 sysbus_init_mmio(dev, SYS_TIMER_SIZE, io);
436 } else {
437 sysbus_init_mmio(dev, CPU_TIMER_SIZE, io);
438 }
439
440 sysbus_init_irq(dev, &s->cputimer[i].irq);
441 }
442
443 register_savevm("slavio_timer", -1, 3, slavio_timer_save,
444 slavio_timer_load, s);
445 qemu_register_reset(slavio_timer_reset, s);
446 slavio_timer_reset(s);
447 }
448
449 static SysBusDeviceInfo slavio_timer_info = {
450 .init = slavio_timer_init1,
451 .qdev.name = "slavio_timer",
452 .qdev.size = sizeof(SLAVIO_TIMERState),
453 .qdev.props = (Property[]) {
454 {
455 .name = "num_cpus",
456 .info = &qdev_prop_uint32,
457 .offset = offsetof(SLAVIO_TIMERState, num_cpus),
458 },
459 {/* end of property list */}
460 }
461 };
462
463 static void slavio_timer_register_devices(void)
464 {
465 sysbus_register_withprop(&slavio_timer_info);
466 }
467
468 device_init(slavio_timer_register_devices)