]> git.proxmox.com Git - qemu.git/blob - hw/slavio_timer.c
Sparc32: timer field is never NULL
[qemu.git] / hw / slavio_timer.c
1 /*
2 * QEMU Sparc SLAVIO timer controller emulation
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "sun4m.h"
26 #include "qemu-timer.h"
27 #include "sysbus.h"
28
29 //#define DEBUG_TIMER
30
31 #ifdef DEBUG_TIMER
32 #define DPRINTF(fmt, ...) \
33 do { printf("TIMER: " fmt , ## __VA_ARGS__); } while (0)
34 #else
35 #define DPRINTF(fmt, ...) do {} while (0)
36 #endif
37
38 /*
39 * Registers of hardware timer in sun4m.
40 *
41 * This is the timer/counter part of chip STP2001 (Slave I/O), also
42 * produced as NCR89C105. See
43 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
44 *
45 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
46 * are zero. Bit 31 is 1 when count has been reached.
47 *
48 * Per-CPU timers interrupt local CPU, system timer uses normal
49 * interrupt routing.
50 *
51 */
52
53 #define MAX_CPUS 16
54
55 typedef struct CPUTimerState {
56 qemu_irq irq;
57 ptimer_state *timer;
58 uint32_t count, counthigh, reached;
59 uint64_t limit;
60 // processor only
61 uint32_t running;
62 } CPUTimerState;
63
64 typedef struct SLAVIO_TIMERState {
65 SysBusDevice busdev;
66 uint32_t num_cpus;
67 CPUTimerState cputimer[MAX_CPUS + 1];
68 uint32_t cputimer_mode;
69 } SLAVIO_TIMERState;
70
71 typedef struct TimerContext {
72 SLAVIO_TIMERState *s;
73 unsigned int timer_index; /* 0 for system, 1 ... MAX_CPUS for CPU timers */
74 } TimerContext;
75
76 #define SYS_TIMER_SIZE 0x14
77 #define CPU_TIMER_SIZE 0x10
78
79 #define TIMER_LIMIT 0
80 #define TIMER_COUNTER 1
81 #define TIMER_COUNTER_NORST 2
82 #define TIMER_STATUS 3
83 #define TIMER_MODE 4
84
85 #define TIMER_COUNT_MASK32 0xfffffe00
86 #define TIMER_LIMIT_MASK32 0x7fffffff
87 #define TIMER_MAX_COUNT64 0x7ffffffffffffe00ULL
88 #define TIMER_MAX_COUNT32 0x7ffffe00ULL
89 #define TIMER_REACHED 0x80000000
90 #define TIMER_PERIOD 500ULL // 500ns
91 #define LIMIT_TO_PERIODS(l) ((l) >> 9)
92 #define PERIODS_TO_LIMIT(l) ((l) << 9)
93
94 static int slavio_timer_is_user(TimerContext *tc)
95 {
96 SLAVIO_TIMERState *s = tc->s;
97 unsigned int timer_index = tc->timer_index;
98
99 return timer_index != 0 && (s->cputimer_mode & (1 << (timer_index - 1)));
100 }
101
102 // Update count, set irq, update expire_time
103 // Convert from ptimer countdown units
104 static void slavio_timer_get_out(CPUTimerState *t)
105 {
106 uint64_t count, limit;
107
108 if (t->limit == 0) { /* free-run system or processor counter */
109 limit = TIMER_MAX_COUNT32;
110 } else {
111 limit = t->limit;
112 }
113 count = limit - PERIODS_TO_LIMIT(ptimer_get_count(t->timer));
114
115 DPRINTF("get_out: limit %" PRIx64 " count %x%08x\n", t->limit, t->counthigh,
116 t->count);
117 t->count = count & TIMER_COUNT_MASK32;
118 t->counthigh = count >> 32;
119 }
120
121 // timer callback
122 static void slavio_timer_irq(void *opaque)
123 {
124 TimerContext *tc = opaque;
125 SLAVIO_TIMERState *s = tc->s;
126 CPUTimerState *t = &s->cputimer[tc->timer_index];
127
128 slavio_timer_get_out(t);
129 DPRINTF("callback: count %x%08x\n", t->counthigh, t->count);
130 t->reached = TIMER_REACHED;
131 if (!slavio_timer_is_user(tc)) {
132 qemu_irq_raise(t->irq);
133 }
134 }
135
136 static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
137 {
138 TimerContext *tc = opaque;
139 SLAVIO_TIMERState *s = tc->s;
140 uint32_t saddr, ret;
141 unsigned int timer_index = tc->timer_index;
142 CPUTimerState *t = &s->cputimer[timer_index];
143
144 saddr = addr >> 2;
145 switch (saddr) {
146 case TIMER_LIMIT:
147 // read limit (system counter mode) or read most signifying
148 // part of counter (user mode)
149 if (slavio_timer_is_user(tc)) {
150 // read user timer MSW
151 slavio_timer_get_out(t);
152 ret = t->counthigh | t->reached;
153 } else {
154 // read limit
155 // clear irq
156 qemu_irq_lower(t->irq);
157 t->reached = 0;
158 ret = t->limit & TIMER_LIMIT_MASK32;
159 }
160 break;
161 case TIMER_COUNTER:
162 // read counter and reached bit (system mode) or read lsbits
163 // of counter (user mode)
164 slavio_timer_get_out(t);
165 if (slavio_timer_is_user(tc)) { // read user timer LSW
166 ret = t->count & TIMER_MAX_COUNT64;
167 } else { // read limit
168 ret = (t->count & TIMER_MAX_COUNT32) |
169 t->reached;
170 }
171 break;
172 case TIMER_STATUS:
173 // only available in processor counter/timer
174 // read start/stop status
175 if (timer_index > 0) {
176 ret = t->running;
177 } else {
178 ret = 0;
179 }
180 break;
181 case TIMER_MODE:
182 // only available in system counter
183 // read user/system mode
184 ret = s->cputimer_mode;
185 break;
186 default:
187 DPRINTF("invalid read address " TARGET_FMT_plx "\n", addr);
188 ret = 0;
189 break;
190 }
191 DPRINTF("read " TARGET_FMT_plx " = %08x\n", addr, ret);
192
193 return ret;
194 }
195
196 static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr,
197 uint32_t val)
198 {
199 TimerContext *tc = opaque;
200 SLAVIO_TIMERState *s = tc->s;
201 uint32_t saddr;
202 unsigned int timer_index = tc->timer_index;
203 CPUTimerState *t = &s->cputimer[timer_index];
204
205 DPRINTF("write " TARGET_FMT_plx " %08x\n", addr, val);
206 saddr = addr >> 2;
207 switch (saddr) {
208 case TIMER_LIMIT:
209 if (slavio_timer_is_user(tc)) {
210 uint64_t count;
211
212 // set user counter MSW, reset counter
213 t->limit = TIMER_MAX_COUNT64;
214 t->counthigh = val & (TIMER_MAX_COUNT64 >> 32);
215 t->reached = 0;
216 count = ((uint64_t)t->counthigh << 32) | t->count;
217 DPRINTF("processor %d user timer set to %016" PRIx64 "\n",
218 timer_index, count);
219 ptimer_set_count(t->timer, LIMIT_TO_PERIODS(t->limit - count));
220 } else {
221 // set limit, reset counter
222 qemu_irq_lower(t->irq);
223 t->limit = val & TIMER_MAX_COUNT32;
224 if (t->timer) {
225 if (t->limit == 0) { /* free-run */
226 ptimer_set_limit(t->timer,
227 LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
228 } else {
229 ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(t->limit), 1);
230 }
231 }
232 }
233 break;
234 case TIMER_COUNTER:
235 if (slavio_timer_is_user(tc)) {
236 uint64_t count;
237
238 // set user counter LSW, reset counter
239 t->limit = TIMER_MAX_COUNT64;
240 t->count = val & TIMER_MAX_COUNT64;
241 t->reached = 0;
242 count = ((uint64_t)t->counthigh) << 32 | t->count;
243 DPRINTF("processor %d user timer set to %016" PRIx64 "\n",
244 timer_index, count);
245 ptimer_set_count(t->timer, LIMIT_TO_PERIODS(t->limit - count));
246 } else
247 DPRINTF("not user timer\n");
248 break;
249 case TIMER_COUNTER_NORST:
250 // set limit without resetting counter
251 t->limit = val & TIMER_MAX_COUNT32;
252 if (t->limit == 0) { /* free-run */
253 ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 0);
254 } else {
255 ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(t->limit), 0);
256 }
257 break;
258 case TIMER_STATUS:
259 if (slavio_timer_is_user(tc)) {
260 // start/stop user counter
261 if ((val & 1) && !t->running) {
262 DPRINTF("processor %d user timer started\n",
263 timer_index);
264 ptimer_run(t->timer, 0);
265 t->running = 1;
266 } else if (!(val & 1) && t->running) {
267 DPRINTF("processor %d user timer stopped\n",
268 timer_index);
269 ptimer_stop(t->timer);
270 t->running = 0;
271 }
272 }
273 break;
274 case TIMER_MODE:
275 if (timer_index == 0) {
276 unsigned int i;
277
278 for (i = 0; i < s->num_cpus; i++) {
279 unsigned int processor = 1 << i;
280 CPUTimerState *curr_timer = &s->cputimer[i + 1];
281
282 // check for a change in timer mode for this processor
283 if ((val & processor) != (s->cputimer_mode & processor)) {
284 if (val & processor) { // counter -> user timer
285 qemu_irq_lower(curr_timer->irq);
286 // counters are always running
287 ptimer_stop(curr_timer->timer);
288 curr_timer->running = 0;
289 // user timer limit is always the same
290 curr_timer->limit = TIMER_MAX_COUNT64;
291 ptimer_set_limit(curr_timer->timer,
292 LIMIT_TO_PERIODS(curr_timer->limit),
293 1);
294 // set this processors user timer bit in config
295 // register
296 s->cputimer_mode |= processor;
297 DPRINTF("processor %d changed from counter to user "
298 "timer\n", timer_index);
299 } else { // user timer -> counter
300 // stop the user timer if it is running
301 if (curr_timer->running) {
302 ptimer_stop(curr_timer->timer);
303 }
304 // start the counter
305 ptimer_run(curr_timer->timer, 0);
306 curr_timer->running = 1;
307 // clear this processors user timer bit in config
308 // register
309 s->cputimer_mode &= ~processor;
310 DPRINTF("processor %d changed from user timer to "
311 "counter\n", timer_index);
312 }
313 }
314 }
315 } else {
316 DPRINTF("not system timer\n");
317 }
318 break;
319 default:
320 DPRINTF("invalid write address " TARGET_FMT_plx "\n", addr);
321 break;
322 }
323 }
324
325 static CPUReadMemoryFunc * const slavio_timer_mem_read[3] = {
326 NULL,
327 NULL,
328 slavio_timer_mem_readl,
329 };
330
331 static CPUWriteMemoryFunc * const slavio_timer_mem_write[3] = {
332 NULL,
333 NULL,
334 slavio_timer_mem_writel,
335 };
336
337 static void slavio_timer_save(QEMUFile *f, void *opaque)
338 {
339 SLAVIO_TIMERState *s = opaque;
340 unsigned int i;
341 CPUTimerState *curr_timer;
342
343 for (i = 0; i <= MAX_CPUS; i++) {
344 curr_timer = &s->cputimer[i];
345 qemu_put_be64s(f, &curr_timer->limit);
346 qemu_put_be32s(f, &curr_timer->count);
347 qemu_put_be32s(f, &curr_timer->counthigh);
348 qemu_put_be32s(f, &curr_timer->reached);
349 qemu_put_be32s(f, &curr_timer->running);
350 qemu_put_ptimer(f, curr_timer->timer);
351 }
352 }
353
354 static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
355 {
356 SLAVIO_TIMERState *s = opaque;
357 unsigned int i;
358 CPUTimerState *curr_timer;
359
360 if (version_id != 3)
361 return -EINVAL;
362
363 for (i = 0; i <= MAX_CPUS; i++) {
364 curr_timer = &s->cputimer[i];
365 qemu_get_be64s(f, &curr_timer->limit);
366 qemu_get_be32s(f, &curr_timer->count);
367 qemu_get_be32s(f, &curr_timer->counthigh);
368 qemu_get_be32s(f, &curr_timer->reached);
369 qemu_get_be32s(f, &curr_timer->running);
370 qemu_get_ptimer(f, curr_timer->timer);
371 }
372
373 return 0;
374 }
375
376 static void slavio_timer_reset(void *opaque)
377 {
378 SLAVIO_TIMERState *s = opaque;
379 unsigned int i;
380 CPUTimerState *curr_timer;
381
382 for (i = 0; i <= MAX_CPUS; i++) {
383 curr_timer = &s->cputimer[i];
384 curr_timer->limit = 0;
385 curr_timer->count = 0;
386 curr_timer->reached = 0;
387 if (i < s->num_cpus) {
388 ptimer_set_limit(curr_timer->timer,
389 LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
390 ptimer_run(curr_timer->timer, 0);
391 }
392 curr_timer->running = 1;
393 }
394 s->cputimer_mode = 0;
395 }
396
397 static int slavio_timer_init1(SysBusDevice *dev)
398 {
399 int io;
400 SLAVIO_TIMERState *s = FROM_SYSBUS(SLAVIO_TIMERState, dev);
401 QEMUBH *bh;
402 unsigned int i;
403 TimerContext *tc;
404
405 for (i = 0; i <= MAX_CPUS; i++) {
406 tc = qemu_mallocz(sizeof(TimerContext));
407 tc->s = s;
408 tc->timer_index = i;
409
410 bh = qemu_bh_new(slavio_timer_irq, tc);
411 s->cputimer[i].timer = ptimer_init(bh);
412 ptimer_set_period(s->cputimer[i].timer, TIMER_PERIOD);
413
414 io = cpu_register_io_memory(slavio_timer_mem_read,
415 slavio_timer_mem_write, tc);
416 if (i == 0) {
417 sysbus_init_mmio(dev, SYS_TIMER_SIZE, io);
418 } else {
419 sysbus_init_mmio(dev, CPU_TIMER_SIZE, io);
420 }
421
422 sysbus_init_irq(dev, &s->cputimer[i].irq);
423 }
424
425 register_savevm("slavio_timer", -1, 3, slavio_timer_save,
426 slavio_timer_load, s);
427 qemu_register_reset(slavio_timer_reset, s);
428 slavio_timer_reset(s);
429 return 0;
430 }
431
432 static SysBusDeviceInfo slavio_timer_info = {
433 .init = slavio_timer_init1,
434 .qdev.name = "slavio_timer",
435 .qdev.size = sizeof(SLAVIO_TIMERState),
436 .qdev.props = (Property[]) {
437 DEFINE_PROP_UINT32("num_cpus", SLAVIO_TIMERState, num_cpus, 0),
438 DEFINE_PROP_END_OF_LIST(),
439 }
440 };
441
442 static void slavio_timer_register_devices(void)
443 {
444 sysbus_register_withprop(&slavio_timer_info);
445 }
446
447 device_init(slavio_timer_register_devices)