]> git.proxmox.com Git - qemu.git/blob - hw/slavio_timer.c
More detabification
[qemu.git] / hw / slavio_timer.c
1 /*
2 * QEMU Sparc SLAVIO timer controller emulation
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "vl.h"
25
26 //#define DEBUG_TIMER
27
28 #ifdef DEBUG_TIMER
29 #define DPRINTF(fmt, args...) \
30 do { printf("TIMER: " fmt , ##args); } while (0)
31 #else
32 #define DPRINTF(fmt, args...)
33 #endif
34
35 /*
36 * Registers of hardware timer in sun4m.
37 *
38 * This is the timer/counter part of chip STP2001 (Slave I/O), also
39 * produced as NCR89C105. See
40 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
41 *
42 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
43 * are zero. Bit 31 is 1 when count has been reached.
44 *
45 * Per-CPU timers interrupt local CPU, system timer uses normal
46 * interrupt routing.
47 *
48 */
49
50 #define MAX_CPUS 16
51
52 typedef struct SLAVIO_TIMERState {
53 qemu_irq irq;
54 ptimer_state *timer;
55 uint32_t count, counthigh, reached;
56 uint64_t limit;
57 int stopped;
58 int mode; // 0 = processor, 1 = user, 2 = system
59 struct SLAVIO_TIMERState *slave[MAX_CPUS];
60 uint32_t slave_mode;
61 } SLAVIO_TIMERState;
62
63 #define TIMER_MAXADDR 0x1f
64 #define TIMER_SIZE (TIMER_MAXADDR + 1)
65 #define CPU_TIMER_SIZE 0x10
66
67 // Update count, set irq, update expire_time
68 // Convert from ptimer countdown units
69 static void slavio_timer_get_out(SLAVIO_TIMERState *s)
70 {
71 uint64_t count;
72
73 count = s->limit - (ptimer_get_count(s->timer) << 9);
74 DPRINTF("get_out: limit %" PRIx64 " count %x%08x\n", s->limit, s->counthigh,
75 s->count);
76 s->count = count & 0xfffffe00;
77 s->counthigh = count >> 32;
78 }
79
80 // timer callback
81 static void slavio_timer_irq(void *opaque)
82 {
83 SLAVIO_TIMERState *s = opaque;
84
85 slavio_timer_get_out(s);
86 DPRINTF("callback: count %x%08x\n", s->counthigh, s->count);
87 s->reached = 0x80000000;
88 if (s->mode != 1)
89 qemu_irq_raise(s->irq);
90 }
91
92 static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
93 {
94 SLAVIO_TIMERState *s = opaque;
95 uint32_t saddr, ret;
96
97 saddr = (addr & TIMER_MAXADDR) >> 2;
98 switch (saddr) {
99 case 0:
100 // read limit (system counter mode) or read most signifying
101 // part of counter (user mode)
102 if (s->mode != 1) {
103 // clear irq
104 qemu_irq_lower(s->irq);
105 s->reached = 0;
106 ret = s->limit & 0x7fffffff;
107 }
108 else {
109 slavio_timer_get_out(s);
110 ret = s->counthigh & 0x7fffffff;
111 }
112 break;
113 case 1:
114 // read counter and reached bit (system mode) or read lsbits
115 // of counter (user mode)
116 slavio_timer_get_out(s);
117 if (s->mode != 1)
118 ret = (s->count & 0x7fffffff) | s->reached;
119 else
120 ret = s->count;
121 break;
122 case 3:
123 // read start/stop status
124 ret = s->stopped;
125 break;
126 case 4:
127 // read user/system mode
128 ret = s->slave_mode;
129 break;
130 default:
131 ret = 0;
132 break;
133 }
134 DPRINTF("read " TARGET_FMT_plx " = %08x\n", addr, ret);
135
136 return ret;
137 }
138
139 static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
140 {
141 SLAVIO_TIMERState *s = opaque;
142 uint32_t saddr;
143 int reload = 0;
144
145 DPRINTF("write " TARGET_FMT_plx " %08x\n", addr, val);
146 saddr = (addr & TIMER_MAXADDR) >> 2;
147 switch (saddr) {
148 case 0:
149 if (s->mode == 1) {
150 // set user counter limit MSW, reset counter
151 qemu_irq_lower(s->irq);
152 s->limit &= 0xfffffe00ULL;
153 s->limit |= (uint64_t)val << 32;
154 if (!s->limit)
155 s->limit = 0x7ffffffffffffe00ULL;
156 ptimer_set_limit(s->timer, s->limit >> 9, 1);
157 break;
158 }
159 // set limit, reset counter
160 reload = 1;
161 qemu_irq_lower(s->irq);
162 // fall through
163 case 2:
164 // set limit without resetting counter
165 s->limit = val & 0x7ffffe00ULL;
166 if (!s->limit)
167 s->limit = 0x7ffffe00ULL;
168 ptimer_set_limit(s->timer, s->limit >> 9, reload);
169 break;
170 case 1:
171 // set user counter limit LSW, reset counter
172 if (s->mode == 1) {
173 qemu_irq_lower(s->irq);
174 s->limit &= 0x7fffffff00000000ULL;
175 s->limit |= val & 0xfffffe00ULL;
176 if (!s->limit)
177 s->limit = 0x7ffffffffffffe00ULL;
178 ptimer_set_limit(s->timer, s->limit >> 9, 1);
179 }
180 break;
181 case 3:
182 // start/stop user counter
183 if (s->mode == 1) {
184 if (val & 1) {
185 ptimer_stop(s->timer);
186 s->stopped = 1;
187 }
188 else {
189 ptimer_run(s->timer, 0);
190 s->stopped = 0;
191 }
192 }
193 break;
194 case 4:
195 // bit 0: user (1) or system (0) counter mode
196 {
197 unsigned int i;
198
199 for (i = 0; i < MAX_CPUS; i++) {
200 if (val & (1 << i)) {
201 qemu_irq_lower(s->slave[i]->irq);
202 s->slave[i]->limit = -1ULL;
203 s->slave[i]->mode = 1;
204 } else {
205 s->slave[i]->mode = 0;
206 }
207 ptimer_stop(s->slave[i]->timer);
208 ptimer_set_limit(s->slave[i]->timer, s->slave[i]->limit >> 9,
209 1);
210 ptimer_run(s->slave[i]->timer, 0);
211 }
212 s->slave_mode = val & ((1 << MAX_CPUS) - 1);
213 }
214 break;
215 default:
216 break;
217 }
218 }
219
220 static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {
221 slavio_timer_mem_readl,
222 slavio_timer_mem_readl,
223 slavio_timer_mem_readl,
224 };
225
226 static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {
227 slavio_timer_mem_writel,
228 slavio_timer_mem_writel,
229 slavio_timer_mem_writel,
230 };
231
232 static void slavio_timer_save(QEMUFile *f, void *opaque)
233 {
234 SLAVIO_TIMERState *s = opaque;
235
236 qemu_put_be64s(f, &s->limit);
237 qemu_put_be32s(f, &s->count);
238 qemu_put_be32s(f, &s->counthigh);
239 qemu_put_be32(f, 0); // Was irq
240 qemu_put_be32s(f, &s->reached);
241 qemu_put_be32s(f, &s->stopped);
242 qemu_put_be32s(f, &s->mode);
243 qemu_put_ptimer(f, s->timer);
244 }
245
246 static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
247 {
248 SLAVIO_TIMERState *s = opaque;
249 uint32_t tmp;
250
251 if (version_id != 2)
252 return -EINVAL;
253
254 qemu_get_be64s(f, &s->limit);
255 qemu_get_be32s(f, &s->count);
256 qemu_get_be32s(f, &s->counthigh);
257 qemu_get_be32s(f, &tmp); // Was irq
258 qemu_get_be32s(f, &s->reached);
259 qemu_get_be32s(f, &s->stopped);
260 qemu_get_be32s(f, &s->mode);
261 qemu_get_ptimer(f, s->timer);
262
263 return 0;
264 }
265
266 static void slavio_timer_reset(void *opaque)
267 {
268 SLAVIO_TIMERState *s = opaque;
269
270 s->limit = 0x7ffffe00ULL;
271 s->count = 0;
272 s->reached = 0;
273 s->mode &= 2;
274 ptimer_set_limit(s->timer, s->limit >> 9, 1);
275 ptimer_run(s->timer, 0);
276 s->stopped = 1;
277 qemu_irq_lower(s->irq);
278 }
279
280 static SLAVIO_TIMERState *slavio_timer_init(target_phys_addr_t addr,
281 qemu_irq irq, int mode)
282 {
283 int slavio_timer_io_memory;
284 SLAVIO_TIMERState *s;
285 QEMUBH *bh;
286
287 s = qemu_mallocz(sizeof(SLAVIO_TIMERState));
288 if (!s)
289 return s;
290 s->irq = irq;
291 s->mode = mode;
292 bh = qemu_bh_new(slavio_timer_irq, s);
293 s->timer = ptimer_init(bh);
294 ptimer_set_period(s->timer, 500ULL);
295
296 slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,
297 slavio_timer_mem_write, s);
298 if (mode < 2)
299 cpu_register_physical_memory(addr, CPU_TIMER_SIZE, slavio_timer_io_memory);
300 else
301 cpu_register_physical_memory(addr, TIMER_SIZE,
302 slavio_timer_io_memory);
303 register_savevm("slavio_timer", addr, 2, slavio_timer_save, slavio_timer_load, s);
304 qemu_register_reset(slavio_timer_reset, s);
305 slavio_timer_reset(s);
306
307 return s;
308 }
309
310 void slavio_timer_init_all(target_phys_addr_t base, qemu_irq master_irq,
311 qemu_irq *cpu_irqs)
312 {
313 SLAVIO_TIMERState *master;
314 unsigned int i;
315
316 master = slavio_timer_init(base + 0x10000ULL, master_irq, 2);
317
318 for (i = 0; i < MAX_CPUS; i++) {
319 master->slave[i] = slavio_timer_init(base + (target_phys_addr_t)
320 (i * TARGET_PAGE_SIZE),
321 cpu_irqs[i], 0);
322 }
323 }