]> git.proxmox.com Git - qemu.git/blob - hw/spapr.c
PPC: spapr: Rework VGA select logic
[qemu.git] / hw / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27 #include "sysemu.h"
28 #include "hw.h"
29 #include "elf.h"
30 #include "net.h"
31 #include "blockdev.h"
32 #include "cpus.h"
33 #include "kvm.h"
34 #include "kvm_ppc.h"
35
36 #include "hw/boards.h"
37 #include "hw/ppc.h"
38 #include "hw/loader.h"
39
40 #include "hw/spapr.h"
41 #include "hw/spapr_vio.h"
42 #include "hw/spapr_pci.h"
43 #include "hw/xics.h"
44
45 #include "kvm.h"
46 #include "kvm_ppc.h"
47 #include "pci.h"
48 #include "vga-pci.h"
49
50 #include "exec-memory.h"
51
52 #include <libfdt.h>
53
54 /* SLOF memory layout:
55 *
56 * SLOF raw image loaded at 0, copies its romfs right below the flat
57 * device-tree, then position SLOF itself 31M below that
58 *
59 * So we set FW_OVERHEAD to 40MB which should account for all of that
60 * and more
61 *
62 * We load our kernel at 4M, leaving space for SLOF initial image
63 */
64 #define FDT_MAX_SIZE 0x10000
65 #define RTAS_MAX_SIZE 0x10000
66 #define FW_MAX_SIZE 0x400000
67 #define FW_FILE_NAME "slof.bin"
68 #define FW_OVERHEAD 0x2800000
69 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
70
71 #define MIN_RMA_SLOF 128UL
72
73 #define TIMEBASE_FREQ 512000000ULL
74
75 #define MAX_CPUS 256
76 #define XICS_IRQS 1024
77
78 #define SPAPR_PCI_BUID 0x800000020000001ULL
79 #define SPAPR_PCI_MEM_WIN_ADDR (0x10000000000ULL + 0xA0000000)
80 #define SPAPR_PCI_MEM_WIN_SIZE 0x20000000
81 #define SPAPR_PCI_IO_WIN_ADDR (0x10000000000ULL + 0x80000000)
82
83 #define PHANDLE_XICP 0x00001111
84
85 sPAPREnvironment *spapr;
86 bool spapr_has_graphics;
87
88 qemu_irq spapr_allocate_irq(uint32_t hint, uint32_t *irq_num,
89 enum xics_irq_type type)
90 {
91 uint32_t irq;
92 qemu_irq qirq;
93
94 if (hint) {
95 irq = hint;
96 /* FIXME: we should probably check for collisions somehow */
97 } else {
98 irq = spapr->next_irq++;
99 }
100
101 qirq = xics_assign_irq(spapr->icp, irq, type);
102 if (!qirq) {
103 return NULL;
104 }
105
106 if (irq_num) {
107 *irq_num = irq;
108 }
109
110 return qirq;
111 }
112
113 static int spapr_set_associativity(void *fdt, sPAPREnvironment *spapr)
114 {
115 int ret = 0, offset;
116 CPUPPCState *env;
117 char cpu_model[32];
118 int smt = kvmppc_smt_threads();
119
120 assert(spapr->cpu_model);
121
122 for (env = first_cpu; env != NULL; env = env->next_cpu) {
123 uint32_t associativity[] = {cpu_to_be32(0x5),
124 cpu_to_be32(0x0),
125 cpu_to_be32(0x0),
126 cpu_to_be32(0x0),
127 cpu_to_be32(env->numa_node),
128 cpu_to_be32(env->cpu_index)};
129
130 if ((env->cpu_index % smt) != 0) {
131 continue;
132 }
133
134 snprintf(cpu_model, 32, "/cpus/%s@%x", spapr->cpu_model,
135 env->cpu_index);
136
137 offset = fdt_path_offset(fdt, cpu_model);
138 if (offset < 0) {
139 return offset;
140 }
141
142 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
143 sizeof(associativity));
144 if (ret < 0) {
145 return ret;
146 }
147 }
148 return ret;
149 }
150
151
152 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
153 size_t maxsize)
154 {
155 size_t maxcells = maxsize / sizeof(uint32_t);
156 int i, j, count;
157 uint32_t *p = prop;
158
159 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
160 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
161
162 if (!sps->page_shift) {
163 break;
164 }
165 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
166 if (sps->enc[count].page_shift == 0) {
167 break;
168 }
169 }
170 if ((p - prop) >= (maxcells - 3 - count * 2)) {
171 break;
172 }
173 *(p++) = cpu_to_be32(sps->page_shift);
174 *(p++) = cpu_to_be32(sps->slb_enc);
175 *(p++) = cpu_to_be32(count);
176 for (j = 0; j < count; j++) {
177 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
178 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
179 }
180 }
181
182 return (p - prop) * sizeof(uint32_t);
183 }
184
185 static void *spapr_create_fdt_skel(const char *cpu_model,
186 target_phys_addr_t rma_size,
187 target_phys_addr_t initrd_base,
188 target_phys_addr_t initrd_size,
189 target_phys_addr_t kernel_size,
190 const char *boot_device,
191 const char *kernel_cmdline,
192 long hash_shift)
193 {
194 void *fdt;
195 CPUPPCState *env;
196 uint64_t mem_reg_property[2];
197 uint32_t start_prop = cpu_to_be32(initrd_base);
198 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
199 uint32_t pft_size_prop[] = {0, cpu_to_be32(hash_shift)};
200 char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
201 "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk";
202 char qemu_hypertas_prop[] = "hcall-memop1";
203 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
204 int i;
205 char *modelname;
206 int smt = kvmppc_smt_threads();
207 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
208 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
209 uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
210 cpu_to_be32(0x0), cpu_to_be32(0x0),
211 cpu_to_be32(0x0)};
212 char mem_name[32];
213 target_phys_addr_t node0_size, mem_start;
214
215 #define _FDT(exp) \
216 do { \
217 int ret = (exp); \
218 if (ret < 0) { \
219 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
220 #exp, fdt_strerror(ret)); \
221 exit(1); \
222 } \
223 } while (0)
224
225 fdt = g_malloc0(FDT_MAX_SIZE);
226 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
227
228 if (kernel_size) {
229 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
230 }
231 if (initrd_size) {
232 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
233 }
234 _FDT((fdt_finish_reservemap(fdt)));
235
236 /* Root node */
237 _FDT((fdt_begin_node(fdt, "")));
238 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
239 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
240
241 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
242 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
243
244 /* /chosen */
245 _FDT((fdt_begin_node(fdt, "chosen")));
246
247 /* Set Form1_affinity */
248 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
249
250 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
251 _FDT((fdt_property(fdt, "linux,initrd-start",
252 &start_prop, sizeof(start_prop))));
253 _FDT((fdt_property(fdt, "linux,initrd-end",
254 &end_prop, sizeof(end_prop))));
255 if (kernel_size) {
256 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
257 cpu_to_be64(kernel_size) };
258
259 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
260 }
261 _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
262 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
263 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
264 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
265
266 _FDT((fdt_end_node(fdt)));
267
268 /* memory node(s) */
269 node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
270 if (rma_size > node0_size) {
271 rma_size = node0_size;
272 }
273
274 /* RMA */
275 mem_reg_property[0] = 0;
276 mem_reg_property[1] = cpu_to_be64(rma_size);
277 _FDT((fdt_begin_node(fdt, "memory@0")));
278 _FDT((fdt_property_string(fdt, "device_type", "memory")));
279 _FDT((fdt_property(fdt, "reg", mem_reg_property,
280 sizeof(mem_reg_property))));
281 _FDT((fdt_property(fdt, "ibm,associativity", associativity,
282 sizeof(associativity))));
283 _FDT((fdt_end_node(fdt)));
284
285 /* RAM: Node 0 */
286 if (node0_size > rma_size) {
287 mem_reg_property[0] = cpu_to_be64(rma_size);
288 mem_reg_property[1] = cpu_to_be64(node0_size - rma_size);
289
290 sprintf(mem_name, "memory@" TARGET_FMT_lx, rma_size);
291 _FDT((fdt_begin_node(fdt, mem_name)));
292 _FDT((fdt_property_string(fdt, "device_type", "memory")));
293 _FDT((fdt_property(fdt, "reg", mem_reg_property,
294 sizeof(mem_reg_property))));
295 _FDT((fdt_property(fdt, "ibm,associativity", associativity,
296 sizeof(associativity))));
297 _FDT((fdt_end_node(fdt)));
298 }
299
300 /* RAM: Node 1 and beyond */
301 mem_start = node0_size;
302 for (i = 1; i < nb_numa_nodes; i++) {
303 mem_reg_property[0] = cpu_to_be64(mem_start);
304 mem_reg_property[1] = cpu_to_be64(node_mem[i]);
305 associativity[3] = associativity[4] = cpu_to_be32(i);
306 sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
307 _FDT((fdt_begin_node(fdt, mem_name)));
308 _FDT((fdt_property_string(fdt, "device_type", "memory")));
309 _FDT((fdt_property(fdt, "reg", mem_reg_property,
310 sizeof(mem_reg_property))));
311 _FDT((fdt_property(fdt, "ibm,associativity", associativity,
312 sizeof(associativity))));
313 _FDT((fdt_end_node(fdt)));
314 mem_start += node_mem[i];
315 }
316
317 /* cpus */
318 _FDT((fdt_begin_node(fdt, "cpus")));
319
320 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
321 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
322
323 modelname = g_strdup(cpu_model);
324
325 for (i = 0; i < strlen(modelname); i++) {
326 modelname[i] = toupper(modelname[i]);
327 }
328
329 /* This is needed during FDT finalization */
330 spapr->cpu_model = g_strdup(modelname);
331
332 for (env = first_cpu; env != NULL; env = env->next_cpu) {
333 int index = env->cpu_index;
334 uint32_t servers_prop[smp_threads];
335 uint32_t gservers_prop[smp_threads * 2];
336 char *nodename;
337 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
338 0xffffffff, 0xffffffff};
339 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
340 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
341 uint32_t page_sizes_prop[64];
342 size_t page_sizes_prop_size;
343
344 if ((index % smt) != 0) {
345 continue;
346 }
347
348 if (asprintf(&nodename, "%s@%x", modelname, index) < 0) {
349 fprintf(stderr, "Allocation failure\n");
350 exit(1);
351 }
352
353 _FDT((fdt_begin_node(fdt, nodename)));
354
355 free(nodename);
356
357 _FDT((fdt_property_cell(fdt, "reg", index)));
358 _FDT((fdt_property_string(fdt, "device_type", "cpu")));
359
360 _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
361 _FDT((fdt_property_cell(fdt, "dcache-block-size",
362 env->dcache_line_size)));
363 _FDT((fdt_property_cell(fdt, "icache-block-size",
364 env->icache_line_size)));
365 _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
366 _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
367 _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
368 _FDT((fdt_property(fdt, "ibm,pft-size",
369 pft_size_prop, sizeof(pft_size_prop))));
370 _FDT((fdt_property_string(fdt, "status", "okay")));
371 _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
372
373 /* Build interrupt servers and gservers properties */
374 for (i = 0; i < smp_threads; i++) {
375 servers_prop[i] = cpu_to_be32(index + i);
376 /* Hack, direct the group queues back to cpu 0 */
377 gservers_prop[i*2] = cpu_to_be32(index + i);
378 gservers_prop[i*2 + 1] = 0;
379 }
380 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
381 servers_prop, sizeof(servers_prop))));
382 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
383 gservers_prop, sizeof(gservers_prop))));
384
385 if (env->mmu_model & POWERPC_MMU_1TSEG) {
386 _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
387 segs, sizeof(segs))));
388 }
389
390 /* Advertise VMX/VSX (vector extensions) if available
391 * 0 / no property == no vector extensions
392 * 1 == VMX / Altivec available
393 * 2 == VSX available */
394 if (env->insns_flags & PPC_ALTIVEC) {
395 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
396
397 _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
398 }
399
400 /* Advertise DFP (Decimal Floating Point) if available
401 * 0 / no property == no DFP
402 * 1 == DFP available */
403 if (env->insns_flags2 & PPC2_DFP) {
404 _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
405 }
406
407 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
408 sizeof(page_sizes_prop));
409 if (page_sizes_prop_size) {
410 _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
411 page_sizes_prop, page_sizes_prop_size)));
412 }
413
414 _FDT((fdt_end_node(fdt)));
415 }
416
417 g_free(modelname);
418
419 _FDT((fdt_end_node(fdt)));
420
421 /* RTAS */
422 _FDT((fdt_begin_node(fdt, "rtas")));
423
424 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
425 sizeof(hypertas_prop))));
426 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop,
427 sizeof(qemu_hypertas_prop))));
428
429 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
430 refpoints, sizeof(refpoints))));
431
432 _FDT((fdt_end_node(fdt)));
433
434 /* interrupt controller */
435 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
436
437 _FDT((fdt_property_string(fdt, "device_type",
438 "PowerPC-External-Interrupt-Presentation")));
439 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
440 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
441 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
442 interrupt_server_ranges_prop,
443 sizeof(interrupt_server_ranges_prop))));
444 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
445 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
446 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
447
448 _FDT((fdt_end_node(fdt)));
449
450 /* vdevice */
451 _FDT((fdt_begin_node(fdt, "vdevice")));
452
453 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
454 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
455 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
456 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
457 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
458 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
459
460 _FDT((fdt_end_node(fdt)));
461
462 _FDT((fdt_end_node(fdt))); /* close root node */
463 _FDT((fdt_finish(fdt)));
464
465 return fdt;
466 }
467
468 static void spapr_finalize_fdt(sPAPREnvironment *spapr,
469 target_phys_addr_t fdt_addr,
470 target_phys_addr_t rtas_addr,
471 target_phys_addr_t rtas_size)
472 {
473 int ret;
474 void *fdt;
475 sPAPRPHBState *phb;
476
477 fdt = g_malloc(FDT_MAX_SIZE);
478
479 /* open out the base tree into a temp buffer for the final tweaks */
480 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
481
482 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
483 if (ret < 0) {
484 fprintf(stderr, "couldn't setup vio devices in fdt\n");
485 exit(1);
486 }
487
488 QLIST_FOREACH(phb, &spapr->phbs, list) {
489 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
490 }
491
492 if (ret < 0) {
493 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
494 exit(1);
495 }
496
497 /* RTAS */
498 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
499 if (ret < 0) {
500 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
501 }
502
503 /* Advertise NUMA via ibm,associativity */
504 if (nb_numa_nodes > 1) {
505 ret = spapr_set_associativity(fdt, spapr);
506 if (ret < 0) {
507 fprintf(stderr, "Couldn't set up NUMA device tree properties\n");
508 }
509 }
510
511 if (!spapr_has_graphics) {
512 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
513 }
514
515 _FDT((fdt_pack(fdt)));
516
517 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
518 hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
519 fdt_totalsize(fdt), FDT_MAX_SIZE);
520 exit(1);
521 }
522
523 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
524
525 g_free(fdt);
526 }
527
528 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
529 {
530 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
531 }
532
533 static void emulate_spapr_hypercall(CPUPPCState *env)
534 {
535 env->gpr[3] = spapr_hypercall(env, env->gpr[3], &env->gpr[4]);
536 }
537
538 static void spapr_reset(void *opaque)
539 {
540 sPAPREnvironment *spapr = (sPAPREnvironment *)opaque;
541
542 fprintf(stderr, "sPAPR reset\n");
543
544 /* flush out the hash table */
545 memset(spapr->htab, 0, spapr->htab_size);
546
547 /* Load the fdt */
548 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
549 spapr->rtas_size);
550
551 /* Set up the entry state */
552 first_cpu->gpr[3] = spapr->fdt_addr;
553 first_cpu->gpr[5] = 0;
554 first_cpu->halted = 0;
555 first_cpu->nip = spapr->entry_point;
556
557 }
558
559 static void spapr_cpu_reset(void *opaque)
560 {
561 PowerPCCPU *cpu = opaque;
562
563 cpu_reset(CPU(cpu));
564 }
565
566 /* Returns whether we want to use VGA or not */
567 static int spapr_vga_init(PCIBus *pci_bus)
568 {
569 switch (vga_interface_type) {
570 case VGA_STD:
571 pci_vga_init(pci_bus);
572 return 1;
573 case VGA_NONE:
574 return 0;
575 default:
576 fprintf(stderr, "This vga model is not supported,"
577 "currently it only supports -vga std\n");
578 exit(0);
579 break;
580 }
581 }
582
583 /* pSeries LPAR / sPAPR hardware init */
584 static void ppc_spapr_init(ram_addr_t ram_size,
585 const char *boot_device,
586 const char *kernel_filename,
587 const char *kernel_cmdline,
588 const char *initrd_filename,
589 const char *cpu_model)
590 {
591 PowerPCCPU *cpu;
592 CPUPPCState *env;
593 int i;
594 MemoryRegion *sysmem = get_system_memory();
595 MemoryRegion *ram = g_new(MemoryRegion, 1);
596 target_phys_addr_t rma_alloc_size, rma_size;
597 uint32_t initrd_base = 0;
598 long kernel_size = 0, initrd_size = 0;
599 long load_limit, rtas_limit, fw_size;
600 long pteg_shift = 17;
601 char *filename;
602
603 spapr = g_malloc0(sizeof(*spapr));
604 QLIST_INIT(&spapr->phbs);
605
606 cpu_ppc_hypercall = emulate_spapr_hypercall;
607
608 /* Allocate RMA if necessary */
609 rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
610
611 if (rma_alloc_size == -1) {
612 hw_error("qemu: Unable to create RMA\n");
613 exit(1);
614 }
615 if (rma_alloc_size && (rma_alloc_size < ram_size)) {
616 rma_size = rma_alloc_size;
617 } else {
618 rma_size = ram_size;
619 }
620
621 /* We place the device tree and RTAS just below either the top of the RMA,
622 * or just below 2GB, whichever is lowere, so that it can be
623 * processed with 32-bit real mode code if necessary */
624 rtas_limit = MIN(rma_size, 0x80000000);
625 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
626 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
627 load_limit = spapr->fdt_addr - FW_OVERHEAD;
628
629 /* init CPUs */
630 if (cpu_model == NULL) {
631 cpu_model = kvm_enabled() ? "host" : "POWER7";
632 }
633 for (i = 0; i < smp_cpus; i++) {
634 cpu = cpu_ppc_init(cpu_model);
635 if (cpu == NULL) {
636 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
637 exit(1);
638 }
639 env = &cpu->env;
640
641 /* Set time-base frequency to 512 MHz */
642 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
643 qemu_register_reset(spapr_cpu_reset, cpu);
644
645 env->hreset_vector = 0x60;
646 env->hreset_excp_prefix = 0;
647 env->gpr[3] = env->cpu_index;
648 }
649
650 /* allocate RAM */
651 spapr->ram_limit = ram_size;
652 if (spapr->ram_limit > rma_alloc_size) {
653 ram_addr_t nonrma_base = rma_alloc_size;
654 ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
655
656 memory_region_init_ram(ram, "ppc_spapr.ram", nonrma_size);
657 vmstate_register_ram_global(ram);
658 memory_region_add_subregion(sysmem, nonrma_base, ram);
659 }
660
661 /* allocate hash page table. For now we always make this 16mb,
662 * later we should probably make it scale to the size of guest
663 * RAM */
664 spapr->htab_size = 1ULL << (pteg_shift + 7);
665 spapr->htab = qemu_memalign(spapr->htab_size, spapr->htab_size);
666
667 for (env = first_cpu; env != NULL; env = env->next_cpu) {
668 env->external_htab = spapr->htab;
669 env->htab_base = -1;
670 env->htab_mask = spapr->htab_size - 1;
671
672 /* Tell KVM that we're in PAPR mode */
673 env->spr[SPR_SDR1] = (unsigned long)spapr->htab |
674 ((pteg_shift + 7) - 18);
675 env->spr[SPR_HIOR] = 0;
676
677 if (kvm_enabled()) {
678 kvmppc_set_papr(env);
679 }
680 }
681
682 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
683 spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
684 rtas_limit - spapr->rtas_addr);
685 if (spapr->rtas_size < 0) {
686 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
687 exit(1);
688 }
689 if (spapr->rtas_size > RTAS_MAX_SIZE) {
690 hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
691 spapr->rtas_size, RTAS_MAX_SIZE);
692 exit(1);
693 }
694 g_free(filename);
695
696
697 /* Set up Interrupt Controller */
698 spapr->icp = xics_system_init(XICS_IRQS);
699 spapr->next_irq = 16;
700
701 /* Set up IOMMU */
702 spapr_iommu_init();
703
704 /* Set up VIO bus */
705 spapr->vio_bus = spapr_vio_bus_init();
706
707 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
708 if (serial_hds[i]) {
709 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
710 }
711 }
712
713 /* Set up PCI */
714 spapr_create_phb(spapr, "pci", SPAPR_PCI_BUID,
715 SPAPR_PCI_MEM_WIN_ADDR,
716 SPAPR_PCI_MEM_WIN_SIZE,
717 SPAPR_PCI_IO_WIN_ADDR);
718
719 for (i = 0; i < nb_nics; i++) {
720 NICInfo *nd = &nd_table[i];
721
722 if (!nd->model) {
723 nd->model = g_strdup("ibmveth");
724 }
725
726 if (strcmp(nd->model, "ibmveth") == 0) {
727 spapr_vlan_create(spapr->vio_bus, nd);
728 } else {
729 pci_nic_init_nofail(&nd_table[i], nd->model, NULL);
730 }
731 }
732
733 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
734 spapr_vscsi_create(spapr->vio_bus);
735 }
736
737 /* Graphics */
738 if (spapr_vga_init(QLIST_FIRST(&spapr->phbs)->host_state.bus)) {
739 spapr_has_graphics = true;
740 }
741
742 if (rma_size < (MIN_RMA_SLOF << 20)) {
743 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
744 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
745 exit(1);
746 }
747
748 fprintf(stderr, "sPAPR memory map:\n");
749 fprintf(stderr, "RTAS : 0x%08lx..%08lx\n",
750 (unsigned long)spapr->rtas_addr,
751 (unsigned long)(spapr->rtas_addr + spapr->rtas_size - 1));
752 fprintf(stderr, "FDT : 0x%08lx..%08lx\n",
753 (unsigned long)spapr->fdt_addr,
754 (unsigned long)(spapr->fdt_addr + FDT_MAX_SIZE - 1));
755
756 if (kernel_filename) {
757 uint64_t lowaddr = 0;
758
759 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
760 NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
761 if (kernel_size < 0) {
762 kernel_size = load_image_targphys(kernel_filename,
763 KERNEL_LOAD_ADDR,
764 load_limit - KERNEL_LOAD_ADDR);
765 }
766 if (kernel_size < 0) {
767 fprintf(stderr, "qemu: could not load kernel '%s'\n",
768 kernel_filename);
769 exit(1);
770 }
771 fprintf(stderr, "Kernel : 0x%08x..%08lx\n",
772 KERNEL_LOAD_ADDR, KERNEL_LOAD_ADDR + kernel_size - 1);
773
774 /* load initrd */
775 if (initrd_filename) {
776 /* Try to locate the initrd in the gap between the kernel
777 * and the firmware. Add a bit of space just in case
778 */
779 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
780 initrd_size = load_image_targphys(initrd_filename, initrd_base,
781 load_limit - initrd_base);
782 if (initrd_size < 0) {
783 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
784 initrd_filename);
785 exit(1);
786 }
787 fprintf(stderr, "Ramdisk : 0x%08lx..%08lx\n",
788 (long)initrd_base, (long)(initrd_base + initrd_size - 1));
789 } else {
790 initrd_base = 0;
791 initrd_size = 0;
792 }
793 }
794
795 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, FW_FILE_NAME);
796 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
797 if (fw_size < 0) {
798 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
799 exit(1);
800 }
801 g_free(filename);
802 fprintf(stderr, "Firmware load : 0x%08x..%08lx\n",
803 0, fw_size);
804 fprintf(stderr, "Firmware runtime : 0x%08lx..%08lx\n",
805 load_limit, (unsigned long)spapr->fdt_addr);
806
807 spapr->entry_point = 0x100;
808
809 /* SLOF will startup the secondary CPUs using RTAS */
810 for (env = first_cpu; env != NULL; env = env->next_cpu) {
811 env->halted = 1;
812 }
813
814 /* Prepare the device tree */
815 spapr->fdt_skel = spapr_create_fdt_skel(cpu_model, rma_size,
816 initrd_base, initrd_size,
817 kernel_size,
818 boot_device, kernel_cmdline,
819 pteg_shift + 7);
820 assert(spapr->fdt_skel != NULL);
821
822 qemu_register_reset(spapr_reset, spapr);
823 }
824
825 static QEMUMachine spapr_machine = {
826 .name = "pseries",
827 .desc = "pSeries Logical Partition (PAPR compliant)",
828 .init = ppc_spapr_init,
829 .max_cpus = MAX_CPUS,
830 .no_parallel = 1,
831 .use_scsi = 1,
832 };
833
834 static void spapr_machine_init(void)
835 {
836 qemu_register_machine(&spapr_machine);
837 }
838
839 machine_init(spapr_machine_init);