]> git.proxmox.com Git - qemu.git/blob - hw/spapr.c
Rename target_phys_addr_t to hwaddr
[qemu.git] / hw / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27 #include "sysemu.h"
28 #include "hw.h"
29 #include "elf.h"
30 #include "net.h"
31 #include "blockdev.h"
32 #include "cpus.h"
33 #include "kvm.h"
34 #include "kvm_ppc.h"
35
36 #include "hw/boards.h"
37 #include "hw/ppc.h"
38 #include "hw/loader.h"
39
40 #include "hw/spapr.h"
41 #include "hw/spapr_vio.h"
42 #include "hw/spapr_pci.h"
43 #include "hw/xics.h"
44 #include "hw/msi.h"
45
46 #include "kvm.h"
47 #include "kvm_ppc.h"
48 #include "pci.h"
49
50 #include "exec-memory.h"
51 #include "hw/usb.h"
52
53 #include <libfdt.h>
54
55 /* SLOF memory layout:
56 *
57 * SLOF raw image loaded at 0, copies its romfs right below the flat
58 * device-tree, then position SLOF itself 31M below that
59 *
60 * So we set FW_OVERHEAD to 40MB which should account for all of that
61 * and more
62 *
63 * We load our kernel at 4M, leaving space for SLOF initial image
64 */
65 #define FDT_MAX_SIZE 0x10000
66 #define RTAS_MAX_SIZE 0x10000
67 #define FW_MAX_SIZE 0x400000
68 #define FW_FILE_NAME "slof.bin"
69 #define FW_OVERHEAD 0x2800000
70 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
71
72 #define MIN_RMA_SLOF 128UL
73
74 #define TIMEBASE_FREQ 512000000ULL
75
76 #define MAX_CPUS 256
77 #define XICS_IRQS 1024
78
79 #define SPAPR_PCI_BUID 0x800000020000001ULL
80 #define SPAPR_PCI_MEM_WIN_ADDR (0x10000000000ULL + 0xA0000000)
81 #define SPAPR_PCI_MEM_WIN_SIZE 0x20000000
82 #define SPAPR_PCI_IO_WIN_ADDR (0x10000000000ULL + 0x80000000)
83 #define SPAPR_PCI_MSI_WIN_ADDR (0x10000000000ULL + 0x90000000)
84
85 #define PHANDLE_XICP 0x00001111
86
87 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
88
89 sPAPREnvironment *spapr;
90
91 int spapr_allocate_irq(int hint, bool lsi)
92 {
93 int irq;
94
95 if (hint) {
96 irq = hint;
97 /* FIXME: we should probably check for collisions somehow */
98 } else {
99 irq = spapr->next_irq++;
100 }
101
102 /* Configure irq type */
103 if (!xics_get_qirq(spapr->icp, irq)) {
104 return 0;
105 }
106
107 xics_set_irq_type(spapr->icp, irq, lsi);
108
109 return irq;
110 }
111
112 /* Allocate block of consequtive IRQs, returns a number of the first */
113 int spapr_allocate_irq_block(int num, bool lsi)
114 {
115 int first = -1;
116 int i;
117
118 for (i = 0; i < num; ++i) {
119 int irq;
120
121 irq = spapr_allocate_irq(0, lsi);
122 if (!irq) {
123 return -1;
124 }
125
126 if (0 == i) {
127 first = irq;
128 }
129
130 /* If the above doesn't create a consecutive block then that's
131 * an internal bug */
132 assert(irq == (first + i));
133 }
134
135 return first;
136 }
137
138 static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
139 {
140 int ret = 0, offset;
141 CPUPPCState *env;
142 char cpu_model[32];
143 int smt = kvmppc_smt_threads();
144 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
145
146 assert(spapr->cpu_model);
147
148 for (env = first_cpu; env != NULL; env = env->next_cpu) {
149 uint32_t associativity[] = {cpu_to_be32(0x5),
150 cpu_to_be32(0x0),
151 cpu_to_be32(0x0),
152 cpu_to_be32(0x0),
153 cpu_to_be32(env->numa_node),
154 cpu_to_be32(env->cpu_index)};
155
156 if ((env->cpu_index % smt) != 0) {
157 continue;
158 }
159
160 snprintf(cpu_model, 32, "/cpus/%s@%x", spapr->cpu_model,
161 env->cpu_index);
162
163 offset = fdt_path_offset(fdt, cpu_model);
164 if (offset < 0) {
165 return offset;
166 }
167
168 if (nb_numa_nodes > 1) {
169 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
170 sizeof(associativity));
171 if (ret < 0) {
172 return ret;
173 }
174 }
175
176 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
177 pft_size_prop, sizeof(pft_size_prop));
178 if (ret < 0) {
179 return ret;
180 }
181 }
182 return ret;
183 }
184
185
186 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
187 size_t maxsize)
188 {
189 size_t maxcells = maxsize / sizeof(uint32_t);
190 int i, j, count;
191 uint32_t *p = prop;
192
193 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
194 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
195
196 if (!sps->page_shift) {
197 break;
198 }
199 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
200 if (sps->enc[count].page_shift == 0) {
201 break;
202 }
203 }
204 if ((p - prop) >= (maxcells - 3 - count * 2)) {
205 break;
206 }
207 *(p++) = cpu_to_be32(sps->page_shift);
208 *(p++) = cpu_to_be32(sps->slb_enc);
209 *(p++) = cpu_to_be32(count);
210 for (j = 0; j < count; j++) {
211 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
212 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
213 }
214 }
215
216 return (p - prop) * sizeof(uint32_t);
217 }
218
219 #define _FDT(exp) \
220 do { \
221 int ret = (exp); \
222 if (ret < 0) { \
223 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
224 #exp, fdt_strerror(ret)); \
225 exit(1); \
226 } \
227 } while (0)
228
229
230 static void *spapr_create_fdt_skel(const char *cpu_model,
231 hwaddr initrd_base,
232 hwaddr initrd_size,
233 hwaddr kernel_size,
234 const char *boot_device,
235 const char *kernel_cmdline)
236 {
237 void *fdt;
238 CPUPPCState *env;
239 uint32_t start_prop = cpu_to_be32(initrd_base);
240 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
241 char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
242 "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk";
243 char qemu_hypertas_prop[] = "hcall-memop1";
244 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
245 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
246 char *modelname;
247 int i, smt = kvmppc_smt_threads();
248 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
249
250 fdt = g_malloc0(FDT_MAX_SIZE);
251 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
252
253 if (kernel_size) {
254 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
255 }
256 if (initrd_size) {
257 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
258 }
259 _FDT((fdt_finish_reservemap(fdt)));
260
261 /* Root node */
262 _FDT((fdt_begin_node(fdt, "")));
263 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
264 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
265
266 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
267 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
268
269 /* /chosen */
270 _FDT((fdt_begin_node(fdt, "chosen")));
271
272 /* Set Form1_affinity */
273 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
274
275 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
276 _FDT((fdt_property(fdt, "linux,initrd-start",
277 &start_prop, sizeof(start_prop))));
278 _FDT((fdt_property(fdt, "linux,initrd-end",
279 &end_prop, sizeof(end_prop))));
280 if (kernel_size) {
281 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
282 cpu_to_be64(kernel_size) };
283
284 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
285 }
286 _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
287 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
288 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
289 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
290
291 _FDT((fdt_end_node(fdt)));
292
293 /* cpus */
294 _FDT((fdt_begin_node(fdt, "cpus")));
295
296 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
297 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
298
299 modelname = g_strdup(cpu_model);
300
301 for (i = 0; i < strlen(modelname); i++) {
302 modelname[i] = toupper(modelname[i]);
303 }
304
305 /* This is needed during FDT finalization */
306 spapr->cpu_model = g_strdup(modelname);
307
308 for (env = first_cpu; env != NULL; env = env->next_cpu) {
309 int index = env->cpu_index;
310 uint32_t servers_prop[smp_threads];
311 uint32_t gservers_prop[smp_threads * 2];
312 char *nodename;
313 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
314 0xffffffff, 0xffffffff};
315 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
316 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
317 uint32_t page_sizes_prop[64];
318 size_t page_sizes_prop_size;
319
320 if ((index % smt) != 0) {
321 continue;
322 }
323
324 if (asprintf(&nodename, "%s@%x", modelname, index) < 0) {
325 fprintf(stderr, "Allocation failure\n");
326 exit(1);
327 }
328
329 _FDT((fdt_begin_node(fdt, nodename)));
330
331 free(nodename);
332
333 _FDT((fdt_property_cell(fdt, "reg", index)));
334 _FDT((fdt_property_string(fdt, "device_type", "cpu")));
335
336 _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
337 _FDT((fdt_property_cell(fdt, "dcache-block-size",
338 env->dcache_line_size)));
339 _FDT((fdt_property_cell(fdt, "icache-block-size",
340 env->icache_line_size)));
341 _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
342 _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
343 _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
344 _FDT((fdt_property_string(fdt, "status", "okay")));
345 _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
346
347 /* Build interrupt servers and gservers properties */
348 for (i = 0; i < smp_threads; i++) {
349 servers_prop[i] = cpu_to_be32(index + i);
350 /* Hack, direct the group queues back to cpu 0 */
351 gservers_prop[i*2] = cpu_to_be32(index + i);
352 gservers_prop[i*2 + 1] = 0;
353 }
354 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
355 servers_prop, sizeof(servers_prop))));
356 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
357 gservers_prop, sizeof(gservers_prop))));
358
359 if (env->mmu_model & POWERPC_MMU_1TSEG) {
360 _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
361 segs, sizeof(segs))));
362 }
363
364 /* Advertise VMX/VSX (vector extensions) if available
365 * 0 / no property == no vector extensions
366 * 1 == VMX / Altivec available
367 * 2 == VSX available */
368 if (env->insns_flags & PPC_ALTIVEC) {
369 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
370
371 _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
372 }
373
374 /* Advertise DFP (Decimal Floating Point) if available
375 * 0 / no property == no DFP
376 * 1 == DFP available */
377 if (env->insns_flags2 & PPC2_DFP) {
378 _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
379 }
380
381 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
382 sizeof(page_sizes_prop));
383 if (page_sizes_prop_size) {
384 _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
385 page_sizes_prop, page_sizes_prop_size)));
386 }
387
388 _FDT((fdt_end_node(fdt)));
389 }
390
391 g_free(modelname);
392
393 _FDT((fdt_end_node(fdt)));
394
395 /* RTAS */
396 _FDT((fdt_begin_node(fdt, "rtas")));
397
398 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
399 sizeof(hypertas_prop))));
400 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop,
401 sizeof(qemu_hypertas_prop))));
402
403 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
404 refpoints, sizeof(refpoints))));
405
406 _FDT((fdt_end_node(fdt)));
407
408 /* interrupt controller */
409 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
410
411 _FDT((fdt_property_string(fdt, "device_type",
412 "PowerPC-External-Interrupt-Presentation")));
413 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
414 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
415 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
416 interrupt_server_ranges_prop,
417 sizeof(interrupt_server_ranges_prop))));
418 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
419 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
420 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
421
422 _FDT((fdt_end_node(fdt)));
423
424 /* vdevice */
425 _FDT((fdt_begin_node(fdt, "vdevice")));
426
427 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
428 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
429 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
430 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
431 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
432 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
433
434 _FDT((fdt_end_node(fdt)));
435
436 _FDT((fdt_end_node(fdt))); /* close root node */
437 _FDT((fdt_finish(fdt)));
438
439 return fdt;
440 }
441
442 static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
443 {
444 uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
445 cpu_to_be32(0x0), cpu_to_be32(0x0),
446 cpu_to_be32(0x0)};
447 char mem_name[32];
448 hwaddr node0_size, mem_start;
449 uint64_t mem_reg_property[2];
450 int i, off;
451
452 /* memory node(s) */
453 node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
454 if (spapr->rma_size > node0_size) {
455 spapr->rma_size = node0_size;
456 }
457
458 /* RMA */
459 mem_reg_property[0] = 0;
460 mem_reg_property[1] = cpu_to_be64(spapr->rma_size);
461 off = fdt_add_subnode(fdt, 0, "memory@0");
462 _FDT(off);
463 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
464 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
465 sizeof(mem_reg_property))));
466 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
467 sizeof(associativity))));
468
469 /* RAM: Node 0 */
470 if (node0_size > spapr->rma_size) {
471 mem_reg_property[0] = cpu_to_be64(spapr->rma_size);
472 mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size);
473
474 sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size);
475 off = fdt_add_subnode(fdt, 0, mem_name);
476 _FDT(off);
477 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
478 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
479 sizeof(mem_reg_property))));
480 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
481 sizeof(associativity))));
482 }
483
484 /* RAM: Node 1 and beyond */
485 mem_start = node0_size;
486 for (i = 1; i < nb_numa_nodes; i++) {
487 mem_reg_property[0] = cpu_to_be64(mem_start);
488 mem_reg_property[1] = cpu_to_be64(node_mem[i]);
489 associativity[3] = associativity[4] = cpu_to_be32(i);
490 sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
491 off = fdt_add_subnode(fdt, 0, mem_name);
492 _FDT(off);
493 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
494 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
495 sizeof(mem_reg_property))));
496 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
497 sizeof(associativity))));
498 mem_start += node_mem[i];
499 }
500
501 return 0;
502 }
503
504 static void spapr_finalize_fdt(sPAPREnvironment *spapr,
505 hwaddr fdt_addr,
506 hwaddr rtas_addr,
507 hwaddr rtas_size)
508 {
509 int ret;
510 void *fdt;
511 sPAPRPHBState *phb;
512
513 fdt = g_malloc(FDT_MAX_SIZE);
514
515 /* open out the base tree into a temp buffer for the final tweaks */
516 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
517
518 ret = spapr_populate_memory(spapr, fdt);
519 if (ret < 0) {
520 fprintf(stderr, "couldn't setup memory nodes in fdt\n");
521 exit(1);
522 }
523
524 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
525 if (ret < 0) {
526 fprintf(stderr, "couldn't setup vio devices in fdt\n");
527 exit(1);
528 }
529
530 QLIST_FOREACH(phb, &spapr->phbs, list) {
531 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
532 }
533
534 if (ret < 0) {
535 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
536 exit(1);
537 }
538
539 /* RTAS */
540 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
541 if (ret < 0) {
542 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
543 }
544
545 /* Advertise NUMA via ibm,associativity */
546 ret = spapr_fixup_cpu_dt(fdt, spapr);
547 if (ret < 0) {
548 fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
549 }
550
551 if (!spapr->has_graphics) {
552 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
553 }
554
555 _FDT((fdt_pack(fdt)));
556
557 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
558 hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
559 fdt_totalsize(fdt), FDT_MAX_SIZE);
560 exit(1);
561 }
562
563 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
564
565 g_free(fdt);
566 }
567
568 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
569 {
570 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
571 }
572
573 static void emulate_spapr_hypercall(CPUPPCState *env)
574 {
575 if (msr_pr) {
576 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
577 env->gpr[3] = H_PRIVILEGE;
578 } else {
579 env->gpr[3] = spapr_hypercall(env, env->gpr[3], &env->gpr[4]);
580 }
581 }
582
583 static void spapr_reset_htab(sPAPREnvironment *spapr)
584 {
585 long shift;
586
587 /* allocate hash page table. For now we always make this 16mb,
588 * later we should probably make it scale to the size of guest
589 * RAM */
590
591 shift = kvmppc_reset_htab(spapr->htab_shift);
592
593 if (shift > 0) {
594 /* Kernel handles htab, we don't need to allocate one */
595 spapr->htab_shift = shift;
596 } else {
597 if (!spapr->htab) {
598 /* Allocate an htab if we don't yet have one */
599 spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
600 }
601
602 /* And clear it */
603 memset(spapr->htab, 0, HTAB_SIZE(spapr));
604 }
605
606 /* Update the RMA size if necessary */
607 if (spapr->vrma_adjust) {
608 spapr->rma_size = kvmppc_rma_size(ram_size, spapr->htab_shift);
609 }
610 }
611
612 static void ppc_spapr_reset(void)
613 {
614 /* Reset the hash table & recalc the RMA */
615 spapr_reset_htab(spapr);
616
617 qemu_devices_reset();
618
619 /* Load the fdt */
620 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
621 spapr->rtas_size);
622
623 /* Set up the entry state */
624 first_cpu->gpr[3] = spapr->fdt_addr;
625 first_cpu->gpr[5] = 0;
626 first_cpu->halted = 0;
627 first_cpu->nip = spapr->entry_point;
628
629 }
630
631 static void spapr_cpu_reset(void *opaque)
632 {
633 PowerPCCPU *cpu = opaque;
634 CPUPPCState *env = &cpu->env;
635
636 cpu_reset(CPU(cpu));
637
638 /* All CPUs start halted. CPU0 is unhalted from the machine level
639 * reset code and the rest are explicitly started up by the guest
640 * using an RTAS call */
641 env->halted = 1;
642
643 env->spr[SPR_HIOR] = 0;
644
645 env->external_htab = spapr->htab;
646 env->htab_base = -1;
647 env->htab_mask = HTAB_SIZE(spapr) - 1;
648 env->spr[SPR_SDR1] = (unsigned long)spapr->htab |
649 (spapr->htab_shift - 18);
650 }
651
652 /* Returns whether we want to use VGA or not */
653 static int spapr_vga_init(PCIBus *pci_bus)
654 {
655 switch (vga_interface_type) {
656 case VGA_NONE:
657 case VGA_STD:
658 return pci_vga_init(pci_bus) != NULL;
659 default:
660 fprintf(stderr, "This vga model is not supported,"
661 "currently it only supports -vga std\n");
662 exit(0);
663 break;
664 }
665 }
666
667 /* pSeries LPAR / sPAPR hardware init */
668 static void ppc_spapr_init(QEMUMachineInitArgs *args)
669 {
670 ram_addr_t ram_size = args->ram_size;
671 const char *cpu_model = args->cpu_model;
672 const char *kernel_filename = args->kernel_filename;
673 const char *kernel_cmdline = args->kernel_cmdline;
674 const char *initrd_filename = args->initrd_filename;
675 const char *boot_device = args->boot_device;
676 PowerPCCPU *cpu;
677 CPUPPCState *env;
678 PCIHostState *phb;
679 int i;
680 MemoryRegion *sysmem = get_system_memory();
681 MemoryRegion *ram = g_new(MemoryRegion, 1);
682 hwaddr rma_alloc_size;
683 uint32_t initrd_base = 0;
684 long kernel_size = 0, initrd_size = 0;
685 long load_limit, rtas_limit, fw_size;
686 char *filename;
687
688 msi_supported = true;
689
690 spapr = g_malloc0(sizeof(*spapr));
691 QLIST_INIT(&spapr->phbs);
692
693 cpu_ppc_hypercall = emulate_spapr_hypercall;
694
695 /* Allocate RMA if necessary */
696 rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
697
698 if (rma_alloc_size == -1) {
699 hw_error("qemu: Unable to create RMA\n");
700 exit(1);
701 }
702
703 if (rma_alloc_size && (rma_alloc_size < ram_size)) {
704 spapr->rma_size = rma_alloc_size;
705 } else {
706 spapr->rma_size = ram_size;
707
708 /* With KVM, we don't actually know whether KVM supports an
709 * unbounded RMA (PR KVM) or is limited by the hash table size
710 * (HV KVM using VRMA), so we always assume the latter
711 *
712 * In that case, we also limit the initial allocations for RTAS
713 * etc... to 256M since we have no way to know what the VRMA size
714 * is going to be as it depends on the size of the hash table
715 * isn't determined yet.
716 */
717 if (kvm_enabled()) {
718 spapr->vrma_adjust = 1;
719 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
720 }
721 }
722
723 /* We place the device tree and RTAS just below either the top of the RMA,
724 * or just below 2GB, whichever is lowere, so that it can be
725 * processed with 32-bit real mode code if necessary */
726 rtas_limit = MIN(spapr->rma_size, 0x80000000);
727 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
728 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
729 load_limit = spapr->fdt_addr - FW_OVERHEAD;
730
731 /* We aim for a hash table of size 1/128 the size of RAM. The
732 * normal rule of thumb is 1/64 the size of RAM, but that's much
733 * more than needed for the Linux guests we support. */
734 spapr->htab_shift = 18; /* Minimum architected size */
735 while (spapr->htab_shift <= 46) {
736 if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
737 break;
738 }
739 spapr->htab_shift++;
740 }
741
742 /* init CPUs */
743 if (cpu_model == NULL) {
744 cpu_model = kvm_enabled() ? "host" : "POWER7";
745 }
746 for (i = 0; i < smp_cpus; i++) {
747 cpu = cpu_ppc_init(cpu_model);
748 if (cpu == NULL) {
749 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
750 exit(1);
751 }
752 env = &cpu->env;
753
754 /* Set time-base frequency to 512 MHz */
755 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
756
757 /* PAPR always has exception vectors in RAM not ROM */
758 env->hreset_excp_prefix = 0;
759
760 /* Tell KVM that we're in PAPR mode */
761 if (kvm_enabled()) {
762 kvmppc_set_papr(env);
763 }
764
765 qemu_register_reset(spapr_cpu_reset, cpu);
766 }
767
768 /* allocate RAM */
769 spapr->ram_limit = ram_size;
770 if (spapr->ram_limit > rma_alloc_size) {
771 ram_addr_t nonrma_base = rma_alloc_size;
772 ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
773
774 memory_region_init_ram(ram, "ppc_spapr.ram", nonrma_size);
775 vmstate_register_ram_global(ram);
776 memory_region_add_subregion(sysmem, nonrma_base, ram);
777 }
778
779 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
780 spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
781 rtas_limit - spapr->rtas_addr);
782 if (spapr->rtas_size < 0) {
783 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
784 exit(1);
785 }
786 if (spapr->rtas_size > RTAS_MAX_SIZE) {
787 hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
788 spapr->rtas_size, RTAS_MAX_SIZE);
789 exit(1);
790 }
791 g_free(filename);
792
793
794 /* Set up Interrupt Controller */
795 spapr->icp = xics_system_init(XICS_IRQS);
796 spapr->next_irq = 16;
797
798 /* Set up IOMMU */
799 spapr_iommu_init();
800
801 /* Set up VIO bus */
802 spapr->vio_bus = spapr_vio_bus_init();
803
804 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
805 if (serial_hds[i]) {
806 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
807 }
808 }
809
810 /* Set up PCI */
811 spapr_pci_rtas_init();
812
813 spapr_create_phb(spapr, "pci", SPAPR_PCI_BUID,
814 SPAPR_PCI_MEM_WIN_ADDR,
815 SPAPR_PCI_MEM_WIN_SIZE,
816 SPAPR_PCI_IO_WIN_ADDR,
817 SPAPR_PCI_MSI_WIN_ADDR);
818 phb = PCI_HOST_BRIDGE(QLIST_FIRST(&spapr->phbs));
819
820 for (i = 0; i < nb_nics; i++) {
821 NICInfo *nd = &nd_table[i];
822
823 if (!nd->model) {
824 nd->model = g_strdup("ibmveth");
825 }
826
827 if (strcmp(nd->model, "ibmveth") == 0) {
828 spapr_vlan_create(spapr->vio_bus, nd);
829 } else {
830 pci_nic_init_nofail(&nd_table[i], nd->model, NULL);
831 }
832 }
833
834 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
835 spapr_vscsi_create(spapr->vio_bus);
836 }
837
838 /* Graphics */
839 if (spapr_vga_init(phb->bus)) {
840 spapr->has_graphics = true;
841 }
842
843 if (usb_enabled) {
844 pci_create_simple(phb->bus, -1, "pci-ohci");
845 if (spapr->has_graphics) {
846 usbdevice_create("keyboard");
847 usbdevice_create("mouse");
848 }
849 }
850
851 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
852 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
853 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
854 exit(1);
855 }
856
857 if (kernel_filename) {
858 uint64_t lowaddr = 0;
859
860 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
861 NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
862 if (kernel_size < 0) {
863 kernel_size = load_image_targphys(kernel_filename,
864 KERNEL_LOAD_ADDR,
865 load_limit - KERNEL_LOAD_ADDR);
866 }
867 if (kernel_size < 0) {
868 fprintf(stderr, "qemu: could not load kernel '%s'\n",
869 kernel_filename);
870 exit(1);
871 }
872
873 /* load initrd */
874 if (initrd_filename) {
875 /* Try to locate the initrd in the gap between the kernel
876 * and the firmware. Add a bit of space just in case
877 */
878 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
879 initrd_size = load_image_targphys(initrd_filename, initrd_base,
880 load_limit - initrd_base);
881 if (initrd_size < 0) {
882 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
883 initrd_filename);
884 exit(1);
885 }
886 } else {
887 initrd_base = 0;
888 initrd_size = 0;
889 }
890 }
891
892 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, FW_FILE_NAME);
893 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
894 if (fw_size < 0) {
895 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
896 exit(1);
897 }
898 g_free(filename);
899
900 spapr->entry_point = 0x100;
901
902 /* Prepare the device tree */
903 spapr->fdt_skel = spapr_create_fdt_skel(cpu_model,
904 initrd_base, initrd_size,
905 kernel_size,
906 boot_device, kernel_cmdline);
907 assert(spapr->fdt_skel != NULL);
908 }
909
910 static QEMUMachine spapr_machine = {
911 .name = "pseries",
912 .desc = "pSeries Logical Partition (PAPR compliant)",
913 .init = ppc_spapr_init,
914 .reset = ppc_spapr_reset,
915 .max_cpus = MAX_CPUS,
916 .no_parallel = 1,
917 .use_scsi = 1,
918 };
919
920 static void spapr_machine_init(void)
921 {
922 qemu_register_machine(&spapr_machine);
923 }
924
925 machine_init(spapr_machine_init);