]> git.proxmox.com Git - qemu.git/blob - hw/spapr.c
pci: update all users to look in pci/
[qemu.git] / hw / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27 #include "sysemu.h"
28 #include "hw.h"
29 #include "elf.h"
30 #include "net.h"
31 #include "blockdev.h"
32 #include "cpus.h"
33 #include "kvm.h"
34 #include "kvm_ppc.h"
35
36 #include "hw/boards.h"
37 #include "hw/ppc.h"
38 #include "hw/loader.h"
39
40 #include "hw/spapr.h"
41 #include "hw/spapr_vio.h"
42 #include "hw/spapr_pci.h"
43 #include "hw/xics.h"
44 #include "hw/pci/msi.h"
45
46 #include "kvm.h"
47 #include "kvm_ppc.h"
48 #include "pci/pci.h"
49
50 #include "exec-memory.h"
51 #include "hw/usb.h"
52
53 #include <libfdt.h>
54
55 /* SLOF memory layout:
56 *
57 * SLOF raw image loaded at 0, copies its romfs right below the flat
58 * device-tree, then position SLOF itself 31M below that
59 *
60 * So we set FW_OVERHEAD to 40MB which should account for all of that
61 * and more
62 *
63 * We load our kernel at 4M, leaving space for SLOF initial image
64 */
65 #define FDT_MAX_SIZE 0x10000
66 #define RTAS_MAX_SIZE 0x10000
67 #define FW_MAX_SIZE 0x400000
68 #define FW_FILE_NAME "slof.bin"
69 #define FW_OVERHEAD 0x2800000
70 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
71
72 #define MIN_RMA_SLOF 128UL
73
74 #define TIMEBASE_FREQ 512000000ULL
75
76 #define MAX_CPUS 256
77 #define XICS_IRQS 1024
78
79 #define SPAPR_PCI_BUID 0x800000020000001ULL
80 #define SPAPR_PCI_MEM_WIN_ADDR (0x10000000000ULL + 0xA0000000)
81 #define SPAPR_PCI_MEM_WIN_SIZE 0x20000000
82 #define SPAPR_PCI_IO_WIN_ADDR (0x10000000000ULL + 0x80000000)
83 #define SPAPR_PCI_MSI_WIN_ADDR (0x10000000000ULL + 0x90000000)
84
85 #define PHANDLE_XICP 0x00001111
86
87 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
88
89 sPAPREnvironment *spapr;
90
91 int spapr_allocate_irq(int hint, bool lsi)
92 {
93 int irq;
94
95 if (hint) {
96 irq = hint;
97 /* FIXME: we should probably check for collisions somehow */
98 } else {
99 irq = spapr->next_irq++;
100 }
101
102 /* Configure irq type */
103 if (!xics_get_qirq(spapr->icp, irq)) {
104 return 0;
105 }
106
107 xics_set_irq_type(spapr->icp, irq, lsi);
108
109 return irq;
110 }
111
112 /* Allocate block of consequtive IRQs, returns a number of the first */
113 int spapr_allocate_irq_block(int num, bool lsi)
114 {
115 int first = -1;
116 int i;
117
118 for (i = 0; i < num; ++i) {
119 int irq;
120
121 irq = spapr_allocate_irq(0, lsi);
122 if (!irq) {
123 return -1;
124 }
125
126 if (0 == i) {
127 first = irq;
128 }
129
130 /* If the above doesn't create a consecutive block then that's
131 * an internal bug */
132 assert(irq == (first + i));
133 }
134
135 return first;
136 }
137
138 static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
139 {
140 int ret = 0, offset;
141 CPUPPCState *env;
142 char cpu_model[32];
143 int smt = kvmppc_smt_threads();
144 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
145
146 assert(spapr->cpu_model);
147
148 for (env = first_cpu; env != NULL; env = env->next_cpu) {
149 uint32_t associativity[] = {cpu_to_be32(0x5),
150 cpu_to_be32(0x0),
151 cpu_to_be32(0x0),
152 cpu_to_be32(0x0),
153 cpu_to_be32(env->numa_node),
154 cpu_to_be32(env->cpu_index)};
155
156 if ((env->cpu_index % smt) != 0) {
157 continue;
158 }
159
160 snprintf(cpu_model, 32, "/cpus/%s@%x", spapr->cpu_model,
161 env->cpu_index);
162
163 offset = fdt_path_offset(fdt, cpu_model);
164 if (offset < 0) {
165 return offset;
166 }
167
168 if (nb_numa_nodes > 1) {
169 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
170 sizeof(associativity));
171 if (ret < 0) {
172 return ret;
173 }
174 }
175
176 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
177 pft_size_prop, sizeof(pft_size_prop));
178 if (ret < 0) {
179 return ret;
180 }
181 }
182 return ret;
183 }
184
185
186 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
187 size_t maxsize)
188 {
189 size_t maxcells = maxsize / sizeof(uint32_t);
190 int i, j, count;
191 uint32_t *p = prop;
192
193 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
194 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
195
196 if (!sps->page_shift) {
197 break;
198 }
199 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
200 if (sps->enc[count].page_shift == 0) {
201 break;
202 }
203 }
204 if ((p - prop) >= (maxcells - 3 - count * 2)) {
205 break;
206 }
207 *(p++) = cpu_to_be32(sps->page_shift);
208 *(p++) = cpu_to_be32(sps->slb_enc);
209 *(p++) = cpu_to_be32(count);
210 for (j = 0; j < count; j++) {
211 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
212 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
213 }
214 }
215
216 return (p - prop) * sizeof(uint32_t);
217 }
218
219 #define _FDT(exp) \
220 do { \
221 int ret = (exp); \
222 if (ret < 0) { \
223 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
224 #exp, fdt_strerror(ret)); \
225 exit(1); \
226 } \
227 } while (0)
228
229
230 static void *spapr_create_fdt_skel(const char *cpu_model,
231 hwaddr initrd_base,
232 hwaddr initrd_size,
233 hwaddr kernel_size,
234 const char *boot_device,
235 const char *kernel_cmdline,
236 uint32_t epow_irq)
237 {
238 void *fdt;
239 CPUPPCState *env;
240 uint32_t start_prop = cpu_to_be32(initrd_base);
241 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
242 char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
243 "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk";
244 char qemu_hypertas_prop[] = "hcall-memop1";
245 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
246 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
247 char *modelname;
248 int i, smt = kvmppc_smt_threads();
249 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
250
251 fdt = g_malloc0(FDT_MAX_SIZE);
252 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
253
254 if (kernel_size) {
255 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
256 }
257 if (initrd_size) {
258 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
259 }
260 _FDT((fdt_finish_reservemap(fdt)));
261
262 /* Root node */
263 _FDT((fdt_begin_node(fdt, "")));
264 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
265 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
266
267 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
268 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
269
270 /* /chosen */
271 _FDT((fdt_begin_node(fdt, "chosen")));
272
273 /* Set Form1_affinity */
274 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
275
276 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
277 _FDT((fdt_property(fdt, "linux,initrd-start",
278 &start_prop, sizeof(start_prop))));
279 _FDT((fdt_property(fdt, "linux,initrd-end",
280 &end_prop, sizeof(end_prop))));
281 if (kernel_size) {
282 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
283 cpu_to_be64(kernel_size) };
284
285 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
286 }
287 _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
288 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
289 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
290 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
291
292 _FDT((fdt_end_node(fdt)));
293
294 /* cpus */
295 _FDT((fdt_begin_node(fdt, "cpus")));
296
297 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
298 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
299
300 modelname = g_strdup(cpu_model);
301
302 for (i = 0; i < strlen(modelname); i++) {
303 modelname[i] = toupper(modelname[i]);
304 }
305
306 /* This is needed during FDT finalization */
307 spapr->cpu_model = g_strdup(modelname);
308
309 for (env = first_cpu; env != NULL; env = env->next_cpu) {
310 int index = env->cpu_index;
311 uint32_t servers_prop[smp_threads];
312 uint32_t gservers_prop[smp_threads * 2];
313 char *nodename;
314 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
315 0xffffffff, 0xffffffff};
316 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
317 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
318 uint32_t page_sizes_prop[64];
319 size_t page_sizes_prop_size;
320
321 if ((index % smt) != 0) {
322 continue;
323 }
324
325 if (asprintf(&nodename, "%s@%x", modelname, index) < 0) {
326 fprintf(stderr, "Allocation failure\n");
327 exit(1);
328 }
329
330 _FDT((fdt_begin_node(fdt, nodename)));
331
332 free(nodename);
333
334 _FDT((fdt_property_cell(fdt, "reg", index)));
335 _FDT((fdt_property_string(fdt, "device_type", "cpu")));
336
337 _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
338 _FDT((fdt_property_cell(fdt, "dcache-block-size",
339 env->dcache_line_size)));
340 _FDT((fdt_property_cell(fdt, "icache-block-size",
341 env->icache_line_size)));
342 _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
343 _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
344 _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
345 _FDT((fdt_property_string(fdt, "status", "okay")));
346 _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
347
348 /* Build interrupt servers and gservers properties */
349 for (i = 0; i < smp_threads; i++) {
350 servers_prop[i] = cpu_to_be32(index + i);
351 /* Hack, direct the group queues back to cpu 0 */
352 gservers_prop[i*2] = cpu_to_be32(index + i);
353 gservers_prop[i*2 + 1] = 0;
354 }
355 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
356 servers_prop, sizeof(servers_prop))));
357 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
358 gservers_prop, sizeof(gservers_prop))));
359
360 if (env->mmu_model & POWERPC_MMU_1TSEG) {
361 _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
362 segs, sizeof(segs))));
363 }
364
365 /* Advertise VMX/VSX (vector extensions) if available
366 * 0 / no property == no vector extensions
367 * 1 == VMX / Altivec available
368 * 2 == VSX available */
369 if (env->insns_flags & PPC_ALTIVEC) {
370 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
371
372 _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
373 }
374
375 /* Advertise DFP (Decimal Floating Point) if available
376 * 0 / no property == no DFP
377 * 1 == DFP available */
378 if (env->insns_flags2 & PPC2_DFP) {
379 _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
380 }
381
382 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
383 sizeof(page_sizes_prop));
384 if (page_sizes_prop_size) {
385 _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
386 page_sizes_prop, page_sizes_prop_size)));
387 }
388
389 _FDT((fdt_end_node(fdt)));
390 }
391
392 g_free(modelname);
393
394 _FDT((fdt_end_node(fdt)));
395
396 /* RTAS */
397 _FDT((fdt_begin_node(fdt, "rtas")));
398
399 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
400 sizeof(hypertas_prop))));
401 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop,
402 sizeof(qemu_hypertas_prop))));
403
404 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
405 refpoints, sizeof(refpoints))));
406
407 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
408
409 _FDT((fdt_end_node(fdt)));
410
411 /* interrupt controller */
412 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
413
414 _FDT((fdt_property_string(fdt, "device_type",
415 "PowerPC-External-Interrupt-Presentation")));
416 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
417 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
418 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
419 interrupt_server_ranges_prop,
420 sizeof(interrupt_server_ranges_prop))));
421 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
422 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
423 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
424
425 _FDT((fdt_end_node(fdt)));
426
427 /* vdevice */
428 _FDT((fdt_begin_node(fdt, "vdevice")));
429
430 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
431 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
432 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
433 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
434 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
435 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
436
437 _FDT((fdt_end_node(fdt)));
438
439 /* event-sources */
440 spapr_events_fdt_skel(fdt, epow_irq);
441
442 _FDT((fdt_end_node(fdt))); /* close root node */
443 _FDT((fdt_finish(fdt)));
444
445 return fdt;
446 }
447
448 static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
449 {
450 uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
451 cpu_to_be32(0x0), cpu_to_be32(0x0),
452 cpu_to_be32(0x0)};
453 char mem_name[32];
454 hwaddr node0_size, mem_start;
455 uint64_t mem_reg_property[2];
456 int i, off;
457
458 /* memory node(s) */
459 node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
460 if (spapr->rma_size > node0_size) {
461 spapr->rma_size = node0_size;
462 }
463
464 /* RMA */
465 mem_reg_property[0] = 0;
466 mem_reg_property[1] = cpu_to_be64(spapr->rma_size);
467 off = fdt_add_subnode(fdt, 0, "memory@0");
468 _FDT(off);
469 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
470 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
471 sizeof(mem_reg_property))));
472 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
473 sizeof(associativity))));
474
475 /* RAM: Node 0 */
476 if (node0_size > spapr->rma_size) {
477 mem_reg_property[0] = cpu_to_be64(spapr->rma_size);
478 mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size);
479
480 sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size);
481 off = fdt_add_subnode(fdt, 0, mem_name);
482 _FDT(off);
483 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
484 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
485 sizeof(mem_reg_property))));
486 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
487 sizeof(associativity))));
488 }
489
490 /* RAM: Node 1 and beyond */
491 mem_start = node0_size;
492 for (i = 1; i < nb_numa_nodes; i++) {
493 mem_reg_property[0] = cpu_to_be64(mem_start);
494 mem_reg_property[1] = cpu_to_be64(node_mem[i]);
495 associativity[3] = associativity[4] = cpu_to_be32(i);
496 sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
497 off = fdt_add_subnode(fdt, 0, mem_name);
498 _FDT(off);
499 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
500 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
501 sizeof(mem_reg_property))));
502 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
503 sizeof(associativity))));
504 mem_start += node_mem[i];
505 }
506
507 return 0;
508 }
509
510 static void spapr_finalize_fdt(sPAPREnvironment *spapr,
511 hwaddr fdt_addr,
512 hwaddr rtas_addr,
513 hwaddr rtas_size)
514 {
515 int ret;
516 void *fdt;
517 sPAPRPHBState *phb;
518
519 fdt = g_malloc(FDT_MAX_SIZE);
520
521 /* open out the base tree into a temp buffer for the final tweaks */
522 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
523
524 ret = spapr_populate_memory(spapr, fdt);
525 if (ret < 0) {
526 fprintf(stderr, "couldn't setup memory nodes in fdt\n");
527 exit(1);
528 }
529
530 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
531 if (ret < 0) {
532 fprintf(stderr, "couldn't setup vio devices in fdt\n");
533 exit(1);
534 }
535
536 QLIST_FOREACH(phb, &spapr->phbs, list) {
537 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
538 }
539
540 if (ret < 0) {
541 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
542 exit(1);
543 }
544
545 /* RTAS */
546 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
547 if (ret < 0) {
548 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
549 }
550
551 /* Advertise NUMA via ibm,associativity */
552 ret = spapr_fixup_cpu_dt(fdt, spapr);
553 if (ret < 0) {
554 fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
555 }
556
557 if (!spapr->has_graphics) {
558 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
559 }
560
561 _FDT((fdt_pack(fdt)));
562
563 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
564 hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
565 fdt_totalsize(fdt), FDT_MAX_SIZE);
566 exit(1);
567 }
568
569 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
570
571 g_free(fdt);
572 }
573
574 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
575 {
576 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
577 }
578
579 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
580 {
581 CPUPPCState *env = &cpu->env;
582
583 if (msr_pr) {
584 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
585 env->gpr[3] = H_PRIVILEGE;
586 } else {
587 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
588 }
589 }
590
591 static void spapr_reset_htab(sPAPREnvironment *spapr)
592 {
593 long shift;
594
595 /* allocate hash page table. For now we always make this 16mb,
596 * later we should probably make it scale to the size of guest
597 * RAM */
598
599 shift = kvmppc_reset_htab(spapr->htab_shift);
600
601 if (shift > 0) {
602 /* Kernel handles htab, we don't need to allocate one */
603 spapr->htab_shift = shift;
604 } else {
605 if (!spapr->htab) {
606 /* Allocate an htab if we don't yet have one */
607 spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
608 }
609
610 /* And clear it */
611 memset(spapr->htab, 0, HTAB_SIZE(spapr));
612 }
613
614 /* Update the RMA size if necessary */
615 if (spapr->vrma_adjust) {
616 spapr->rma_size = kvmppc_rma_size(ram_size, spapr->htab_shift);
617 }
618 }
619
620 static void ppc_spapr_reset(void)
621 {
622 /* Reset the hash table & recalc the RMA */
623 spapr_reset_htab(spapr);
624
625 qemu_devices_reset();
626
627 /* Load the fdt */
628 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
629 spapr->rtas_size);
630
631 /* Set up the entry state */
632 first_cpu->gpr[3] = spapr->fdt_addr;
633 first_cpu->gpr[5] = 0;
634 first_cpu->halted = 0;
635 first_cpu->nip = spapr->entry_point;
636
637 }
638
639 static void spapr_cpu_reset(void *opaque)
640 {
641 PowerPCCPU *cpu = opaque;
642 CPUPPCState *env = &cpu->env;
643
644 cpu_reset(CPU(cpu));
645
646 /* All CPUs start halted. CPU0 is unhalted from the machine level
647 * reset code and the rest are explicitly started up by the guest
648 * using an RTAS call */
649 env->halted = 1;
650
651 env->spr[SPR_HIOR] = 0;
652
653 env->external_htab = spapr->htab;
654 env->htab_base = -1;
655 env->htab_mask = HTAB_SIZE(spapr) - 1;
656 env->spr[SPR_SDR1] = (unsigned long)spapr->htab |
657 (spapr->htab_shift - 18);
658 }
659
660 /* Returns whether we want to use VGA or not */
661 static int spapr_vga_init(PCIBus *pci_bus)
662 {
663 switch (vga_interface_type) {
664 case VGA_NONE:
665 case VGA_STD:
666 return pci_vga_init(pci_bus) != NULL;
667 default:
668 fprintf(stderr, "This vga model is not supported,"
669 "currently it only supports -vga std\n");
670 exit(0);
671 break;
672 }
673 }
674
675 /* pSeries LPAR / sPAPR hardware init */
676 static void ppc_spapr_init(QEMUMachineInitArgs *args)
677 {
678 ram_addr_t ram_size = args->ram_size;
679 const char *cpu_model = args->cpu_model;
680 const char *kernel_filename = args->kernel_filename;
681 const char *kernel_cmdline = args->kernel_cmdline;
682 const char *initrd_filename = args->initrd_filename;
683 const char *boot_device = args->boot_device;
684 PowerPCCPU *cpu;
685 CPUPPCState *env;
686 PCIHostState *phb;
687 int i;
688 MemoryRegion *sysmem = get_system_memory();
689 MemoryRegion *ram = g_new(MemoryRegion, 1);
690 hwaddr rma_alloc_size;
691 uint32_t initrd_base = 0;
692 long kernel_size = 0, initrd_size = 0;
693 long load_limit, rtas_limit, fw_size;
694 char *filename;
695
696 msi_supported = true;
697
698 spapr = g_malloc0(sizeof(*spapr));
699 QLIST_INIT(&spapr->phbs);
700
701 cpu_ppc_hypercall = emulate_spapr_hypercall;
702
703 /* Allocate RMA if necessary */
704 rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
705
706 if (rma_alloc_size == -1) {
707 hw_error("qemu: Unable to create RMA\n");
708 exit(1);
709 }
710
711 if (rma_alloc_size && (rma_alloc_size < ram_size)) {
712 spapr->rma_size = rma_alloc_size;
713 } else {
714 spapr->rma_size = ram_size;
715
716 /* With KVM, we don't actually know whether KVM supports an
717 * unbounded RMA (PR KVM) or is limited by the hash table size
718 * (HV KVM using VRMA), so we always assume the latter
719 *
720 * In that case, we also limit the initial allocations for RTAS
721 * etc... to 256M since we have no way to know what the VRMA size
722 * is going to be as it depends on the size of the hash table
723 * isn't determined yet.
724 */
725 if (kvm_enabled()) {
726 spapr->vrma_adjust = 1;
727 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
728 }
729 }
730
731 /* We place the device tree and RTAS just below either the top of the RMA,
732 * or just below 2GB, whichever is lowere, so that it can be
733 * processed with 32-bit real mode code if necessary */
734 rtas_limit = MIN(spapr->rma_size, 0x80000000);
735 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
736 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
737 load_limit = spapr->fdt_addr - FW_OVERHEAD;
738
739 /* We aim for a hash table of size 1/128 the size of RAM. The
740 * normal rule of thumb is 1/64 the size of RAM, but that's much
741 * more than needed for the Linux guests we support. */
742 spapr->htab_shift = 18; /* Minimum architected size */
743 while (spapr->htab_shift <= 46) {
744 if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
745 break;
746 }
747 spapr->htab_shift++;
748 }
749
750 /* init CPUs */
751 if (cpu_model == NULL) {
752 cpu_model = kvm_enabled() ? "host" : "POWER7";
753 }
754 for (i = 0; i < smp_cpus; i++) {
755 cpu = cpu_ppc_init(cpu_model);
756 if (cpu == NULL) {
757 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
758 exit(1);
759 }
760 env = &cpu->env;
761
762 /* Set time-base frequency to 512 MHz */
763 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
764
765 /* PAPR always has exception vectors in RAM not ROM */
766 env->hreset_excp_prefix = 0;
767
768 /* Tell KVM that we're in PAPR mode */
769 if (kvm_enabled()) {
770 kvmppc_set_papr(env);
771 }
772
773 qemu_register_reset(spapr_cpu_reset, cpu);
774 }
775
776 /* allocate RAM */
777 spapr->ram_limit = ram_size;
778 if (spapr->ram_limit > rma_alloc_size) {
779 ram_addr_t nonrma_base = rma_alloc_size;
780 ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
781
782 memory_region_init_ram(ram, "ppc_spapr.ram", nonrma_size);
783 vmstate_register_ram_global(ram);
784 memory_region_add_subregion(sysmem, nonrma_base, ram);
785 }
786
787 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
788 spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
789 rtas_limit - spapr->rtas_addr);
790 if (spapr->rtas_size < 0) {
791 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
792 exit(1);
793 }
794 if (spapr->rtas_size > RTAS_MAX_SIZE) {
795 hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
796 spapr->rtas_size, RTAS_MAX_SIZE);
797 exit(1);
798 }
799 g_free(filename);
800
801
802 /* Set up Interrupt Controller */
803 spapr->icp = xics_system_init(XICS_IRQS);
804 spapr->next_irq = 16;
805
806 /* Set up EPOW events infrastructure */
807 spapr_events_init(spapr);
808
809 /* Set up IOMMU */
810 spapr_iommu_init();
811
812 /* Set up VIO bus */
813 spapr->vio_bus = spapr_vio_bus_init();
814
815 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
816 if (serial_hds[i]) {
817 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
818 }
819 }
820
821 /* Set up PCI */
822 spapr_pci_rtas_init();
823
824 spapr_create_phb(spapr, "pci", SPAPR_PCI_BUID,
825 SPAPR_PCI_MEM_WIN_ADDR,
826 SPAPR_PCI_MEM_WIN_SIZE,
827 SPAPR_PCI_IO_WIN_ADDR,
828 SPAPR_PCI_MSI_WIN_ADDR);
829 phb = PCI_HOST_BRIDGE(QLIST_FIRST(&spapr->phbs));
830
831 for (i = 0; i < nb_nics; i++) {
832 NICInfo *nd = &nd_table[i];
833
834 if (!nd->model) {
835 nd->model = g_strdup("ibmveth");
836 }
837
838 if (strcmp(nd->model, "ibmveth") == 0) {
839 spapr_vlan_create(spapr->vio_bus, nd);
840 } else {
841 pci_nic_init_nofail(&nd_table[i], nd->model, NULL);
842 }
843 }
844
845 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
846 spapr_vscsi_create(spapr->vio_bus);
847 }
848
849 /* Graphics */
850 if (spapr_vga_init(phb->bus)) {
851 spapr->has_graphics = true;
852 }
853
854 if (usb_enabled(spapr->has_graphics)) {
855 pci_create_simple(phb->bus, -1, "pci-ohci");
856 if (spapr->has_graphics) {
857 usbdevice_create("keyboard");
858 usbdevice_create("mouse");
859 }
860 }
861
862 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
863 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
864 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
865 exit(1);
866 }
867
868 if (kernel_filename) {
869 uint64_t lowaddr = 0;
870
871 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
872 NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
873 if (kernel_size < 0) {
874 kernel_size = load_image_targphys(kernel_filename,
875 KERNEL_LOAD_ADDR,
876 load_limit - KERNEL_LOAD_ADDR);
877 }
878 if (kernel_size < 0) {
879 fprintf(stderr, "qemu: could not load kernel '%s'\n",
880 kernel_filename);
881 exit(1);
882 }
883
884 /* load initrd */
885 if (initrd_filename) {
886 /* Try to locate the initrd in the gap between the kernel
887 * and the firmware. Add a bit of space just in case
888 */
889 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
890 initrd_size = load_image_targphys(initrd_filename, initrd_base,
891 load_limit - initrd_base);
892 if (initrd_size < 0) {
893 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
894 initrd_filename);
895 exit(1);
896 }
897 } else {
898 initrd_base = 0;
899 initrd_size = 0;
900 }
901 }
902
903 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, FW_FILE_NAME);
904 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
905 if (fw_size < 0) {
906 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
907 exit(1);
908 }
909 g_free(filename);
910
911 spapr->entry_point = 0x100;
912
913 /* Prepare the device tree */
914 spapr->fdt_skel = spapr_create_fdt_skel(cpu_model,
915 initrd_base, initrd_size,
916 kernel_size,
917 boot_device, kernel_cmdline,
918 spapr->epow_irq);
919 assert(spapr->fdt_skel != NULL);
920 }
921
922 static QEMUMachine spapr_machine = {
923 .name = "pseries",
924 .desc = "pSeries Logical Partition (PAPR compliant)",
925 .init = ppc_spapr_init,
926 .reset = ppc_spapr_reset,
927 .max_cpus = MAX_CPUS,
928 .no_parallel = 1,
929 .use_scsi = 1,
930 };
931
932 static void spapr_machine_init(void)
933 {
934 qemu_register_machine(&spapr_machine);
935 }
936
937 machine_init(spapr_machine_init);