2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
36 #include "hw/boards.h"
38 #include "hw/loader.h"
41 #include "hw/spapr_vio.h"
42 #include "hw/spapr_pci.h"
51 #include "exec-memory.h"
56 /* SLOF memory layout:
58 * SLOF raw image loaded at 0, copies its romfs right below the flat
59 * device-tree, then position SLOF itself 31M below that
61 * So we set FW_OVERHEAD to 40MB which should account for all of that
64 * We load our kernel at 4M, leaving space for SLOF initial image
66 #define FDT_MAX_SIZE 0x10000
67 #define RTAS_MAX_SIZE 0x10000
68 #define FW_MAX_SIZE 0x400000
69 #define FW_FILE_NAME "slof.bin"
70 #define FW_OVERHEAD 0x2800000
71 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
73 #define MIN_RMA_SLOF 128UL
75 #define TIMEBASE_FREQ 512000000ULL
78 #define XICS_IRQS 1024
80 #define SPAPR_PCI_BUID 0x800000020000001ULL
81 #define SPAPR_PCI_MEM_WIN_ADDR (0x10000000000ULL + 0xA0000000)
82 #define SPAPR_PCI_MEM_WIN_SIZE 0x20000000
83 #define SPAPR_PCI_IO_WIN_ADDR (0x10000000000ULL + 0x80000000)
84 #define SPAPR_PCI_MSI_WIN_ADDR (0x10000000000ULL + 0x90000000)
86 #define PHANDLE_XICP 0x00001111
88 sPAPREnvironment
*spapr
;
90 int spapr_allocate_irq(int hint
, enum xics_irq_type type
)
96 /* FIXME: we should probably check for collisions somehow */
98 irq
= spapr
->next_irq
++;
101 /* Configure irq type */
102 if (!xics_get_qirq(spapr
->icp
, irq
)) {
106 xics_set_irq_type(spapr
->icp
, irq
, type
);
111 /* Allocate block of consequtive IRQs, returns a number of the first */
112 int spapr_allocate_irq_block(int num
, enum xics_irq_type type
)
117 for (i
= 0; i
< num
; ++i
) {
120 irq
= spapr_allocate_irq(0, type
);
129 /* If the above doesn't create a consecutive block then that's
131 assert(irq
== (first
+ i
));
137 static int spapr_set_associativity(void *fdt
, sPAPREnvironment
*spapr
)
142 int smt
= kvmppc_smt_threads();
144 assert(spapr
->cpu_model
);
146 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
147 uint32_t associativity
[] = {cpu_to_be32(0x5),
151 cpu_to_be32(env
->numa_node
),
152 cpu_to_be32(env
->cpu_index
)};
154 if ((env
->cpu_index
% smt
) != 0) {
158 snprintf(cpu_model
, 32, "/cpus/%s@%x", spapr
->cpu_model
,
161 offset
= fdt_path_offset(fdt
, cpu_model
);
166 ret
= fdt_setprop(fdt
, offset
, "ibm,associativity", associativity
,
167 sizeof(associativity
));
176 static size_t create_page_sizes_prop(CPUPPCState
*env
, uint32_t *prop
,
179 size_t maxcells
= maxsize
/ sizeof(uint32_t);
183 for (i
= 0; i
< PPC_PAGE_SIZES_MAX_SZ
; i
++) {
184 struct ppc_one_seg_page_size
*sps
= &env
->sps
.sps
[i
];
186 if (!sps
->page_shift
) {
189 for (count
= 0; count
< PPC_PAGE_SIZES_MAX_SZ
; count
++) {
190 if (sps
->enc
[count
].page_shift
== 0) {
194 if ((p
- prop
) >= (maxcells
- 3 - count
* 2)) {
197 *(p
++) = cpu_to_be32(sps
->page_shift
);
198 *(p
++) = cpu_to_be32(sps
->slb_enc
);
199 *(p
++) = cpu_to_be32(count
);
200 for (j
= 0; j
< count
; j
++) {
201 *(p
++) = cpu_to_be32(sps
->enc
[j
].page_shift
);
202 *(p
++) = cpu_to_be32(sps
->enc
[j
].pte_enc
);
206 return (p
- prop
) * sizeof(uint32_t);
209 static void *spapr_create_fdt_skel(const char *cpu_model
,
210 target_phys_addr_t rma_size
,
211 target_phys_addr_t initrd_base
,
212 target_phys_addr_t initrd_size
,
213 target_phys_addr_t kernel_size
,
214 const char *boot_device
,
215 const char *kernel_cmdline
,
220 uint64_t mem_reg_property
[2];
221 uint32_t start_prop
= cpu_to_be32(initrd_base
);
222 uint32_t end_prop
= cpu_to_be32(initrd_base
+ initrd_size
);
223 uint32_t pft_size_prop
[] = {0, cpu_to_be32(hash_shift
)};
224 char hypertas_prop
[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
225 "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk";
226 char qemu_hypertas_prop
[] = "hcall-memop1";
227 uint32_t interrupt_server_ranges_prop
[] = {0, cpu_to_be32(smp_cpus
)};
230 int smt
= kvmppc_smt_threads();
231 unsigned char vec5
[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
232 uint32_t refpoints
[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
233 uint32_t associativity
[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
234 cpu_to_be32(0x0), cpu_to_be32(0x0),
237 target_phys_addr_t node0_size
, mem_start
;
243 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
244 #exp, fdt_strerror(ret)); \
249 fdt
= g_malloc0(FDT_MAX_SIZE
);
250 _FDT((fdt_create(fdt
, FDT_MAX_SIZE
)));
253 _FDT((fdt_add_reservemap_entry(fdt
, KERNEL_LOAD_ADDR
, kernel_size
)));
256 _FDT((fdt_add_reservemap_entry(fdt
, initrd_base
, initrd_size
)));
258 _FDT((fdt_finish_reservemap(fdt
)));
261 _FDT((fdt_begin_node(fdt
, "")));
262 _FDT((fdt_property_string(fdt
, "device_type", "chrp")));
263 _FDT((fdt_property_string(fdt
, "model", "IBM pSeries (emulated by qemu)")));
265 _FDT((fdt_property_cell(fdt
, "#address-cells", 0x2)));
266 _FDT((fdt_property_cell(fdt
, "#size-cells", 0x2)));
269 _FDT((fdt_begin_node(fdt
, "chosen")));
271 /* Set Form1_affinity */
272 _FDT((fdt_property(fdt
, "ibm,architecture-vec-5", vec5
, sizeof(vec5
))));
274 _FDT((fdt_property_string(fdt
, "bootargs", kernel_cmdline
)));
275 _FDT((fdt_property(fdt
, "linux,initrd-start",
276 &start_prop
, sizeof(start_prop
))));
277 _FDT((fdt_property(fdt
, "linux,initrd-end",
278 &end_prop
, sizeof(end_prop
))));
280 uint64_t kprop
[2] = { cpu_to_be64(KERNEL_LOAD_ADDR
),
281 cpu_to_be64(kernel_size
) };
283 _FDT((fdt_property(fdt
, "qemu,boot-kernel", &kprop
, sizeof(kprop
))));
285 _FDT((fdt_property_string(fdt
, "qemu,boot-device", boot_device
)));
286 _FDT((fdt_property_cell(fdt
, "qemu,graphic-width", graphic_width
)));
287 _FDT((fdt_property_cell(fdt
, "qemu,graphic-height", graphic_height
)));
288 _FDT((fdt_property_cell(fdt
, "qemu,graphic-depth", graphic_depth
)));
290 _FDT((fdt_end_node(fdt
)));
293 node0_size
= (nb_numa_nodes
> 1) ? node_mem
[0] : ram_size
;
294 if (rma_size
> node0_size
) {
295 rma_size
= node0_size
;
299 mem_reg_property
[0] = 0;
300 mem_reg_property
[1] = cpu_to_be64(rma_size
);
301 _FDT((fdt_begin_node(fdt
, "memory@0")));
302 _FDT((fdt_property_string(fdt
, "device_type", "memory")));
303 _FDT((fdt_property(fdt
, "reg", mem_reg_property
,
304 sizeof(mem_reg_property
))));
305 _FDT((fdt_property(fdt
, "ibm,associativity", associativity
,
306 sizeof(associativity
))));
307 _FDT((fdt_end_node(fdt
)));
310 if (node0_size
> rma_size
) {
311 mem_reg_property
[0] = cpu_to_be64(rma_size
);
312 mem_reg_property
[1] = cpu_to_be64(node0_size
- rma_size
);
314 sprintf(mem_name
, "memory@" TARGET_FMT_lx
, rma_size
);
315 _FDT((fdt_begin_node(fdt
, mem_name
)));
316 _FDT((fdt_property_string(fdt
, "device_type", "memory")));
317 _FDT((fdt_property(fdt
, "reg", mem_reg_property
,
318 sizeof(mem_reg_property
))));
319 _FDT((fdt_property(fdt
, "ibm,associativity", associativity
,
320 sizeof(associativity
))));
321 _FDT((fdt_end_node(fdt
)));
324 /* RAM: Node 1 and beyond */
325 mem_start
= node0_size
;
326 for (i
= 1; i
< nb_numa_nodes
; i
++) {
327 mem_reg_property
[0] = cpu_to_be64(mem_start
);
328 mem_reg_property
[1] = cpu_to_be64(node_mem
[i
]);
329 associativity
[3] = associativity
[4] = cpu_to_be32(i
);
330 sprintf(mem_name
, "memory@" TARGET_FMT_lx
, mem_start
);
331 _FDT((fdt_begin_node(fdt
, mem_name
)));
332 _FDT((fdt_property_string(fdt
, "device_type", "memory")));
333 _FDT((fdt_property(fdt
, "reg", mem_reg_property
,
334 sizeof(mem_reg_property
))));
335 _FDT((fdt_property(fdt
, "ibm,associativity", associativity
,
336 sizeof(associativity
))));
337 _FDT((fdt_end_node(fdt
)));
338 mem_start
+= node_mem
[i
];
342 _FDT((fdt_begin_node(fdt
, "cpus")));
344 _FDT((fdt_property_cell(fdt
, "#address-cells", 0x1)));
345 _FDT((fdt_property_cell(fdt
, "#size-cells", 0x0)));
347 modelname
= g_strdup(cpu_model
);
349 for (i
= 0; i
< strlen(modelname
); i
++) {
350 modelname
[i
] = toupper(modelname
[i
]);
353 /* This is needed during FDT finalization */
354 spapr
->cpu_model
= g_strdup(modelname
);
356 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
357 int index
= env
->cpu_index
;
358 uint32_t servers_prop
[smp_threads
];
359 uint32_t gservers_prop
[smp_threads
* 2];
361 uint32_t segs
[] = {cpu_to_be32(28), cpu_to_be32(40),
362 0xffffffff, 0xffffffff};
363 uint32_t tbfreq
= kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ
;
364 uint32_t cpufreq
= kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
365 uint32_t page_sizes_prop
[64];
366 size_t page_sizes_prop_size
;
368 if ((index
% smt
) != 0) {
372 if (asprintf(&nodename
, "%s@%x", modelname
, index
) < 0) {
373 fprintf(stderr
, "Allocation failure\n");
377 _FDT((fdt_begin_node(fdt
, nodename
)));
381 _FDT((fdt_property_cell(fdt
, "reg", index
)));
382 _FDT((fdt_property_string(fdt
, "device_type", "cpu")));
384 _FDT((fdt_property_cell(fdt
, "cpu-version", env
->spr
[SPR_PVR
])));
385 _FDT((fdt_property_cell(fdt
, "dcache-block-size",
386 env
->dcache_line_size
)));
387 _FDT((fdt_property_cell(fdt
, "icache-block-size",
388 env
->icache_line_size
)));
389 _FDT((fdt_property_cell(fdt
, "timebase-frequency", tbfreq
)));
390 _FDT((fdt_property_cell(fdt
, "clock-frequency", cpufreq
)));
391 _FDT((fdt_property_cell(fdt
, "ibm,slb-size", env
->slb_nr
)));
392 _FDT((fdt_property(fdt
, "ibm,pft-size",
393 pft_size_prop
, sizeof(pft_size_prop
))));
394 _FDT((fdt_property_string(fdt
, "status", "okay")));
395 _FDT((fdt_property(fdt
, "64-bit", NULL
, 0)));
397 /* Build interrupt servers and gservers properties */
398 for (i
= 0; i
< smp_threads
; i
++) {
399 servers_prop
[i
] = cpu_to_be32(index
+ i
);
400 /* Hack, direct the group queues back to cpu 0 */
401 gservers_prop
[i
*2] = cpu_to_be32(index
+ i
);
402 gservers_prop
[i
*2 + 1] = 0;
404 _FDT((fdt_property(fdt
, "ibm,ppc-interrupt-server#s",
405 servers_prop
, sizeof(servers_prop
))));
406 _FDT((fdt_property(fdt
, "ibm,ppc-interrupt-gserver#s",
407 gservers_prop
, sizeof(gservers_prop
))));
409 if (env
->mmu_model
& POWERPC_MMU_1TSEG
) {
410 _FDT((fdt_property(fdt
, "ibm,processor-segment-sizes",
411 segs
, sizeof(segs
))));
414 /* Advertise VMX/VSX (vector extensions) if available
415 * 0 / no property == no vector extensions
416 * 1 == VMX / Altivec available
417 * 2 == VSX available */
418 if (env
->insns_flags
& PPC_ALTIVEC
) {
419 uint32_t vmx
= (env
->insns_flags2
& PPC2_VSX
) ? 2 : 1;
421 _FDT((fdt_property_cell(fdt
, "ibm,vmx", vmx
)));
424 /* Advertise DFP (Decimal Floating Point) if available
425 * 0 / no property == no DFP
426 * 1 == DFP available */
427 if (env
->insns_flags2
& PPC2_DFP
) {
428 _FDT((fdt_property_cell(fdt
, "ibm,dfp", 1)));
431 page_sizes_prop_size
= create_page_sizes_prop(env
, page_sizes_prop
,
432 sizeof(page_sizes_prop
));
433 if (page_sizes_prop_size
) {
434 _FDT((fdt_property(fdt
, "ibm,segment-page-sizes",
435 page_sizes_prop
, page_sizes_prop_size
)));
438 _FDT((fdt_end_node(fdt
)));
443 _FDT((fdt_end_node(fdt
)));
446 _FDT((fdt_begin_node(fdt
, "rtas")));
448 _FDT((fdt_property(fdt
, "ibm,hypertas-functions", hypertas_prop
,
449 sizeof(hypertas_prop
))));
450 _FDT((fdt_property(fdt
, "qemu,hypertas-functions", qemu_hypertas_prop
,
451 sizeof(qemu_hypertas_prop
))));
453 _FDT((fdt_property(fdt
, "ibm,associativity-reference-points",
454 refpoints
, sizeof(refpoints
))));
456 _FDT((fdt_end_node(fdt
)));
458 /* interrupt controller */
459 _FDT((fdt_begin_node(fdt
, "interrupt-controller")));
461 _FDT((fdt_property_string(fdt
, "device_type",
462 "PowerPC-External-Interrupt-Presentation")));
463 _FDT((fdt_property_string(fdt
, "compatible", "IBM,ppc-xicp")));
464 _FDT((fdt_property(fdt
, "interrupt-controller", NULL
, 0)));
465 _FDT((fdt_property(fdt
, "ibm,interrupt-server-ranges",
466 interrupt_server_ranges_prop
,
467 sizeof(interrupt_server_ranges_prop
))));
468 _FDT((fdt_property_cell(fdt
, "#interrupt-cells", 2)));
469 _FDT((fdt_property_cell(fdt
, "linux,phandle", PHANDLE_XICP
)));
470 _FDT((fdt_property_cell(fdt
, "phandle", PHANDLE_XICP
)));
472 _FDT((fdt_end_node(fdt
)));
475 _FDT((fdt_begin_node(fdt
, "vdevice")));
477 _FDT((fdt_property_string(fdt
, "device_type", "vdevice")));
478 _FDT((fdt_property_string(fdt
, "compatible", "IBM,vdevice")));
479 _FDT((fdt_property_cell(fdt
, "#address-cells", 0x1)));
480 _FDT((fdt_property_cell(fdt
, "#size-cells", 0x0)));
481 _FDT((fdt_property_cell(fdt
, "#interrupt-cells", 0x2)));
482 _FDT((fdt_property(fdt
, "interrupt-controller", NULL
, 0)));
484 _FDT((fdt_end_node(fdt
)));
486 _FDT((fdt_end_node(fdt
))); /* close root node */
487 _FDT((fdt_finish(fdt
)));
492 static void spapr_finalize_fdt(sPAPREnvironment
*spapr
,
493 target_phys_addr_t fdt_addr
,
494 target_phys_addr_t rtas_addr
,
495 target_phys_addr_t rtas_size
)
501 fdt
= g_malloc(FDT_MAX_SIZE
);
503 /* open out the base tree into a temp buffer for the final tweaks */
504 _FDT((fdt_open_into(spapr
->fdt_skel
, fdt
, FDT_MAX_SIZE
)));
506 ret
= spapr_populate_vdevice(spapr
->vio_bus
, fdt
);
508 fprintf(stderr
, "couldn't setup vio devices in fdt\n");
512 QLIST_FOREACH(phb
, &spapr
->phbs
, list
) {
513 ret
= spapr_populate_pci_dt(phb
, PHANDLE_XICP
, fdt
);
517 fprintf(stderr
, "couldn't setup PCI devices in fdt\n");
522 ret
= spapr_rtas_device_tree_setup(fdt
, rtas_addr
, rtas_size
);
524 fprintf(stderr
, "Couldn't set up RTAS device tree properties\n");
527 /* Advertise NUMA via ibm,associativity */
528 if (nb_numa_nodes
> 1) {
529 ret
= spapr_set_associativity(fdt
, spapr
);
531 fprintf(stderr
, "Couldn't set up NUMA device tree properties\n");
535 if (!spapr
->has_graphics
) {
536 spapr_populate_chosen_stdout(fdt
, spapr
->vio_bus
);
539 _FDT((fdt_pack(fdt
)));
541 if (fdt_totalsize(fdt
) > FDT_MAX_SIZE
) {
542 hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
543 fdt_totalsize(fdt
), FDT_MAX_SIZE
);
547 cpu_physical_memory_write(fdt_addr
, fdt
, fdt_totalsize(fdt
));
552 static uint64_t translate_kernel_address(void *opaque
, uint64_t addr
)
554 return (addr
& 0x0fffffff) + KERNEL_LOAD_ADDR
;
557 static void emulate_spapr_hypercall(CPUPPCState
*env
)
559 env
->gpr
[3] = spapr_hypercall(env
, env
->gpr
[3], &env
->gpr
[4]);
562 static void spapr_reset(void *opaque
)
564 sPAPREnvironment
*spapr
= (sPAPREnvironment
*)opaque
;
566 /* flush out the hash table */
567 memset(spapr
->htab
, 0, spapr
->htab_size
);
570 spapr_finalize_fdt(spapr
, spapr
->fdt_addr
, spapr
->rtas_addr
,
573 /* Set up the entry state */
574 first_cpu
->gpr
[3] = spapr
->fdt_addr
;
575 first_cpu
->gpr
[5] = 0;
576 first_cpu
->halted
= 0;
577 first_cpu
->nip
= spapr
->entry_point
;
581 static void spapr_cpu_reset(void *opaque
)
583 PowerPCCPU
*cpu
= opaque
;
588 /* Returns whether we want to use VGA or not */
589 static int spapr_vga_init(PCIBus
*pci_bus
)
591 switch (vga_interface_type
) {
593 pci_vga_init(pci_bus
);
598 fprintf(stderr
, "This vga model is not supported,"
599 "currently it only supports -vga std\n");
605 /* pSeries LPAR / sPAPR hardware init */
606 static void ppc_spapr_init(ram_addr_t ram_size
,
607 const char *boot_device
,
608 const char *kernel_filename
,
609 const char *kernel_cmdline
,
610 const char *initrd_filename
,
611 const char *cpu_model
)
616 MemoryRegion
*sysmem
= get_system_memory();
617 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
618 target_phys_addr_t rma_alloc_size
, rma_size
;
619 uint32_t initrd_base
= 0;
620 long kernel_size
= 0, initrd_size
= 0;
621 long load_limit
, rtas_limit
, fw_size
;
622 long pteg_shift
= 17;
625 msi_supported
= true;
627 spapr
= g_malloc0(sizeof(*spapr
));
628 QLIST_INIT(&spapr
->phbs
);
630 cpu_ppc_hypercall
= emulate_spapr_hypercall
;
632 /* Allocate RMA if necessary */
633 rma_alloc_size
= kvmppc_alloc_rma("ppc_spapr.rma", sysmem
);
635 if (rma_alloc_size
== -1) {
636 hw_error("qemu: Unable to create RMA\n");
639 if (rma_alloc_size
&& (rma_alloc_size
< ram_size
)) {
640 rma_size
= rma_alloc_size
;
645 /* We place the device tree and RTAS just below either the top of the RMA,
646 * or just below 2GB, whichever is lowere, so that it can be
647 * processed with 32-bit real mode code if necessary */
648 rtas_limit
= MIN(rma_size
, 0x80000000);
649 spapr
->rtas_addr
= rtas_limit
- RTAS_MAX_SIZE
;
650 spapr
->fdt_addr
= spapr
->rtas_addr
- FDT_MAX_SIZE
;
651 load_limit
= spapr
->fdt_addr
- FW_OVERHEAD
;
654 if (cpu_model
== NULL
) {
655 cpu_model
= kvm_enabled() ? "host" : "POWER7";
657 for (i
= 0; i
< smp_cpus
; i
++) {
658 cpu
= cpu_ppc_init(cpu_model
);
660 fprintf(stderr
, "Unable to find PowerPC CPU definition\n");
665 /* Set time-base frequency to 512 MHz */
666 cpu_ppc_tb_init(env
, TIMEBASE_FREQ
);
667 qemu_register_reset(spapr_cpu_reset
, cpu
);
669 env
->hreset_vector
= 0x60;
670 env
->hreset_excp_prefix
= 0;
671 env
->gpr
[3] = env
->cpu_index
;
675 spapr
->ram_limit
= ram_size
;
676 if (spapr
->ram_limit
> rma_alloc_size
) {
677 ram_addr_t nonrma_base
= rma_alloc_size
;
678 ram_addr_t nonrma_size
= spapr
->ram_limit
- rma_alloc_size
;
680 memory_region_init_ram(ram
, "ppc_spapr.ram", nonrma_size
);
681 vmstate_register_ram_global(ram
);
682 memory_region_add_subregion(sysmem
, nonrma_base
, ram
);
685 /* allocate hash page table. For now we always make this 16mb,
686 * later we should probably make it scale to the size of guest
688 spapr
->htab_size
= 1ULL << (pteg_shift
+ 7);
689 spapr
->htab
= qemu_memalign(spapr
->htab_size
, spapr
->htab_size
);
691 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
692 env
->external_htab
= spapr
->htab
;
694 env
->htab_mask
= spapr
->htab_size
- 1;
696 /* Tell KVM that we're in PAPR mode */
697 env
->spr
[SPR_SDR1
] = (unsigned long)spapr
->htab
|
698 ((pteg_shift
+ 7) - 18);
699 env
->spr
[SPR_HIOR
] = 0;
702 kvmppc_set_papr(env
);
706 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, "spapr-rtas.bin");
707 spapr
->rtas_size
= load_image_targphys(filename
, spapr
->rtas_addr
,
708 rtas_limit
- spapr
->rtas_addr
);
709 if (spapr
->rtas_size
< 0) {
710 hw_error("qemu: could not load LPAR rtas '%s'\n", filename
);
713 if (spapr
->rtas_size
> RTAS_MAX_SIZE
) {
714 hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
715 spapr
->rtas_size
, RTAS_MAX_SIZE
);
721 /* Set up Interrupt Controller */
722 spapr
->icp
= xics_system_init(XICS_IRQS
);
723 spapr
->next_irq
= 16;
729 spapr
->vio_bus
= spapr_vio_bus_init();
731 for (i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
733 spapr_vty_create(spapr
->vio_bus
, serial_hds
[i
]);
738 spapr_pci_rtas_init();
740 spapr_create_phb(spapr
, "pci", SPAPR_PCI_BUID
,
741 SPAPR_PCI_MEM_WIN_ADDR
,
742 SPAPR_PCI_MEM_WIN_SIZE
,
743 SPAPR_PCI_IO_WIN_ADDR
,
744 SPAPR_PCI_MSI_WIN_ADDR
);
746 for (i
= 0; i
< nb_nics
; i
++) {
747 NICInfo
*nd
= &nd_table
[i
];
750 nd
->model
= g_strdup("ibmveth");
753 if (strcmp(nd
->model
, "ibmveth") == 0) {
754 spapr_vlan_create(spapr
->vio_bus
, nd
);
756 pci_nic_init_nofail(&nd_table
[i
], nd
->model
, NULL
);
760 for (i
= 0; i
<= drive_get_max_bus(IF_SCSI
); i
++) {
761 spapr_vscsi_create(spapr
->vio_bus
);
765 if (spapr_vga_init(QLIST_FIRST(&spapr
->phbs
)->host_state
.bus
)) {
766 spapr
->has_graphics
= true;
770 pci_create_simple(QLIST_FIRST(&spapr
->phbs
)->host_state
.bus
,
772 if (spapr
->has_graphics
) {
773 usbdevice_create("keyboard");
774 usbdevice_create("mouse");
778 if (rma_size
< (MIN_RMA_SLOF
<< 20)) {
779 fprintf(stderr
, "qemu: pSeries SLOF firmware requires >= "
780 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF
);
784 if (kernel_filename
) {
785 uint64_t lowaddr
= 0;
787 kernel_size
= load_elf(kernel_filename
, translate_kernel_address
, NULL
,
788 NULL
, &lowaddr
, NULL
, 1, ELF_MACHINE
, 0);
789 if (kernel_size
< 0) {
790 kernel_size
= load_image_targphys(kernel_filename
,
792 load_limit
- KERNEL_LOAD_ADDR
);
794 if (kernel_size
< 0) {
795 fprintf(stderr
, "qemu: could not load kernel '%s'\n",
801 if (initrd_filename
) {
802 /* Try to locate the initrd in the gap between the kernel
803 * and the firmware. Add a bit of space just in case
805 initrd_base
= (KERNEL_LOAD_ADDR
+ kernel_size
+ 0x1ffff) & ~0xffff;
806 initrd_size
= load_image_targphys(initrd_filename
, initrd_base
,
807 load_limit
- initrd_base
);
808 if (initrd_size
< 0) {
809 fprintf(stderr
, "qemu: could not load initial ram disk '%s'\n",
819 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, FW_FILE_NAME
);
820 fw_size
= load_image_targphys(filename
, 0, FW_MAX_SIZE
);
822 hw_error("qemu: could not load LPAR rtas '%s'\n", filename
);
827 spapr
->entry_point
= 0x100;
829 /* SLOF will startup the secondary CPUs using RTAS */
830 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
834 /* Prepare the device tree */
835 spapr
->fdt_skel
= spapr_create_fdt_skel(cpu_model
, rma_size
,
836 initrd_base
, initrd_size
,
838 boot_device
, kernel_cmdline
,
840 assert(spapr
->fdt_skel
!= NULL
);
842 qemu_register_reset(spapr_reset
, spapr
);
845 static QEMUMachine spapr_machine
= {
847 .desc
= "pSeries Logical Partition (PAPR compliant)",
848 .init
= ppc_spapr_init
,
849 .max_cpus
= MAX_CPUS
,
854 static void spapr_machine_init(void)
856 qemu_register_machine(&spapr_machine
);
859 machine_init(spapr_machine_init
);