]> git.proxmox.com Git - qemu.git/blob - hw/spapr_pci.c
PPC: Fix openpic with relative memregions
[qemu.git] / hw / spapr_pci.c
1 /*
2 * QEMU sPAPR PCI host originated from Uninorth PCI host
3 *
4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5 * Copyright (C) 2011 David Gibson, IBM Corporation.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25 #include "hw.h"
26 #include "pci.h"
27 #include "pci_host.h"
28 #include "hw/spapr.h"
29 #include "hw/spapr_pci.h"
30 #include "exec-memory.h"
31 #include <libfdt.h>
32
33 #include "hw/pci_internals.h"
34
35 static PCIDevice *find_dev(sPAPREnvironment *spapr,
36 uint64_t buid, uint32_t config_addr)
37 {
38 DeviceState *qdev;
39 int devfn = (config_addr >> 8) & 0xFF;
40 sPAPRPHBState *phb;
41
42 QLIST_FOREACH(phb, &spapr->phbs, list) {
43 if (phb->buid != buid) {
44 continue;
45 }
46
47 QTAILQ_FOREACH(qdev, &phb->host_state.bus->qbus.children, sibling) {
48 PCIDevice *dev = (PCIDevice *)qdev;
49 if (dev->devfn == devfn) {
50 return dev;
51 }
52 }
53 }
54
55 return NULL;
56 }
57
58 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
59 {
60 return ((arg >> 20) & 0xf00) | (arg & 0xff);
61 }
62
63 static uint32_t rtas_read_pci_config_do(PCIDevice *pci_dev, uint32_t addr,
64 uint32_t limit, uint32_t len)
65 {
66 if ((addr + len) <= limit) {
67 return pci_host_config_read_common(pci_dev, addr, limit, len);
68 } else {
69 return ~0x0;
70 }
71 }
72
73 static void rtas_write_pci_config_do(PCIDevice *pci_dev, uint32_t addr,
74 uint32_t limit, uint32_t val,
75 uint32_t len)
76 {
77 if ((addr + len) <= limit) {
78 pci_host_config_write_common(pci_dev, addr, limit, val, len);
79 }
80 }
81
82 static void rtas_ibm_read_pci_config(sPAPREnvironment *spapr,
83 uint32_t token, uint32_t nargs,
84 target_ulong args,
85 uint32_t nret, target_ulong rets)
86 {
87 uint32_t val, size, addr;
88 uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
89 PCIDevice *dev = find_dev(spapr, buid, rtas_ld(args, 0));
90
91 if (!dev) {
92 rtas_st(rets, 0, -1);
93 return;
94 }
95 size = rtas_ld(args, 3);
96 addr = rtas_pci_cfgaddr(rtas_ld(args, 0));
97 val = rtas_read_pci_config_do(dev, addr, pci_config_size(dev), size);
98 rtas_st(rets, 0, 0);
99 rtas_st(rets, 1, val);
100 }
101
102 static void rtas_read_pci_config(sPAPREnvironment *spapr,
103 uint32_t token, uint32_t nargs,
104 target_ulong args,
105 uint32_t nret, target_ulong rets)
106 {
107 uint32_t val, size, addr;
108 PCIDevice *dev = find_dev(spapr, 0, rtas_ld(args, 0));
109
110 if (!dev) {
111 rtas_st(rets, 0, -1);
112 return;
113 }
114 size = rtas_ld(args, 1);
115 addr = rtas_pci_cfgaddr(rtas_ld(args, 0));
116 val = rtas_read_pci_config_do(dev, addr, pci_config_size(dev), size);
117 rtas_st(rets, 0, 0);
118 rtas_st(rets, 1, val);
119 }
120
121 static void rtas_ibm_write_pci_config(sPAPREnvironment *spapr,
122 uint32_t token, uint32_t nargs,
123 target_ulong args,
124 uint32_t nret, target_ulong rets)
125 {
126 uint32_t val, size, addr;
127 uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
128 PCIDevice *dev = find_dev(spapr, buid, rtas_ld(args, 0));
129
130 if (!dev) {
131 rtas_st(rets, 0, -1);
132 return;
133 }
134 val = rtas_ld(args, 4);
135 size = rtas_ld(args, 3);
136 addr = rtas_pci_cfgaddr(rtas_ld(args, 0));
137 rtas_write_pci_config_do(dev, addr, pci_config_size(dev), val, size);
138 rtas_st(rets, 0, 0);
139 }
140
141 static void rtas_write_pci_config(sPAPREnvironment *spapr,
142 uint32_t token, uint32_t nargs,
143 target_ulong args,
144 uint32_t nret, target_ulong rets)
145 {
146 uint32_t val, size, addr;
147 PCIDevice *dev = find_dev(spapr, 0, rtas_ld(args, 0));
148
149 if (!dev) {
150 rtas_st(rets, 0, -1);
151 return;
152 }
153 val = rtas_ld(args, 2);
154 size = rtas_ld(args, 1);
155 addr = rtas_pci_cfgaddr(rtas_ld(args, 0));
156 rtas_write_pci_config_do(dev, addr, pci_config_size(dev), val, size);
157 rtas_st(rets, 0, 0);
158 }
159
160 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
161 {
162 /*
163 * Here we need to convert pci_dev + irq_num to some unique value
164 * which is less than number of IRQs on the specific bus (now it
165 * is 16). At the moment irq_num == device_id (number of the
166 * slot?)
167 * FIXME: we should swizzle in fn and irq_num
168 */
169 return (pci_dev->devfn >> 3) % SPAPR_PCI_NUM_LSI;
170 }
171
172 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
173 {
174 /*
175 * Here we use the number returned by pci_spapr_map_irq to find a
176 * corresponding qemu_irq.
177 */
178 sPAPRPHBState *phb = opaque;
179
180 qemu_set_irq(phb->lsi_table[irq_num].qirq, level);
181 }
182
183 static uint64_t spapr_io_read(void *opaque, target_phys_addr_t addr,
184 unsigned size)
185 {
186 switch (size) {
187 case 1:
188 return cpu_inb(addr);
189 case 2:
190 return cpu_inw(addr);
191 case 4:
192 return cpu_inl(addr);
193 }
194 assert(0);
195 }
196
197 static void spapr_io_write(void *opaque, target_phys_addr_t addr,
198 uint64_t data, unsigned size)
199 {
200 switch (size) {
201 case 1:
202 cpu_outb(addr, data);
203 return;
204 case 2:
205 cpu_outw(addr, data);
206 return;
207 case 4:
208 cpu_outl(addr, data);
209 return;
210 }
211 assert(0);
212 }
213
214 static const MemoryRegionOps spapr_io_ops = {
215 .endianness = DEVICE_LITTLE_ENDIAN,
216 .read = spapr_io_read,
217 .write = spapr_io_write
218 };
219
220 /*
221 * PHB PCI device
222 */
223 static int spapr_phb_init(SysBusDevice *s)
224 {
225 sPAPRPHBState *phb = FROM_SYSBUS(sPAPRPHBState, s);
226 char *namebuf;
227 int i;
228 PCIBus *bus;
229
230 phb->dtbusname = g_strdup_printf("pci@%" PRIx64, phb->buid);
231 namebuf = alloca(strlen(phb->dtbusname) + 32);
232
233 /* Initialize memory regions */
234 sprintf(namebuf, "%s.mmio", phb->dtbusname);
235 memory_region_init(&phb->memspace, namebuf, INT64_MAX);
236
237 sprintf(namebuf, "%s.mmio-alias", phb->dtbusname);
238 memory_region_init_alias(&phb->memwindow, namebuf, &phb->memspace,
239 SPAPR_PCI_MEM_WIN_BUS_OFFSET, phb->mem_win_size);
240 memory_region_add_subregion(get_system_memory(), phb->mem_win_addr,
241 &phb->memwindow);
242
243 /* On ppc, we only have MMIO no specific IO space from the CPU
244 * perspective. In theory we ought to be able to embed the PCI IO
245 * memory region direction in the system memory space. However,
246 * if any of the IO BAR subregions use the old_portio mechanism,
247 * that won't be processed properly unless accessed from the
248 * system io address space. This hack to bounce things via
249 * system_io works around the problem until all the users of
250 * old_portion are updated */
251 sprintf(namebuf, "%s.io", phb->dtbusname);
252 memory_region_init(&phb->iospace, namebuf, SPAPR_PCI_IO_WIN_SIZE);
253 /* FIXME: fix to support multiple PHBs */
254 memory_region_add_subregion(get_system_io(), 0, &phb->iospace);
255
256 sprintf(namebuf, "%s.io-alias", phb->dtbusname);
257 memory_region_init_io(&phb->iowindow, &spapr_io_ops, phb,
258 namebuf, SPAPR_PCI_IO_WIN_SIZE);
259 memory_region_add_subregion(get_system_memory(), phb->io_win_addr,
260 &phb->iowindow);
261
262 bus = pci_register_bus(&phb->busdev.qdev,
263 phb->busname ? phb->busname : phb->dtbusname,
264 pci_spapr_set_irq, pci_spapr_map_irq, phb,
265 &phb->memspace, &phb->iospace,
266 PCI_DEVFN(0, 0), SPAPR_PCI_NUM_LSI);
267 phb->host_state.bus = bus;
268
269 QLIST_INSERT_HEAD(&spapr->phbs, phb, list);
270
271 /* Initialize the LSI table */
272 for (i = 0; i < SPAPR_PCI_NUM_LSI; i++) {
273 qemu_irq qirq;
274 uint32_t num;
275
276 qirq = spapr_allocate_lsi(0, &num);
277 if (!qirq) {
278 return -1;
279 }
280
281 phb->lsi_table[i].dt_irq = num;
282 phb->lsi_table[i].qirq = qirq;
283 }
284
285 return 0;
286 }
287
288 static Property spapr_phb_properties[] = {
289 DEFINE_PROP_HEX64("buid", sPAPRPHBState, buid, 0),
290 DEFINE_PROP_STRING("busname", sPAPRPHBState, busname),
291 DEFINE_PROP_HEX64("mem_win_addr", sPAPRPHBState, mem_win_addr, 0),
292 DEFINE_PROP_HEX64("mem_win_size", sPAPRPHBState, mem_win_size, 0x20000000),
293 DEFINE_PROP_HEX64("io_win_addr", sPAPRPHBState, io_win_addr, 0),
294 DEFINE_PROP_HEX64("io_win_size", sPAPRPHBState, io_win_size, 0x10000),
295 DEFINE_PROP_END_OF_LIST(),
296 };
297
298 static void spapr_phb_class_init(ObjectClass *klass, void *data)
299 {
300 SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
301 DeviceClass *dc = DEVICE_CLASS(klass);
302
303 sdc->init = spapr_phb_init;
304 dc->props = spapr_phb_properties;
305
306 spapr_rtas_register("read-pci-config", rtas_read_pci_config);
307 spapr_rtas_register("write-pci-config", rtas_write_pci_config);
308 spapr_rtas_register("ibm,read-pci-config", rtas_ibm_read_pci_config);
309 spapr_rtas_register("ibm,write-pci-config", rtas_ibm_write_pci_config);
310 }
311
312 static TypeInfo spapr_phb_info = {
313 .name = "spapr-pci-host-bridge",
314 .parent = TYPE_SYS_BUS_DEVICE,
315 .instance_size = sizeof(sPAPRPHBState),
316 .class_init = spapr_phb_class_init,
317 };
318
319 void spapr_create_phb(sPAPREnvironment *spapr,
320 const char *busname, uint64_t buid,
321 uint64_t mem_win_addr, uint64_t mem_win_size,
322 uint64_t io_win_addr)
323 {
324 DeviceState *dev;
325
326 dev = qdev_create(NULL, spapr_phb_info.name);
327
328 if (busname) {
329 qdev_prop_set_string(dev, "busname", g_strdup(busname));
330 }
331 qdev_prop_set_uint64(dev, "buid", buid);
332 qdev_prop_set_uint64(dev, "mem_win_addr", mem_win_addr);
333 qdev_prop_set_uint64(dev, "mem_win_size", mem_win_size);
334 qdev_prop_set_uint64(dev, "io_win_addr", io_win_addr);
335
336 qdev_init_nofail(dev);
337 }
338
339 /* Macros to operate with address in OF binding to PCI */
340 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
341 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
342 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
343 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
344 #define b_ss(x) b_x((x), 24, 2) /* the space code */
345 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
346 #define b_ddddd(x) b_x((x), 11, 5) /* device number */
347 #define b_fff(x) b_x((x), 8, 3) /* function number */
348 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
349
350 int spapr_populate_pci_devices(sPAPRPHBState *phb,
351 uint32_t xics_phandle,
352 void *fdt)
353 {
354 PCIBus *bus = phb->host_state.bus;
355 int bus_off, i;
356 char nodename[256];
357 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
358 struct {
359 uint32_t hi;
360 uint64_t child;
361 uint64_t parent;
362 uint64_t size;
363 } __attribute__((packed)) ranges[] = {
364 {
365 cpu_to_be32(b_ss(1)), cpu_to_be64(0),
366 cpu_to_be64(phb->io_win_addr),
367 cpu_to_be64(memory_region_size(&phb->iospace)),
368 },
369 {
370 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
371 cpu_to_be64(phb->mem_win_addr),
372 cpu_to_be64(memory_region_size(&phb->memwindow)),
373 },
374 };
375 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
376 uint32_t interrupt_map_mask[] = {
377 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, 0x0};
378 uint32_t interrupt_map[bus->nirq][7];
379
380 /* Start populating the FDT */
381 sprintf(nodename, "pci@%" PRIx64, phb->buid);
382 bus_off = fdt_add_subnode(fdt, 0, nodename);
383 if (bus_off < 0) {
384 return bus_off;
385 }
386
387 #define _FDT(exp) \
388 do { \
389 int ret = (exp); \
390 if (ret < 0) { \
391 return ret; \
392 } \
393 } while (0)
394
395 /* Write PHB properties */
396 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
397 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
398 _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
399 _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
400 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
401 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
402 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
403 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof(ranges)));
404 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
405 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
406
407 /* Build the interrupt-map, this must matches what is done
408 * in pci_spapr_map_irq
409 */
410 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
411 &interrupt_map_mask, sizeof(interrupt_map_mask)));
412 for (i = 0; i < 7; i++) {
413 uint32_t *irqmap = interrupt_map[i];
414 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
415 irqmap[1] = 0;
416 irqmap[2] = 0;
417 irqmap[3] = 0;
418 irqmap[4] = cpu_to_be32(xics_phandle);
419 irqmap[5] = cpu_to_be32(phb->lsi_table[i % SPAPR_PCI_NUM_LSI].dt_irq);
420 irqmap[6] = cpu_to_be32(0x8);
421 }
422 /* Write interrupt map */
423 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
424 7 * sizeof(interrupt_map[0])));
425
426 return 0;
427 }
428
429 static void register_types(void)
430 {
431 type_register_static(&spapr_phb_info);
432 }
433 type_init(register_types)