]> git.proxmox.com Git - qemu.git/blob - hw/sparc/sun4m.c
Merge remote-tracking branch 'mst/tags/for_anthony' into staging
[qemu.git] / hw / sparc / sun4m.c
1 /*
2 * QEMU Sun4m & Sun4d & Sun4c System Emulator
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw/sysbus.h"
25 #include "qemu/timer.h"
26 #include "hw/sparc/sun4m.h"
27 #include "hw/timer/m48t59.h"
28 #include "hw/sparc/sparc32_dma.h"
29 #include "hw/block/fdc.h"
30 #include "sysemu/sysemu.h"
31 #include "net/net.h"
32 #include "hw/boards.h"
33 #include "hw/nvram/openbios_firmware_abi.h"
34 #include "hw/scsi/esp.h"
35 #include "hw/i386/pc.h"
36 #include "hw/isa/isa.h"
37 #include "hw/nvram/fw_cfg.h"
38 #include "hw/char/escc.h"
39 #include "hw/empty_slot.h"
40 #include "hw/loader.h"
41 #include "elf.h"
42 #include "sysemu/blockdev.h"
43 #include "trace.h"
44
45 /*
46 * Sun4m architecture was used in the following machines:
47 *
48 * SPARCserver 6xxMP/xx
49 * SPARCclassic (SPARCclassic Server)(SPARCstation LC) (4/15),
50 * SPARCclassic X (4/10)
51 * SPARCstation LX/ZX (4/30)
52 * SPARCstation Voyager
53 * SPARCstation 10/xx, SPARCserver 10/xx
54 * SPARCstation 5, SPARCserver 5
55 * SPARCstation 20/xx, SPARCserver 20
56 * SPARCstation 4
57 *
58 * See for example: http://www.sunhelp.org/faq/sunref1.html
59 */
60
61 #define KERNEL_LOAD_ADDR 0x00004000
62 #define CMDLINE_ADDR 0x007ff000
63 #define INITRD_LOAD_ADDR 0x00800000
64 #define PROM_SIZE_MAX (1024 * 1024)
65 #define PROM_VADDR 0xffd00000
66 #define PROM_FILENAME "openbios-sparc32"
67 #define CFG_ADDR 0xd00000510ULL
68 #define FW_CFG_SUN4M_DEPTH (FW_CFG_ARCH_LOCAL + 0x00)
69
70 #define MAX_CPUS 16
71 #define MAX_PILS 16
72 #define MAX_VSIMMS 4
73
74 #define ESCC_CLOCK 4915200
75
76 struct sun4m_hwdef {
77 hwaddr iommu_base, iommu_pad_base, iommu_pad_len, slavio_base;
78 hwaddr intctl_base, counter_base, nvram_base, ms_kb_base;
79 hwaddr serial_base, fd_base;
80 hwaddr afx_base, idreg_base, dma_base, esp_base, le_base;
81 hwaddr tcx_base, cs_base, apc_base, aux1_base, aux2_base;
82 hwaddr bpp_base, dbri_base, sx_base;
83 struct {
84 hwaddr reg_base, vram_base;
85 } vsimm[MAX_VSIMMS];
86 hwaddr ecc_base;
87 uint64_t max_mem;
88 const char * const default_cpu_model;
89 uint32_t ecc_version;
90 uint32_t iommu_version;
91 uint16_t machine_id;
92 uint8_t nvram_machine_id;
93 };
94
95 int DMA_get_channel_mode (int nchan)
96 {
97 return 0;
98 }
99 int DMA_read_memory (int nchan, void *buf, int pos, int size)
100 {
101 return 0;
102 }
103 int DMA_write_memory (int nchan, void *buf, int pos, int size)
104 {
105 return 0;
106 }
107 void DMA_hold_DREQ (int nchan) {}
108 void DMA_release_DREQ (int nchan) {}
109 void DMA_schedule(int nchan) {}
110
111 void DMA_init(int high_page_enable, qemu_irq *cpu_request_exit)
112 {
113 }
114
115 void DMA_register_channel (int nchan,
116 DMA_transfer_handler transfer_handler,
117 void *opaque)
118 {
119 }
120
121 static int fw_cfg_boot_set(void *opaque, const char *boot_device)
122 {
123 fw_cfg_add_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
124 return 0;
125 }
126
127 static void nvram_init(M48t59State *nvram, uint8_t *macaddr,
128 const char *cmdline, const char *boot_devices,
129 ram_addr_t RAM_size, uint32_t kernel_size,
130 int width, int height, int depth,
131 int nvram_machine_id, const char *arch)
132 {
133 unsigned int i;
134 uint32_t start, end;
135 uint8_t image[0x1ff0];
136 struct OpenBIOS_nvpart_v1 *part_header;
137
138 memset(image, '\0', sizeof(image));
139
140 start = 0;
141
142 // OpenBIOS nvram variables
143 // Variable partition
144 part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
145 part_header->signature = OPENBIOS_PART_SYSTEM;
146 pstrcpy(part_header->name, sizeof(part_header->name), "system");
147
148 end = start + sizeof(struct OpenBIOS_nvpart_v1);
149 for (i = 0; i < nb_prom_envs; i++)
150 end = OpenBIOS_set_var(image, end, prom_envs[i]);
151
152 // End marker
153 image[end++] = '\0';
154
155 end = start + ((end - start + 15) & ~15);
156 OpenBIOS_finish_partition(part_header, end - start);
157
158 // free partition
159 start = end;
160 part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
161 part_header->signature = OPENBIOS_PART_FREE;
162 pstrcpy(part_header->name, sizeof(part_header->name), "free");
163
164 end = 0x1fd0;
165 OpenBIOS_finish_partition(part_header, end - start);
166
167 Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr,
168 nvram_machine_id);
169
170 for (i = 0; i < sizeof(image); i++)
171 m48t59_write(nvram, i, image[i]);
172 }
173
174 static DeviceState *slavio_intctl;
175
176 void sun4m_pic_info(Monitor *mon, const QDict *qdict)
177 {
178 if (slavio_intctl)
179 slavio_pic_info(mon, slavio_intctl);
180 }
181
182 void sun4m_irq_info(Monitor *mon, const QDict *qdict)
183 {
184 if (slavio_intctl)
185 slavio_irq_info(mon, slavio_intctl);
186 }
187
188 void cpu_check_irqs(CPUSPARCState *env)
189 {
190 CPUState *cs;
191
192 if (env->pil_in && (env->interrupt_index == 0 ||
193 (env->interrupt_index & ~15) == TT_EXTINT)) {
194 unsigned int i;
195
196 for (i = 15; i > 0; i--) {
197 if (env->pil_in & (1 << i)) {
198 int old_interrupt = env->interrupt_index;
199
200 env->interrupt_index = TT_EXTINT | i;
201 if (old_interrupt != env->interrupt_index) {
202 cs = CPU(sparc_env_get_cpu(env));
203 trace_sun4m_cpu_interrupt(i);
204 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
205 }
206 break;
207 }
208 }
209 } else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) {
210 cs = CPU(sparc_env_get_cpu(env));
211 trace_sun4m_cpu_reset_interrupt(env->interrupt_index & 15);
212 env->interrupt_index = 0;
213 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
214 }
215 }
216
217 static void cpu_kick_irq(SPARCCPU *cpu)
218 {
219 CPUSPARCState *env = &cpu->env;
220 CPUState *cs = CPU(cpu);
221
222 cs->halted = 0;
223 cpu_check_irqs(env);
224 qemu_cpu_kick(cs);
225 }
226
227 static void cpu_set_irq(void *opaque, int irq, int level)
228 {
229 SPARCCPU *cpu = opaque;
230 CPUSPARCState *env = &cpu->env;
231
232 if (level) {
233 trace_sun4m_cpu_set_irq_raise(irq);
234 env->pil_in |= 1 << irq;
235 cpu_kick_irq(cpu);
236 } else {
237 trace_sun4m_cpu_set_irq_lower(irq);
238 env->pil_in &= ~(1 << irq);
239 cpu_check_irqs(env);
240 }
241 }
242
243 static void dummy_cpu_set_irq(void *opaque, int irq, int level)
244 {
245 }
246
247 static void main_cpu_reset(void *opaque)
248 {
249 SPARCCPU *cpu = opaque;
250 CPUState *cs = CPU(cpu);
251
252 cpu_reset(cs);
253 cs->halted = 0;
254 }
255
256 static void secondary_cpu_reset(void *opaque)
257 {
258 SPARCCPU *cpu = opaque;
259 CPUState *cs = CPU(cpu);
260
261 cpu_reset(cs);
262 cs->halted = 1;
263 }
264
265 static void cpu_halt_signal(void *opaque, int irq, int level)
266 {
267 if (level && cpu_single_env) {
268 cpu_interrupt(CPU(sparc_env_get_cpu(cpu_single_env)),
269 CPU_INTERRUPT_HALT);
270 }
271 }
272
273 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
274 {
275 return addr - 0xf0000000ULL;
276 }
277
278 static unsigned long sun4m_load_kernel(const char *kernel_filename,
279 const char *initrd_filename,
280 ram_addr_t RAM_size)
281 {
282 int linux_boot;
283 unsigned int i;
284 long initrd_size, kernel_size;
285 uint8_t *ptr;
286
287 linux_boot = (kernel_filename != NULL);
288
289 kernel_size = 0;
290 if (linux_boot) {
291 int bswap_needed;
292
293 #ifdef BSWAP_NEEDED
294 bswap_needed = 1;
295 #else
296 bswap_needed = 0;
297 #endif
298 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
299 NULL, NULL, NULL, 1, ELF_MACHINE, 0);
300 if (kernel_size < 0)
301 kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
302 RAM_size - KERNEL_LOAD_ADDR, bswap_needed,
303 TARGET_PAGE_SIZE);
304 if (kernel_size < 0)
305 kernel_size = load_image_targphys(kernel_filename,
306 KERNEL_LOAD_ADDR,
307 RAM_size - KERNEL_LOAD_ADDR);
308 if (kernel_size < 0) {
309 fprintf(stderr, "qemu: could not load kernel '%s'\n",
310 kernel_filename);
311 exit(1);
312 }
313
314 /* load initrd */
315 initrd_size = 0;
316 if (initrd_filename) {
317 initrd_size = load_image_targphys(initrd_filename,
318 INITRD_LOAD_ADDR,
319 RAM_size - INITRD_LOAD_ADDR);
320 if (initrd_size < 0) {
321 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
322 initrd_filename);
323 exit(1);
324 }
325 }
326 if (initrd_size > 0) {
327 for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
328 ptr = rom_ptr(KERNEL_LOAD_ADDR + i);
329 if (ldl_p(ptr) == 0x48647253) { // HdrS
330 stl_p(ptr + 16, INITRD_LOAD_ADDR);
331 stl_p(ptr + 20, initrd_size);
332 break;
333 }
334 }
335 }
336 }
337 return kernel_size;
338 }
339
340 static void *iommu_init(hwaddr addr, uint32_t version, qemu_irq irq)
341 {
342 DeviceState *dev;
343 SysBusDevice *s;
344
345 dev = qdev_create(NULL, "iommu");
346 qdev_prop_set_uint32(dev, "version", version);
347 qdev_init_nofail(dev);
348 s = SYS_BUS_DEVICE(dev);
349 sysbus_connect_irq(s, 0, irq);
350 sysbus_mmio_map(s, 0, addr);
351
352 return s;
353 }
354
355 static void *sparc32_dma_init(hwaddr daddr, qemu_irq parent_irq,
356 void *iommu, qemu_irq *dev_irq, int is_ledma)
357 {
358 DeviceState *dev;
359 SysBusDevice *s;
360
361 dev = qdev_create(NULL, "sparc32_dma");
362 qdev_prop_set_ptr(dev, "iommu_opaque", iommu);
363 qdev_prop_set_uint32(dev, "is_ledma", is_ledma);
364 qdev_init_nofail(dev);
365 s = SYS_BUS_DEVICE(dev);
366 sysbus_connect_irq(s, 0, parent_irq);
367 *dev_irq = qdev_get_gpio_in(dev, 0);
368 sysbus_mmio_map(s, 0, daddr);
369
370 return s;
371 }
372
373 static void lance_init(NICInfo *nd, hwaddr leaddr,
374 void *dma_opaque, qemu_irq irq)
375 {
376 DeviceState *dev;
377 SysBusDevice *s;
378 qemu_irq reset;
379
380 qemu_check_nic_model(&nd_table[0], "lance");
381
382 dev = qdev_create(NULL, "lance");
383 qdev_set_nic_properties(dev, nd);
384 qdev_prop_set_ptr(dev, "dma", dma_opaque);
385 qdev_init_nofail(dev);
386 s = SYS_BUS_DEVICE(dev);
387 sysbus_mmio_map(s, 0, leaddr);
388 sysbus_connect_irq(s, 0, irq);
389 reset = qdev_get_gpio_in(dev, 0);
390 qdev_connect_gpio_out(dma_opaque, 0, reset);
391 }
392
393 static DeviceState *slavio_intctl_init(hwaddr addr,
394 hwaddr addrg,
395 qemu_irq **parent_irq)
396 {
397 DeviceState *dev;
398 SysBusDevice *s;
399 unsigned int i, j;
400
401 dev = qdev_create(NULL, "slavio_intctl");
402 qdev_init_nofail(dev);
403
404 s = SYS_BUS_DEVICE(dev);
405
406 for (i = 0; i < MAX_CPUS; i++) {
407 for (j = 0; j < MAX_PILS; j++) {
408 sysbus_connect_irq(s, i * MAX_PILS + j, parent_irq[i][j]);
409 }
410 }
411 sysbus_mmio_map(s, 0, addrg);
412 for (i = 0; i < MAX_CPUS; i++) {
413 sysbus_mmio_map(s, i + 1, addr + i * TARGET_PAGE_SIZE);
414 }
415
416 return dev;
417 }
418
419 #define SYS_TIMER_OFFSET 0x10000ULL
420 #define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)
421
422 static void slavio_timer_init_all(hwaddr addr, qemu_irq master_irq,
423 qemu_irq *cpu_irqs, unsigned int num_cpus)
424 {
425 DeviceState *dev;
426 SysBusDevice *s;
427 unsigned int i;
428
429 dev = qdev_create(NULL, "slavio_timer");
430 qdev_prop_set_uint32(dev, "num_cpus", num_cpus);
431 qdev_init_nofail(dev);
432 s = SYS_BUS_DEVICE(dev);
433 sysbus_connect_irq(s, 0, master_irq);
434 sysbus_mmio_map(s, 0, addr + SYS_TIMER_OFFSET);
435
436 for (i = 0; i < MAX_CPUS; i++) {
437 sysbus_mmio_map(s, i + 1, addr + (hwaddr)CPU_TIMER_OFFSET(i));
438 sysbus_connect_irq(s, i + 1, cpu_irqs[i]);
439 }
440 }
441
442 static qemu_irq slavio_system_powerdown;
443
444 static void slavio_powerdown_req(Notifier *n, void *opaque)
445 {
446 qemu_irq_raise(slavio_system_powerdown);
447 }
448
449 static Notifier slavio_system_powerdown_notifier = {
450 .notify = slavio_powerdown_req
451 };
452
453 #define MISC_LEDS 0x01600000
454 #define MISC_CFG 0x01800000
455 #define MISC_DIAG 0x01a00000
456 #define MISC_MDM 0x01b00000
457 #define MISC_SYS 0x01f00000
458
459 static void slavio_misc_init(hwaddr base,
460 hwaddr aux1_base,
461 hwaddr aux2_base, qemu_irq irq,
462 qemu_irq fdc_tc)
463 {
464 DeviceState *dev;
465 SysBusDevice *s;
466
467 dev = qdev_create(NULL, "slavio_misc");
468 qdev_init_nofail(dev);
469 s = SYS_BUS_DEVICE(dev);
470 if (base) {
471 /* 8 bit registers */
472 /* Slavio control */
473 sysbus_mmio_map(s, 0, base + MISC_CFG);
474 /* Diagnostics */
475 sysbus_mmio_map(s, 1, base + MISC_DIAG);
476 /* Modem control */
477 sysbus_mmio_map(s, 2, base + MISC_MDM);
478 /* 16 bit registers */
479 /* ss600mp diag LEDs */
480 sysbus_mmio_map(s, 3, base + MISC_LEDS);
481 /* 32 bit registers */
482 /* System control */
483 sysbus_mmio_map(s, 4, base + MISC_SYS);
484 }
485 if (aux1_base) {
486 /* AUX 1 (Misc System Functions) */
487 sysbus_mmio_map(s, 5, aux1_base);
488 }
489 if (aux2_base) {
490 /* AUX 2 (Software Powerdown Control) */
491 sysbus_mmio_map(s, 6, aux2_base);
492 }
493 sysbus_connect_irq(s, 0, irq);
494 sysbus_connect_irq(s, 1, fdc_tc);
495 slavio_system_powerdown = qdev_get_gpio_in(dev, 0);
496 qemu_register_powerdown_notifier(&slavio_system_powerdown_notifier);
497 }
498
499 static void ecc_init(hwaddr base, qemu_irq irq, uint32_t version)
500 {
501 DeviceState *dev;
502 SysBusDevice *s;
503
504 dev = qdev_create(NULL, "eccmemctl");
505 qdev_prop_set_uint32(dev, "version", version);
506 qdev_init_nofail(dev);
507 s = SYS_BUS_DEVICE(dev);
508 sysbus_connect_irq(s, 0, irq);
509 sysbus_mmio_map(s, 0, base);
510 if (version == 0) { // SS-600MP only
511 sysbus_mmio_map(s, 1, base + 0x1000);
512 }
513 }
514
515 static void apc_init(hwaddr power_base, qemu_irq cpu_halt)
516 {
517 DeviceState *dev;
518 SysBusDevice *s;
519
520 dev = qdev_create(NULL, "apc");
521 qdev_init_nofail(dev);
522 s = SYS_BUS_DEVICE(dev);
523 /* Power management (APC) XXX: not a Slavio device */
524 sysbus_mmio_map(s, 0, power_base);
525 sysbus_connect_irq(s, 0, cpu_halt);
526 }
527
528 static void tcx_init(hwaddr addr, int vram_size, int width,
529 int height, int depth)
530 {
531 DeviceState *dev;
532 SysBusDevice *s;
533
534 dev = qdev_create(NULL, "SUNW,tcx");
535 qdev_prop_set_uint32(dev, "vram_size", vram_size);
536 qdev_prop_set_uint16(dev, "width", width);
537 qdev_prop_set_uint16(dev, "height", height);
538 qdev_prop_set_uint16(dev, "depth", depth);
539 qdev_init_nofail(dev);
540 s = SYS_BUS_DEVICE(dev);
541 /* 8-bit plane */
542 sysbus_mmio_map(s, 0, addr + 0x00800000ULL);
543 /* DAC */
544 sysbus_mmio_map(s, 1, addr + 0x00200000ULL);
545 /* TEC (dummy) */
546 sysbus_mmio_map(s, 2, addr + 0x00700000ULL);
547 /* THC 24 bit: NetBSD writes here even with 8-bit display: dummy */
548 sysbus_mmio_map(s, 3, addr + 0x00301000ULL);
549 if (depth == 24) {
550 /* 24-bit plane */
551 sysbus_mmio_map(s, 4, addr + 0x02000000ULL);
552 /* Control plane */
553 sysbus_mmio_map(s, 5, addr + 0x0a000000ULL);
554 } else {
555 /* THC 8 bit (dummy) */
556 sysbus_mmio_map(s, 4, addr + 0x00300000ULL);
557 }
558 }
559
560 /* NCR89C100/MACIO Internal ID register */
561 static const uint8_t idreg_data[] = { 0xfe, 0x81, 0x01, 0x03 };
562
563 static void idreg_init(hwaddr addr)
564 {
565 DeviceState *dev;
566 SysBusDevice *s;
567
568 dev = qdev_create(NULL, "macio_idreg");
569 qdev_init_nofail(dev);
570 s = SYS_BUS_DEVICE(dev);
571
572 sysbus_mmio_map(s, 0, addr);
573 cpu_physical_memory_write_rom(addr, idreg_data, sizeof(idreg_data));
574 }
575
576 typedef struct IDRegState {
577 SysBusDevice busdev;
578 MemoryRegion mem;
579 } IDRegState;
580
581 static int idreg_init1(SysBusDevice *dev)
582 {
583 IDRegState *s = FROM_SYSBUS(IDRegState, dev);
584
585 memory_region_init_ram(&s->mem, "sun4m.idreg", sizeof(idreg_data));
586 vmstate_register_ram_global(&s->mem);
587 memory_region_set_readonly(&s->mem, true);
588 sysbus_init_mmio(dev, &s->mem);
589 return 0;
590 }
591
592 static void idreg_class_init(ObjectClass *klass, void *data)
593 {
594 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
595
596 k->init = idreg_init1;
597 }
598
599 static const TypeInfo idreg_info = {
600 .name = "macio_idreg",
601 .parent = TYPE_SYS_BUS_DEVICE,
602 .instance_size = sizeof(IDRegState),
603 .class_init = idreg_class_init,
604 };
605
606 typedef struct AFXState {
607 SysBusDevice busdev;
608 MemoryRegion mem;
609 } AFXState;
610
611 /* SS-5 TCX AFX register */
612 static void afx_init(hwaddr addr)
613 {
614 DeviceState *dev;
615 SysBusDevice *s;
616
617 dev = qdev_create(NULL, "tcx_afx");
618 qdev_init_nofail(dev);
619 s = SYS_BUS_DEVICE(dev);
620
621 sysbus_mmio_map(s, 0, addr);
622 }
623
624 static int afx_init1(SysBusDevice *dev)
625 {
626 AFXState *s = FROM_SYSBUS(AFXState, dev);
627
628 memory_region_init_ram(&s->mem, "sun4m.afx", 4);
629 vmstate_register_ram_global(&s->mem);
630 sysbus_init_mmio(dev, &s->mem);
631 return 0;
632 }
633
634 static void afx_class_init(ObjectClass *klass, void *data)
635 {
636 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
637
638 k->init = afx_init1;
639 }
640
641 static const TypeInfo afx_info = {
642 .name = "tcx_afx",
643 .parent = TYPE_SYS_BUS_DEVICE,
644 .instance_size = sizeof(AFXState),
645 .class_init = afx_class_init,
646 };
647
648 typedef struct PROMState {
649 SysBusDevice busdev;
650 MemoryRegion prom;
651 } PROMState;
652
653 /* Boot PROM (OpenBIOS) */
654 static uint64_t translate_prom_address(void *opaque, uint64_t addr)
655 {
656 hwaddr *base_addr = (hwaddr *)opaque;
657 return addr + *base_addr - PROM_VADDR;
658 }
659
660 static void prom_init(hwaddr addr, const char *bios_name)
661 {
662 DeviceState *dev;
663 SysBusDevice *s;
664 char *filename;
665 int ret;
666
667 dev = qdev_create(NULL, "openprom");
668 qdev_init_nofail(dev);
669 s = SYS_BUS_DEVICE(dev);
670
671 sysbus_mmio_map(s, 0, addr);
672
673 /* load boot prom */
674 if (bios_name == NULL) {
675 bios_name = PROM_FILENAME;
676 }
677 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
678 if (filename) {
679 ret = load_elf(filename, translate_prom_address, &addr, NULL,
680 NULL, NULL, 1, ELF_MACHINE, 0);
681 if (ret < 0 || ret > PROM_SIZE_MAX) {
682 ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
683 }
684 g_free(filename);
685 } else {
686 ret = -1;
687 }
688 if (ret < 0 || ret > PROM_SIZE_MAX) {
689 fprintf(stderr, "qemu: could not load prom '%s'\n", bios_name);
690 exit(1);
691 }
692 }
693
694 static int prom_init1(SysBusDevice *dev)
695 {
696 PROMState *s = FROM_SYSBUS(PROMState, dev);
697
698 memory_region_init_ram(&s->prom, "sun4m.prom", PROM_SIZE_MAX);
699 vmstate_register_ram_global(&s->prom);
700 memory_region_set_readonly(&s->prom, true);
701 sysbus_init_mmio(dev, &s->prom);
702 return 0;
703 }
704
705 static Property prom_properties[] = {
706 {/* end of property list */},
707 };
708
709 static void prom_class_init(ObjectClass *klass, void *data)
710 {
711 DeviceClass *dc = DEVICE_CLASS(klass);
712 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
713
714 k->init = prom_init1;
715 dc->props = prom_properties;
716 }
717
718 static const TypeInfo prom_info = {
719 .name = "openprom",
720 .parent = TYPE_SYS_BUS_DEVICE,
721 .instance_size = sizeof(PROMState),
722 .class_init = prom_class_init,
723 };
724
725 typedef struct RamDevice
726 {
727 SysBusDevice busdev;
728 MemoryRegion ram;
729 uint64_t size;
730 } RamDevice;
731
732 /* System RAM */
733 static int ram_init1(SysBusDevice *dev)
734 {
735 RamDevice *d = FROM_SYSBUS(RamDevice, dev);
736
737 memory_region_init_ram(&d->ram, "sun4m.ram", d->size);
738 vmstate_register_ram_global(&d->ram);
739 sysbus_init_mmio(dev, &d->ram);
740 return 0;
741 }
742
743 static void ram_init(hwaddr addr, ram_addr_t RAM_size,
744 uint64_t max_mem)
745 {
746 DeviceState *dev;
747 SysBusDevice *s;
748 RamDevice *d;
749
750 /* allocate RAM */
751 if ((uint64_t)RAM_size > max_mem) {
752 fprintf(stderr,
753 "qemu: Too much memory for this machine: %d, maximum %d\n",
754 (unsigned int)(RAM_size / (1024 * 1024)),
755 (unsigned int)(max_mem / (1024 * 1024)));
756 exit(1);
757 }
758 dev = qdev_create(NULL, "memory");
759 s = SYS_BUS_DEVICE(dev);
760
761 d = FROM_SYSBUS(RamDevice, s);
762 d->size = RAM_size;
763 qdev_init_nofail(dev);
764
765 sysbus_mmio_map(s, 0, addr);
766 }
767
768 static Property ram_properties[] = {
769 DEFINE_PROP_UINT64("size", RamDevice, size, 0),
770 DEFINE_PROP_END_OF_LIST(),
771 };
772
773 static void ram_class_init(ObjectClass *klass, void *data)
774 {
775 DeviceClass *dc = DEVICE_CLASS(klass);
776 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
777
778 k->init = ram_init1;
779 dc->props = ram_properties;
780 }
781
782 static const TypeInfo ram_info = {
783 .name = "memory",
784 .parent = TYPE_SYS_BUS_DEVICE,
785 .instance_size = sizeof(RamDevice),
786 .class_init = ram_class_init,
787 };
788
789 static void cpu_devinit(const char *cpu_model, unsigned int id,
790 uint64_t prom_addr, qemu_irq **cpu_irqs)
791 {
792 CPUState *cs;
793 SPARCCPU *cpu;
794 CPUSPARCState *env;
795
796 cpu = cpu_sparc_init(cpu_model);
797 if (cpu == NULL) {
798 fprintf(stderr, "qemu: Unable to find Sparc CPU definition\n");
799 exit(1);
800 }
801 env = &cpu->env;
802
803 cpu_sparc_set_id(env, id);
804 if (id == 0) {
805 qemu_register_reset(main_cpu_reset, cpu);
806 } else {
807 qemu_register_reset(secondary_cpu_reset, cpu);
808 cs = CPU(cpu);
809 cs->halted = 1;
810 }
811 *cpu_irqs = qemu_allocate_irqs(cpu_set_irq, cpu, MAX_PILS);
812 env->prom_addr = prom_addr;
813 }
814
815 static void dummy_fdc_tc(void *opaque, int irq, int level)
816 {
817 }
818
819 static void sun4m_hw_init(const struct sun4m_hwdef *hwdef, ram_addr_t RAM_size,
820 const char *boot_device,
821 const char *kernel_filename,
822 const char *kernel_cmdline,
823 const char *initrd_filename, const char *cpu_model)
824 {
825 unsigned int i;
826 void *iommu, *espdma, *ledma, *nvram;
827 qemu_irq *cpu_irqs[MAX_CPUS], slavio_irq[32], slavio_cpu_irq[MAX_CPUS],
828 espdma_irq, ledma_irq;
829 qemu_irq esp_reset, dma_enable;
830 qemu_irq fdc_tc;
831 qemu_irq *cpu_halt;
832 unsigned long kernel_size;
833 DriveInfo *fd[MAX_FD];
834 FWCfgState *fw_cfg;
835 unsigned int num_vsimms;
836
837 /* init CPUs */
838 if (!cpu_model)
839 cpu_model = hwdef->default_cpu_model;
840
841 for(i = 0; i < smp_cpus; i++) {
842 cpu_devinit(cpu_model, i, hwdef->slavio_base, &cpu_irqs[i]);
843 }
844
845 for (i = smp_cpus; i < MAX_CPUS; i++)
846 cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS);
847
848
849 /* set up devices */
850 ram_init(0, RAM_size, hwdef->max_mem);
851 /* models without ECC don't trap when missing ram is accessed */
852 if (!hwdef->ecc_base) {
853 empty_slot_init(RAM_size, hwdef->max_mem - RAM_size);
854 }
855
856 prom_init(hwdef->slavio_base, bios_name);
857
858 slavio_intctl = slavio_intctl_init(hwdef->intctl_base,
859 hwdef->intctl_base + 0x10000ULL,
860 cpu_irqs);
861
862 for (i = 0; i < 32; i++) {
863 slavio_irq[i] = qdev_get_gpio_in(slavio_intctl, i);
864 }
865 for (i = 0; i < MAX_CPUS; i++) {
866 slavio_cpu_irq[i] = qdev_get_gpio_in(slavio_intctl, 32 + i);
867 }
868
869 if (hwdef->idreg_base) {
870 idreg_init(hwdef->idreg_base);
871 }
872
873 if (hwdef->afx_base) {
874 afx_init(hwdef->afx_base);
875 }
876
877 iommu = iommu_init(hwdef->iommu_base, hwdef->iommu_version,
878 slavio_irq[30]);
879
880 if (hwdef->iommu_pad_base) {
881 /* On the real hardware (SS-5, LX) the MMU is not padded, but aliased.
882 Software shouldn't use aliased addresses, neither should it crash
883 when does. Using empty_slot instead of aliasing can help with
884 debugging such accesses */
885 empty_slot_init(hwdef->iommu_pad_base,hwdef->iommu_pad_len);
886 }
887
888 espdma = sparc32_dma_init(hwdef->dma_base, slavio_irq[18],
889 iommu, &espdma_irq, 0);
890
891 ledma = sparc32_dma_init(hwdef->dma_base + 16ULL,
892 slavio_irq[16], iommu, &ledma_irq, 1);
893
894 if (graphic_depth != 8 && graphic_depth != 24) {
895 fprintf(stderr, "qemu: Unsupported depth: %d\n", graphic_depth);
896 exit (1);
897 }
898 num_vsimms = 0;
899 if (num_vsimms == 0) {
900 tcx_init(hwdef->tcx_base, 0x00100000, graphic_width, graphic_height,
901 graphic_depth);
902 }
903
904 for (i = num_vsimms; i < MAX_VSIMMS; i++) {
905 /* vsimm registers probed by OBP */
906 if (hwdef->vsimm[i].reg_base) {
907 empty_slot_init(hwdef->vsimm[i].reg_base, 0x2000);
908 }
909 }
910
911 if (hwdef->sx_base) {
912 empty_slot_init(hwdef->sx_base, 0x2000);
913 }
914
915 lance_init(&nd_table[0], hwdef->le_base, ledma, ledma_irq);
916
917 nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0, 0x2000, 8);
918
919 slavio_timer_init_all(hwdef->counter_base, slavio_irq[19], slavio_cpu_irq, smp_cpus);
920
921 slavio_serial_ms_kbd_init(hwdef->ms_kb_base, slavio_irq[14],
922 display_type == DT_NOGRAPHIC, ESCC_CLOCK, 1);
923 /* Slavio TTYA (base+4, Linux ttyS0) is the first QEMU serial device
924 Slavio TTYB (base+0, Linux ttyS1) is the second QEMU serial device */
925 escc_init(hwdef->serial_base, slavio_irq[15], slavio_irq[15],
926 serial_hds[0], serial_hds[1], ESCC_CLOCK, 1);
927
928 cpu_halt = qemu_allocate_irqs(cpu_halt_signal, NULL, 1);
929 if (hwdef->apc_base) {
930 apc_init(hwdef->apc_base, cpu_halt[0]);
931 }
932
933 if (hwdef->fd_base) {
934 /* there is zero or one floppy drive */
935 memset(fd, 0, sizeof(fd));
936 fd[0] = drive_get(IF_FLOPPY, 0, 0);
937 sun4m_fdctrl_init(slavio_irq[22], hwdef->fd_base, fd,
938 &fdc_tc);
939 } else {
940 fdc_tc = *qemu_allocate_irqs(dummy_fdc_tc, NULL, 1);
941 }
942
943 slavio_misc_init(hwdef->slavio_base, hwdef->aux1_base, hwdef->aux2_base,
944 slavio_irq[30], fdc_tc);
945
946 if (drive_get_max_bus(IF_SCSI) > 0) {
947 fprintf(stderr, "qemu: too many SCSI bus\n");
948 exit(1);
949 }
950
951 esp_init(hwdef->esp_base, 2,
952 espdma_memory_read, espdma_memory_write,
953 espdma, espdma_irq, &esp_reset, &dma_enable);
954
955 qdev_connect_gpio_out(espdma, 0, esp_reset);
956 qdev_connect_gpio_out(espdma, 1, dma_enable);
957
958 if (hwdef->cs_base) {
959 sysbus_create_simple("SUNW,CS4231", hwdef->cs_base,
960 slavio_irq[5]);
961 }
962
963 if (hwdef->dbri_base) {
964 /* ISDN chip with attached CS4215 audio codec */
965 /* prom space */
966 empty_slot_init(hwdef->dbri_base+0x1000, 0x30);
967 /* reg space */
968 empty_slot_init(hwdef->dbri_base+0x10000, 0x100);
969 }
970
971 if (hwdef->bpp_base) {
972 /* parallel port */
973 empty_slot_init(hwdef->bpp_base, 0x20);
974 }
975
976 kernel_size = sun4m_load_kernel(kernel_filename, initrd_filename,
977 RAM_size);
978
979 nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, kernel_cmdline,
980 boot_device, RAM_size, kernel_size, graphic_width,
981 graphic_height, graphic_depth, hwdef->nvram_machine_id,
982 "Sun4m");
983
984 if (hwdef->ecc_base)
985 ecc_init(hwdef->ecc_base, slavio_irq[28],
986 hwdef->ecc_version);
987
988 fw_cfg = fw_cfg_init(0, 0, CFG_ADDR, CFG_ADDR + 2);
989 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
990 fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
991 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
992 fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
993 fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth);
994 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR);
995 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
996 if (kernel_cmdline) {
997 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR);
998 pstrcpy_targphys("cmdline", CMDLINE_ADDR, TARGET_PAGE_SIZE, kernel_cmdline);
999 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1000 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1001 strlen(kernel_cmdline) + 1);
1002 } else {
1003 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
1004 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0);
1005 }
1006 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR);
1007 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, 0); // not used
1008 fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, boot_device[0]);
1009 qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
1010 }
1011
1012 enum {
1013 ss5_id = 32,
1014 vger_id,
1015 lx_id,
1016 ss4_id,
1017 scls_id,
1018 sbook_id,
1019 ss10_id = 64,
1020 ss20_id,
1021 ss600mp_id,
1022 };
1023
1024 static const struct sun4m_hwdef sun4m_hwdefs[] = {
1025 /* SS-5 */
1026 {
1027 .iommu_base = 0x10000000,
1028 .iommu_pad_base = 0x10004000,
1029 .iommu_pad_len = 0x0fffb000,
1030 .tcx_base = 0x50000000,
1031 .cs_base = 0x6c000000,
1032 .slavio_base = 0x70000000,
1033 .ms_kb_base = 0x71000000,
1034 .serial_base = 0x71100000,
1035 .nvram_base = 0x71200000,
1036 .fd_base = 0x71400000,
1037 .counter_base = 0x71d00000,
1038 .intctl_base = 0x71e00000,
1039 .idreg_base = 0x78000000,
1040 .dma_base = 0x78400000,
1041 .esp_base = 0x78800000,
1042 .le_base = 0x78c00000,
1043 .apc_base = 0x6a000000,
1044 .afx_base = 0x6e000000,
1045 .aux1_base = 0x71900000,
1046 .aux2_base = 0x71910000,
1047 .nvram_machine_id = 0x80,
1048 .machine_id = ss5_id,
1049 .iommu_version = 0x05000000,
1050 .max_mem = 0x10000000,
1051 .default_cpu_model = "Fujitsu MB86904",
1052 },
1053 /* SS-10 */
1054 {
1055 .iommu_base = 0xfe0000000ULL,
1056 .tcx_base = 0xe20000000ULL,
1057 .slavio_base = 0xff0000000ULL,
1058 .ms_kb_base = 0xff1000000ULL,
1059 .serial_base = 0xff1100000ULL,
1060 .nvram_base = 0xff1200000ULL,
1061 .fd_base = 0xff1700000ULL,
1062 .counter_base = 0xff1300000ULL,
1063 .intctl_base = 0xff1400000ULL,
1064 .idreg_base = 0xef0000000ULL,
1065 .dma_base = 0xef0400000ULL,
1066 .esp_base = 0xef0800000ULL,
1067 .le_base = 0xef0c00000ULL,
1068 .apc_base = 0xefa000000ULL, // XXX should not exist
1069 .aux1_base = 0xff1800000ULL,
1070 .aux2_base = 0xff1a01000ULL,
1071 .ecc_base = 0xf00000000ULL,
1072 .ecc_version = 0x10000000, // version 0, implementation 1
1073 .nvram_machine_id = 0x72,
1074 .machine_id = ss10_id,
1075 .iommu_version = 0x03000000,
1076 .max_mem = 0xf00000000ULL,
1077 .default_cpu_model = "TI SuperSparc II",
1078 },
1079 /* SS-600MP */
1080 {
1081 .iommu_base = 0xfe0000000ULL,
1082 .tcx_base = 0xe20000000ULL,
1083 .slavio_base = 0xff0000000ULL,
1084 .ms_kb_base = 0xff1000000ULL,
1085 .serial_base = 0xff1100000ULL,
1086 .nvram_base = 0xff1200000ULL,
1087 .counter_base = 0xff1300000ULL,
1088 .intctl_base = 0xff1400000ULL,
1089 .dma_base = 0xef0081000ULL,
1090 .esp_base = 0xef0080000ULL,
1091 .le_base = 0xef0060000ULL,
1092 .apc_base = 0xefa000000ULL, // XXX should not exist
1093 .aux1_base = 0xff1800000ULL,
1094 .aux2_base = 0xff1a01000ULL, // XXX should not exist
1095 .ecc_base = 0xf00000000ULL,
1096 .ecc_version = 0x00000000, // version 0, implementation 0
1097 .nvram_machine_id = 0x71,
1098 .machine_id = ss600mp_id,
1099 .iommu_version = 0x01000000,
1100 .max_mem = 0xf00000000ULL,
1101 .default_cpu_model = "TI SuperSparc II",
1102 },
1103 /* SS-20 */
1104 {
1105 .iommu_base = 0xfe0000000ULL,
1106 .tcx_base = 0xe20000000ULL,
1107 .slavio_base = 0xff0000000ULL,
1108 .ms_kb_base = 0xff1000000ULL,
1109 .serial_base = 0xff1100000ULL,
1110 .nvram_base = 0xff1200000ULL,
1111 .fd_base = 0xff1700000ULL,
1112 .counter_base = 0xff1300000ULL,
1113 .intctl_base = 0xff1400000ULL,
1114 .idreg_base = 0xef0000000ULL,
1115 .dma_base = 0xef0400000ULL,
1116 .esp_base = 0xef0800000ULL,
1117 .le_base = 0xef0c00000ULL,
1118 .bpp_base = 0xef4800000ULL,
1119 .apc_base = 0xefa000000ULL, // XXX should not exist
1120 .aux1_base = 0xff1800000ULL,
1121 .aux2_base = 0xff1a01000ULL,
1122 .dbri_base = 0xee0000000ULL,
1123 .sx_base = 0xf80000000ULL,
1124 .vsimm = {
1125 {
1126 .reg_base = 0x9c000000ULL,
1127 .vram_base = 0xfc000000ULL
1128 }, {
1129 .reg_base = 0x90000000ULL,
1130 .vram_base = 0xf0000000ULL
1131 }, {
1132 .reg_base = 0x94000000ULL
1133 }, {
1134 .reg_base = 0x98000000ULL
1135 }
1136 },
1137 .ecc_base = 0xf00000000ULL,
1138 .ecc_version = 0x20000000, // version 0, implementation 2
1139 .nvram_machine_id = 0x72,
1140 .machine_id = ss20_id,
1141 .iommu_version = 0x13000000,
1142 .max_mem = 0xf00000000ULL,
1143 .default_cpu_model = "TI SuperSparc II",
1144 },
1145 /* Voyager */
1146 {
1147 .iommu_base = 0x10000000,
1148 .tcx_base = 0x50000000,
1149 .slavio_base = 0x70000000,
1150 .ms_kb_base = 0x71000000,
1151 .serial_base = 0x71100000,
1152 .nvram_base = 0x71200000,
1153 .fd_base = 0x71400000,
1154 .counter_base = 0x71d00000,
1155 .intctl_base = 0x71e00000,
1156 .idreg_base = 0x78000000,
1157 .dma_base = 0x78400000,
1158 .esp_base = 0x78800000,
1159 .le_base = 0x78c00000,
1160 .apc_base = 0x71300000, // pmc
1161 .aux1_base = 0x71900000,
1162 .aux2_base = 0x71910000,
1163 .nvram_machine_id = 0x80,
1164 .machine_id = vger_id,
1165 .iommu_version = 0x05000000,
1166 .max_mem = 0x10000000,
1167 .default_cpu_model = "Fujitsu MB86904",
1168 },
1169 /* LX */
1170 {
1171 .iommu_base = 0x10000000,
1172 .iommu_pad_base = 0x10004000,
1173 .iommu_pad_len = 0x0fffb000,
1174 .tcx_base = 0x50000000,
1175 .slavio_base = 0x70000000,
1176 .ms_kb_base = 0x71000000,
1177 .serial_base = 0x71100000,
1178 .nvram_base = 0x71200000,
1179 .fd_base = 0x71400000,
1180 .counter_base = 0x71d00000,
1181 .intctl_base = 0x71e00000,
1182 .idreg_base = 0x78000000,
1183 .dma_base = 0x78400000,
1184 .esp_base = 0x78800000,
1185 .le_base = 0x78c00000,
1186 .aux1_base = 0x71900000,
1187 .aux2_base = 0x71910000,
1188 .nvram_machine_id = 0x80,
1189 .machine_id = lx_id,
1190 .iommu_version = 0x04000000,
1191 .max_mem = 0x10000000,
1192 .default_cpu_model = "TI MicroSparc I",
1193 },
1194 /* SS-4 */
1195 {
1196 .iommu_base = 0x10000000,
1197 .tcx_base = 0x50000000,
1198 .cs_base = 0x6c000000,
1199 .slavio_base = 0x70000000,
1200 .ms_kb_base = 0x71000000,
1201 .serial_base = 0x71100000,
1202 .nvram_base = 0x71200000,
1203 .fd_base = 0x71400000,
1204 .counter_base = 0x71d00000,
1205 .intctl_base = 0x71e00000,
1206 .idreg_base = 0x78000000,
1207 .dma_base = 0x78400000,
1208 .esp_base = 0x78800000,
1209 .le_base = 0x78c00000,
1210 .apc_base = 0x6a000000,
1211 .aux1_base = 0x71900000,
1212 .aux2_base = 0x71910000,
1213 .nvram_machine_id = 0x80,
1214 .machine_id = ss4_id,
1215 .iommu_version = 0x05000000,
1216 .max_mem = 0x10000000,
1217 .default_cpu_model = "Fujitsu MB86904",
1218 },
1219 /* SPARCClassic */
1220 {
1221 .iommu_base = 0x10000000,
1222 .tcx_base = 0x50000000,
1223 .slavio_base = 0x70000000,
1224 .ms_kb_base = 0x71000000,
1225 .serial_base = 0x71100000,
1226 .nvram_base = 0x71200000,
1227 .fd_base = 0x71400000,
1228 .counter_base = 0x71d00000,
1229 .intctl_base = 0x71e00000,
1230 .idreg_base = 0x78000000,
1231 .dma_base = 0x78400000,
1232 .esp_base = 0x78800000,
1233 .le_base = 0x78c00000,
1234 .apc_base = 0x6a000000,
1235 .aux1_base = 0x71900000,
1236 .aux2_base = 0x71910000,
1237 .nvram_machine_id = 0x80,
1238 .machine_id = scls_id,
1239 .iommu_version = 0x05000000,
1240 .max_mem = 0x10000000,
1241 .default_cpu_model = "TI MicroSparc I",
1242 },
1243 /* SPARCbook */
1244 {
1245 .iommu_base = 0x10000000,
1246 .tcx_base = 0x50000000, // XXX
1247 .slavio_base = 0x70000000,
1248 .ms_kb_base = 0x71000000,
1249 .serial_base = 0x71100000,
1250 .nvram_base = 0x71200000,
1251 .fd_base = 0x71400000,
1252 .counter_base = 0x71d00000,
1253 .intctl_base = 0x71e00000,
1254 .idreg_base = 0x78000000,
1255 .dma_base = 0x78400000,
1256 .esp_base = 0x78800000,
1257 .le_base = 0x78c00000,
1258 .apc_base = 0x6a000000,
1259 .aux1_base = 0x71900000,
1260 .aux2_base = 0x71910000,
1261 .nvram_machine_id = 0x80,
1262 .machine_id = sbook_id,
1263 .iommu_version = 0x05000000,
1264 .max_mem = 0x10000000,
1265 .default_cpu_model = "TI MicroSparc I",
1266 },
1267 };
1268
1269 /* SPARCstation 5 hardware initialisation */
1270 static void ss5_init(QEMUMachineInitArgs *args)
1271 {
1272 ram_addr_t RAM_size = args->ram_size;
1273 const char *cpu_model = args->cpu_model;
1274 const char *kernel_filename = args->kernel_filename;
1275 const char *kernel_cmdline = args->kernel_cmdline;
1276 const char *initrd_filename = args->initrd_filename;
1277 const char *boot_device = args->boot_device;
1278 sun4m_hw_init(&sun4m_hwdefs[0], RAM_size, boot_device, kernel_filename,
1279 kernel_cmdline, initrd_filename, cpu_model);
1280 }
1281
1282 /* SPARCstation 10 hardware initialisation */
1283 static void ss10_init(QEMUMachineInitArgs *args)
1284 {
1285 ram_addr_t RAM_size = args->ram_size;
1286 const char *cpu_model = args->cpu_model;
1287 const char *kernel_filename = args->kernel_filename;
1288 const char *kernel_cmdline = args->kernel_cmdline;
1289 const char *initrd_filename = args->initrd_filename;
1290 const char *boot_device = args->boot_device;
1291 sun4m_hw_init(&sun4m_hwdefs[1], RAM_size, boot_device, kernel_filename,
1292 kernel_cmdline, initrd_filename, cpu_model);
1293 }
1294
1295 /* SPARCserver 600MP hardware initialisation */
1296 static void ss600mp_init(QEMUMachineInitArgs *args)
1297 {
1298 ram_addr_t RAM_size = args->ram_size;
1299 const char *cpu_model = args->cpu_model;
1300 const char *kernel_filename = args->kernel_filename;
1301 const char *kernel_cmdline = args->kernel_cmdline;
1302 const char *initrd_filename = args->initrd_filename;
1303 const char *boot_device = args->boot_device;
1304 sun4m_hw_init(&sun4m_hwdefs[2], RAM_size, boot_device, kernel_filename,
1305 kernel_cmdline, initrd_filename, cpu_model);
1306 }
1307
1308 /* SPARCstation 20 hardware initialisation */
1309 static void ss20_init(QEMUMachineInitArgs *args)
1310 {
1311 ram_addr_t RAM_size = args->ram_size;
1312 const char *cpu_model = args->cpu_model;
1313 const char *kernel_filename = args->kernel_filename;
1314 const char *kernel_cmdline = args->kernel_cmdline;
1315 const char *initrd_filename = args->initrd_filename;
1316 const char *boot_device = args->boot_device;
1317 sun4m_hw_init(&sun4m_hwdefs[3], RAM_size, boot_device, kernel_filename,
1318 kernel_cmdline, initrd_filename, cpu_model);
1319 }
1320
1321 /* SPARCstation Voyager hardware initialisation */
1322 static void vger_init(QEMUMachineInitArgs *args)
1323 {
1324 ram_addr_t RAM_size = args->ram_size;
1325 const char *cpu_model = args->cpu_model;
1326 const char *kernel_filename = args->kernel_filename;
1327 const char *kernel_cmdline = args->kernel_cmdline;
1328 const char *initrd_filename = args->initrd_filename;
1329 const char *boot_device = args->boot_device;
1330 sun4m_hw_init(&sun4m_hwdefs[4], RAM_size, boot_device, kernel_filename,
1331 kernel_cmdline, initrd_filename, cpu_model);
1332 }
1333
1334 /* SPARCstation LX hardware initialisation */
1335 static void ss_lx_init(QEMUMachineInitArgs *args)
1336 {
1337 ram_addr_t RAM_size = args->ram_size;
1338 const char *cpu_model = args->cpu_model;
1339 const char *kernel_filename = args->kernel_filename;
1340 const char *kernel_cmdline = args->kernel_cmdline;
1341 const char *initrd_filename = args->initrd_filename;
1342 const char *boot_device = args->boot_device;
1343 sun4m_hw_init(&sun4m_hwdefs[5], RAM_size, boot_device, kernel_filename,
1344 kernel_cmdline, initrd_filename, cpu_model);
1345 }
1346
1347 /* SPARCstation 4 hardware initialisation */
1348 static void ss4_init(QEMUMachineInitArgs *args)
1349 {
1350 ram_addr_t RAM_size = args->ram_size;
1351 const char *cpu_model = args->cpu_model;
1352 const char *kernel_filename = args->kernel_filename;
1353 const char *kernel_cmdline = args->kernel_cmdline;
1354 const char *initrd_filename = args->initrd_filename;
1355 const char *boot_device = args->boot_device;
1356 sun4m_hw_init(&sun4m_hwdefs[6], RAM_size, boot_device, kernel_filename,
1357 kernel_cmdline, initrd_filename, cpu_model);
1358 }
1359
1360 /* SPARCClassic hardware initialisation */
1361 static void scls_init(QEMUMachineInitArgs *args)
1362 {
1363 ram_addr_t RAM_size = args->ram_size;
1364 const char *cpu_model = args->cpu_model;
1365 const char *kernel_filename = args->kernel_filename;
1366 const char *kernel_cmdline = args->kernel_cmdline;
1367 const char *initrd_filename = args->initrd_filename;
1368 const char *boot_device = args->boot_device;
1369 sun4m_hw_init(&sun4m_hwdefs[7], RAM_size, boot_device, kernel_filename,
1370 kernel_cmdline, initrd_filename, cpu_model);
1371 }
1372
1373 /* SPARCbook hardware initialisation */
1374 static void sbook_init(QEMUMachineInitArgs *args)
1375 {
1376 ram_addr_t RAM_size = args->ram_size;
1377 const char *cpu_model = args->cpu_model;
1378 const char *kernel_filename = args->kernel_filename;
1379 const char *kernel_cmdline = args->kernel_cmdline;
1380 const char *initrd_filename = args->initrd_filename;
1381 const char *boot_device = args->boot_device;
1382 sun4m_hw_init(&sun4m_hwdefs[8], RAM_size, boot_device, kernel_filename,
1383 kernel_cmdline, initrd_filename, cpu_model);
1384 }
1385
1386 static QEMUMachine ss5_machine = {
1387 .name = "SS-5",
1388 .desc = "Sun4m platform, SPARCstation 5",
1389 .init = ss5_init,
1390 .block_default_type = IF_SCSI,
1391 .is_default = 1,
1392 DEFAULT_MACHINE_OPTIONS,
1393 };
1394
1395 static QEMUMachine ss10_machine = {
1396 .name = "SS-10",
1397 .desc = "Sun4m platform, SPARCstation 10",
1398 .init = ss10_init,
1399 .block_default_type = IF_SCSI,
1400 .max_cpus = 4,
1401 DEFAULT_MACHINE_OPTIONS,
1402 };
1403
1404 static QEMUMachine ss600mp_machine = {
1405 .name = "SS-600MP",
1406 .desc = "Sun4m platform, SPARCserver 600MP",
1407 .init = ss600mp_init,
1408 .block_default_type = IF_SCSI,
1409 .max_cpus = 4,
1410 DEFAULT_MACHINE_OPTIONS,
1411 };
1412
1413 static QEMUMachine ss20_machine = {
1414 .name = "SS-20",
1415 .desc = "Sun4m platform, SPARCstation 20",
1416 .init = ss20_init,
1417 .block_default_type = IF_SCSI,
1418 .max_cpus = 4,
1419 DEFAULT_MACHINE_OPTIONS,
1420 };
1421
1422 static QEMUMachine voyager_machine = {
1423 .name = "Voyager",
1424 .desc = "Sun4m platform, SPARCstation Voyager",
1425 .init = vger_init,
1426 .block_default_type = IF_SCSI,
1427 DEFAULT_MACHINE_OPTIONS,
1428 };
1429
1430 static QEMUMachine ss_lx_machine = {
1431 .name = "LX",
1432 .desc = "Sun4m platform, SPARCstation LX",
1433 .init = ss_lx_init,
1434 .block_default_type = IF_SCSI,
1435 DEFAULT_MACHINE_OPTIONS,
1436 };
1437
1438 static QEMUMachine ss4_machine = {
1439 .name = "SS-4",
1440 .desc = "Sun4m platform, SPARCstation 4",
1441 .init = ss4_init,
1442 .block_default_type = IF_SCSI,
1443 DEFAULT_MACHINE_OPTIONS,
1444 };
1445
1446 static QEMUMachine scls_machine = {
1447 .name = "SPARCClassic",
1448 .desc = "Sun4m platform, SPARCClassic",
1449 .init = scls_init,
1450 .block_default_type = IF_SCSI,
1451 DEFAULT_MACHINE_OPTIONS,
1452 };
1453
1454 static QEMUMachine sbook_machine = {
1455 .name = "SPARCbook",
1456 .desc = "Sun4m platform, SPARCbook",
1457 .init = sbook_init,
1458 .block_default_type = IF_SCSI,
1459 DEFAULT_MACHINE_OPTIONS,
1460 };
1461
1462 static void sun4m_register_types(void)
1463 {
1464 type_register_static(&idreg_info);
1465 type_register_static(&afx_info);
1466 type_register_static(&prom_info);
1467 type_register_static(&ram_info);
1468 }
1469
1470 static void sun4m_machine_init(void)
1471 {
1472 qemu_register_machine(&ss5_machine);
1473 qemu_register_machine(&ss10_machine);
1474 qemu_register_machine(&ss600mp_machine);
1475 qemu_register_machine(&ss20_machine);
1476 qemu_register_machine(&voyager_machine);
1477 qemu_register_machine(&ss_lx_machine);
1478 qemu_register_machine(&ss4_machine);
1479 qemu_register_machine(&scls_machine);
1480 qemu_register_machine(&sbook_machine);
1481 }
1482
1483 type_init(sun4m_register_types)
1484 machine_init(sun4m_machine_init);