]> git.proxmox.com Git - qemu.git/blob - hw/sparc32_dma.c
find -type f | xargs sed -i 's/[\t ]$//g' # on most files
[qemu.git] / hw / sparc32_dma.c
1 /*
2 * QEMU Sparc32 DMA controller emulation
3 *
4 * Copyright (c) 2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "vl.h"
25
26 /* debug DMA */
27 //#define DEBUG_DMA
28
29 /*
30 * This is the DMA controller part of chip STP2000 (Master I/O), also
31 * produced as NCR89C100. See
32 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
33 * and
34 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/DMA2.txt
35 */
36
37 #ifdef DEBUG_DMA
38 #define DPRINTF(fmt, args...) \
39 do { printf("DMA: " fmt , ##args); } while (0)
40 #else
41 #define DPRINTF(fmt, args...)
42 #endif
43
44 #define DMA_REGS 4
45 #define DMA_SIZE (4 * sizeof(uint32_t))
46 #define DMA_MAXADDR (DMA_SIZE - 1)
47
48 #define DMA_VER 0xa0000000
49 #define DMA_INTR 1
50 #define DMA_INTREN 0x10
51 #define DMA_WRITE_MEM 0x100
52 #define DMA_LOADED 0x04000000
53 #define DMA_DRAIN_FIFO 0x40
54 #define DMA_RESET 0x80
55
56 typedef struct DMAState DMAState;
57
58 struct DMAState {
59 uint32_t dmaregs[DMA_REGS];
60 qemu_irq irq;
61 void *iommu;
62 qemu_irq dev_reset;
63 };
64
65 /* Note: on sparc, the lance 16 bit bus is swapped */
66 void ledma_memory_read(void *opaque, target_phys_addr_t addr,
67 uint8_t *buf, int len, int do_bswap)
68 {
69 DMAState *s = opaque;
70 int i;
71
72 DPRINTF("DMA write, direction: %c, addr 0x%8.8x\n",
73 s->dmaregs[0] & DMA_WRITE_MEM ? 'w': 'r', s->dmaregs[1]);
74 addr |= s->dmaregs[3];
75 if (do_bswap) {
76 sparc_iommu_memory_read(s->iommu, addr, buf, len);
77 } else {
78 addr &= ~1;
79 len &= ~1;
80 sparc_iommu_memory_read(s->iommu, addr, buf, len);
81 for(i = 0; i < len; i += 2) {
82 bswap16s((uint16_t *)(buf + i));
83 }
84 }
85 }
86
87 void ledma_memory_write(void *opaque, target_phys_addr_t addr,
88 uint8_t *buf, int len, int do_bswap)
89 {
90 DMAState *s = opaque;
91 int l, i;
92 uint16_t tmp_buf[32];
93
94 DPRINTF("DMA read, direction: %c, addr 0x%8.8x\n",
95 s->dmaregs[0] & DMA_WRITE_MEM ? 'w': 'r', s->dmaregs[1]);
96 addr |= s->dmaregs[3];
97 if (do_bswap) {
98 sparc_iommu_memory_write(s->iommu, addr, buf, len);
99 } else {
100 addr &= ~1;
101 len &= ~1;
102 while (len > 0) {
103 l = len;
104 if (l > sizeof(tmp_buf))
105 l = sizeof(tmp_buf);
106 for(i = 0; i < l; i += 2) {
107 tmp_buf[i >> 1] = bswap16(*(uint16_t *)(buf + i));
108 }
109 sparc_iommu_memory_write(s->iommu, addr, (uint8_t *)tmp_buf, l);
110 len -= l;
111 buf += l;
112 addr += l;
113 }
114 }
115 }
116
117 static void dma_set_irq(void *opaque, int irq, int level)
118 {
119 DMAState *s = opaque;
120 if (level) {
121 DPRINTF("Raise IRQ\n");
122 s->dmaregs[0] |= DMA_INTR;
123 qemu_irq_raise(s->irq);
124 } else {
125 s->dmaregs[0] &= ~DMA_INTR;
126 DPRINTF("Lower IRQ\n");
127 qemu_irq_lower(s->irq);
128 }
129 }
130
131 void espdma_memory_read(void *opaque, uint8_t *buf, int len)
132 {
133 DMAState *s = opaque;
134
135 DPRINTF("DMA read, direction: %c, addr 0x%8.8x\n",
136 s->dmaregs[0] & DMA_WRITE_MEM ? 'w': 'r', s->dmaregs[1]);
137 sparc_iommu_memory_read(s->iommu, s->dmaregs[1], buf, len);
138 s->dmaregs[0] |= DMA_INTR;
139 s->dmaregs[1] += len;
140 }
141
142 void espdma_memory_write(void *opaque, uint8_t *buf, int len)
143 {
144 DMAState *s = opaque;
145
146 DPRINTF("DMA write, direction: %c, addr 0x%8.8x\n",
147 s->dmaregs[0] & DMA_WRITE_MEM ? 'w': 'r', s->dmaregs[1]);
148 sparc_iommu_memory_write(s->iommu, s->dmaregs[1], buf, len);
149 s->dmaregs[0] |= DMA_INTR;
150 s->dmaregs[1] += len;
151 }
152
153 static uint32_t dma_mem_readl(void *opaque, target_phys_addr_t addr)
154 {
155 DMAState *s = opaque;
156 uint32_t saddr;
157
158 saddr = (addr & DMA_MAXADDR) >> 2;
159 DPRINTF("read dmareg " TARGET_FMT_plx ": 0x%8.8x\n", addr,
160 s->dmaregs[saddr]);
161
162 return s->dmaregs[saddr];
163 }
164
165 static void dma_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
166 {
167 DMAState *s = opaque;
168 uint32_t saddr;
169
170 saddr = (addr & DMA_MAXADDR) >> 2;
171 DPRINTF("write dmareg " TARGET_FMT_plx ": 0x%8.8x -> 0x%8.8x\n", addr,
172 s->dmaregs[saddr], val);
173 switch (saddr) {
174 case 0:
175 if (!(val & DMA_INTREN)) {
176 DPRINTF("Lower IRQ\n");
177 qemu_irq_lower(s->irq);
178 }
179 if (val & DMA_RESET) {
180 qemu_irq_raise(s->dev_reset);
181 qemu_irq_lower(s->dev_reset);
182 } else if (val & DMA_DRAIN_FIFO) {
183 val &= ~DMA_DRAIN_FIFO;
184 } else if (val == 0)
185 val = DMA_DRAIN_FIFO;
186 val &= 0x0fffffff;
187 val |= DMA_VER;
188 break;
189 case 1:
190 s->dmaregs[0] |= DMA_LOADED;
191 break;
192 default:
193 break;
194 }
195 s->dmaregs[saddr] = val;
196 }
197
198 static CPUReadMemoryFunc *dma_mem_read[3] = {
199 dma_mem_readl,
200 dma_mem_readl,
201 dma_mem_readl,
202 };
203
204 static CPUWriteMemoryFunc *dma_mem_write[3] = {
205 dma_mem_writel,
206 dma_mem_writel,
207 dma_mem_writel,
208 };
209
210 static void dma_reset(void *opaque)
211 {
212 DMAState *s = opaque;
213
214 memset(s->dmaregs, 0, DMA_SIZE);
215 s->dmaregs[0] = DMA_VER;
216 }
217
218 static void dma_save(QEMUFile *f, void *opaque)
219 {
220 DMAState *s = opaque;
221 unsigned int i;
222
223 for (i = 0; i < DMA_REGS; i++)
224 qemu_put_be32s(f, &s->dmaregs[i]);
225 }
226
227 static int dma_load(QEMUFile *f, void *opaque, int version_id)
228 {
229 DMAState *s = opaque;
230 unsigned int i;
231
232 if (version_id != 2)
233 return -EINVAL;
234 for (i = 0; i < DMA_REGS; i++)
235 qemu_get_be32s(f, &s->dmaregs[i]);
236
237 return 0;
238 }
239
240 void *sparc32_dma_init(target_phys_addr_t daddr, qemu_irq parent_irq,
241 void *iommu, qemu_irq **dev_irq, qemu_irq **reset)
242 {
243 DMAState *s;
244 int dma_io_memory;
245
246 s = qemu_mallocz(sizeof(DMAState));
247 if (!s)
248 return NULL;
249
250 s->irq = parent_irq;
251 s->iommu = iommu;
252
253 dma_io_memory = cpu_register_io_memory(0, dma_mem_read, dma_mem_write, s);
254 cpu_register_physical_memory(daddr, DMA_SIZE, dma_io_memory);
255
256 register_savevm("sparc32_dma", daddr, 2, dma_save, dma_load, s);
257 qemu_register_reset(dma_reset, s);
258 *dev_irq = qemu_allocate_irqs(dma_set_irq, s, 1);
259
260 *reset = &s->dev_reset;
261
262 return s;
263 }