]> git.proxmox.com Git - qemu.git/blob - hw/sparc32_dma.c
Add endianness as io mem parameter
[qemu.git] / hw / sparc32_dma.c
1 /*
2 * QEMU Sparc32 DMA controller emulation
3 *
4 * Copyright (c) 2006 Fabrice Bellard
5 *
6 * Modifications:
7 * 2010-Feb-14 Artyom Tarasenko : reworked irq generation
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a copy
10 * of this software and associated documentation files (the "Software"), to deal
11 * in the Software without restriction, including without limitation the rights
12 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13 * copies of the Software, and to permit persons to whom the Software is
14 * furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included in
17 * all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 * THE SOFTWARE.
26 */
27
28 #include "hw.h"
29 #include "sparc32_dma.h"
30 #include "sun4m.h"
31 #include "sysbus.h"
32 #include "trace.h"
33
34 /*
35 * This is the DMA controller part of chip STP2000 (Master I/O), also
36 * produced as NCR89C100. See
37 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
38 * and
39 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/DMA2.txt
40 */
41
42 #define DMA_REGS 4
43 #define DMA_SIZE (4 * sizeof(uint32_t))
44 /* We need the mask, because one instance of the device is not page
45 aligned (ledma, start address 0x0010) */
46 #define DMA_MASK (DMA_SIZE - 1)
47
48 #define DMA_VER 0xa0000000
49 #define DMA_INTR 1
50 #define DMA_INTREN 0x10
51 #define DMA_WRITE_MEM 0x100
52 #define DMA_EN 0x200
53 #define DMA_LOADED 0x04000000
54 #define DMA_DRAIN_FIFO 0x40
55 #define DMA_RESET 0x80
56
57 /* XXX SCSI and ethernet should have different read-only bit masks */
58 #define DMA_CSR_RO_MASK 0xfe000007
59
60 typedef struct DMAState DMAState;
61
62 struct DMAState {
63 SysBusDevice busdev;
64 uint32_t dmaregs[DMA_REGS];
65 qemu_irq irq;
66 void *iommu;
67 qemu_irq gpio[2];
68 };
69
70 enum {
71 GPIO_RESET = 0,
72 GPIO_DMA,
73 };
74
75 /* Note: on sparc, the lance 16 bit bus is swapped */
76 void ledma_memory_read(void *opaque, target_phys_addr_t addr,
77 uint8_t *buf, int len, int do_bswap)
78 {
79 DMAState *s = opaque;
80 int i;
81
82 addr |= s->dmaregs[3];
83 trace_ledma_memory_read(addr);
84 if (do_bswap) {
85 sparc_iommu_memory_read(s->iommu, addr, buf, len);
86 } else {
87 addr &= ~1;
88 len &= ~1;
89 sparc_iommu_memory_read(s->iommu, addr, buf, len);
90 for(i = 0; i < len; i += 2) {
91 bswap16s((uint16_t *)(buf + i));
92 }
93 }
94 }
95
96 void ledma_memory_write(void *opaque, target_phys_addr_t addr,
97 uint8_t *buf, int len, int do_bswap)
98 {
99 DMAState *s = opaque;
100 int l, i;
101 uint16_t tmp_buf[32];
102
103 addr |= s->dmaregs[3];
104 trace_ledma_memory_write(addr);
105 if (do_bswap) {
106 sparc_iommu_memory_write(s->iommu, addr, buf, len);
107 } else {
108 addr &= ~1;
109 len &= ~1;
110 while (len > 0) {
111 l = len;
112 if (l > sizeof(tmp_buf))
113 l = sizeof(tmp_buf);
114 for(i = 0; i < l; i += 2) {
115 tmp_buf[i >> 1] = bswap16(*(uint16_t *)(buf + i));
116 }
117 sparc_iommu_memory_write(s->iommu, addr, (uint8_t *)tmp_buf, l);
118 len -= l;
119 buf += l;
120 addr += l;
121 }
122 }
123 }
124
125 static void dma_set_irq(void *opaque, int irq, int level)
126 {
127 DMAState *s = opaque;
128 if (level) {
129 s->dmaregs[0] |= DMA_INTR;
130 if (s->dmaregs[0] & DMA_INTREN) {
131 trace_sparc32_dma_set_irq_raise();
132 qemu_irq_raise(s->irq);
133 }
134 } else {
135 if (s->dmaregs[0] & DMA_INTR) {
136 s->dmaregs[0] &= ~DMA_INTR;
137 if (s->dmaregs[0] & DMA_INTREN) {
138 trace_sparc32_dma_set_irq_lower();
139 qemu_irq_lower(s->irq);
140 }
141 }
142 }
143 }
144
145 void espdma_memory_read(void *opaque, uint8_t *buf, int len)
146 {
147 DMAState *s = opaque;
148
149 trace_espdma_memory_read(s->dmaregs[1]);
150 sparc_iommu_memory_read(s->iommu, s->dmaregs[1], buf, len);
151 s->dmaregs[1] += len;
152 }
153
154 void espdma_memory_write(void *opaque, uint8_t *buf, int len)
155 {
156 DMAState *s = opaque;
157
158 trace_espdma_memory_write(s->dmaregs[1]);
159 sparc_iommu_memory_write(s->iommu, s->dmaregs[1], buf, len);
160 s->dmaregs[1] += len;
161 }
162
163 static uint32_t dma_mem_readl(void *opaque, target_phys_addr_t addr)
164 {
165 DMAState *s = opaque;
166 uint32_t saddr;
167
168 saddr = (addr & DMA_MASK) >> 2;
169 trace_sparc32_dma_mem_readl(addr, s->dmaregs[saddr]);
170 return s->dmaregs[saddr];
171 }
172
173 static void dma_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
174 {
175 DMAState *s = opaque;
176 uint32_t saddr;
177
178 saddr = (addr & DMA_MASK) >> 2;
179 trace_sparc32_dma_mem_writel(addr, s->dmaregs[saddr], val);
180 switch (saddr) {
181 case 0:
182 if (val & DMA_INTREN) {
183 if (s->dmaregs[0] & DMA_INTR) {
184 trace_sparc32_dma_set_irq_raise();
185 qemu_irq_raise(s->irq);
186 }
187 } else {
188 if (s->dmaregs[0] & (DMA_INTR | DMA_INTREN)) {
189 trace_sparc32_dma_set_irq_lower();
190 qemu_irq_lower(s->irq);
191 }
192 }
193 if (val & DMA_RESET) {
194 qemu_irq_raise(s->gpio[GPIO_RESET]);
195 qemu_irq_lower(s->gpio[GPIO_RESET]);
196 } else if (val & DMA_DRAIN_FIFO) {
197 val &= ~DMA_DRAIN_FIFO;
198 } else if (val == 0)
199 val = DMA_DRAIN_FIFO;
200
201 if (val & DMA_EN && !(s->dmaregs[0] & DMA_EN)) {
202 trace_sparc32_dma_enable_raise();
203 qemu_irq_raise(s->gpio[GPIO_DMA]);
204 } else if (!(val & DMA_EN) && !!(s->dmaregs[0] & DMA_EN)) {
205 trace_sparc32_dma_enable_lower();
206 qemu_irq_lower(s->gpio[GPIO_DMA]);
207 }
208
209 val &= ~DMA_CSR_RO_MASK;
210 val |= DMA_VER;
211 s->dmaregs[0] = (s->dmaregs[0] & DMA_CSR_RO_MASK) | val;
212 break;
213 case 1:
214 s->dmaregs[0] |= DMA_LOADED;
215 /* fall through */
216 default:
217 s->dmaregs[saddr] = val;
218 break;
219 }
220 }
221
222 static CPUReadMemoryFunc * const dma_mem_read[3] = {
223 NULL,
224 NULL,
225 dma_mem_readl,
226 };
227
228 static CPUWriteMemoryFunc * const dma_mem_write[3] = {
229 NULL,
230 NULL,
231 dma_mem_writel,
232 };
233
234 static void dma_reset(DeviceState *d)
235 {
236 DMAState *s = container_of(d, DMAState, busdev.qdev);
237
238 memset(s->dmaregs, 0, DMA_SIZE);
239 s->dmaregs[0] = DMA_VER;
240 }
241
242 static const VMStateDescription vmstate_dma = {
243 .name ="sparc32_dma",
244 .version_id = 2,
245 .minimum_version_id = 2,
246 .minimum_version_id_old = 2,
247 .fields = (VMStateField []) {
248 VMSTATE_UINT32_ARRAY(dmaregs, DMAState, DMA_REGS),
249 VMSTATE_END_OF_LIST()
250 }
251 };
252
253 static int sparc32_dma_init1(SysBusDevice *dev)
254 {
255 DMAState *s = FROM_SYSBUS(DMAState, dev);
256 int dma_io_memory;
257
258 sysbus_init_irq(dev, &s->irq);
259
260 dma_io_memory = cpu_register_io_memory(dma_mem_read, dma_mem_write, s,
261 DEVICE_NATIVE_ENDIAN);
262 sysbus_init_mmio(dev, DMA_SIZE, dma_io_memory);
263
264 qdev_init_gpio_in(&dev->qdev, dma_set_irq, 1);
265 qdev_init_gpio_out(&dev->qdev, s->gpio, 2);
266
267 return 0;
268 }
269
270 static SysBusDeviceInfo sparc32_dma_info = {
271 .init = sparc32_dma_init1,
272 .qdev.name = "sparc32_dma",
273 .qdev.size = sizeof(DMAState),
274 .qdev.vmsd = &vmstate_dma,
275 .qdev.reset = dma_reset,
276 .qdev.props = (Property[]) {
277 DEFINE_PROP_PTR("iommu_opaque", DMAState, iommu),
278 DEFINE_PROP_END_OF_LIST(),
279 }
280 };
281
282 static void sparc32_dma_register_devices(void)
283 {
284 sysbus_register_withprop(&sparc32_dma_info);
285 }
286
287 device_init(sparc32_dma_register_devices)