]> git.proxmox.com Git - qemu.git/blob - hw/ssi/xilinx_spips.c
xilinx_spips: Add verbose LQSPI debug output
[qemu.git] / hw / ssi / xilinx_spips.c
1 /*
2 * QEMU model of the Xilinx Zynq SPI controller
3 *
4 * Copyright (c) 2012 Peter A. G. Crosthwaite
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "hw/sysbus.h"
26 #include "sysemu/sysemu.h"
27 #include "hw/ptimer.h"
28 #include "qemu/log.h"
29 #include "qemu/fifo8.h"
30 #include "hw/ssi.h"
31 #include "qemu/bitops.h"
32
33 #ifdef XILINX_SPIPS_ERR_DEBUG
34 #define DB_PRINT(...) do { \
35 fprintf(stderr, ": %s: ", __func__); \
36 fprintf(stderr, ## __VA_ARGS__); \
37 } while (0);
38 #else
39 #define DB_PRINT(...)
40 #endif
41
42 /* config register */
43 #define R_CONFIG (0x00 / 4)
44 #define IFMODE (1 << 31)
45 #define ENDIAN (1 << 26)
46 #define MODEFAIL_GEN_EN (1 << 17)
47 #define MAN_START_COM (1 << 16)
48 #define MAN_START_EN (1 << 15)
49 #define MANUAL_CS (1 << 14)
50 #define CS (0xF << 10)
51 #define CS_SHIFT (10)
52 #define PERI_SEL (1 << 9)
53 #define REF_CLK (1 << 8)
54 #define FIFO_WIDTH (3 << 6)
55 #define BAUD_RATE_DIV (7 << 3)
56 #define CLK_PH (1 << 2)
57 #define CLK_POL (1 << 1)
58 #define MODE_SEL (1 << 0)
59
60 /* interrupt mechanism */
61 #define R_INTR_STATUS (0x04 / 4)
62 #define R_INTR_EN (0x08 / 4)
63 #define R_INTR_DIS (0x0C / 4)
64 #define R_INTR_MASK (0x10 / 4)
65 #define IXR_TX_FIFO_UNDERFLOW (1 << 6)
66 #define IXR_RX_FIFO_FULL (1 << 5)
67 #define IXR_RX_FIFO_NOT_EMPTY (1 << 4)
68 #define IXR_TX_FIFO_FULL (1 << 3)
69 #define IXR_TX_FIFO_NOT_FULL (1 << 2)
70 #define IXR_TX_FIFO_MODE_FAIL (1 << 1)
71 #define IXR_RX_FIFO_OVERFLOW (1 << 0)
72 #define IXR_ALL ((IXR_TX_FIFO_UNDERFLOW<<1)-1)
73
74 #define R_EN (0x14 / 4)
75 #define R_DELAY (0x18 / 4)
76 #define R_TX_DATA (0x1C / 4)
77 #define R_RX_DATA (0x20 / 4)
78 #define R_SLAVE_IDLE_COUNT (0x24 / 4)
79 #define R_TX_THRES (0x28 / 4)
80 #define R_RX_THRES (0x2C / 4)
81 #define R_TXD1 (0x80 / 4)
82 #define R_TXD2 (0x84 / 4)
83 #define R_TXD3 (0x88 / 4)
84
85 #define R_LQSPI_CFG (0xa0 / 4)
86 #define R_LQSPI_CFG_RESET 0x03A002EB
87 #define LQSPI_CFG_LQ_MODE (1 << 31)
88 #define LQSPI_CFG_TWO_MEM (1 << 30)
89 #define LQSPI_CFG_SEP_BUS (1 << 30)
90 #define LQSPI_CFG_U_PAGE (1 << 28)
91 #define LQSPI_CFG_MODE_EN (1 << 25)
92 #define LQSPI_CFG_MODE_WIDTH 8
93 #define LQSPI_CFG_MODE_SHIFT 16
94 #define LQSPI_CFG_DUMMY_WIDTH 3
95 #define LQSPI_CFG_DUMMY_SHIFT 8
96 #define LQSPI_CFG_INST_CODE 0xFF
97
98 #define R_LQSPI_STS (0xA4 / 4)
99 #define LQSPI_STS_WR_RECVD (1 << 1)
100
101 #define R_MOD_ID (0xFC / 4)
102
103 #define R_MAX (R_MOD_ID+1)
104
105 /* size of TXRX FIFOs */
106 #define RXFF_A 32
107 #define TXFF_A 32
108
109 /* 16MB per linear region */
110 #define LQSPI_ADDRESS_BITS 24
111 /* Bite off 4k chunks at a time */
112 #define LQSPI_CACHE_SIZE 1024
113
114 #define SNOOP_CHECKING 0xFF
115 #define SNOOP_NONE 0xFE
116 #define SNOOP_STRIPING 0
117
118 typedef enum {
119 READ = 0x3,
120 FAST_READ = 0xb,
121 DOR = 0x3b,
122 QOR = 0x6b,
123 DIOR = 0xbb,
124 QIOR = 0xeb,
125
126 PP = 0x2,
127 DPP = 0xa2,
128 QPP = 0x32,
129 } FlashCMD;
130
131 typedef struct {
132 SysBusDevice parent_obj;
133
134 MemoryRegion iomem;
135 MemoryRegion mmlqspi;
136
137 qemu_irq irq;
138 int irqline;
139
140 uint8_t num_cs;
141 uint8_t num_busses;
142
143 uint8_t snoop_state;
144 qemu_irq *cs_lines;
145 SSIBus **spi;
146
147 Fifo8 rx_fifo;
148 Fifo8 tx_fifo;
149
150 uint8_t num_txrx_bytes;
151
152 uint32_t regs[R_MAX];
153 } XilinxSPIPS;
154
155 typedef struct {
156 XilinxSPIPS parent_obj;
157
158 uint32_t lqspi_buf[LQSPI_CACHE_SIZE];
159 hwaddr lqspi_cached_addr;
160 } XilinxQSPIPS;
161
162
163 #define TYPE_XILINX_SPIPS "xlnx.ps7-spi"
164 #define TYPE_XILINX_QSPIPS "xlnx.ps7-qspi"
165
166 #define XILINX_SPIPS(obj) \
167 OBJECT_CHECK(XilinxSPIPS, (obj), TYPE_XILINX_SPIPS)
168 #define XILINX_QSPIPS(obj) \
169 OBJECT_CHECK(XilinxQSPIPS, (obj), TYPE_XILINX_QSPIPS)
170
171 static inline int num_effective_busses(XilinxSPIPS *s)
172 {
173 return (s->regs[R_LQSPI_CFG] & LQSPI_CFG_SEP_BUS &&
174 s->regs[R_LQSPI_CFG] & LQSPI_CFG_TWO_MEM) ? s->num_busses : 1;
175 }
176
177 static void xilinx_spips_update_cs_lines(XilinxSPIPS *s)
178 {
179 int i, j;
180 bool found = false;
181 int field = s->regs[R_CONFIG] >> CS_SHIFT;
182
183 for (i = 0; i < s->num_cs; i++) {
184 for (j = 0; j < num_effective_busses(s); j++) {
185 int upage = !!(s->regs[R_LQSPI_STS] & LQSPI_CFG_U_PAGE);
186 int cs_to_set = (j * s->num_cs + i + upage) %
187 (s->num_cs * s->num_busses);
188
189 if (~field & (1 << i) && !found) {
190 DB_PRINT("selecting slave %d\n", i);
191 qemu_set_irq(s->cs_lines[cs_to_set], 0);
192 } else {
193 qemu_set_irq(s->cs_lines[cs_to_set], 1);
194 }
195 }
196 if (~field & (1 << i)) {
197 found = true;
198 }
199 }
200 if (!found) {
201 s->snoop_state = SNOOP_CHECKING;
202 }
203 }
204
205 static void xilinx_spips_update_ixr(XilinxSPIPS *s)
206 {
207 if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_LQ_MODE) {
208 return;
209 }
210 /* These are set/cleared as they occur */
211 s->regs[R_INTR_STATUS] &= (IXR_TX_FIFO_UNDERFLOW | IXR_RX_FIFO_OVERFLOW |
212 IXR_TX_FIFO_MODE_FAIL);
213 /* these are pure functions of fifo state, set them here */
214 s->regs[R_INTR_STATUS] |=
215 (fifo8_is_full(&s->rx_fifo) ? IXR_RX_FIFO_FULL : 0) |
216 (s->rx_fifo.num >= s->regs[R_RX_THRES] ? IXR_RX_FIFO_NOT_EMPTY : 0) |
217 (fifo8_is_full(&s->tx_fifo) ? IXR_TX_FIFO_FULL : 0) |
218 (s->tx_fifo.num < s->regs[R_TX_THRES] ? IXR_TX_FIFO_NOT_FULL : 0);
219 /* drive external interrupt pin */
220 int new_irqline = !!(s->regs[R_INTR_MASK] & s->regs[R_INTR_STATUS] &
221 IXR_ALL);
222 if (new_irqline != s->irqline) {
223 s->irqline = new_irqline;
224 qemu_set_irq(s->irq, s->irqline);
225 }
226 }
227
228 static void xilinx_spips_reset(DeviceState *d)
229 {
230 XilinxSPIPS *s = XILINX_SPIPS(d);
231
232 int i;
233 for (i = 0; i < R_MAX; i++) {
234 s->regs[i] = 0;
235 }
236
237 fifo8_reset(&s->rx_fifo);
238 fifo8_reset(&s->rx_fifo);
239 /* non zero resets */
240 s->regs[R_CONFIG] |= MODEFAIL_GEN_EN;
241 s->regs[R_SLAVE_IDLE_COUNT] = 0xFF;
242 s->regs[R_TX_THRES] = 1;
243 s->regs[R_RX_THRES] = 1;
244 /* FIXME: move magic number definition somewhere sensible */
245 s->regs[R_MOD_ID] = 0x01090106;
246 s->regs[R_LQSPI_CFG] = R_LQSPI_CFG_RESET;
247 s->snoop_state = SNOOP_CHECKING;
248 xilinx_spips_update_ixr(s);
249 xilinx_spips_update_cs_lines(s);
250 }
251
252 static void xilinx_spips_flush_txfifo(XilinxSPIPS *s)
253 {
254 for (;;) {
255 int i;
256 uint8_t rx;
257 uint8_t tx = 0;
258
259 for (i = 0; i < num_effective_busses(s); ++i) {
260 if (!i || s->snoop_state == SNOOP_STRIPING) {
261 if (fifo8_is_empty(&s->tx_fifo)) {
262 if (!(s->regs[R_LQSPI_CFG] & LQSPI_CFG_LQ_MODE)) {
263 s->regs[R_INTR_STATUS] |= IXR_TX_FIFO_UNDERFLOW;
264 }
265 xilinx_spips_update_ixr(s);
266 return;
267 } else {
268 tx = fifo8_pop(&s->tx_fifo);
269 }
270 }
271 rx = ssi_transfer(s->spi[i], (uint32_t)tx);
272 DB_PRINT("tx = %02x rx = %02x\n", tx, rx);
273 if (!i || s->snoop_state == SNOOP_STRIPING) {
274 if (fifo8_is_full(&s->rx_fifo)) {
275 s->regs[R_INTR_STATUS] |= IXR_RX_FIFO_OVERFLOW;
276 DB_PRINT("rx FIFO overflow");
277 } else {
278 fifo8_push(&s->rx_fifo, (uint8_t)rx);
279 }
280 }
281 }
282
283 switch (s->snoop_state) {
284 case (SNOOP_CHECKING):
285 switch (tx) { /* new instruction code */
286 case READ: /* 3 address bytes, no dummy bytes/cycles */
287 case PP:
288 case DPP:
289 case QPP:
290 s->snoop_state = 3;
291 break;
292 case FAST_READ: /* 3 address bytes, 1 dummy byte */
293 case DOR:
294 case QOR:
295 case DIOR: /* FIXME: these vary between vendor - set to spansion */
296 s->snoop_state = 4;
297 break;
298 case QIOR: /* 3 address bytes, 2 dummy bytes */
299 s->snoop_state = 6;
300 break;
301 default:
302 s->snoop_state = SNOOP_NONE;
303 }
304 break;
305 case (SNOOP_STRIPING):
306 case (SNOOP_NONE):
307 break;
308 default:
309 s->snoop_state--;
310 }
311 }
312 }
313
314 static inline void rx_data_bytes(XilinxSPIPS *s, uint32_t *value, int max)
315 {
316 int i;
317
318 *value = 0;
319 for (i = 0; i < max && !fifo8_is_empty(&s->rx_fifo); ++i) {
320 uint32_t next = fifo8_pop(&s->rx_fifo) & 0xFF;
321 *value |= next << 8 * (s->regs[R_CONFIG] & ENDIAN ? 3-i : i);
322 }
323 }
324
325 static uint64_t xilinx_spips_read(void *opaque, hwaddr addr,
326 unsigned size)
327 {
328 XilinxSPIPS *s = opaque;
329 uint32_t mask = ~0;
330 uint32_t ret;
331
332 addr >>= 2;
333 switch (addr) {
334 case R_CONFIG:
335 mask = 0x0002FFFF;
336 break;
337 case R_INTR_STATUS:
338 ret = s->regs[addr] & IXR_ALL;
339 s->regs[addr] = 0;
340 DB_PRINT("addr=" TARGET_FMT_plx " = %x\n", addr * 4, ret);
341 return ret;
342 case R_INTR_MASK:
343 mask = IXR_ALL;
344 break;
345 case R_EN:
346 mask = 0x1;
347 break;
348 case R_SLAVE_IDLE_COUNT:
349 mask = 0xFF;
350 break;
351 case R_MOD_ID:
352 mask = 0x01FFFFFF;
353 break;
354 case R_INTR_EN:
355 case R_INTR_DIS:
356 case R_TX_DATA:
357 mask = 0;
358 break;
359 case R_RX_DATA:
360 rx_data_bytes(s, &ret, s->num_txrx_bytes);
361 DB_PRINT("addr=" TARGET_FMT_plx " = %x\n", addr * 4, ret);
362 xilinx_spips_update_ixr(s);
363 return ret;
364 }
365 DB_PRINT("addr=" TARGET_FMT_plx " = %x\n", addr * 4, s->regs[addr] & mask);
366 return s->regs[addr] & mask;
367
368 }
369
370 static inline void tx_data_bytes(XilinxSPIPS *s, uint32_t value, int num)
371 {
372 int i;
373 for (i = 0; i < num && !fifo8_is_full(&s->tx_fifo); ++i) {
374 if (s->regs[R_CONFIG] & ENDIAN) {
375 fifo8_push(&s->tx_fifo, (uint8_t)(value >> 24));
376 value <<= 8;
377 } else {
378 fifo8_push(&s->tx_fifo, (uint8_t)value);
379 value >>= 8;
380 }
381 }
382 }
383
384 static void xilinx_spips_write(void *opaque, hwaddr addr,
385 uint64_t value, unsigned size)
386 {
387 int mask = ~0;
388 int man_start_com = 0;
389 XilinxSPIPS *s = opaque;
390
391 DB_PRINT("addr=" TARGET_FMT_plx " = %x\n", addr, (unsigned)value);
392 addr >>= 2;
393 switch (addr) {
394 case R_CONFIG:
395 mask = 0x0002FFFF;
396 if (value & MAN_START_COM) {
397 man_start_com = 1;
398 }
399 break;
400 case R_INTR_STATUS:
401 mask = IXR_ALL;
402 s->regs[R_INTR_STATUS] &= ~(mask & value);
403 goto no_reg_update;
404 case R_INTR_DIS:
405 mask = IXR_ALL;
406 s->regs[R_INTR_MASK] &= ~(mask & value);
407 goto no_reg_update;
408 case R_INTR_EN:
409 mask = IXR_ALL;
410 s->regs[R_INTR_MASK] |= mask & value;
411 goto no_reg_update;
412 case R_EN:
413 mask = 0x1;
414 break;
415 case R_SLAVE_IDLE_COUNT:
416 mask = 0xFF;
417 break;
418 case R_RX_DATA:
419 case R_INTR_MASK:
420 case R_MOD_ID:
421 mask = 0;
422 break;
423 case R_TX_DATA:
424 tx_data_bytes(s, (uint32_t)value, s->num_txrx_bytes);
425 goto no_reg_update;
426 case R_TXD1:
427 tx_data_bytes(s, (uint32_t)value, 1);
428 goto no_reg_update;
429 case R_TXD2:
430 tx_data_bytes(s, (uint32_t)value, 2);
431 goto no_reg_update;
432 case R_TXD3:
433 tx_data_bytes(s, (uint32_t)value, 3);
434 goto no_reg_update;
435 }
436 s->regs[addr] = (s->regs[addr] & ~mask) | (value & mask);
437 no_reg_update:
438 if (man_start_com) {
439 xilinx_spips_flush_txfifo(s);
440 }
441 xilinx_spips_update_ixr(s);
442 xilinx_spips_update_cs_lines(s);
443 }
444
445 static const MemoryRegionOps spips_ops = {
446 .read = xilinx_spips_read,
447 .write = xilinx_spips_write,
448 .endianness = DEVICE_LITTLE_ENDIAN,
449 };
450
451 #define LQSPI_CACHE_SIZE 1024
452
453 static uint64_t
454 lqspi_read(void *opaque, hwaddr addr, unsigned int size)
455 {
456 int i;
457 XilinxQSPIPS *q = opaque;
458 XilinxSPIPS *s = opaque;
459 uint32_t ret;
460
461 if (addr >= q->lqspi_cached_addr &&
462 addr <= q->lqspi_cached_addr + LQSPI_CACHE_SIZE - 4) {
463 ret = q->lqspi_buf[(addr - q->lqspi_cached_addr) >> 2];
464 DB_PRINT("addr: %08x, data: %08x\n", (unsigned)addr, (unsigned)ret);
465 return ret;
466 } else {
467 int flash_addr = (addr / num_effective_busses(s));
468 int slave = flash_addr >> LQSPI_ADDRESS_BITS;
469 int cache_entry = 0;
470
471 DB_PRINT("config reg status: %08x\n", s->regs[R_LQSPI_CFG]);
472
473 fifo8_reset(&s->tx_fifo);
474 fifo8_reset(&s->rx_fifo);
475
476 s->regs[R_CONFIG] &= ~CS;
477 s->regs[R_CONFIG] |= (~(1 << slave) << CS_SHIFT) & CS;
478 xilinx_spips_update_cs_lines(s);
479
480 /* instruction */
481 DB_PRINT("pushing read instruction: %02x\n",
482 (uint8_t)(s->regs[R_LQSPI_CFG] & LQSPI_CFG_INST_CODE));
483 fifo8_push(&s->tx_fifo, s->regs[R_LQSPI_CFG] & LQSPI_CFG_INST_CODE);
484 /* read address */
485 DB_PRINT("pushing read address %06x\n", flash_addr);
486 fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 16));
487 fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 8));
488 fifo8_push(&s->tx_fifo, (uint8_t)flash_addr);
489 /* mode bits */
490 if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_MODE_EN) {
491 fifo8_push(&s->tx_fifo, extract32(s->regs[R_LQSPI_CFG],
492 LQSPI_CFG_MODE_SHIFT,
493 LQSPI_CFG_MODE_WIDTH));
494 }
495 /* dummy bytes */
496 for (i = 0; i < (extract32(s->regs[R_LQSPI_CFG], LQSPI_CFG_DUMMY_SHIFT,
497 LQSPI_CFG_DUMMY_WIDTH)); ++i) {
498 DB_PRINT("pushing dummy byte\n");
499 fifo8_push(&s->tx_fifo, 0);
500 }
501 xilinx_spips_flush_txfifo(s);
502 fifo8_reset(&s->rx_fifo);
503
504 DB_PRINT("starting QSPI data read\n");
505
506 for (i = 0; i < LQSPI_CACHE_SIZE / 4; ++i) {
507 tx_data_bytes(s, 0, 4);
508 xilinx_spips_flush_txfifo(s);
509 rx_data_bytes(s, &q->lqspi_buf[cache_entry], 4);
510 cache_entry++;
511 }
512
513 s->regs[R_CONFIG] |= CS;
514 xilinx_spips_update_cs_lines(s);
515
516 q->lqspi_cached_addr = addr;
517 return lqspi_read(opaque, addr, size);
518 }
519 }
520
521 static const MemoryRegionOps lqspi_ops = {
522 .read = lqspi_read,
523 .endianness = DEVICE_NATIVE_ENDIAN,
524 .valid = {
525 .min_access_size = 4,
526 .max_access_size = 4
527 }
528 };
529
530 static void xilinx_spips_realize(DeviceState *dev, Error **errp)
531 {
532 XilinxSPIPS *s = XILINX_SPIPS(dev);
533 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
534 int i;
535
536 DB_PRINT("realized spips\n");
537
538 s->spi = g_new(SSIBus *, s->num_busses);
539 for (i = 0; i < s->num_busses; ++i) {
540 char bus_name[16];
541 snprintf(bus_name, 16, "spi%d", i);
542 s->spi[i] = ssi_create_bus(dev, bus_name);
543 }
544
545 s->cs_lines = g_new0(qemu_irq, s->num_cs * s->num_busses);
546 ssi_auto_connect_slaves(DEVICE(s), s->cs_lines, s->spi[0]);
547 ssi_auto_connect_slaves(DEVICE(s), s->cs_lines, s->spi[1]);
548 sysbus_init_irq(sbd, &s->irq);
549 for (i = 0; i < s->num_cs * s->num_busses; ++i) {
550 sysbus_init_irq(sbd, &s->cs_lines[i]);
551 }
552
553 memory_region_init_io(&s->iomem, &spips_ops, s, "spi", R_MAX*4);
554 sysbus_init_mmio(sbd, &s->iomem);
555
556 s->irqline = -1;
557
558 fifo8_create(&s->rx_fifo, RXFF_A);
559 fifo8_create(&s->tx_fifo, TXFF_A);
560 }
561
562 static void xilinx_qspips_realize(DeviceState *dev, Error **errp)
563 {
564 XilinxSPIPS *s = XILINX_SPIPS(dev);
565 XilinxQSPIPS *q = XILINX_QSPIPS(dev);
566 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
567
568 DB_PRINT("realized qspips\n");
569
570 s->num_busses = 2;
571 s->num_cs = 2;
572 s->num_txrx_bytes = 4;
573
574 xilinx_spips_realize(dev, errp);
575 memory_region_init_io(&s->mmlqspi, &lqspi_ops, s, "lqspi",
576 (1 << LQSPI_ADDRESS_BITS) * 2);
577 sysbus_init_mmio(sbd, &s->mmlqspi);
578
579 q->lqspi_cached_addr = ~0ULL;
580 }
581
582 static int xilinx_spips_post_load(void *opaque, int version_id)
583 {
584 xilinx_spips_update_ixr((XilinxSPIPS *)opaque);
585 xilinx_spips_update_cs_lines((XilinxSPIPS *)opaque);
586 return 0;
587 }
588
589 static const VMStateDescription vmstate_xilinx_spips = {
590 .name = "xilinx_spips",
591 .version_id = 2,
592 .minimum_version_id = 2,
593 .minimum_version_id_old = 2,
594 .post_load = xilinx_spips_post_load,
595 .fields = (VMStateField[]) {
596 VMSTATE_FIFO8(tx_fifo, XilinxSPIPS),
597 VMSTATE_FIFO8(rx_fifo, XilinxSPIPS),
598 VMSTATE_UINT32_ARRAY(regs, XilinxSPIPS, R_MAX),
599 VMSTATE_UINT8(snoop_state, XilinxSPIPS),
600 VMSTATE_END_OF_LIST()
601 }
602 };
603
604 static Property xilinx_spips_properties[] = {
605 DEFINE_PROP_UINT8("num-busses", XilinxSPIPS, num_busses, 1),
606 DEFINE_PROP_UINT8("num-ss-bits", XilinxSPIPS, num_cs, 4),
607 DEFINE_PROP_UINT8("num-txrx-bytes", XilinxSPIPS, num_txrx_bytes, 1),
608 DEFINE_PROP_END_OF_LIST(),
609 };
610
611 static void xilinx_qspips_class_init(ObjectClass *klass, void * data)
612 {
613 DeviceClass *dc = DEVICE_CLASS(klass);
614
615 dc->realize = xilinx_qspips_realize;
616 }
617
618 static void xilinx_spips_class_init(ObjectClass *klass, void *data)
619 {
620 DeviceClass *dc = DEVICE_CLASS(klass);
621
622 dc->realize = xilinx_spips_realize;
623 dc->reset = xilinx_spips_reset;
624 dc->props = xilinx_spips_properties;
625 dc->vmsd = &vmstate_xilinx_spips;
626 }
627
628 static const TypeInfo xilinx_spips_info = {
629 .name = TYPE_XILINX_SPIPS,
630 .parent = TYPE_SYS_BUS_DEVICE,
631 .instance_size = sizeof(XilinxSPIPS),
632 .class_init = xilinx_spips_class_init,
633 };
634
635 static const TypeInfo xilinx_qspips_info = {
636 .name = TYPE_XILINX_QSPIPS,
637 .parent = TYPE_XILINX_SPIPS,
638 .instance_size = sizeof(XilinxQSPIPS),
639 .class_init = xilinx_qspips_class_init,
640 };
641
642 static void xilinx_spips_register_types(void)
643 {
644 type_register_static(&xilinx_spips_info);
645 type_register_static(&xilinx_qspips_info);
646 }
647
648 type_init(xilinx_spips_register_types)