]> git.proxmox.com Git - qemu.git/blob - hw/stellaris.c
Add common BusState
[qemu.git] / hw / stellaris.c
1 /*
2 * Luminary Micro Stellaris peripherals
3 *
4 * Copyright (c) 2006 CodeSourcery.
5 * Written by Paul Brook
6 *
7 * This code is licenced under the GPL.
8 */
9
10 #include "sysbus.h"
11 #include "ssi.h"
12 #include "arm-misc.h"
13 #include "primecell.h"
14 #include "devices.h"
15 #include "qemu-timer.h"
16 #include "i2c.h"
17 #include "net.h"
18 #include "sysemu.h"
19 #include "boards.h"
20
21 #define GPIO_A 0
22 #define GPIO_B 1
23 #define GPIO_C 2
24 #define GPIO_D 3
25 #define GPIO_E 4
26 #define GPIO_F 5
27 #define GPIO_G 6
28
29 #define BP_OLED_I2C 0x01
30 #define BP_OLED_SSI 0x02
31 #define BP_GAMEPAD 0x04
32
33 typedef const struct {
34 const char *name;
35 uint32_t did0;
36 uint32_t did1;
37 uint32_t dc0;
38 uint32_t dc1;
39 uint32_t dc2;
40 uint32_t dc3;
41 uint32_t dc4;
42 uint32_t peripherals;
43 } stellaris_board_info;
44
45 /* General purpose timer module. */
46
47 typedef struct gptm_state {
48 uint32_t config;
49 uint32_t mode[2];
50 uint32_t control;
51 uint32_t state;
52 uint32_t mask;
53 uint32_t load[2];
54 uint32_t match[2];
55 uint32_t prescale[2];
56 uint32_t match_prescale[2];
57 uint32_t rtc;
58 int64_t tick[2];
59 struct gptm_state *opaque[2];
60 QEMUTimer *timer[2];
61 /* The timers have an alternate output used to trigger the ADC. */
62 qemu_irq trigger;
63 qemu_irq irq;
64 } gptm_state;
65
66 static void gptm_update_irq(gptm_state *s)
67 {
68 int level;
69 level = (s->state & s->mask) != 0;
70 qemu_set_irq(s->irq, level);
71 }
72
73 static void gptm_stop(gptm_state *s, int n)
74 {
75 qemu_del_timer(s->timer[n]);
76 }
77
78 static void gptm_reload(gptm_state *s, int n, int reset)
79 {
80 int64_t tick;
81 if (reset)
82 tick = qemu_get_clock(vm_clock);
83 else
84 tick = s->tick[n];
85
86 if (s->config == 0) {
87 /* 32-bit CountDown. */
88 uint32_t count;
89 count = s->load[0] | (s->load[1] << 16);
90 tick += (int64_t)count * system_clock_scale;
91 } else if (s->config == 1) {
92 /* 32-bit RTC. 1Hz tick. */
93 tick += ticks_per_sec;
94 } else if (s->mode[n] == 0xa) {
95 /* PWM mode. Not implemented. */
96 } else {
97 hw_error("TODO: 16-bit timer mode 0x%x\n", s->mode[n]);
98 }
99 s->tick[n] = tick;
100 qemu_mod_timer(s->timer[n], tick);
101 }
102
103 static void gptm_tick(void *opaque)
104 {
105 gptm_state **p = (gptm_state **)opaque;
106 gptm_state *s;
107 int n;
108
109 s = *p;
110 n = p - s->opaque;
111 if (s->config == 0) {
112 s->state |= 1;
113 if ((s->control & 0x20)) {
114 /* Output trigger. */
115 qemu_irq_raise(s->trigger);
116 qemu_irq_lower(s->trigger);
117 }
118 if (s->mode[0] & 1) {
119 /* One-shot. */
120 s->control &= ~1;
121 } else {
122 /* Periodic. */
123 gptm_reload(s, 0, 0);
124 }
125 } else if (s->config == 1) {
126 /* RTC. */
127 uint32_t match;
128 s->rtc++;
129 match = s->match[0] | (s->match[1] << 16);
130 if (s->rtc > match)
131 s->rtc = 0;
132 if (s->rtc == 0) {
133 s->state |= 8;
134 }
135 gptm_reload(s, 0, 0);
136 } else if (s->mode[n] == 0xa) {
137 /* PWM mode. Not implemented. */
138 } else {
139 hw_error("TODO: 16-bit timer mode 0x%x\n", s->mode[n]);
140 }
141 gptm_update_irq(s);
142 }
143
144 static uint32_t gptm_read(void *opaque, target_phys_addr_t offset)
145 {
146 gptm_state *s = (gptm_state *)opaque;
147
148 switch (offset) {
149 case 0x00: /* CFG */
150 return s->config;
151 case 0x04: /* TAMR */
152 return s->mode[0];
153 case 0x08: /* TBMR */
154 return s->mode[1];
155 case 0x0c: /* CTL */
156 return s->control;
157 case 0x18: /* IMR */
158 return s->mask;
159 case 0x1c: /* RIS */
160 return s->state;
161 case 0x20: /* MIS */
162 return s->state & s->mask;
163 case 0x24: /* CR */
164 return 0;
165 case 0x28: /* TAILR */
166 return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0);
167 case 0x2c: /* TBILR */
168 return s->load[1];
169 case 0x30: /* TAMARCHR */
170 return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0);
171 case 0x34: /* TBMATCHR */
172 return s->match[1];
173 case 0x38: /* TAPR */
174 return s->prescale[0];
175 case 0x3c: /* TBPR */
176 return s->prescale[1];
177 case 0x40: /* TAPMR */
178 return s->match_prescale[0];
179 case 0x44: /* TBPMR */
180 return s->match_prescale[1];
181 case 0x48: /* TAR */
182 if (s->control == 1)
183 return s->rtc;
184 case 0x4c: /* TBR */
185 hw_error("TODO: Timer value read\n");
186 default:
187 hw_error("gptm_read: Bad offset 0x%x\n", (int)offset);
188 return 0;
189 }
190 }
191
192 static void gptm_write(void *opaque, target_phys_addr_t offset, uint32_t value)
193 {
194 gptm_state *s = (gptm_state *)opaque;
195 uint32_t oldval;
196
197 /* The timers should be disabled before changing the configuration.
198 We take advantage of this and defer everything until the timer
199 is enabled. */
200 switch (offset) {
201 case 0x00: /* CFG */
202 s->config = value;
203 break;
204 case 0x04: /* TAMR */
205 s->mode[0] = value;
206 break;
207 case 0x08: /* TBMR */
208 s->mode[1] = value;
209 break;
210 case 0x0c: /* CTL */
211 oldval = s->control;
212 s->control = value;
213 /* TODO: Implement pause. */
214 if ((oldval ^ value) & 1) {
215 if (value & 1) {
216 gptm_reload(s, 0, 1);
217 } else {
218 gptm_stop(s, 0);
219 }
220 }
221 if (((oldval ^ value) & 0x100) && s->config >= 4) {
222 if (value & 0x100) {
223 gptm_reload(s, 1, 1);
224 } else {
225 gptm_stop(s, 1);
226 }
227 }
228 break;
229 case 0x18: /* IMR */
230 s->mask = value & 0x77;
231 gptm_update_irq(s);
232 break;
233 case 0x24: /* CR */
234 s->state &= ~value;
235 break;
236 case 0x28: /* TAILR */
237 s->load[0] = value & 0xffff;
238 if (s->config < 4) {
239 s->load[1] = value >> 16;
240 }
241 break;
242 case 0x2c: /* TBILR */
243 s->load[1] = value & 0xffff;
244 break;
245 case 0x30: /* TAMARCHR */
246 s->match[0] = value & 0xffff;
247 if (s->config < 4) {
248 s->match[1] = value >> 16;
249 }
250 break;
251 case 0x34: /* TBMATCHR */
252 s->match[1] = value >> 16;
253 break;
254 case 0x38: /* TAPR */
255 s->prescale[0] = value;
256 break;
257 case 0x3c: /* TBPR */
258 s->prescale[1] = value;
259 break;
260 case 0x40: /* TAPMR */
261 s->match_prescale[0] = value;
262 break;
263 case 0x44: /* TBPMR */
264 s->match_prescale[0] = value;
265 break;
266 default:
267 hw_error("gptm_write: Bad offset 0x%x\n", (int)offset);
268 }
269 gptm_update_irq(s);
270 }
271
272 static CPUReadMemoryFunc *gptm_readfn[] = {
273 gptm_read,
274 gptm_read,
275 gptm_read
276 };
277
278 static CPUWriteMemoryFunc *gptm_writefn[] = {
279 gptm_write,
280 gptm_write,
281 gptm_write
282 };
283
284 static void gptm_save(QEMUFile *f, void *opaque)
285 {
286 gptm_state *s = (gptm_state *)opaque;
287
288 qemu_put_be32(f, s->config);
289 qemu_put_be32(f, s->mode[0]);
290 qemu_put_be32(f, s->mode[1]);
291 qemu_put_be32(f, s->control);
292 qemu_put_be32(f, s->state);
293 qemu_put_be32(f, s->mask);
294 qemu_put_be32(f, s->mode[0]);
295 qemu_put_be32(f, s->mode[0]);
296 qemu_put_be32(f, s->load[0]);
297 qemu_put_be32(f, s->load[1]);
298 qemu_put_be32(f, s->match[0]);
299 qemu_put_be32(f, s->match[1]);
300 qemu_put_be32(f, s->prescale[0]);
301 qemu_put_be32(f, s->prescale[1]);
302 qemu_put_be32(f, s->match_prescale[0]);
303 qemu_put_be32(f, s->match_prescale[1]);
304 qemu_put_be32(f, s->rtc);
305 qemu_put_be64(f, s->tick[0]);
306 qemu_put_be64(f, s->tick[1]);
307 qemu_put_timer(f, s->timer[0]);
308 qemu_put_timer(f, s->timer[1]);
309 }
310
311 static int gptm_load(QEMUFile *f, void *opaque, int version_id)
312 {
313 gptm_state *s = (gptm_state *)opaque;
314
315 if (version_id != 1)
316 return -EINVAL;
317
318 s->config = qemu_get_be32(f);
319 s->mode[0] = qemu_get_be32(f);
320 s->mode[1] = qemu_get_be32(f);
321 s->control = qemu_get_be32(f);
322 s->state = qemu_get_be32(f);
323 s->mask = qemu_get_be32(f);
324 s->mode[0] = qemu_get_be32(f);
325 s->mode[0] = qemu_get_be32(f);
326 s->load[0] = qemu_get_be32(f);
327 s->load[1] = qemu_get_be32(f);
328 s->match[0] = qemu_get_be32(f);
329 s->match[1] = qemu_get_be32(f);
330 s->prescale[0] = qemu_get_be32(f);
331 s->prescale[1] = qemu_get_be32(f);
332 s->match_prescale[0] = qemu_get_be32(f);
333 s->match_prescale[1] = qemu_get_be32(f);
334 s->rtc = qemu_get_be32(f);
335 s->tick[0] = qemu_get_be64(f);
336 s->tick[1] = qemu_get_be64(f);
337 qemu_get_timer(f, s->timer[0]);
338 qemu_get_timer(f, s->timer[1]);
339
340 return 0;
341 }
342
343 static void stellaris_gptm_init(uint32_t base, qemu_irq irq, qemu_irq trigger)
344 {
345 int iomemtype;
346 gptm_state *s;
347
348 s = (gptm_state *)qemu_mallocz(sizeof(gptm_state));
349 s->irq = irq;
350 s->trigger = trigger;
351 s->opaque[0] = s->opaque[1] = s;
352
353 iomemtype = cpu_register_io_memory(0, gptm_readfn,
354 gptm_writefn, s);
355 cpu_register_physical_memory(base, 0x00001000, iomemtype);
356 s->timer[0] = qemu_new_timer(vm_clock, gptm_tick, &s->opaque[0]);
357 s->timer[1] = qemu_new_timer(vm_clock, gptm_tick, &s->opaque[1]);
358 register_savevm("stellaris_gptm", -1, 1, gptm_save, gptm_load, s);
359 }
360
361
362 /* System controller. */
363
364 typedef struct {
365 uint32_t pborctl;
366 uint32_t ldopctl;
367 uint32_t int_status;
368 uint32_t int_mask;
369 uint32_t resc;
370 uint32_t rcc;
371 uint32_t rcgc[3];
372 uint32_t scgc[3];
373 uint32_t dcgc[3];
374 uint32_t clkvclr;
375 uint32_t ldoarst;
376 uint32_t user0;
377 uint32_t user1;
378 qemu_irq irq;
379 stellaris_board_info *board;
380 } ssys_state;
381
382 static void ssys_update(ssys_state *s)
383 {
384 qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
385 }
386
387 static uint32_t pllcfg_sandstorm[16] = {
388 0x31c0, /* 1 Mhz */
389 0x1ae0, /* 1.8432 Mhz */
390 0x18c0, /* 2 Mhz */
391 0xd573, /* 2.4576 Mhz */
392 0x37a6, /* 3.57954 Mhz */
393 0x1ae2, /* 3.6864 Mhz */
394 0x0c40, /* 4 Mhz */
395 0x98bc, /* 4.906 Mhz */
396 0x935b, /* 4.9152 Mhz */
397 0x09c0, /* 5 Mhz */
398 0x4dee, /* 5.12 Mhz */
399 0x0c41, /* 6 Mhz */
400 0x75db, /* 6.144 Mhz */
401 0x1ae6, /* 7.3728 Mhz */
402 0x0600, /* 8 Mhz */
403 0x585b /* 8.192 Mhz */
404 };
405
406 static uint32_t pllcfg_fury[16] = {
407 0x3200, /* 1 Mhz */
408 0x1b20, /* 1.8432 Mhz */
409 0x1900, /* 2 Mhz */
410 0xf42b, /* 2.4576 Mhz */
411 0x37e3, /* 3.57954 Mhz */
412 0x1b21, /* 3.6864 Mhz */
413 0x0c80, /* 4 Mhz */
414 0x98ee, /* 4.906 Mhz */
415 0xd5b4, /* 4.9152 Mhz */
416 0x0a00, /* 5 Mhz */
417 0x4e27, /* 5.12 Mhz */
418 0x1902, /* 6 Mhz */
419 0xec1c, /* 6.144 Mhz */
420 0x1b23, /* 7.3728 Mhz */
421 0x0640, /* 8 Mhz */
422 0xb11c /* 8.192 Mhz */
423 };
424
425 static uint32_t ssys_read(void *opaque, target_phys_addr_t offset)
426 {
427 ssys_state *s = (ssys_state *)opaque;
428
429 switch (offset) {
430 case 0x000: /* DID0 */
431 return s->board->did0;
432 case 0x004: /* DID1 */
433 return s->board->did1;
434 case 0x008: /* DC0 */
435 return s->board->dc0;
436 case 0x010: /* DC1 */
437 return s->board->dc1;
438 case 0x014: /* DC2 */
439 return s->board->dc2;
440 case 0x018: /* DC3 */
441 return s->board->dc3;
442 case 0x01c: /* DC4 */
443 return s->board->dc4;
444 case 0x030: /* PBORCTL */
445 return s->pborctl;
446 case 0x034: /* LDOPCTL */
447 return s->ldopctl;
448 case 0x040: /* SRCR0 */
449 return 0;
450 case 0x044: /* SRCR1 */
451 return 0;
452 case 0x048: /* SRCR2 */
453 return 0;
454 case 0x050: /* RIS */
455 return s->int_status;
456 case 0x054: /* IMC */
457 return s->int_mask;
458 case 0x058: /* MISC */
459 return s->int_status & s->int_mask;
460 case 0x05c: /* RESC */
461 return s->resc;
462 case 0x060: /* RCC */
463 return s->rcc;
464 case 0x064: /* PLLCFG */
465 {
466 int xtal;
467 xtal = (s->rcc >> 6) & 0xf;
468 if (s->board->did0 & (1 << 16)) {
469 return pllcfg_fury[xtal];
470 } else {
471 return pllcfg_sandstorm[xtal];
472 }
473 }
474 case 0x100: /* RCGC0 */
475 return s->rcgc[0];
476 case 0x104: /* RCGC1 */
477 return s->rcgc[1];
478 case 0x108: /* RCGC2 */
479 return s->rcgc[2];
480 case 0x110: /* SCGC0 */
481 return s->scgc[0];
482 case 0x114: /* SCGC1 */
483 return s->scgc[1];
484 case 0x118: /* SCGC2 */
485 return s->scgc[2];
486 case 0x120: /* DCGC0 */
487 return s->dcgc[0];
488 case 0x124: /* DCGC1 */
489 return s->dcgc[1];
490 case 0x128: /* DCGC2 */
491 return s->dcgc[2];
492 case 0x150: /* CLKVCLR */
493 return s->clkvclr;
494 case 0x160: /* LDOARST */
495 return s->ldoarst;
496 case 0x1e0: /* USER0 */
497 return s->user0;
498 case 0x1e4: /* USER1 */
499 return s->user1;
500 default:
501 hw_error("ssys_read: Bad offset 0x%x\n", (int)offset);
502 return 0;
503 }
504 }
505
506 static void ssys_calculate_system_clock(ssys_state *s)
507 {
508 system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1);
509 }
510
511 static void ssys_write(void *opaque, target_phys_addr_t offset, uint32_t value)
512 {
513 ssys_state *s = (ssys_state *)opaque;
514
515 switch (offset) {
516 case 0x030: /* PBORCTL */
517 s->pborctl = value & 0xffff;
518 break;
519 case 0x034: /* LDOPCTL */
520 s->ldopctl = value & 0x1f;
521 break;
522 case 0x040: /* SRCR0 */
523 case 0x044: /* SRCR1 */
524 case 0x048: /* SRCR2 */
525 fprintf(stderr, "Peripheral reset not implemented\n");
526 break;
527 case 0x054: /* IMC */
528 s->int_mask = value & 0x7f;
529 break;
530 case 0x058: /* MISC */
531 s->int_status &= ~value;
532 break;
533 case 0x05c: /* RESC */
534 s->resc = value & 0x3f;
535 break;
536 case 0x060: /* RCC */
537 if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
538 /* PLL enable. */
539 s->int_status |= (1 << 6);
540 }
541 s->rcc = value;
542 ssys_calculate_system_clock(s);
543 break;
544 case 0x100: /* RCGC0 */
545 s->rcgc[0] = value;
546 break;
547 case 0x104: /* RCGC1 */
548 s->rcgc[1] = value;
549 break;
550 case 0x108: /* RCGC2 */
551 s->rcgc[2] = value;
552 break;
553 case 0x110: /* SCGC0 */
554 s->scgc[0] = value;
555 break;
556 case 0x114: /* SCGC1 */
557 s->scgc[1] = value;
558 break;
559 case 0x118: /* SCGC2 */
560 s->scgc[2] = value;
561 break;
562 case 0x120: /* DCGC0 */
563 s->dcgc[0] = value;
564 break;
565 case 0x124: /* DCGC1 */
566 s->dcgc[1] = value;
567 break;
568 case 0x128: /* DCGC2 */
569 s->dcgc[2] = value;
570 break;
571 case 0x150: /* CLKVCLR */
572 s->clkvclr = value;
573 break;
574 case 0x160: /* LDOARST */
575 s->ldoarst = value;
576 break;
577 default:
578 hw_error("ssys_write: Bad offset 0x%x\n", (int)offset);
579 }
580 ssys_update(s);
581 }
582
583 static CPUReadMemoryFunc *ssys_readfn[] = {
584 ssys_read,
585 ssys_read,
586 ssys_read
587 };
588
589 static CPUWriteMemoryFunc *ssys_writefn[] = {
590 ssys_write,
591 ssys_write,
592 ssys_write
593 };
594
595 static void ssys_reset(void *opaque)
596 {
597 ssys_state *s = (ssys_state *)opaque;
598
599 s->pborctl = 0x7ffd;
600 s->rcc = 0x078e3ac0;
601 s->rcgc[0] = 1;
602 s->scgc[0] = 1;
603 s->dcgc[0] = 1;
604 }
605
606 static void ssys_save(QEMUFile *f, void *opaque)
607 {
608 ssys_state *s = (ssys_state *)opaque;
609
610 qemu_put_be32(f, s->pborctl);
611 qemu_put_be32(f, s->ldopctl);
612 qemu_put_be32(f, s->int_mask);
613 qemu_put_be32(f, s->int_status);
614 qemu_put_be32(f, s->resc);
615 qemu_put_be32(f, s->rcc);
616 qemu_put_be32(f, s->rcgc[0]);
617 qemu_put_be32(f, s->rcgc[1]);
618 qemu_put_be32(f, s->rcgc[2]);
619 qemu_put_be32(f, s->scgc[0]);
620 qemu_put_be32(f, s->scgc[1]);
621 qemu_put_be32(f, s->scgc[2]);
622 qemu_put_be32(f, s->dcgc[0]);
623 qemu_put_be32(f, s->dcgc[1]);
624 qemu_put_be32(f, s->dcgc[2]);
625 qemu_put_be32(f, s->clkvclr);
626 qemu_put_be32(f, s->ldoarst);
627 }
628
629 static int ssys_load(QEMUFile *f, void *opaque, int version_id)
630 {
631 ssys_state *s = (ssys_state *)opaque;
632
633 if (version_id != 1)
634 return -EINVAL;
635
636 s->pborctl = qemu_get_be32(f);
637 s->ldopctl = qemu_get_be32(f);
638 s->int_mask = qemu_get_be32(f);
639 s->int_status = qemu_get_be32(f);
640 s->resc = qemu_get_be32(f);
641 s->rcc = qemu_get_be32(f);
642 s->rcgc[0] = qemu_get_be32(f);
643 s->rcgc[1] = qemu_get_be32(f);
644 s->rcgc[2] = qemu_get_be32(f);
645 s->scgc[0] = qemu_get_be32(f);
646 s->scgc[1] = qemu_get_be32(f);
647 s->scgc[2] = qemu_get_be32(f);
648 s->dcgc[0] = qemu_get_be32(f);
649 s->dcgc[1] = qemu_get_be32(f);
650 s->dcgc[2] = qemu_get_be32(f);
651 s->clkvclr = qemu_get_be32(f);
652 s->ldoarst = qemu_get_be32(f);
653 ssys_calculate_system_clock(s);
654
655 return 0;
656 }
657
658 static void stellaris_sys_init(uint32_t base, qemu_irq irq,
659 stellaris_board_info * board,
660 uint8_t *macaddr)
661 {
662 int iomemtype;
663 ssys_state *s;
664
665 s = (ssys_state *)qemu_mallocz(sizeof(ssys_state));
666 s->irq = irq;
667 s->board = board;
668 /* Most devices come preprogrammed with a MAC address in the user data. */
669 s->user0 = macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16);
670 s->user1 = macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16);
671
672 iomemtype = cpu_register_io_memory(0, ssys_readfn,
673 ssys_writefn, s);
674 cpu_register_physical_memory(base, 0x00001000, iomemtype);
675 ssys_reset(s);
676 register_savevm("stellaris_sys", -1, 1, ssys_save, ssys_load, s);
677 }
678
679
680 /* I2C controller. */
681
682 typedef struct {
683 SysBusDevice busdev;
684 i2c_bus *bus;
685 qemu_irq irq;
686 uint32_t msa;
687 uint32_t mcs;
688 uint32_t mdr;
689 uint32_t mtpr;
690 uint32_t mimr;
691 uint32_t mris;
692 uint32_t mcr;
693 } stellaris_i2c_state;
694
695 #define STELLARIS_I2C_MCS_BUSY 0x01
696 #define STELLARIS_I2C_MCS_ERROR 0x02
697 #define STELLARIS_I2C_MCS_ADRACK 0x04
698 #define STELLARIS_I2C_MCS_DATACK 0x08
699 #define STELLARIS_I2C_MCS_ARBLST 0x10
700 #define STELLARIS_I2C_MCS_IDLE 0x20
701 #define STELLARIS_I2C_MCS_BUSBSY 0x40
702
703 static uint32_t stellaris_i2c_read(void *opaque, target_phys_addr_t offset)
704 {
705 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
706
707 switch (offset) {
708 case 0x00: /* MSA */
709 return s->msa;
710 case 0x04: /* MCS */
711 /* We don't emulate timing, so the controller is never busy. */
712 return s->mcs | STELLARIS_I2C_MCS_IDLE;
713 case 0x08: /* MDR */
714 return s->mdr;
715 case 0x0c: /* MTPR */
716 return s->mtpr;
717 case 0x10: /* MIMR */
718 return s->mimr;
719 case 0x14: /* MRIS */
720 return s->mris;
721 case 0x18: /* MMIS */
722 return s->mris & s->mimr;
723 case 0x20: /* MCR */
724 return s->mcr;
725 default:
726 hw_error("strllaris_i2c_read: Bad offset 0x%x\n", (int)offset);
727 return 0;
728 }
729 }
730
731 static void stellaris_i2c_update(stellaris_i2c_state *s)
732 {
733 int level;
734
735 level = (s->mris & s->mimr) != 0;
736 qemu_set_irq(s->irq, level);
737 }
738
739 static void stellaris_i2c_write(void *opaque, target_phys_addr_t offset,
740 uint32_t value)
741 {
742 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
743
744 switch (offset) {
745 case 0x00: /* MSA */
746 s->msa = value & 0xff;
747 break;
748 case 0x04: /* MCS */
749 if ((s->mcr & 0x10) == 0) {
750 /* Disabled. Do nothing. */
751 break;
752 }
753 /* Grab the bus if this is starting a transfer. */
754 if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
755 if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
756 s->mcs |= STELLARIS_I2C_MCS_ARBLST;
757 } else {
758 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
759 s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
760 }
761 }
762 /* If we don't have the bus then indicate an error. */
763 if (!i2c_bus_busy(s->bus)
764 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
765 s->mcs |= STELLARIS_I2C_MCS_ERROR;
766 break;
767 }
768 s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
769 if (value & 1) {
770 /* Transfer a byte. */
771 /* TODO: Handle errors. */
772 if (s->msa & 1) {
773 /* Recv */
774 s->mdr = i2c_recv(s->bus) & 0xff;
775 } else {
776 /* Send */
777 i2c_send(s->bus, s->mdr);
778 }
779 /* Raise an interrupt. */
780 s->mris |= 1;
781 }
782 if (value & 4) {
783 /* Finish transfer. */
784 i2c_end_transfer(s->bus);
785 s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
786 }
787 break;
788 case 0x08: /* MDR */
789 s->mdr = value & 0xff;
790 break;
791 case 0x0c: /* MTPR */
792 s->mtpr = value & 0xff;
793 break;
794 case 0x10: /* MIMR */
795 s->mimr = 1;
796 break;
797 case 0x1c: /* MICR */
798 s->mris &= ~value;
799 break;
800 case 0x20: /* MCR */
801 if (value & 1)
802 hw_error(
803 "stellaris_i2c_write: Loopback not implemented\n");
804 if (value & 0x20)
805 hw_error(
806 "stellaris_i2c_write: Slave mode not implemented\n");
807 s->mcr = value & 0x31;
808 break;
809 default:
810 hw_error("stellaris_i2c_write: Bad offset 0x%x\n",
811 (int)offset);
812 }
813 stellaris_i2c_update(s);
814 }
815
816 static void stellaris_i2c_reset(stellaris_i2c_state *s)
817 {
818 if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
819 i2c_end_transfer(s->bus);
820
821 s->msa = 0;
822 s->mcs = 0;
823 s->mdr = 0;
824 s->mtpr = 1;
825 s->mimr = 0;
826 s->mris = 0;
827 s->mcr = 0;
828 stellaris_i2c_update(s);
829 }
830
831 static CPUReadMemoryFunc *stellaris_i2c_readfn[] = {
832 stellaris_i2c_read,
833 stellaris_i2c_read,
834 stellaris_i2c_read
835 };
836
837 static CPUWriteMemoryFunc *stellaris_i2c_writefn[] = {
838 stellaris_i2c_write,
839 stellaris_i2c_write,
840 stellaris_i2c_write
841 };
842
843 static void stellaris_i2c_save(QEMUFile *f, void *opaque)
844 {
845 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
846
847 qemu_put_be32(f, s->msa);
848 qemu_put_be32(f, s->mcs);
849 qemu_put_be32(f, s->mdr);
850 qemu_put_be32(f, s->mtpr);
851 qemu_put_be32(f, s->mimr);
852 qemu_put_be32(f, s->mris);
853 qemu_put_be32(f, s->mcr);
854 }
855
856 static int stellaris_i2c_load(QEMUFile *f, void *opaque, int version_id)
857 {
858 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
859
860 if (version_id != 1)
861 return -EINVAL;
862
863 s->msa = qemu_get_be32(f);
864 s->mcs = qemu_get_be32(f);
865 s->mdr = qemu_get_be32(f);
866 s->mtpr = qemu_get_be32(f);
867 s->mimr = qemu_get_be32(f);
868 s->mris = qemu_get_be32(f);
869 s->mcr = qemu_get_be32(f);
870
871 return 0;
872 }
873
874 static void stellaris_i2c_init(SysBusDevice * dev)
875 {
876 stellaris_i2c_state *s = FROM_SYSBUS(stellaris_i2c_state, dev);
877 i2c_bus *bus;
878 int iomemtype;
879
880 sysbus_init_irq(dev, &s->irq);
881 bus = i2c_init_bus(&dev->qdev, "i2c");
882 s->bus = bus;
883
884 iomemtype = cpu_register_io_memory(0, stellaris_i2c_readfn,
885 stellaris_i2c_writefn, s);
886 sysbus_init_mmio(dev, 0x1000, iomemtype);
887 /* ??? For now we only implement the master interface. */
888 stellaris_i2c_reset(s);
889 register_savevm("stellaris_i2c", -1, 1,
890 stellaris_i2c_save, stellaris_i2c_load, s);
891 }
892
893 /* Analogue to Digital Converter. This is only partially implemented,
894 enough for applications that use a combined ADC and timer tick. */
895
896 #define STELLARIS_ADC_EM_CONTROLLER 0
897 #define STELLARIS_ADC_EM_COMP 1
898 #define STELLARIS_ADC_EM_EXTERNAL 4
899 #define STELLARIS_ADC_EM_TIMER 5
900 #define STELLARIS_ADC_EM_PWM0 6
901 #define STELLARIS_ADC_EM_PWM1 7
902 #define STELLARIS_ADC_EM_PWM2 8
903
904 #define STELLARIS_ADC_FIFO_EMPTY 0x0100
905 #define STELLARIS_ADC_FIFO_FULL 0x1000
906
907 typedef struct
908 {
909 uint32_t actss;
910 uint32_t ris;
911 uint32_t im;
912 uint32_t emux;
913 uint32_t ostat;
914 uint32_t ustat;
915 uint32_t sspri;
916 uint32_t sac;
917 struct {
918 uint32_t state;
919 uint32_t data[16];
920 } fifo[4];
921 uint32_t ssmux[4];
922 uint32_t ssctl[4];
923 uint32_t noise;
924 qemu_irq irq;
925 } stellaris_adc_state;
926
927 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
928 {
929 int tail;
930
931 tail = s->fifo[n].state & 0xf;
932 if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
933 s->ustat |= 1 << n;
934 } else {
935 s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
936 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
937 if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
938 s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
939 }
940 return s->fifo[n].data[tail];
941 }
942
943 static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
944 uint32_t value)
945 {
946 int head;
947
948 head = (s->fifo[n].state >> 4) & 0xf;
949 if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
950 s->ostat |= 1 << n;
951 return;
952 }
953 s->fifo[n].data[head] = value;
954 head = (head + 1) & 0xf;
955 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
956 s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
957 if ((s->fifo[n].state & 0xf) == head)
958 s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
959 }
960
961 static void stellaris_adc_update(stellaris_adc_state *s)
962 {
963 int level;
964
965 level = (s->ris & s->im) != 0;
966 qemu_set_irq(s->irq, level);
967 }
968
969 static void stellaris_adc_trigger(void *opaque, int irq, int level)
970 {
971 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
972
973 if ((s->actss & 1) == 0) {
974 return;
975 }
976
977 /* Some applications use the ADC as a random number source, so introduce
978 some variation into the signal. */
979 s->noise = s->noise * 314159 + 1;
980 /* ??? actual inputs not implemented. Return an arbitrary value. */
981 stellaris_adc_fifo_write(s, 0, 0x200 + ((s->noise >> 16) & 7));
982 s->ris |= 1;
983 stellaris_adc_update(s);
984 }
985
986 static void stellaris_adc_reset(stellaris_adc_state *s)
987 {
988 int n;
989
990 for (n = 0; n < 4; n++) {
991 s->ssmux[n] = 0;
992 s->ssctl[n] = 0;
993 s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
994 }
995 }
996
997 static uint32_t stellaris_adc_read(void *opaque, target_phys_addr_t offset)
998 {
999 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1000
1001 /* TODO: Implement this. */
1002 if (offset >= 0x40 && offset < 0xc0) {
1003 int n;
1004 n = (offset - 0x40) >> 5;
1005 switch (offset & 0x1f) {
1006 case 0x00: /* SSMUX */
1007 return s->ssmux[n];
1008 case 0x04: /* SSCTL */
1009 return s->ssctl[n];
1010 case 0x08: /* SSFIFO */
1011 return stellaris_adc_fifo_read(s, n);
1012 case 0x0c: /* SSFSTAT */
1013 return s->fifo[n].state;
1014 default:
1015 break;
1016 }
1017 }
1018 switch (offset) {
1019 case 0x00: /* ACTSS */
1020 return s->actss;
1021 case 0x04: /* RIS */
1022 return s->ris;
1023 case 0x08: /* IM */
1024 return s->im;
1025 case 0x0c: /* ISC */
1026 return s->ris & s->im;
1027 case 0x10: /* OSTAT */
1028 return s->ostat;
1029 case 0x14: /* EMUX */
1030 return s->emux;
1031 case 0x18: /* USTAT */
1032 return s->ustat;
1033 case 0x20: /* SSPRI */
1034 return s->sspri;
1035 case 0x30: /* SAC */
1036 return s->sac;
1037 default:
1038 hw_error("strllaris_adc_read: Bad offset 0x%x\n",
1039 (int)offset);
1040 return 0;
1041 }
1042 }
1043
1044 static void stellaris_adc_write(void *opaque, target_phys_addr_t offset,
1045 uint32_t value)
1046 {
1047 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1048
1049 /* TODO: Implement this. */
1050 if (offset >= 0x40 && offset < 0xc0) {
1051 int n;
1052 n = (offset - 0x40) >> 5;
1053 switch (offset & 0x1f) {
1054 case 0x00: /* SSMUX */
1055 s->ssmux[n] = value & 0x33333333;
1056 return;
1057 case 0x04: /* SSCTL */
1058 if (value != 6) {
1059 hw_error("ADC: Unimplemented sequence %x\n",
1060 value);
1061 }
1062 s->ssctl[n] = value;
1063 return;
1064 default:
1065 break;
1066 }
1067 }
1068 switch (offset) {
1069 case 0x00: /* ACTSS */
1070 s->actss = value & 0xf;
1071 if (value & 0xe) {
1072 hw_error("Not implemented: ADC sequencers 1-3\n");
1073 }
1074 break;
1075 case 0x08: /* IM */
1076 s->im = value;
1077 break;
1078 case 0x0c: /* ISC */
1079 s->ris &= ~value;
1080 break;
1081 case 0x10: /* OSTAT */
1082 s->ostat &= ~value;
1083 break;
1084 case 0x14: /* EMUX */
1085 s->emux = value;
1086 break;
1087 case 0x18: /* USTAT */
1088 s->ustat &= ~value;
1089 break;
1090 case 0x20: /* SSPRI */
1091 s->sspri = value;
1092 break;
1093 case 0x28: /* PSSI */
1094 hw_error("Not implemented: ADC sample initiate\n");
1095 break;
1096 case 0x30: /* SAC */
1097 s->sac = value;
1098 break;
1099 default:
1100 hw_error("stellaris_adc_write: Bad offset 0x%x\n", (int)offset);
1101 }
1102 stellaris_adc_update(s);
1103 }
1104
1105 static CPUReadMemoryFunc *stellaris_adc_readfn[] = {
1106 stellaris_adc_read,
1107 stellaris_adc_read,
1108 stellaris_adc_read
1109 };
1110
1111 static CPUWriteMemoryFunc *stellaris_adc_writefn[] = {
1112 stellaris_adc_write,
1113 stellaris_adc_write,
1114 stellaris_adc_write
1115 };
1116
1117 static void stellaris_adc_save(QEMUFile *f, void *opaque)
1118 {
1119 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1120 int i;
1121 int j;
1122
1123 qemu_put_be32(f, s->actss);
1124 qemu_put_be32(f, s->ris);
1125 qemu_put_be32(f, s->im);
1126 qemu_put_be32(f, s->emux);
1127 qemu_put_be32(f, s->ostat);
1128 qemu_put_be32(f, s->ustat);
1129 qemu_put_be32(f, s->sspri);
1130 qemu_put_be32(f, s->sac);
1131 for (i = 0; i < 4; i++) {
1132 qemu_put_be32(f, s->fifo[i].state);
1133 for (j = 0; j < 16; j++) {
1134 qemu_put_be32(f, s->fifo[i].data[j]);
1135 }
1136 qemu_put_be32(f, s->ssmux[i]);
1137 qemu_put_be32(f, s->ssctl[i]);
1138 }
1139 qemu_put_be32(f, s->noise);
1140 }
1141
1142 static int stellaris_adc_load(QEMUFile *f, void *opaque, int version_id)
1143 {
1144 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1145 int i;
1146 int j;
1147
1148 if (version_id != 1)
1149 return -EINVAL;
1150
1151 s->actss = qemu_get_be32(f);
1152 s->ris = qemu_get_be32(f);
1153 s->im = qemu_get_be32(f);
1154 s->emux = qemu_get_be32(f);
1155 s->ostat = qemu_get_be32(f);
1156 s->ustat = qemu_get_be32(f);
1157 s->sspri = qemu_get_be32(f);
1158 s->sac = qemu_get_be32(f);
1159 for (i = 0; i < 4; i++) {
1160 s->fifo[i].state = qemu_get_be32(f);
1161 for (j = 0; j < 16; j++) {
1162 s->fifo[i].data[j] = qemu_get_be32(f);
1163 }
1164 s->ssmux[i] = qemu_get_be32(f);
1165 s->ssctl[i] = qemu_get_be32(f);
1166 }
1167 s->noise = qemu_get_be32(f);
1168
1169 return 0;
1170 }
1171
1172 static qemu_irq stellaris_adc_init(uint32_t base, qemu_irq irq)
1173 {
1174 stellaris_adc_state *s;
1175 int iomemtype;
1176 qemu_irq *qi;
1177
1178 s = (stellaris_adc_state *)qemu_mallocz(sizeof(stellaris_adc_state));
1179 s->irq = irq;
1180
1181 iomemtype = cpu_register_io_memory(0, stellaris_adc_readfn,
1182 stellaris_adc_writefn, s);
1183 cpu_register_physical_memory(base, 0x00001000, iomemtype);
1184 stellaris_adc_reset(s);
1185 qi = qemu_allocate_irqs(stellaris_adc_trigger, s, 1);
1186 register_savevm("stellaris_adc", -1, 1,
1187 stellaris_adc_save, stellaris_adc_load, s);
1188 return qi[0];
1189 }
1190
1191 /* Some boards have both an OLED controller and SD card connected to
1192 the same SSI port, with the SD card chip select connected to a
1193 GPIO pin. Technically the OLED chip select is connected to the SSI
1194 Fss pin. We do not bother emulating that as both devices should
1195 never be selected simultaneously, and our OLED controller ignores stray
1196 0xff commands that occur when deselecting the SD card. */
1197
1198 typedef struct {
1199 SSISlave ssidev;
1200 qemu_irq irq;
1201 int current_dev;
1202 SSIBus *bus[2];
1203 } stellaris_ssi_bus_state;
1204
1205 static void stellaris_ssi_bus_select(void *opaque, int irq, int level)
1206 {
1207 stellaris_ssi_bus_state *s = (stellaris_ssi_bus_state *)opaque;
1208
1209 s->current_dev = level;
1210 }
1211
1212 static uint32_t stellaris_ssi_bus_transfer(SSISlave *dev, uint32_t val)
1213 {
1214 stellaris_ssi_bus_state *s = FROM_SSI_SLAVE(stellaris_ssi_bus_state, dev);
1215
1216 return ssi_transfer(s->bus[s->current_dev], val);
1217 }
1218
1219 static void stellaris_ssi_bus_save(QEMUFile *f, void *opaque)
1220 {
1221 stellaris_ssi_bus_state *s = (stellaris_ssi_bus_state *)opaque;
1222
1223 qemu_put_be32(f, s->current_dev);
1224 }
1225
1226 static int stellaris_ssi_bus_load(QEMUFile *f, void *opaque, int version_id)
1227 {
1228 stellaris_ssi_bus_state *s = (stellaris_ssi_bus_state *)opaque;
1229
1230 if (version_id != 1)
1231 return -EINVAL;
1232
1233 s->current_dev = qemu_get_be32(f);
1234
1235 return 0;
1236 }
1237
1238 static void stellaris_ssi_bus_init(SSISlave *dev)
1239 {
1240 stellaris_ssi_bus_state *s = FROM_SSI_SLAVE(stellaris_ssi_bus_state, dev);
1241
1242 s->bus[0] = ssi_create_bus(&dev->qdev, "ssi0");
1243 s->bus[1] = ssi_create_bus(&dev->qdev, "ssi1");
1244 qdev_init_gpio_in(&dev->qdev, stellaris_ssi_bus_select, 1);
1245
1246 register_savevm("stellaris_ssi_bus", -1, 1,
1247 stellaris_ssi_bus_save, stellaris_ssi_bus_load, s);
1248 }
1249
1250 /* Board init. */
1251 static stellaris_board_info stellaris_boards[] = {
1252 { "LM3S811EVB",
1253 0,
1254 0x0032000e,
1255 0x001f001f, /* dc0 */
1256 0x001132bf,
1257 0x01071013,
1258 0x3f0f01ff,
1259 0x0000001f,
1260 BP_OLED_I2C
1261 },
1262 { "LM3S6965EVB",
1263 0x10010002,
1264 0x1073402e,
1265 0x00ff007f, /* dc0 */
1266 0x001133ff,
1267 0x030f5317,
1268 0x0f0f87ff,
1269 0x5000007f,
1270 BP_OLED_SSI | BP_GAMEPAD
1271 }
1272 };
1273
1274 static void stellaris_init(const char *kernel_filename, const char *cpu_model,
1275 stellaris_board_info *board)
1276 {
1277 static const int uart_irq[] = {5, 6, 33, 34};
1278 static const int timer_irq[] = {19, 21, 23, 35};
1279 static const uint32_t gpio_addr[7] =
1280 { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
1281 0x40024000, 0x40025000, 0x40026000};
1282 static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
1283
1284 qemu_irq *pic;
1285 qemu_irq *gpio_in[7];
1286 qemu_irq *gpio_out[7];
1287 qemu_irq adc;
1288 int sram_size;
1289 int flash_size;
1290 i2c_bus *i2c;
1291 int i;
1292
1293 flash_size = ((board->dc0 & 0xffff) + 1) << 1;
1294 sram_size = (board->dc0 >> 18) + 1;
1295 pic = armv7m_init(flash_size, sram_size, kernel_filename, cpu_model);
1296
1297 if (board->dc1 & (1 << 16)) {
1298 adc = stellaris_adc_init(0x40038000, pic[14]);
1299 } else {
1300 adc = NULL;
1301 }
1302 for (i = 0; i < 4; i++) {
1303 if (board->dc2 & (0x10000 << i)) {
1304 stellaris_gptm_init(0x40030000 + i * 0x1000,
1305 pic[timer_irq[i]], adc);
1306 }
1307 }
1308
1309 stellaris_sys_init(0x400fe000, pic[28], board, nd_table[0].macaddr);
1310
1311 for (i = 0; i < 7; i++) {
1312 if (board->dc4 & (1 << i)) {
1313 gpio_in[i] = pl061_init(gpio_addr[i], pic[gpio_irq[i]],
1314 &gpio_out[i]);
1315 }
1316 }
1317
1318 if (board->dc2 & (1 << 12)) {
1319 DeviceState *dev;
1320 dev = sysbus_create_simple("stellaris-i2c", 0x40020000, pic[8]);
1321 i2c = (i2c_bus *)qdev_get_child_bus(dev, "i2c");
1322 if (board->peripherals & BP_OLED_I2C) {
1323 i2c_create_slave(i2c, "ssd0303", 0x3d);
1324 }
1325 }
1326
1327 for (i = 0; i < 4; i++) {
1328 if (board->dc2 & (1 << i)) {
1329 sysbus_create_simple("pl011_luminary", 0x4000c000 + i * 0x1000,
1330 pic[uart_irq[i]]);
1331 }
1332 }
1333 if (board->dc2 & (1 << 4)) {
1334 DeviceState *dev;
1335 dev = sysbus_create_simple("pl022", 0x40008000, pic[7]);
1336 if (board->peripherals & BP_OLED_SSI) {
1337 DeviceState *mux;
1338 void *bus;
1339
1340 bus = qdev_get_child_bus(dev, "ssi");
1341 mux = ssi_create_slave(bus, "evb6965-ssi");
1342 gpio_out[GPIO_D][0] = qdev_get_gpio_in(mux, 0);
1343
1344 bus = qdev_get_child_bus(mux, "ssi0");
1345 dev = ssi_create_slave(bus, "ssi-sd");
1346
1347 bus = qdev_get_child_bus(mux, "ssi1");
1348 dev = ssi_create_slave(bus, "ssd0323");
1349 gpio_out[GPIO_C][7] = qdev_get_gpio_in(dev, 0);
1350
1351 /* Make sure the select pin is high. */
1352 qemu_irq_raise(gpio_out[GPIO_D][0]);
1353 }
1354 }
1355 if (board->dc4 & (1 << 28)) {
1356 DeviceState *enet;
1357
1358 qemu_check_nic_model(&nd_table[0], "stellaris");
1359
1360 enet = qdev_create(NULL, "stellaris_enet");
1361 qdev_set_netdev(enet, &nd_table[0]);
1362 qdev_init(enet);
1363 sysbus_mmio_map(sysbus_from_qdev(enet), 0, 0x40048000);
1364 sysbus_connect_irq(sysbus_from_qdev(enet), 0, pic[42]);
1365 }
1366 if (board->peripherals & BP_GAMEPAD) {
1367 qemu_irq gpad_irq[5];
1368 static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1369
1370 gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
1371 gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
1372 gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
1373 gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
1374 gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
1375
1376 stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
1377 }
1378 }
1379
1380 /* FIXME: Figure out how to generate these from stellaris_boards. */
1381 static void lm3s811evb_init(ram_addr_t ram_size,
1382 const char *boot_device,
1383 const char *kernel_filename, const char *kernel_cmdline,
1384 const char *initrd_filename, const char *cpu_model)
1385 {
1386 stellaris_init(kernel_filename, cpu_model, &stellaris_boards[0]);
1387 }
1388
1389 static void lm3s6965evb_init(ram_addr_t ram_size,
1390 const char *boot_device,
1391 const char *kernel_filename, const char *kernel_cmdline,
1392 const char *initrd_filename, const char *cpu_model)
1393 {
1394 stellaris_init(kernel_filename, cpu_model, &stellaris_boards[1]);
1395 }
1396
1397 static QEMUMachine lm3s811evb_machine = {
1398 .name = "lm3s811evb",
1399 .desc = "Stellaris LM3S811EVB",
1400 .init = lm3s811evb_init,
1401 };
1402
1403 static QEMUMachine lm3s6965evb_machine = {
1404 .name = "lm3s6965evb",
1405 .desc = "Stellaris LM3S6965EVB",
1406 .init = lm3s6965evb_init,
1407 };
1408
1409 static void stellaris_machine_init(void)
1410 {
1411 qemu_register_machine(&lm3s811evb_machine);
1412 qemu_register_machine(&lm3s6965evb_machine);
1413 }
1414
1415 machine_init(stellaris_machine_init);
1416
1417 static SSISlaveInfo stellaris_ssi_bus_info = {
1418 .init = stellaris_ssi_bus_init,
1419 .transfer = stellaris_ssi_bus_transfer
1420 };
1421
1422 static void stellaris_register_devices(void)
1423 {
1424 sysbus_register_dev("stellaris-i2c", sizeof(stellaris_i2c_state),
1425 stellaris_i2c_init);
1426 ssi_register_slave("evb6965-ssi", sizeof(stellaris_ssi_bus_state),
1427 &stellaris_ssi_bus_info);
1428 }
1429
1430 device_init(stellaris_register_devices)