]> git.proxmox.com Git - qemu.git/blob - hw/sun4m.c
sparc64 marge (Blue Swirl)
[qemu.git] / hw / sun4m.c
1 /*
2 * QEMU Sun4m System Emulator
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "vl.h"
25 #include "m48t08.h"
26
27 #define KERNEL_LOAD_ADDR 0x00004000
28 #define CMDLINE_ADDR 0x007ff000
29 #define INITRD_LOAD_ADDR 0x00800000
30 #define PROM_ADDR 0xffd00000
31 #define PROM_FILENAMEB "proll.bin"
32 #define PROM_FILENAMEE "proll.elf"
33 #define PHYS_JJ_EEPROM 0x71200000 /* m48t08 */
34 #define PHYS_JJ_IDPROM_OFF 0x1FD8
35 #define PHYS_JJ_EEPROM_SIZE 0x2000
36 // IRQs are not PIL ones, but master interrupt controller register
37 // bits
38 #define PHYS_JJ_IOMMU 0x10000000 /* I/O MMU */
39 #define PHYS_JJ_TCX_FB 0x50000000 /* TCX frame buffer */
40 #define PHYS_JJ_SLAVIO 0x70000000 /* Slavio base */
41 #define PHYS_JJ_ESPDMA 0x78400000 /* ESP DMA controller */
42 #define PHYS_JJ_ESP 0x78800000 /* ESP SCSI */
43 #define PHYS_JJ_ESP_IRQ 18
44 #define PHYS_JJ_LEDMA 0x78400010 /* Lance DMA controller */
45 #define PHYS_JJ_LE 0x78C00000 /* Lance ethernet */
46 #define PHYS_JJ_LE_IRQ 16
47 #define PHYS_JJ_CLOCK 0x71D00000 /* Per-CPU timer/counter, L14 */
48 #define PHYS_JJ_CLOCK_IRQ 7
49 #define PHYS_JJ_CLOCK1 0x71D10000 /* System timer/counter, L10 */
50 #define PHYS_JJ_CLOCK1_IRQ 19
51 #define PHYS_JJ_INTR0 0x71E00000 /* Per-CPU interrupt control registers */
52 #define PHYS_JJ_INTR_G 0x71E10000 /* Master interrupt control registers */
53 #define PHYS_JJ_MS_KBD 0x71000000 /* Mouse and keyboard */
54 #define PHYS_JJ_MS_KBD_IRQ 14
55 #define PHYS_JJ_SER 0x71100000 /* Serial */
56 #define PHYS_JJ_SER_IRQ 15
57 #define PHYS_JJ_FDC 0x71400000 /* Floppy */
58 #define PHYS_JJ_FLOPPY_IRQ 22
59 #define PHYS_JJ_ME_IRQ 30 /* Module error, power fail */
60
61 /* TSC handling */
62
63 uint64_t cpu_get_tsc()
64 {
65 return qemu_get_clock(vm_clock);
66 }
67
68 int DMA_get_channel_mode (int nchan)
69 {
70 return 0;
71 }
72 int DMA_read_memory (int nchan, void *buf, int pos, int size)
73 {
74 return 0;
75 }
76 int DMA_write_memory (int nchan, void *buf, int pos, int size)
77 {
78 return 0;
79 }
80 void DMA_hold_DREQ (int nchan) {}
81 void DMA_release_DREQ (int nchan) {}
82 void DMA_schedule(int nchan) {}
83 void DMA_run (void) {}
84 void DMA_init (int high_page_enable) {}
85 void DMA_register_channel (int nchan,
86 DMA_transfer_handler transfer_handler,
87 void *opaque)
88 {
89 }
90
91 static void nvram_set_word (m48t08_t *nvram, uint32_t addr, uint16_t value)
92 {
93 m48t08_write(nvram, addr++, (value >> 8) & 0xff);
94 m48t08_write(nvram, addr++, value & 0xff);
95 }
96
97 static void nvram_set_lword (m48t08_t *nvram, uint32_t addr, uint32_t value)
98 {
99 m48t08_write(nvram, addr++, value >> 24);
100 m48t08_write(nvram, addr++, (value >> 16) & 0xff);
101 m48t08_write(nvram, addr++, (value >> 8) & 0xff);
102 m48t08_write(nvram, addr++, value & 0xff);
103 }
104
105 static void nvram_set_string (m48t08_t *nvram, uint32_t addr,
106 const unsigned char *str, uint32_t max)
107 {
108 unsigned int i;
109
110 for (i = 0; i < max && str[i] != '\0'; i++) {
111 m48t08_write(nvram, addr + i, str[i]);
112 }
113 m48t08_write(nvram, addr + max - 1, '\0');
114 }
115
116 static m48t08_t *nvram;
117
118 extern int nographic;
119
120 static void nvram_init(m48t08_t *nvram, uint8_t *macaddr, const char *cmdline,
121 int boot_device, uint32_t RAM_size,
122 uint32_t kernel_size,
123 int width, int height, int depth)
124 {
125 unsigned char tmp = 0;
126 int i, j;
127
128 // Try to match PPC NVRAM
129 nvram_set_string(nvram, 0x00, "QEMU_BIOS", 16);
130 nvram_set_lword(nvram, 0x10, 0x00000001); /* structure v1 */
131 // NVRAM_size, arch not applicable
132 m48t08_write(nvram, 0x2F, nographic & 0xff);
133 nvram_set_lword(nvram, 0x30, RAM_size);
134 m48t08_write(nvram, 0x34, boot_device & 0xff);
135 nvram_set_lword(nvram, 0x38, KERNEL_LOAD_ADDR);
136 nvram_set_lword(nvram, 0x3C, kernel_size);
137 if (cmdline) {
138 strcpy(phys_ram_base + CMDLINE_ADDR, cmdline);
139 nvram_set_lword(nvram, 0x40, CMDLINE_ADDR);
140 nvram_set_lword(nvram, 0x44, strlen(cmdline));
141 }
142 // initrd_image, initrd_size passed differently
143 nvram_set_word(nvram, 0x54, width);
144 nvram_set_word(nvram, 0x56, height);
145 nvram_set_word(nvram, 0x58, depth);
146
147 // Sun4m specific use
148 i = 0x1fd8;
149 m48t08_write(nvram, i++, 0x01);
150 m48t08_write(nvram, i++, 0x80); /* Sun4m OBP */
151 j = 0;
152 m48t08_write(nvram, i++, macaddr[j++]);
153 m48t08_write(nvram, i++, macaddr[j++]);
154 m48t08_write(nvram, i++, macaddr[j++]);
155 m48t08_write(nvram, i++, macaddr[j++]);
156 m48t08_write(nvram, i++, macaddr[j++]);
157 m48t08_write(nvram, i, macaddr[j]);
158
159 /* Calculate checksum */
160 for (i = 0x1fd8; i < 0x1fe7; i++) {
161 tmp ^= m48t08_read(nvram, i);
162 }
163 m48t08_write(nvram, 0x1fe7, tmp);
164 }
165
166 static void *slavio_intctl;
167
168 void pic_info()
169 {
170 slavio_pic_info(slavio_intctl);
171 }
172
173 void irq_info()
174 {
175 slavio_irq_info(slavio_intctl);
176 }
177
178 void pic_set_irq(int irq, int level)
179 {
180 slavio_pic_set_irq(slavio_intctl, irq, level);
181 }
182
183 static void *tcx;
184
185 void vga_update_display()
186 {
187 tcx_update_display(tcx);
188 }
189
190 void vga_invalidate_display()
191 {
192 tcx_invalidate_display(tcx);
193 }
194
195 void vga_screen_dump(const char *filename)
196 {
197 tcx_screen_dump(tcx, filename);
198 }
199
200 static void *iommu;
201
202 uint32_t iommu_translate(uint32_t addr)
203 {
204 return iommu_translate_local(iommu, addr);
205 }
206
207 static void *slavio_misc;
208
209 void qemu_system_powerdown(void)
210 {
211 slavio_set_power_fail(slavio_misc, 1);
212 }
213
214 /* Sun4m hardware initialisation */
215 static void sun4m_init(int ram_size, int vga_ram_size, int boot_device,
216 DisplayState *ds, const char **fd_filename, int snapshot,
217 const char *kernel_filename, const char *kernel_cmdline,
218 const char *initrd_filename)
219 {
220 char buf[1024];
221 int ret, linux_boot;
222 unsigned int i;
223 long vram_size = 0x100000, prom_offset, initrd_size, kernel_size;
224
225 linux_boot = (kernel_filename != NULL);
226
227 /* allocate RAM */
228 cpu_register_physical_memory(0, ram_size, 0);
229
230 iommu = iommu_init(PHYS_JJ_IOMMU);
231 slavio_intctl = slavio_intctl_init(PHYS_JJ_INTR0, PHYS_JJ_INTR_G);
232 tcx = tcx_init(ds, PHYS_JJ_TCX_FB, phys_ram_base + ram_size, ram_size, vram_size, graphic_width, graphic_height);
233 lance_init(&nd_table[0], PHYS_JJ_LE_IRQ, PHYS_JJ_LE, PHYS_JJ_LEDMA);
234 nvram = m48t08_init(PHYS_JJ_EEPROM, PHYS_JJ_EEPROM_SIZE);
235 slavio_timer_init(PHYS_JJ_CLOCK, PHYS_JJ_CLOCK_IRQ, PHYS_JJ_CLOCK1, PHYS_JJ_CLOCK1_IRQ);
236 slavio_serial_ms_kbd_init(PHYS_JJ_MS_KBD, PHYS_JJ_MS_KBD_IRQ);
237 // Slavio TTYA (base+4, Linux ttyS0) is the first Qemu serial device
238 // Slavio TTYB (base+0, Linux ttyS1) is the second Qemu serial device
239 slavio_serial_init(PHYS_JJ_SER, PHYS_JJ_SER_IRQ, serial_hds[1], serial_hds[0]);
240 fdctrl_init(PHYS_JJ_FLOPPY_IRQ, 0, 1, PHYS_JJ_FDC, fd_table);
241 esp_init(bs_table, PHYS_JJ_ESP_IRQ, PHYS_JJ_ESP, PHYS_JJ_ESPDMA);
242 slavio_misc = slavio_misc_init(PHYS_JJ_SLAVIO, PHYS_JJ_ME_IRQ);
243
244 prom_offset = ram_size + vram_size;
245
246 snprintf(buf, sizeof(buf), "%s/%s", bios_dir, PROM_FILENAMEE);
247 ret = load_elf(buf, phys_ram_base + prom_offset);
248 if (ret < 0) {
249 snprintf(buf, sizeof(buf), "%s/%s", bios_dir, PROM_FILENAMEB);
250 ret = load_image(buf, phys_ram_base + prom_offset);
251 }
252 if (ret < 0) {
253 fprintf(stderr, "qemu: could not load prom '%s'\n",
254 buf);
255 exit(1);
256 }
257 cpu_register_physical_memory(PROM_ADDR, (ret + TARGET_PAGE_SIZE) & TARGET_PAGE_MASK,
258 prom_offset | IO_MEM_ROM);
259
260 kernel_size = 0;
261 if (linux_boot) {
262 kernel_size = load_elf(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
263 if (kernel_size < 0)
264 kernel_size = load_aout(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
265 if (kernel_size < 0)
266 kernel_size = load_image(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
267 if (kernel_size < 0) {
268 fprintf(stderr, "qemu: could not load kernel '%s'\n",
269 kernel_filename);
270 exit(1);
271 }
272
273 /* load initrd */
274 initrd_size = 0;
275 if (initrd_filename) {
276 initrd_size = load_image(initrd_filename, phys_ram_base + INITRD_LOAD_ADDR);
277 if (initrd_size < 0) {
278 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
279 initrd_filename);
280 exit(1);
281 }
282 }
283 if (initrd_size > 0) {
284 for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
285 if (ldl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i)
286 == 0x48647253) { // HdrS
287 stl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i + 16, INITRD_LOAD_ADDR);
288 stl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i + 20, initrd_size);
289 break;
290 }
291 }
292 }
293 }
294 nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, kernel_cmdline, boot_device, ram_size, kernel_size, graphic_width, graphic_height, graphic_depth);
295 }
296
297 QEMUMachine sun4m_machine = {
298 "sun4m",
299 "Sun4m platform",
300 sun4m_init,
301 };