]> git.proxmox.com Git - qemu.git/blob - hw/sun4m.c
sparc fixes (Blue Swirl)
[qemu.git] / hw / sun4m.c
1 /*
2 * QEMU Sun4m System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "vl.h"
25 #include "m48t08.h"
26
27 #define KERNEL_LOAD_ADDR 0x00004000
28 #define CMDLINE_ADDR 0x007ff000
29 #define INITRD_LOAD_ADDR 0x00800000
30 #define PROM_ADDR 0xffd00000
31 #define PROM_FILENAMEB "proll.bin"
32 #define PROM_FILENAMEE "proll.elf"
33 #define PHYS_JJ_EEPROM 0x71200000 /* m48t08 */
34 #define PHYS_JJ_IDPROM_OFF 0x1FD8
35 #define PHYS_JJ_EEPROM_SIZE 0x2000
36 // IRQs are not PIL ones, but master interrupt controller register
37 // bits
38 #define PHYS_JJ_IOMMU 0x10000000 /* I/O MMU */
39 #define PHYS_JJ_TCX_FB 0x50000000 /* TCX frame buffer */
40 #define PHYS_JJ_ESPDMA 0x78400000 /* ESP DMA controller */
41 #define PHYS_JJ_ESP 0x78800000 /* ESP SCSI */
42 #define PHYS_JJ_ESP_IRQ 18
43 #define PHYS_JJ_LEDMA 0x78400010 /* Lance DMA controller */
44 #define PHYS_JJ_LE 0x78C00000 /* Lance ethernet */
45 #define PHYS_JJ_LE_IRQ 16
46 #define PHYS_JJ_CLOCK 0x71D00000 /* Per-CPU timer/counter, L14 */
47 #define PHYS_JJ_CLOCK_IRQ 7
48 #define PHYS_JJ_CLOCK1 0x71D10000 /* System timer/counter, L10 */
49 #define PHYS_JJ_CLOCK1_IRQ 19
50 #define PHYS_JJ_INTR0 0x71E00000 /* Per-CPU interrupt control registers */
51 #define PHYS_JJ_INTR_G 0x71E10000 /* Master interrupt control registers */
52 #define PHYS_JJ_MS_KBD 0x71000000 /* Mouse and keyboard */
53 #define PHYS_JJ_MS_KBD_IRQ 14
54 #define PHYS_JJ_SER 0x71100000 /* Serial */
55 #define PHYS_JJ_SER_IRQ 15
56 #define PHYS_JJ_FDC 0x71400000 /* Floppy */
57 #define PHYS_JJ_FLOPPY_IRQ 22
58
59 /* TSC handling */
60
61 uint64_t cpu_get_tsc()
62 {
63 return qemu_get_clock(vm_clock);
64 }
65
66 int DMA_get_channel_mode (int nchan)
67 {
68 return 0;
69 }
70 int DMA_read_memory (int nchan, void *buf, int pos, int size)
71 {
72 return 0;
73 }
74 int DMA_write_memory (int nchan, void *buf, int pos, int size)
75 {
76 return 0;
77 }
78 void DMA_hold_DREQ (int nchan) {}
79 void DMA_release_DREQ (int nchan) {}
80 void DMA_schedule(int nchan) {}
81 void DMA_run (void) {}
82 void DMA_init (int high_page_enable) {}
83 void DMA_register_channel (int nchan,
84 DMA_transfer_handler transfer_handler,
85 void *opaque)
86 {
87 }
88
89 static void nvram_set_word (m48t08_t *nvram, uint32_t addr, uint16_t value)
90 {
91 m48t08_write(nvram, addr++, (value >> 8) & 0xff);
92 m48t08_write(nvram, addr++, value & 0xff);
93 }
94
95 static void nvram_set_lword (m48t08_t *nvram, uint32_t addr, uint32_t value)
96 {
97 m48t08_write(nvram, addr++, value >> 24);
98 m48t08_write(nvram, addr++, (value >> 16) & 0xff);
99 m48t08_write(nvram, addr++, (value >> 8) & 0xff);
100 m48t08_write(nvram, addr++, value & 0xff);
101 }
102
103 static void nvram_set_string (m48t08_t *nvram, uint32_t addr,
104 const unsigned char *str, uint32_t max)
105 {
106 unsigned int i;
107
108 for (i = 0; i < max && str[i] != '\0'; i++) {
109 m48t08_write(nvram, addr + i, str[i]);
110 }
111 m48t08_write(nvram, addr + max - 1, '\0');
112 }
113
114 static m48t08_t *nvram;
115
116 extern int nographic;
117
118 static void nvram_init(m48t08_t *nvram, uint8_t *macaddr, const char *cmdline,
119 int boot_device, uint32_t RAM_size,
120 uint32_t kernel_size,
121 int width, int height, int depth)
122 {
123 unsigned char tmp = 0;
124 int i, j;
125
126 // Try to match PPC NVRAM
127 nvram_set_string(nvram, 0x00, "QEMU_BIOS", 16);
128 nvram_set_lword(nvram, 0x10, 0x00000001); /* structure v1 */
129 // NVRAM_size, arch not applicable
130 m48t08_write(nvram, 0x2F, nographic & 0xff);
131 nvram_set_lword(nvram, 0x30, RAM_size);
132 m48t08_write(nvram, 0x34, boot_device & 0xff);
133 nvram_set_lword(nvram, 0x38, KERNEL_LOAD_ADDR);
134 nvram_set_lword(nvram, 0x3C, kernel_size);
135 if (cmdline) {
136 strcpy(phys_ram_base + CMDLINE_ADDR, cmdline);
137 nvram_set_lword(nvram, 0x40, CMDLINE_ADDR);
138 nvram_set_lword(nvram, 0x44, strlen(cmdline));
139 }
140 // initrd_image, initrd_size passed differently
141 nvram_set_word(nvram, 0x54, width);
142 nvram_set_word(nvram, 0x56, height);
143 nvram_set_word(nvram, 0x58, depth);
144
145 // Sun4m specific use
146 i = 0x1fd8;
147 m48t08_write(nvram, i++, 0x01);
148 m48t08_write(nvram, i++, 0x80); /* Sun4m OBP */
149 j = 0;
150 m48t08_write(nvram, i++, macaddr[j++]);
151 m48t08_write(nvram, i++, macaddr[j++]);
152 m48t08_write(nvram, i++, macaddr[j++]);
153 m48t08_write(nvram, i++, macaddr[j++]);
154 m48t08_write(nvram, i++, macaddr[j++]);
155 m48t08_write(nvram, i, macaddr[j]);
156
157 /* Calculate checksum */
158 for (i = 0x1fd8; i < 0x1fe7; i++) {
159 tmp ^= m48t08_read(nvram, i);
160 }
161 m48t08_write(nvram, 0x1fe7, tmp);
162 }
163
164 static void *slavio_intctl;
165
166 void pic_info()
167 {
168 slavio_pic_info(slavio_intctl);
169 }
170
171 void irq_info()
172 {
173 slavio_irq_info(slavio_intctl);
174 }
175
176 void pic_set_irq(int irq, int level)
177 {
178 slavio_pic_set_irq(slavio_intctl, irq, level);
179 }
180
181 static void *tcx;
182
183 void vga_update_display()
184 {
185 tcx_update_display(tcx);
186 }
187
188 void vga_invalidate_display()
189 {
190 tcx_invalidate_display(tcx);
191 }
192
193 void vga_screen_dump(const char *filename)
194 {
195 tcx_screen_dump(tcx, filename);
196 }
197
198 static void *iommu;
199
200 uint32_t iommu_translate(uint32_t addr)
201 {
202 return iommu_translate_local(iommu, addr);
203 }
204
205 /* Sun4m hardware initialisation */
206 void sun4m_init(int ram_size, int vga_ram_size, int boot_device,
207 DisplayState *ds, const char **fd_filename, int snapshot,
208 const char *kernel_filename, const char *kernel_cmdline,
209 const char *initrd_filename)
210 {
211 char buf[1024];
212 int ret, linux_boot;
213 unsigned int i;
214 long vram_size = 0x100000, prom_offset, initrd_size, kernel_size;
215
216 linux_boot = (kernel_filename != NULL);
217
218 /* allocate RAM */
219 cpu_register_physical_memory(0, ram_size, 0);
220
221 iommu = iommu_init(PHYS_JJ_IOMMU);
222 slavio_intctl = slavio_intctl_init(PHYS_JJ_INTR0, PHYS_JJ_INTR_G);
223 tcx = tcx_init(ds, PHYS_JJ_TCX_FB, phys_ram_base + ram_size, ram_size, vram_size, graphic_width, graphic_height);
224 lance_init(&nd_table[0], PHYS_JJ_LE_IRQ, PHYS_JJ_LE, PHYS_JJ_LEDMA);
225 nvram = m48t08_init(PHYS_JJ_EEPROM, PHYS_JJ_EEPROM_SIZE);
226 slavio_timer_init(PHYS_JJ_CLOCK, PHYS_JJ_CLOCK_IRQ, PHYS_JJ_CLOCK1, PHYS_JJ_CLOCK1_IRQ);
227 slavio_serial_ms_kbd_init(PHYS_JJ_MS_KBD, PHYS_JJ_MS_KBD_IRQ);
228 slavio_serial_init(PHYS_JJ_SER, PHYS_JJ_SER_IRQ, serial_hds[0], serial_hds[1]);
229 fdctrl_init(PHYS_JJ_FLOPPY_IRQ, 0, 1, PHYS_JJ_FDC, fd_table);
230 esp_init(bs_table, PHYS_JJ_ESP_IRQ, PHYS_JJ_ESP, PHYS_JJ_ESPDMA);
231
232 prom_offset = ram_size + vram_size;
233
234 snprintf(buf, sizeof(buf), "%s/%s", bios_dir, PROM_FILENAMEE);
235 ret = load_elf(buf, phys_ram_base + prom_offset);
236 if (ret < 0) {
237 snprintf(buf, sizeof(buf), "%s/%s", bios_dir, PROM_FILENAMEB);
238 ret = load_image(buf, phys_ram_base + prom_offset);
239 }
240 if (ret < 0) {
241 fprintf(stderr, "qemu: could not load prom '%s'\n",
242 buf);
243 exit(1);
244 }
245 cpu_register_physical_memory(PROM_ADDR, (ret + TARGET_PAGE_SIZE) & TARGET_PAGE_MASK,
246 prom_offset | IO_MEM_ROM);
247
248 kernel_size = 0;
249 if (linux_boot) {
250 kernel_size = load_elf(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
251 if (kernel_size < 0)
252 kernel_size = load_aout(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
253 if (kernel_size < 0)
254 kernel_size = load_image(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
255 if (kernel_size < 0) {
256 fprintf(stderr, "qemu: could not load kernel '%s'\n",
257 kernel_filename);
258 exit(1);
259 }
260
261 /* load initrd */
262 initrd_size = 0;
263 if (initrd_filename) {
264 initrd_size = load_image(initrd_filename, phys_ram_base + INITRD_LOAD_ADDR);
265 if (initrd_size < 0) {
266 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
267 initrd_filename);
268 exit(1);
269 }
270 }
271 if (initrd_size > 0) {
272 for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
273 if (ldl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i)
274 == 0x48647253) { // HdrS
275 stl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i + 16, INITRD_LOAD_ADDR);
276 stl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i + 20, initrd_size);
277 break;
278 }
279 }
280 }
281 }
282 nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, kernel_cmdline, boot_device, ram_size, kernel_size, graphic_width, graphic_height, graphic_depth);
283 }