]> git.proxmox.com Git - qemu.git/blob - hw/timer/slavio_timer.c
arm11mpcore: Split off SCU device
[qemu.git] / hw / timer / slavio_timer.c
1 /*
2 * QEMU Sparc SLAVIO timer controller emulation
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "hw/sparc/sun4m.h"
26 #include "qemu/timer.h"
27 #include "hw/ptimer.h"
28 #include "hw/sysbus.h"
29 #include "trace.h"
30 #include "qemu/main-loop.h"
31
32 /*
33 * Registers of hardware timer in sun4m.
34 *
35 * This is the timer/counter part of chip STP2001 (Slave I/O), also
36 * produced as NCR89C105. See
37 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
38 *
39 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
40 * are zero. Bit 31 is 1 when count has been reached.
41 *
42 * Per-CPU timers interrupt local CPU, system timer uses normal
43 * interrupt routing.
44 *
45 */
46
47 #define MAX_CPUS 16
48
49 typedef struct CPUTimerState {
50 qemu_irq irq;
51 ptimer_state *timer;
52 uint32_t count, counthigh, reached;
53 /* processor only */
54 uint32_t running;
55 uint64_t limit;
56 } CPUTimerState;
57
58 #define TYPE_SLAVIO_TIMER "slavio_timer"
59 #define SLAVIO_TIMER(obj) \
60 OBJECT_CHECK(SLAVIO_TIMERState, (obj), TYPE_SLAVIO_TIMER)
61
62 typedef struct SLAVIO_TIMERState {
63 SysBusDevice parent_obj;
64
65 uint32_t num_cpus;
66 uint32_t cputimer_mode;
67 CPUTimerState cputimer[MAX_CPUS + 1];
68 } SLAVIO_TIMERState;
69
70 typedef struct TimerContext {
71 MemoryRegion iomem;
72 SLAVIO_TIMERState *s;
73 unsigned int timer_index; /* 0 for system, 1 ... MAX_CPUS for CPU timers */
74 } TimerContext;
75
76 #define SYS_TIMER_SIZE 0x14
77 #define CPU_TIMER_SIZE 0x10
78
79 #define TIMER_LIMIT 0
80 #define TIMER_COUNTER 1
81 #define TIMER_COUNTER_NORST 2
82 #define TIMER_STATUS 3
83 #define TIMER_MODE 4
84
85 #define TIMER_COUNT_MASK32 0xfffffe00
86 #define TIMER_LIMIT_MASK32 0x7fffffff
87 #define TIMER_MAX_COUNT64 0x7ffffffffffffe00ULL
88 #define TIMER_MAX_COUNT32 0x7ffffe00ULL
89 #define TIMER_REACHED 0x80000000
90 #define TIMER_PERIOD 500ULL // 500ns
91 #define LIMIT_TO_PERIODS(l) (((l) >> 9) - 1)
92 #define PERIODS_TO_LIMIT(l) (((l) + 1) << 9)
93
94 static int slavio_timer_is_user(TimerContext *tc)
95 {
96 SLAVIO_TIMERState *s = tc->s;
97 unsigned int timer_index = tc->timer_index;
98
99 return timer_index != 0 && (s->cputimer_mode & (1 << (timer_index - 1)));
100 }
101
102 // Update count, set irq, update expire_time
103 // Convert from ptimer countdown units
104 static void slavio_timer_get_out(CPUTimerState *t)
105 {
106 uint64_t count, limit;
107
108 if (t->limit == 0) { /* free-run system or processor counter */
109 limit = TIMER_MAX_COUNT32;
110 } else {
111 limit = t->limit;
112 }
113 count = limit - PERIODS_TO_LIMIT(ptimer_get_count(t->timer));
114
115 trace_slavio_timer_get_out(t->limit, t->counthigh, t->count);
116 t->count = count & TIMER_COUNT_MASK32;
117 t->counthigh = count >> 32;
118 }
119
120 // timer callback
121 static void slavio_timer_irq(void *opaque)
122 {
123 TimerContext *tc = opaque;
124 SLAVIO_TIMERState *s = tc->s;
125 CPUTimerState *t = &s->cputimer[tc->timer_index];
126
127 slavio_timer_get_out(t);
128 trace_slavio_timer_irq(t->counthigh, t->count);
129 /* if limit is 0 (free-run), there will be no match */
130 if (t->limit != 0) {
131 t->reached = TIMER_REACHED;
132 }
133 /* there is no interrupt if user timer or free-run */
134 if (!slavio_timer_is_user(tc) && t->limit != 0) {
135 qemu_irq_raise(t->irq);
136 }
137 }
138
139 static uint64_t slavio_timer_mem_readl(void *opaque, hwaddr addr,
140 unsigned size)
141 {
142 TimerContext *tc = opaque;
143 SLAVIO_TIMERState *s = tc->s;
144 uint32_t saddr, ret;
145 unsigned int timer_index = tc->timer_index;
146 CPUTimerState *t = &s->cputimer[timer_index];
147
148 saddr = addr >> 2;
149 switch (saddr) {
150 case TIMER_LIMIT:
151 // read limit (system counter mode) or read most signifying
152 // part of counter (user mode)
153 if (slavio_timer_is_user(tc)) {
154 // read user timer MSW
155 slavio_timer_get_out(t);
156 ret = t->counthigh | t->reached;
157 } else {
158 // read limit
159 // clear irq
160 qemu_irq_lower(t->irq);
161 t->reached = 0;
162 ret = t->limit & TIMER_LIMIT_MASK32;
163 }
164 break;
165 case TIMER_COUNTER:
166 // read counter and reached bit (system mode) or read lsbits
167 // of counter (user mode)
168 slavio_timer_get_out(t);
169 if (slavio_timer_is_user(tc)) { // read user timer LSW
170 ret = t->count & TIMER_MAX_COUNT64;
171 } else { // read limit
172 ret = (t->count & TIMER_MAX_COUNT32) |
173 t->reached;
174 }
175 break;
176 case TIMER_STATUS:
177 // only available in processor counter/timer
178 // read start/stop status
179 if (timer_index > 0) {
180 ret = t->running;
181 } else {
182 ret = 0;
183 }
184 break;
185 case TIMER_MODE:
186 // only available in system counter
187 // read user/system mode
188 ret = s->cputimer_mode;
189 break;
190 default:
191 trace_slavio_timer_mem_readl_invalid(addr);
192 ret = 0;
193 break;
194 }
195 trace_slavio_timer_mem_readl(addr, ret);
196 return ret;
197 }
198
199 static void slavio_timer_mem_writel(void *opaque, hwaddr addr,
200 uint64_t val, unsigned size)
201 {
202 TimerContext *tc = opaque;
203 SLAVIO_TIMERState *s = tc->s;
204 uint32_t saddr;
205 unsigned int timer_index = tc->timer_index;
206 CPUTimerState *t = &s->cputimer[timer_index];
207
208 trace_slavio_timer_mem_writel(addr, val);
209 saddr = addr >> 2;
210 switch (saddr) {
211 case TIMER_LIMIT:
212 if (slavio_timer_is_user(tc)) {
213 uint64_t count;
214
215 // set user counter MSW, reset counter
216 t->limit = TIMER_MAX_COUNT64;
217 t->counthigh = val & (TIMER_MAX_COUNT64 >> 32);
218 t->reached = 0;
219 count = ((uint64_t)t->counthigh << 32) | t->count;
220 trace_slavio_timer_mem_writel_limit(timer_index, count);
221 ptimer_set_count(t->timer, LIMIT_TO_PERIODS(t->limit - count));
222 } else {
223 // set limit, reset counter
224 qemu_irq_lower(t->irq);
225 t->limit = val & TIMER_MAX_COUNT32;
226 if (t->timer) {
227 if (t->limit == 0) { /* free-run */
228 ptimer_set_limit(t->timer,
229 LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
230 } else {
231 ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(t->limit), 1);
232 }
233 }
234 }
235 break;
236 case TIMER_COUNTER:
237 if (slavio_timer_is_user(tc)) {
238 uint64_t count;
239
240 // set user counter LSW, reset counter
241 t->limit = TIMER_MAX_COUNT64;
242 t->count = val & TIMER_MAX_COUNT64;
243 t->reached = 0;
244 count = ((uint64_t)t->counthigh) << 32 | t->count;
245 trace_slavio_timer_mem_writel_limit(timer_index, count);
246 ptimer_set_count(t->timer, LIMIT_TO_PERIODS(t->limit - count));
247 } else {
248 trace_slavio_timer_mem_writel_counter_invalid();
249 }
250 break;
251 case TIMER_COUNTER_NORST:
252 // set limit without resetting counter
253 t->limit = val & TIMER_MAX_COUNT32;
254 if (t->limit == 0) { /* free-run */
255 ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 0);
256 } else {
257 ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(t->limit), 0);
258 }
259 break;
260 case TIMER_STATUS:
261 if (slavio_timer_is_user(tc)) {
262 // start/stop user counter
263 if ((val & 1) && !t->running) {
264 trace_slavio_timer_mem_writel_status_start(timer_index);
265 ptimer_run(t->timer, 0);
266 t->running = 1;
267 } else if (!(val & 1) && t->running) {
268 trace_slavio_timer_mem_writel_status_stop(timer_index);
269 ptimer_stop(t->timer);
270 t->running = 0;
271 }
272 }
273 break;
274 case TIMER_MODE:
275 if (timer_index == 0) {
276 unsigned int i;
277
278 for (i = 0; i < s->num_cpus; i++) {
279 unsigned int processor = 1 << i;
280 CPUTimerState *curr_timer = &s->cputimer[i + 1];
281
282 // check for a change in timer mode for this processor
283 if ((val & processor) != (s->cputimer_mode & processor)) {
284 if (val & processor) { // counter -> user timer
285 qemu_irq_lower(curr_timer->irq);
286 // counters are always running
287 ptimer_stop(curr_timer->timer);
288 curr_timer->running = 0;
289 // user timer limit is always the same
290 curr_timer->limit = TIMER_MAX_COUNT64;
291 ptimer_set_limit(curr_timer->timer,
292 LIMIT_TO_PERIODS(curr_timer->limit),
293 1);
294 // set this processors user timer bit in config
295 // register
296 s->cputimer_mode |= processor;
297 trace_slavio_timer_mem_writel_mode_user(timer_index);
298 } else { // user timer -> counter
299 // stop the user timer if it is running
300 if (curr_timer->running) {
301 ptimer_stop(curr_timer->timer);
302 }
303 // start the counter
304 ptimer_run(curr_timer->timer, 0);
305 curr_timer->running = 1;
306 // clear this processors user timer bit in config
307 // register
308 s->cputimer_mode &= ~processor;
309 trace_slavio_timer_mem_writel_mode_counter(timer_index);
310 }
311 }
312 }
313 } else {
314 trace_slavio_timer_mem_writel_mode_invalid();
315 }
316 break;
317 default:
318 trace_slavio_timer_mem_writel_invalid(addr);
319 break;
320 }
321 }
322
323 static const MemoryRegionOps slavio_timer_mem_ops = {
324 .read = slavio_timer_mem_readl,
325 .write = slavio_timer_mem_writel,
326 .endianness = DEVICE_NATIVE_ENDIAN,
327 .valid = {
328 .min_access_size = 4,
329 .max_access_size = 4,
330 },
331 };
332
333 static const VMStateDescription vmstate_timer = {
334 .name ="timer",
335 .version_id = 3,
336 .minimum_version_id = 3,
337 .minimum_version_id_old = 3,
338 .fields = (VMStateField []) {
339 VMSTATE_UINT64(limit, CPUTimerState),
340 VMSTATE_UINT32(count, CPUTimerState),
341 VMSTATE_UINT32(counthigh, CPUTimerState),
342 VMSTATE_UINT32(reached, CPUTimerState),
343 VMSTATE_UINT32(running, CPUTimerState),
344 VMSTATE_PTIMER(timer, CPUTimerState),
345 VMSTATE_END_OF_LIST()
346 }
347 };
348
349 static const VMStateDescription vmstate_slavio_timer = {
350 .name ="slavio_timer",
351 .version_id = 3,
352 .minimum_version_id = 3,
353 .minimum_version_id_old = 3,
354 .fields = (VMStateField []) {
355 VMSTATE_STRUCT_ARRAY(cputimer, SLAVIO_TIMERState, MAX_CPUS + 1, 3,
356 vmstate_timer, CPUTimerState),
357 VMSTATE_END_OF_LIST()
358 }
359 };
360
361 static void slavio_timer_reset(DeviceState *d)
362 {
363 SLAVIO_TIMERState *s = SLAVIO_TIMER(d);
364 unsigned int i;
365 CPUTimerState *curr_timer;
366
367 for (i = 0; i <= MAX_CPUS; i++) {
368 curr_timer = &s->cputimer[i];
369 curr_timer->limit = 0;
370 curr_timer->count = 0;
371 curr_timer->reached = 0;
372 if (i <= s->num_cpus) {
373 ptimer_set_limit(curr_timer->timer,
374 LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
375 ptimer_run(curr_timer->timer, 0);
376 curr_timer->running = 1;
377 }
378 }
379 s->cputimer_mode = 0;
380 }
381
382 static int slavio_timer_init1(SysBusDevice *dev)
383 {
384 SLAVIO_TIMERState *s = SLAVIO_TIMER(dev);
385 QEMUBH *bh;
386 unsigned int i;
387 TimerContext *tc;
388
389 for (i = 0; i <= MAX_CPUS; i++) {
390 uint64_t size;
391 char timer_name[20];
392
393 tc = g_malloc0(sizeof(TimerContext));
394 tc->s = s;
395 tc->timer_index = i;
396
397 bh = qemu_bh_new(slavio_timer_irq, tc);
398 s->cputimer[i].timer = ptimer_init(bh);
399 ptimer_set_period(s->cputimer[i].timer, TIMER_PERIOD);
400
401 size = i == 0 ? SYS_TIMER_SIZE : CPU_TIMER_SIZE;
402 snprintf(timer_name, sizeof(timer_name), "timer-%i", i);
403 memory_region_init_io(&tc->iomem, OBJECT(s), &slavio_timer_mem_ops, tc,
404 timer_name, size);
405 sysbus_init_mmio(dev, &tc->iomem);
406
407 sysbus_init_irq(dev, &s->cputimer[i].irq);
408 }
409
410 return 0;
411 }
412
413 static Property slavio_timer_properties[] = {
414 DEFINE_PROP_UINT32("num_cpus", SLAVIO_TIMERState, num_cpus, 0),
415 DEFINE_PROP_END_OF_LIST(),
416 };
417
418 static void slavio_timer_class_init(ObjectClass *klass, void *data)
419 {
420 DeviceClass *dc = DEVICE_CLASS(klass);
421 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
422
423 k->init = slavio_timer_init1;
424 dc->reset = slavio_timer_reset;
425 dc->vmsd = &vmstate_slavio_timer;
426 dc->props = slavio_timer_properties;
427 }
428
429 static const TypeInfo slavio_timer_info = {
430 .name = TYPE_SLAVIO_TIMER,
431 .parent = TYPE_SYS_BUS_DEVICE,
432 .instance_size = sizeof(SLAVIO_TIMERState),
433 .class_init = slavio_timer_class_init,
434 };
435
436 static void slavio_timer_register_types(void)
437 {
438 type_register_static(&slavio_timer_info);
439 }
440
441 type_init(slavio_timer_register_types)