]> git.proxmox.com Git - qemu.git/blob - hw/usb/core.c
usb: Move clearing of queue on halt to the core
[qemu.git] / hw / usb / core.c
1 /*
2 * QEMU USB emulation
3 *
4 * Copyright (c) 2005 Fabrice Bellard
5 *
6 * 2008 Generic packet handler rewrite by Max Krasnyansky
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 */
26 #include "qemu-common.h"
27 #include "hw/usb.h"
28 #include "iov.h"
29 #include "trace.h"
30
31 void usb_attach(USBPort *port)
32 {
33 USBDevice *dev = port->dev;
34
35 assert(dev != NULL);
36 assert(dev->attached);
37 assert(dev->state == USB_STATE_NOTATTACHED);
38 port->ops->attach(port);
39 dev->state = USB_STATE_ATTACHED;
40 usb_device_handle_attach(dev);
41 }
42
43 void usb_detach(USBPort *port)
44 {
45 USBDevice *dev = port->dev;
46
47 assert(dev != NULL);
48 assert(dev->state != USB_STATE_NOTATTACHED);
49 port->ops->detach(port);
50 dev->state = USB_STATE_NOTATTACHED;
51 }
52
53 void usb_port_reset(USBPort *port)
54 {
55 USBDevice *dev = port->dev;
56
57 assert(dev != NULL);
58 usb_detach(port);
59 usb_attach(port);
60 usb_device_reset(dev);
61 }
62
63 void usb_device_reset(USBDevice *dev)
64 {
65 if (dev == NULL || !dev->attached) {
66 return;
67 }
68 dev->remote_wakeup = 0;
69 dev->addr = 0;
70 dev->state = USB_STATE_DEFAULT;
71 usb_device_handle_reset(dev);
72 }
73
74 void usb_wakeup(USBEndpoint *ep)
75 {
76 USBDevice *dev = ep->dev;
77 USBBus *bus = usb_bus_from_device(dev);
78
79 if (dev->remote_wakeup && dev->port && dev->port->ops->wakeup) {
80 dev->port->ops->wakeup(dev->port);
81 }
82 if (bus->ops->wakeup_endpoint) {
83 bus->ops->wakeup_endpoint(bus, ep);
84 }
85 }
86
87 /**********************/
88
89 /* generic USB device helpers (you are not forced to use them when
90 writing your USB device driver, but they help handling the
91 protocol)
92 */
93
94 #define SETUP_STATE_IDLE 0
95 #define SETUP_STATE_SETUP 1
96 #define SETUP_STATE_DATA 2
97 #define SETUP_STATE_ACK 3
98 #define SETUP_STATE_PARAM 4
99
100 static int do_token_setup(USBDevice *s, USBPacket *p)
101 {
102 int request, value, index;
103 int ret = 0;
104
105 if (p->iov.size != 8) {
106 return USB_RET_STALL;
107 }
108
109 usb_packet_copy(p, s->setup_buf, p->iov.size);
110 p->result = 0;
111 s->setup_len = (s->setup_buf[7] << 8) | s->setup_buf[6];
112 s->setup_index = 0;
113
114 request = (s->setup_buf[0] << 8) | s->setup_buf[1];
115 value = (s->setup_buf[3] << 8) | s->setup_buf[2];
116 index = (s->setup_buf[5] << 8) | s->setup_buf[4];
117
118 if (s->setup_buf[0] & USB_DIR_IN) {
119 ret = usb_device_handle_control(s, p, request, value, index,
120 s->setup_len, s->data_buf);
121 if (ret == USB_RET_ASYNC) {
122 s->setup_state = SETUP_STATE_SETUP;
123 return USB_RET_ASYNC;
124 }
125 if (ret < 0)
126 return ret;
127
128 if (ret < s->setup_len)
129 s->setup_len = ret;
130 s->setup_state = SETUP_STATE_DATA;
131 } else {
132 if (s->setup_len > sizeof(s->data_buf)) {
133 fprintf(stderr,
134 "usb_generic_handle_packet: ctrl buffer too small (%d > %zu)\n",
135 s->setup_len, sizeof(s->data_buf));
136 return USB_RET_STALL;
137 }
138 if (s->setup_len == 0)
139 s->setup_state = SETUP_STATE_ACK;
140 else
141 s->setup_state = SETUP_STATE_DATA;
142 }
143
144 return ret;
145 }
146
147 static int do_token_in(USBDevice *s, USBPacket *p)
148 {
149 int request, value, index;
150 int ret = 0;
151
152 assert(p->ep->nr == 0);
153
154 request = (s->setup_buf[0] << 8) | s->setup_buf[1];
155 value = (s->setup_buf[3] << 8) | s->setup_buf[2];
156 index = (s->setup_buf[5] << 8) | s->setup_buf[4];
157
158 switch(s->setup_state) {
159 case SETUP_STATE_ACK:
160 if (!(s->setup_buf[0] & USB_DIR_IN)) {
161 ret = usb_device_handle_control(s, p, request, value, index,
162 s->setup_len, s->data_buf);
163 if (ret == USB_RET_ASYNC) {
164 return USB_RET_ASYNC;
165 }
166 s->setup_state = SETUP_STATE_IDLE;
167 if (ret > 0)
168 return 0;
169 return ret;
170 }
171
172 /* return 0 byte */
173 return 0;
174
175 case SETUP_STATE_DATA:
176 if (s->setup_buf[0] & USB_DIR_IN) {
177 int len = s->setup_len - s->setup_index;
178 if (len > p->iov.size) {
179 len = p->iov.size;
180 }
181 usb_packet_copy(p, s->data_buf + s->setup_index, len);
182 s->setup_index += len;
183 if (s->setup_index >= s->setup_len)
184 s->setup_state = SETUP_STATE_ACK;
185 return len;
186 }
187
188 s->setup_state = SETUP_STATE_IDLE;
189 return USB_RET_STALL;
190
191 default:
192 return USB_RET_STALL;
193 }
194 }
195
196 static int do_token_out(USBDevice *s, USBPacket *p)
197 {
198 assert(p->ep->nr == 0);
199
200 switch(s->setup_state) {
201 case SETUP_STATE_ACK:
202 if (s->setup_buf[0] & USB_DIR_IN) {
203 s->setup_state = SETUP_STATE_IDLE;
204 /* transfer OK */
205 } else {
206 /* ignore additional output */
207 }
208 return 0;
209
210 case SETUP_STATE_DATA:
211 if (!(s->setup_buf[0] & USB_DIR_IN)) {
212 int len = s->setup_len - s->setup_index;
213 if (len > p->iov.size) {
214 len = p->iov.size;
215 }
216 usb_packet_copy(p, s->data_buf + s->setup_index, len);
217 s->setup_index += len;
218 if (s->setup_index >= s->setup_len)
219 s->setup_state = SETUP_STATE_ACK;
220 return len;
221 }
222
223 s->setup_state = SETUP_STATE_IDLE;
224 return USB_RET_STALL;
225
226 default:
227 return USB_RET_STALL;
228 }
229 }
230
231 static int do_parameter(USBDevice *s, USBPacket *p)
232 {
233 int request, value, index;
234 int i, ret = 0;
235
236 for (i = 0; i < 8; i++) {
237 s->setup_buf[i] = p->parameter >> (i*8);
238 }
239
240 s->setup_state = SETUP_STATE_PARAM;
241 s->setup_len = (s->setup_buf[7] << 8) | s->setup_buf[6];
242 s->setup_index = 0;
243
244 request = (s->setup_buf[0] << 8) | s->setup_buf[1];
245 value = (s->setup_buf[3] << 8) | s->setup_buf[2];
246 index = (s->setup_buf[5] << 8) | s->setup_buf[4];
247
248 if (s->setup_len > sizeof(s->data_buf)) {
249 fprintf(stderr,
250 "usb_generic_handle_packet: ctrl buffer too small (%d > %zu)\n",
251 s->setup_len, sizeof(s->data_buf));
252 return USB_RET_STALL;
253 }
254
255 if (p->pid == USB_TOKEN_OUT) {
256 usb_packet_copy(p, s->data_buf, s->setup_len);
257 }
258
259 ret = usb_device_handle_control(s, p, request, value, index,
260 s->setup_len, s->data_buf);
261 if (ret < 0) {
262 return ret;
263 }
264
265 if (ret < s->setup_len) {
266 s->setup_len = ret;
267 }
268 if (p->pid == USB_TOKEN_IN) {
269 usb_packet_copy(p, s->data_buf, s->setup_len);
270 }
271
272 return ret;
273 }
274
275 /* ctrl complete function for devices which use usb_generic_handle_packet and
276 may return USB_RET_ASYNC from their handle_control callback. Device code
277 which does this *must* call this function instead of the normal
278 usb_packet_complete to complete their async control packets. */
279 void usb_generic_async_ctrl_complete(USBDevice *s, USBPacket *p)
280 {
281 if (p->result < 0) {
282 s->setup_state = SETUP_STATE_IDLE;
283 }
284
285 switch (s->setup_state) {
286 case SETUP_STATE_SETUP:
287 if (p->result < s->setup_len) {
288 s->setup_len = p->result;
289 }
290 s->setup_state = SETUP_STATE_DATA;
291 p->result = 8;
292 break;
293
294 case SETUP_STATE_ACK:
295 s->setup_state = SETUP_STATE_IDLE;
296 p->result = 0;
297 break;
298
299 case SETUP_STATE_PARAM:
300 if (p->result < s->setup_len) {
301 s->setup_len = p->result;
302 }
303 if (p->pid == USB_TOKEN_IN) {
304 p->result = 0;
305 usb_packet_copy(p, s->data_buf, s->setup_len);
306 }
307 break;
308
309 default:
310 break;
311 }
312 usb_packet_complete(s, p);
313 }
314
315 /* XXX: fix overflow */
316 int set_usb_string(uint8_t *buf, const char *str)
317 {
318 int len, i;
319 uint8_t *q;
320
321 q = buf;
322 len = strlen(str);
323 *q++ = 2 * len + 2;
324 *q++ = 3;
325 for(i = 0; i < len; i++) {
326 *q++ = str[i];
327 *q++ = 0;
328 }
329 return q - buf;
330 }
331
332 USBDevice *usb_find_device(USBPort *port, uint8_t addr)
333 {
334 USBDevice *dev = port->dev;
335
336 if (dev == NULL || !dev->attached || dev->state != USB_STATE_DEFAULT) {
337 return NULL;
338 }
339 if (dev->addr == addr) {
340 return dev;
341 }
342 return usb_device_find_device(dev, addr);
343 }
344
345 static int usb_process_one(USBPacket *p)
346 {
347 USBDevice *dev = p->ep->dev;
348
349 if (p->ep->nr == 0) {
350 /* control pipe */
351 if (p->parameter) {
352 return do_parameter(dev, p);
353 }
354 switch (p->pid) {
355 case USB_TOKEN_SETUP:
356 return do_token_setup(dev, p);
357 case USB_TOKEN_IN:
358 return do_token_in(dev, p);
359 case USB_TOKEN_OUT:
360 return do_token_out(dev, p);
361 default:
362 return USB_RET_STALL;
363 }
364 } else {
365 /* data pipe */
366 return usb_device_handle_data(dev, p);
367 }
368 }
369
370 /* Hand over a packet to a device for processing. Return value
371 USB_RET_ASYNC indicates the processing isn't finished yet, the
372 driver will call usb_packet_complete() when done processing it. */
373 int usb_handle_packet(USBDevice *dev, USBPacket *p)
374 {
375 int ret;
376
377 if (dev == NULL) {
378 return USB_RET_NODEV;
379 }
380 assert(dev == p->ep->dev);
381 assert(dev->state == USB_STATE_DEFAULT);
382 usb_packet_check_state(p, USB_PACKET_SETUP);
383 assert(p->ep != NULL);
384
385 /* Submitting a new packet clears halt */
386 if (p->ep->halted) {
387 assert(QTAILQ_EMPTY(&p->ep->queue));
388 p->ep->halted = false;
389 }
390
391 if (QTAILQ_EMPTY(&p->ep->queue) || p->ep->pipeline) {
392 ret = usb_process_one(p);
393 if (ret == USB_RET_ASYNC) {
394 usb_packet_set_state(p, USB_PACKET_ASYNC);
395 QTAILQ_INSERT_TAIL(&p->ep->queue, p, queue);
396 } else if (ret == USB_RET_ADD_TO_QUEUE) {
397 usb_packet_set_state(p, USB_PACKET_QUEUED);
398 QTAILQ_INSERT_TAIL(&p->ep->queue, p, queue);
399 ret = USB_RET_ASYNC;
400 } else {
401 /*
402 * When pipelining is enabled usb-devices must always return async,
403 * otherwise packets can complete out of order!
404 */
405 assert(!p->ep->pipeline || QTAILQ_EMPTY(&p->ep->queue));
406 if (ret != USB_RET_NAK) {
407 p->result = ret;
408 usb_packet_set_state(p, USB_PACKET_COMPLETE);
409 }
410 }
411 } else {
412 ret = USB_RET_ASYNC;
413 usb_packet_set_state(p, USB_PACKET_QUEUED);
414 QTAILQ_INSERT_TAIL(&p->ep->queue, p, queue);
415 }
416 return ret;
417 }
418
419 void usb_packet_complete_one(USBDevice *dev, USBPacket *p)
420 {
421 USBEndpoint *ep = p->ep;
422
423 assert(QTAILQ_FIRST(&ep->queue) == p);
424 assert(p->result != USB_RET_ASYNC && p->result != USB_RET_NAK);
425
426 if (p->result < 0) {
427 ep->halted = true;
428 }
429 usb_packet_set_state(p, USB_PACKET_COMPLETE);
430 QTAILQ_REMOVE(&ep->queue, p, queue);
431 dev->port->ops->complete(dev->port, p);
432 }
433
434 /* Notify the controller that an async packet is complete. This should only
435 be called for packets previously deferred by returning USB_RET_ASYNC from
436 handle_packet. */
437 void usb_packet_complete(USBDevice *dev, USBPacket *p)
438 {
439 USBEndpoint *ep = p->ep;
440 int ret;
441
442 usb_packet_check_state(p, USB_PACKET_ASYNC);
443 usb_packet_complete_one(dev, p);
444
445 while (!QTAILQ_EMPTY(&ep->queue)) {
446 p = QTAILQ_FIRST(&ep->queue);
447 if (ep->halted) {
448 /* Empty the queue on a halt */
449 p->result = USB_RET_REMOVE_FROM_QUEUE;
450 dev->port->ops->complete(dev->port, p);
451 continue;
452 }
453 if (p->state == USB_PACKET_ASYNC) {
454 break;
455 }
456 usb_packet_check_state(p, USB_PACKET_QUEUED);
457 ret = usb_process_one(p);
458 if (ret == USB_RET_ASYNC) {
459 usb_packet_set_state(p, USB_PACKET_ASYNC);
460 break;
461 }
462 p->result = ret;
463 usb_packet_complete_one(ep->dev, p);
464 }
465 }
466
467 /* Cancel an active packet. The packed must have been deferred by
468 returning USB_RET_ASYNC from handle_packet, and not yet
469 completed. */
470 void usb_cancel_packet(USBPacket * p)
471 {
472 bool callback = (p->state == USB_PACKET_ASYNC);
473 assert(usb_packet_is_inflight(p));
474 usb_packet_set_state(p, USB_PACKET_CANCELED);
475 QTAILQ_REMOVE(&p->ep->queue, p, queue);
476 if (callback) {
477 usb_device_cancel_packet(p->ep->dev, p);
478 }
479 }
480
481
482 void usb_packet_init(USBPacket *p)
483 {
484 qemu_iovec_init(&p->iov, 1);
485 }
486
487 static const char *usb_packet_state_name(USBPacketState state)
488 {
489 static const char *name[] = {
490 [USB_PACKET_UNDEFINED] = "undef",
491 [USB_PACKET_SETUP] = "setup",
492 [USB_PACKET_QUEUED] = "queued",
493 [USB_PACKET_ASYNC] = "async",
494 [USB_PACKET_COMPLETE] = "complete",
495 [USB_PACKET_CANCELED] = "canceled",
496 };
497 if (state < ARRAY_SIZE(name)) {
498 return name[state];
499 }
500 return "INVALID";
501 }
502
503 void usb_packet_check_state(USBPacket *p, USBPacketState expected)
504 {
505 USBDevice *dev;
506 USBBus *bus;
507
508 if (p->state == expected) {
509 return;
510 }
511 dev = p->ep->dev;
512 bus = usb_bus_from_device(dev);
513 trace_usb_packet_state_fault(bus->busnr, dev->port->path, p->ep->nr, p,
514 usb_packet_state_name(p->state),
515 usb_packet_state_name(expected));
516 assert(!"usb packet state check failed");
517 }
518
519 void usb_packet_set_state(USBPacket *p, USBPacketState state)
520 {
521 if (p->ep) {
522 USBDevice *dev = p->ep->dev;
523 USBBus *bus = usb_bus_from_device(dev);
524 trace_usb_packet_state_change(bus->busnr, dev->port->path, p->ep->nr, p,
525 usb_packet_state_name(p->state),
526 usb_packet_state_name(state));
527 } else {
528 trace_usb_packet_state_change(-1, "", -1, p,
529 usb_packet_state_name(p->state),
530 usb_packet_state_name(state));
531 }
532 p->state = state;
533 }
534
535 void usb_packet_setup(USBPacket *p, int pid, USBEndpoint *ep, uint64_t id)
536 {
537 assert(!usb_packet_is_inflight(p));
538 assert(p->iov.iov != NULL);
539 p->id = id;
540 p->pid = pid;
541 p->ep = ep;
542 p->result = 0;
543 p->parameter = 0;
544 qemu_iovec_reset(&p->iov);
545 usb_packet_set_state(p, USB_PACKET_SETUP);
546 }
547
548 void usb_packet_addbuf(USBPacket *p, void *ptr, size_t len)
549 {
550 qemu_iovec_add(&p->iov, ptr, len);
551 }
552
553 void usb_packet_copy(USBPacket *p, void *ptr, size_t bytes)
554 {
555 assert(p->result >= 0);
556 assert(p->result + bytes <= p->iov.size);
557 switch (p->pid) {
558 case USB_TOKEN_SETUP:
559 case USB_TOKEN_OUT:
560 iov_to_buf(p->iov.iov, p->iov.niov, p->result, ptr, bytes);
561 break;
562 case USB_TOKEN_IN:
563 iov_from_buf(p->iov.iov, p->iov.niov, p->result, ptr, bytes);
564 break;
565 default:
566 fprintf(stderr, "%s: invalid pid: %x\n", __func__, p->pid);
567 abort();
568 }
569 p->result += bytes;
570 }
571
572 void usb_packet_skip(USBPacket *p, size_t bytes)
573 {
574 assert(p->result >= 0);
575 assert(p->result + bytes <= p->iov.size);
576 if (p->pid == USB_TOKEN_IN) {
577 iov_memset(p->iov.iov, p->iov.niov, p->result, 0, bytes);
578 }
579 p->result += bytes;
580 }
581
582 void usb_packet_cleanup(USBPacket *p)
583 {
584 assert(!usb_packet_is_inflight(p));
585 qemu_iovec_destroy(&p->iov);
586 }
587
588 void usb_ep_reset(USBDevice *dev)
589 {
590 int ep;
591
592 dev->ep_ctl.nr = 0;
593 dev->ep_ctl.type = USB_ENDPOINT_XFER_CONTROL;
594 dev->ep_ctl.ifnum = 0;
595 dev->ep_ctl.dev = dev;
596 dev->ep_ctl.pipeline = false;
597 for (ep = 0; ep < USB_MAX_ENDPOINTS; ep++) {
598 dev->ep_in[ep].nr = ep + 1;
599 dev->ep_out[ep].nr = ep + 1;
600 dev->ep_in[ep].pid = USB_TOKEN_IN;
601 dev->ep_out[ep].pid = USB_TOKEN_OUT;
602 dev->ep_in[ep].type = USB_ENDPOINT_XFER_INVALID;
603 dev->ep_out[ep].type = USB_ENDPOINT_XFER_INVALID;
604 dev->ep_in[ep].ifnum = USB_INTERFACE_INVALID;
605 dev->ep_out[ep].ifnum = USB_INTERFACE_INVALID;
606 dev->ep_in[ep].dev = dev;
607 dev->ep_out[ep].dev = dev;
608 dev->ep_in[ep].pipeline = false;
609 dev->ep_out[ep].pipeline = false;
610 }
611 }
612
613 void usb_ep_init(USBDevice *dev)
614 {
615 int ep;
616
617 usb_ep_reset(dev);
618 QTAILQ_INIT(&dev->ep_ctl.queue);
619 for (ep = 0; ep < USB_MAX_ENDPOINTS; ep++) {
620 QTAILQ_INIT(&dev->ep_in[ep].queue);
621 QTAILQ_INIT(&dev->ep_out[ep].queue);
622 }
623 }
624
625 void usb_ep_dump(USBDevice *dev)
626 {
627 static const char *tname[] = {
628 [USB_ENDPOINT_XFER_CONTROL] = "control",
629 [USB_ENDPOINT_XFER_ISOC] = "isoc",
630 [USB_ENDPOINT_XFER_BULK] = "bulk",
631 [USB_ENDPOINT_XFER_INT] = "int",
632 };
633 int ifnum, ep, first;
634
635 fprintf(stderr, "Device \"%s\", config %d\n",
636 dev->product_desc, dev->configuration);
637 for (ifnum = 0; ifnum < 16; ifnum++) {
638 first = 1;
639 for (ep = 0; ep < USB_MAX_ENDPOINTS; ep++) {
640 if (dev->ep_in[ep].type != USB_ENDPOINT_XFER_INVALID &&
641 dev->ep_in[ep].ifnum == ifnum) {
642 if (first) {
643 first = 0;
644 fprintf(stderr, " Interface %d, alternative %d\n",
645 ifnum, dev->altsetting[ifnum]);
646 }
647 fprintf(stderr, " Endpoint %d, IN, %s, %d max\n", ep,
648 tname[dev->ep_in[ep].type],
649 dev->ep_in[ep].max_packet_size);
650 }
651 if (dev->ep_out[ep].type != USB_ENDPOINT_XFER_INVALID &&
652 dev->ep_out[ep].ifnum == ifnum) {
653 if (first) {
654 first = 0;
655 fprintf(stderr, " Interface %d, alternative %d\n",
656 ifnum, dev->altsetting[ifnum]);
657 }
658 fprintf(stderr, " Endpoint %d, OUT, %s, %d max\n", ep,
659 tname[dev->ep_out[ep].type],
660 dev->ep_out[ep].max_packet_size);
661 }
662 }
663 }
664 fprintf(stderr, "--\n");
665 }
666
667 struct USBEndpoint *usb_ep_get(USBDevice *dev, int pid, int ep)
668 {
669 struct USBEndpoint *eps;
670
671 if (dev == NULL) {
672 return NULL;
673 }
674 eps = (pid == USB_TOKEN_IN) ? dev->ep_in : dev->ep_out;
675 if (ep == 0) {
676 return &dev->ep_ctl;
677 }
678 assert(pid == USB_TOKEN_IN || pid == USB_TOKEN_OUT);
679 assert(ep > 0 && ep <= USB_MAX_ENDPOINTS);
680 return eps + ep - 1;
681 }
682
683 uint8_t usb_ep_get_type(USBDevice *dev, int pid, int ep)
684 {
685 struct USBEndpoint *uep = usb_ep_get(dev, pid, ep);
686 return uep->type;
687 }
688
689 void usb_ep_set_type(USBDevice *dev, int pid, int ep, uint8_t type)
690 {
691 struct USBEndpoint *uep = usb_ep_get(dev, pid, ep);
692 uep->type = type;
693 }
694
695 uint8_t usb_ep_get_ifnum(USBDevice *dev, int pid, int ep)
696 {
697 struct USBEndpoint *uep = usb_ep_get(dev, pid, ep);
698 return uep->ifnum;
699 }
700
701 void usb_ep_set_ifnum(USBDevice *dev, int pid, int ep, uint8_t ifnum)
702 {
703 struct USBEndpoint *uep = usb_ep_get(dev, pid, ep);
704 uep->ifnum = ifnum;
705 }
706
707 void usb_ep_set_max_packet_size(USBDevice *dev, int pid, int ep,
708 uint16_t raw)
709 {
710 struct USBEndpoint *uep = usb_ep_get(dev, pid, ep);
711 int size, microframes;
712
713 size = raw & 0x7ff;
714 switch ((raw >> 11) & 3) {
715 case 1:
716 microframes = 2;
717 break;
718 case 2:
719 microframes = 3;
720 break;
721 default:
722 microframes = 1;
723 break;
724 }
725 uep->max_packet_size = size * microframes;
726 }
727
728 int usb_ep_get_max_packet_size(USBDevice *dev, int pid, int ep)
729 {
730 struct USBEndpoint *uep = usb_ep_get(dev, pid, ep);
731 return uep->max_packet_size;
732 }
733
734 void usb_ep_set_pipeline(USBDevice *dev, int pid, int ep, bool enabled)
735 {
736 struct USBEndpoint *uep = usb_ep_get(dev, pid, ep);
737 uep->pipeline = enabled;
738 }
739
740 USBPacket *usb_ep_find_packet_by_id(USBDevice *dev, int pid, int ep,
741 uint64_t id)
742 {
743 struct USBEndpoint *uep = usb_ep_get(dev, pid, ep);
744 USBPacket *p;
745
746 while ((p = QTAILQ_FIRST(&uep->queue)) != NULL) {
747 if (p->id == id) {
748 return p;
749 }
750 }
751
752 return NULL;
753 }