]> git.proxmox.com Git - qemu.git/blob - hw/usb/hcd-ehci.c
ehci: improve expire time calculation
[qemu.git] / hw / usb / hcd-ehci.c
1 /*
2 * QEMU USB EHCI Emulation
3 *
4 * Copyright(c) 2008 Emutex Ltd. (address@hidden)
5 *
6 * EHCI project was started by Mark Burkley, with contributions by
7 * Niels de Vos. David S. Ahern continued working on it. Kevin Wolf,
8 * Jan Kiszka and Vincent Palatin contributed bugfixes.
9 *
10 *
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2 of the License, or(at your option) any later version.
15 *
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, see <http://www.gnu.org/licenses/>.
23 */
24
25 #include "hw/hw.h"
26 #include "qemu-timer.h"
27 #include "hw/usb.h"
28 #include "hw/pci.h"
29 #include "monitor.h"
30 #include "trace.h"
31 #include "dma.h"
32
33 #define EHCI_DEBUG 0
34
35 #if EHCI_DEBUG
36 #define DPRINTF printf
37 #else
38 #define DPRINTF(...)
39 #endif
40
41 /* internal processing - reset HC to try and recover */
42 #define USB_RET_PROCERR (-99)
43
44 #define MMIO_SIZE 0x1000
45
46 /* Capability Registers Base Address - section 2.2 */
47 #define CAPREGBASE 0x0000
48 #define CAPLENGTH CAPREGBASE + 0x0000 // 1-byte, 0x0001 reserved
49 #define HCIVERSION CAPREGBASE + 0x0002 // 2-bytes, i/f version #
50 #define HCSPARAMS CAPREGBASE + 0x0004 // 4-bytes, structural params
51 #define HCCPARAMS CAPREGBASE + 0x0008 // 4-bytes, capability params
52 #define EECP HCCPARAMS + 1
53 #define HCSPPORTROUTE1 CAPREGBASE + 0x000c
54 #define HCSPPORTROUTE2 CAPREGBASE + 0x0010
55
56 #define OPREGBASE 0x0020 // Operational Registers Base Address
57
58 #define USBCMD OPREGBASE + 0x0000
59 #define USBCMD_RUNSTOP (1 << 0) // run / Stop
60 #define USBCMD_HCRESET (1 << 1) // HC Reset
61 #define USBCMD_FLS (3 << 2) // Frame List Size
62 #define USBCMD_FLS_SH 2 // Frame List Size Shift
63 #define USBCMD_PSE (1 << 4) // Periodic Schedule Enable
64 #define USBCMD_ASE (1 << 5) // Asynch Schedule Enable
65 #define USBCMD_IAAD (1 << 6) // Int Asynch Advance Doorbell
66 #define USBCMD_LHCR (1 << 7) // Light Host Controller Reset
67 #define USBCMD_ASPMC (3 << 8) // Async Sched Park Mode Count
68 #define USBCMD_ASPME (1 << 11) // Async Sched Park Mode Enable
69 #define USBCMD_ITC (0x7f << 16) // Int Threshold Control
70 #define USBCMD_ITC_SH 16 // Int Threshold Control Shift
71
72 #define USBSTS OPREGBASE + 0x0004
73 #define USBSTS_RO_MASK 0x0000003f
74 #define USBSTS_INT (1 << 0) // USB Interrupt
75 #define USBSTS_ERRINT (1 << 1) // Error Interrupt
76 #define USBSTS_PCD (1 << 2) // Port Change Detect
77 #define USBSTS_FLR (1 << 3) // Frame List Rollover
78 #define USBSTS_HSE (1 << 4) // Host System Error
79 #define USBSTS_IAA (1 << 5) // Interrupt on Async Advance
80 #define USBSTS_HALT (1 << 12) // HC Halted
81 #define USBSTS_REC (1 << 13) // Reclamation
82 #define USBSTS_PSS (1 << 14) // Periodic Schedule Status
83 #define USBSTS_ASS (1 << 15) // Asynchronous Schedule Status
84
85 /*
86 * Interrupt enable bits correspond to the interrupt active bits in USBSTS
87 * so no need to redefine here.
88 */
89 #define USBINTR OPREGBASE + 0x0008
90 #define USBINTR_MASK 0x0000003f
91
92 #define FRINDEX OPREGBASE + 0x000c
93 #define CTRLDSSEGMENT OPREGBASE + 0x0010
94 #define PERIODICLISTBASE OPREGBASE + 0x0014
95 #define ASYNCLISTADDR OPREGBASE + 0x0018
96 #define ASYNCLISTADDR_MASK 0xffffffe0
97
98 #define CONFIGFLAG OPREGBASE + 0x0040
99
100 #define PORTSC (OPREGBASE + 0x0044)
101 #define PORTSC_BEGIN PORTSC
102 #define PORTSC_END (PORTSC + 4 * NB_PORTS)
103 /*
104 * Bits that are reserved or are read-only are masked out of values
105 * written to us by software
106 */
107 #define PORTSC_RO_MASK 0x007001c0
108 #define PORTSC_RWC_MASK 0x0000002a
109 #define PORTSC_WKOC_E (1 << 22) // Wake on Over Current Enable
110 #define PORTSC_WKDS_E (1 << 21) // Wake on Disconnect Enable
111 #define PORTSC_WKCN_E (1 << 20) // Wake on Connect Enable
112 #define PORTSC_PTC (15 << 16) // Port Test Control
113 #define PORTSC_PTC_SH 16 // Port Test Control shift
114 #define PORTSC_PIC (3 << 14) // Port Indicator Control
115 #define PORTSC_PIC_SH 14 // Port Indicator Control Shift
116 #define PORTSC_POWNER (1 << 13) // Port Owner
117 #define PORTSC_PPOWER (1 << 12) // Port Power
118 #define PORTSC_LINESTAT (3 << 10) // Port Line Status
119 #define PORTSC_LINESTAT_SH 10 // Port Line Status Shift
120 #define PORTSC_PRESET (1 << 8) // Port Reset
121 #define PORTSC_SUSPEND (1 << 7) // Port Suspend
122 #define PORTSC_FPRES (1 << 6) // Force Port Resume
123 #define PORTSC_OCC (1 << 5) // Over Current Change
124 #define PORTSC_OCA (1 << 4) // Over Current Active
125 #define PORTSC_PEDC (1 << 3) // Port Enable/Disable Change
126 #define PORTSC_PED (1 << 2) // Port Enable/Disable
127 #define PORTSC_CSC (1 << 1) // Connect Status Change
128 #define PORTSC_CONNECT (1 << 0) // Current Connect Status
129
130 #define FRAME_TIMER_FREQ 1000
131 #define FRAME_TIMER_NS (1000000000 / FRAME_TIMER_FREQ)
132
133 #define NB_MAXINTRATE 8 // Max rate at which controller issues ints
134 #define NB_PORTS 6 // Number of downstream ports
135 #define BUFF_SIZE 5*4096 // Max bytes to transfer per transaction
136 #define MAX_QH 100 // Max allowable queue heads in a chain
137
138 /* Internal periodic / asynchronous schedule state machine states
139 */
140 typedef enum {
141 EST_INACTIVE = 1000,
142 EST_ACTIVE,
143 EST_EXECUTING,
144 EST_SLEEPING,
145 /* The following states are internal to the state machine function
146 */
147 EST_WAITLISTHEAD,
148 EST_FETCHENTRY,
149 EST_FETCHQH,
150 EST_FETCHITD,
151 EST_FETCHSITD,
152 EST_ADVANCEQUEUE,
153 EST_FETCHQTD,
154 EST_EXECUTE,
155 EST_WRITEBACK,
156 EST_HORIZONTALQH
157 } EHCI_STATES;
158
159 /* macros for accessing fields within next link pointer entry */
160 #define NLPTR_GET(x) ((x) & 0xffffffe0)
161 #define NLPTR_TYPE_GET(x) (((x) >> 1) & 3)
162 #define NLPTR_TBIT(x) ((x) & 1) // 1=invalid, 0=valid
163
164 /* link pointer types */
165 #define NLPTR_TYPE_ITD 0 // isoc xfer descriptor
166 #define NLPTR_TYPE_QH 1 // queue head
167 #define NLPTR_TYPE_STITD 2 // split xaction, isoc xfer descriptor
168 #define NLPTR_TYPE_FSTN 3 // frame span traversal node
169
170
171 /* EHCI spec version 1.0 Section 3.3
172 */
173 typedef struct EHCIitd {
174 uint32_t next;
175
176 uint32_t transact[8];
177 #define ITD_XACT_ACTIVE (1 << 31)
178 #define ITD_XACT_DBERROR (1 << 30)
179 #define ITD_XACT_BABBLE (1 << 29)
180 #define ITD_XACT_XACTERR (1 << 28)
181 #define ITD_XACT_LENGTH_MASK 0x0fff0000
182 #define ITD_XACT_LENGTH_SH 16
183 #define ITD_XACT_IOC (1 << 15)
184 #define ITD_XACT_PGSEL_MASK 0x00007000
185 #define ITD_XACT_PGSEL_SH 12
186 #define ITD_XACT_OFFSET_MASK 0x00000fff
187
188 uint32_t bufptr[7];
189 #define ITD_BUFPTR_MASK 0xfffff000
190 #define ITD_BUFPTR_SH 12
191 #define ITD_BUFPTR_EP_MASK 0x00000f00
192 #define ITD_BUFPTR_EP_SH 8
193 #define ITD_BUFPTR_DEVADDR_MASK 0x0000007f
194 #define ITD_BUFPTR_DEVADDR_SH 0
195 #define ITD_BUFPTR_DIRECTION (1 << 11)
196 #define ITD_BUFPTR_MAXPKT_MASK 0x000007ff
197 #define ITD_BUFPTR_MAXPKT_SH 0
198 #define ITD_BUFPTR_MULT_MASK 0x00000003
199 #define ITD_BUFPTR_MULT_SH 0
200 } EHCIitd;
201
202 /* EHCI spec version 1.0 Section 3.4
203 */
204 typedef struct EHCIsitd {
205 uint32_t next; // Standard next link pointer
206 uint32_t epchar;
207 #define SITD_EPCHAR_IO (1 << 31)
208 #define SITD_EPCHAR_PORTNUM_MASK 0x7f000000
209 #define SITD_EPCHAR_PORTNUM_SH 24
210 #define SITD_EPCHAR_HUBADD_MASK 0x007f0000
211 #define SITD_EPCHAR_HUBADDR_SH 16
212 #define SITD_EPCHAR_EPNUM_MASK 0x00000f00
213 #define SITD_EPCHAR_EPNUM_SH 8
214 #define SITD_EPCHAR_DEVADDR_MASK 0x0000007f
215
216 uint32_t uframe;
217 #define SITD_UFRAME_CMASK_MASK 0x0000ff00
218 #define SITD_UFRAME_CMASK_SH 8
219 #define SITD_UFRAME_SMASK_MASK 0x000000ff
220
221 uint32_t results;
222 #define SITD_RESULTS_IOC (1 << 31)
223 #define SITD_RESULTS_PGSEL (1 << 30)
224 #define SITD_RESULTS_TBYTES_MASK 0x03ff0000
225 #define SITD_RESULTS_TYBYTES_SH 16
226 #define SITD_RESULTS_CPROGMASK_MASK 0x0000ff00
227 #define SITD_RESULTS_CPROGMASK_SH 8
228 #define SITD_RESULTS_ACTIVE (1 << 7)
229 #define SITD_RESULTS_ERR (1 << 6)
230 #define SITD_RESULTS_DBERR (1 << 5)
231 #define SITD_RESULTS_BABBLE (1 << 4)
232 #define SITD_RESULTS_XACTERR (1 << 3)
233 #define SITD_RESULTS_MISSEDUF (1 << 2)
234 #define SITD_RESULTS_SPLITXSTATE (1 << 1)
235
236 uint32_t bufptr[2];
237 #define SITD_BUFPTR_MASK 0xfffff000
238 #define SITD_BUFPTR_CURROFF_MASK 0x00000fff
239 #define SITD_BUFPTR_TPOS_MASK 0x00000018
240 #define SITD_BUFPTR_TPOS_SH 3
241 #define SITD_BUFPTR_TCNT_MASK 0x00000007
242
243 uint32_t backptr; // Standard next link pointer
244 } EHCIsitd;
245
246 /* EHCI spec version 1.0 Section 3.5
247 */
248 typedef struct EHCIqtd {
249 uint32_t next; // Standard next link pointer
250 uint32_t altnext; // Standard next link pointer
251 uint32_t token;
252 #define QTD_TOKEN_DTOGGLE (1 << 31)
253 #define QTD_TOKEN_TBYTES_MASK 0x7fff0000
254 #define QTD_TOKEN_TBYTES_SH 16
255 #define QTD_TOKEN_IOC (1 << 15)
256 #define QTD_TOKEN_CPAGE_MASK 0x00007000
257 #define QTD_TOKEN_CPAGE_SH 12
258 #define QTD_TOKEN_CERR_MASK 0x00000c00
259 #define QTD_TOKEN_CERR_SH 10
260 #define QTD_TOKEN_PID_MASK 0x00000300
261 #define QTD_TOKEN_PID_SH 8
262 #define QTD_TOKEN_ACTIVE (1 << 7)
263 #define QTD_TOKEN_HALT (1 << 6)
264 #define QTD_TOKEN_DBERR (1 << 5)
265 #define QTD_TOKEN_BABBLE (1 << 4)
266 #define QTD_TOKEN_XACTERR (1 << 3)
267 #define QTD_TOKEN_MISSEDUF (1 << 2)
268 #define QTD_TOKEN_SPLITXSTATE (1 << 1)
269 #define QTD_TOKEN_PING (1 << 0)
270
271 uint32_t bufptr[5]; // Standard buffer pointer
272 #define QTD_BUFPTR_MASK 0xfffff000
273 #define QTD_BUFPTR_SH 12
274 } EHCIqtd;
275
276 /* EHCI spec version 1.0 Section 3.6
277 */
278 typedef struct EHCIqh {
279 uint32_t next; // Standard next link pointer
280
281 /* endpoint characteristics */
282 uint32_t epchar;
283 #define QH_EPCHAR_RL_MASK 0xf0000000
284 #define QH_EPCHAR_RL_SH 28
285 #define QH_EPCHAR_C (1 << 27)
286 #define QH_EPCHAR_MPLEN_MASK 0x07FF0000
287 #define QH_EPCHAR_MPLEN_SH 16
288 #define QH_EPCHAR_H (1 << 15)
289 #define QH_EPCHAR_DTC (1 << 14)
290 #define QH_EPCHAR_EPS_MASK 0x00003000
291 #define QH_EPCHAR_EPS_SH 12
292 #define EHCI_QH_EPS_FULL 0
293 #define EHCI_QH_EPS_LOW 1
294 #define EHCI_QH_EPS_HIGH 2
295 #define EHCI_QH_EPS_RESERVED 3
296
297 #define QH_EPCHAR_EP_MASK 0x00000f00
298 #define QH_EPCHAR_EP_SH 8
299 #define QH_EPCHAR_I (1 << 7)
300 #define QH_EPCHAR_DEVADDR_MASK 0x0000007f
301 #define QH_EPCHAR_DEVADDR_SH 0
302
303 /* endpoint capabilities */
304 uint32_t epcap;
305 #define QH_EPCAP_MULT_MASK 0xc0000000
306 #define QH_EPCAP_MULT_SH 30
307 #define QH_EPCAP_PORTNUM_MASK 0x3f800000
308 #define QH_EPCAP_PORTNUM_SH 23
309 #define QH_EPCAP_HUBADDR_MASK 0x007f0000
310 #define QH_EPCAP_HUBADDR_SH 16
311 #define QH_EPCAP_CMASK_MASK 0x0000ff00
312 #define QH_EPCAP_CMASK_SH 8
313 #define QH_EPCAP_SMASK_MASK 0x000000ff
314 #define QH_EPCAP_SMASK_SH 0
315
316 uint32_t current_qtd; // Standard next link pointer
317 uint32_t next_qtd; // Standard next link pointer
318 uint32_t altnext_qtd;
319 #define QH_ALTNEXT_NAKCNT_MASK 0x0000001e
320 #define QH_ALTNEXT_NAKCNT_SH 1
321
322 uint32_t token; // Same as QTD token
323 uint32_t bufptr[5]; // Standard buffer pointer
324 #define BUFPTR_CPROGMASK_MASK 0x000000ff
325 #define BUFPTR_FRAMETAG_MASK 0x0000001f
326 #define BUFPTR_SBYTES_MASK 0x00000fe0
327 #define BUFPTR_SBYTES_SH 5
328 } EHCIqh;
329
330 /* EHCI spec version 1.0 Section 3.7
331 */
332 typedef struct EHCIfstn {
333 uint32_t next; // Standard next link pointer
334 uint32_t backptr; // Standard next link pointer
335 } EHCIfstn;
336
337 typedef struct EHCIPacket EHCIPacket;
338 typedef struct EHCIQueue EHCIQueue;
339 typedef struct EHCIState EHCIState;
340
341 enum async_state {
342 EHCI_ASYNC_NONE = 0,
343 EHCI_ASYNC_INFLIGHT,
344 EHCI_ASYNC_FINISHED,
345 };
346
347 struct EHCIPacket {
348 EHCIQueue *queue;
349 QTAILQ_ENTRY(EHCIPacket) next;
350
351 EHCIqtd qtd; /* copy of current QTD (being worked on) */
352 uint32_t qtdaddr; /* address QTD read from */
353
354 USBPacket packet;
355 QEMUSGList sgl;
356 int pid;
357 uint32_t tbytes;
358 enum async_state async;
359 int usb_status;
360 };
361
362 struct EHCIQueue {
363 EHCIState *ehci;
364 QTAILQ_ENTRY(EHCIQueue) next;
365 uint32_t seen;
366 uint64_t ts;
367 int async;
368 int revalidate;
369
370 /* cached data from guest - needs to be flushed
371 * when guest removes an entry (doorbell, handshake sequence)
372 */
373 EHCIqh qh; /* copy of current QH (being worked on) */
374 uint32_t qhaddr; /* address QH read from */
375 uint32_t qtdaddr; /* address QTD read from */
376 USBDevice *dev;
377 QTAILQ_HEAD(, EHCIPacket) packets;
378 };
379
380 typedef QTAILQ_HEAD(EHCIQueueHead, EHCIQueue) EHCIQueueHead;
381
382 struct EHCIState {
383 PCIDevice dev;
384 USBBus bus;
385 qemu_irq irq;
386 MemoryRegion mem;
387 int companion_count;
388
389 /* properties */
390 uint32_t maxframes;
391
392 /*
393 * EHCI spec version 1.0 Section 2.3
394 * Host Controller Operational Registers
395 */
396 union {
397 uint8_t mmio[MMIO_SIZE];
398 struct {
399 uint8_t cap[OPREGBASE];
400 uint32_t usbcmd;
401 uint32_t usbsts;
402 uint32_t usbintr;
403 uint32_t frindex;
404 uint32_t ctrldssegment;
405 uint32_t periodiclistbase;
406 uint32_t asynclistaddr;
407 uint32_t notused[9];
408 uint32_t configflag;
409 uint32_t portsc[NB_PORTS];
410 };
411 };
412
413 /*
414 * Internal states, shadow registers, etc
415 */
416 QEMUTimer *frame_timer;
417 QEMUBH *async_bh;
418 uint32_t astate; /* Current state in asynchronous schedule */
419 uint32_t pstate; /* Current state in periodic schedule */
420 USBPort ports[NB_PORTS];
421 USBPort *companion_ports[NB_PORTS];
422 uint32_t usbsts_pending;
423 uint32_t usbsts_frindex;
424 EHCIQueueHead aqueues;
425 EHCIQueueHead pqueues;
426
427 /* which address to look at next */
428 uint32_t a_fetch_addr;
429 uint32_t p_fetch_addr;
430
431 USBPacket ipacket;
432 QEMUSGList isgl;
433
434 uint64_t last_run_ns;
435 uint32_t async_stepdown;
436 };
437
438 #define SET_LAST_RUN_CLOCK(s) \
439 (s)->last_run_ns = qemu_get_clock_ns(vm_clock);
440
441 /* nifty macros from Arnon's EHCI version */
442 #define get_field(data, field) \
443 (((data) & field##_MASK) >> field##_SH)
444
445 #define set_field(data, newval, field) do { \
446 uint32_t val = *data; \
447 val &= ~ field##_MASK; \
448 val |= ((newval) << field##_SH) & field##_MASK; \
449 *data = val; \
450 } while(0)
451
452 static const char *ehci_state_names[] = {
453 [EST_INACTIVE] = "INACTIVE",
454 [EST_ACTIVE] = "ACTIVE",
455 [EST_EXECUTING] = "EXECUTING",
456 [EST_SLEEPING] = "SLEEPING",
457 [EST_WAITLISTHEAD] = "WAITLISTHEAD",
458 [EST_FETCHENTRY] = "FETCH ENTRY",
459 [EST_FETCHQH] = "FETCH QH",
460 [EST_FETCHITD] = "FETCH ITD",
461 [EST_ADVANCEQUEUE] = "ADVANCEQUEUE",
462 [EST_FETCHQTD] = "FETCH QTD",
463 [EST_EXECUTE] = "EXECUTE",
464 [EST_WRITEBACK] = "WRITEBACK",
465 [EST_HORIZONTALQH] = "HORIZONTALQH",
466 };
467
468 static const char *ehci_mmio_names[] = {
469 [CAPLENGTH] = "CAPLENGTH",
470 [HCIVERSION] = "HCIVERSION",
471 [HCSPARAMS] = "HCSPARAMS",
472 [HCCPARAMS] = "HCCPARAMS",
473 [USBCMD] = "USBCMD",
474 [USBSTS] = "USBSTS",
475 [USBINTR] = "USBINTR",
476 [FRINDEX] = "FRINDEX",
477 [PERIODICLISTBASE] = "P-LIST BASE",
478 [ASYNCLISTADDR] = "A-LIST ADDR",
479 [PORTSC_BEGIN] = "PORTSC #0",
480 [PORTSC_BEGIN + 4] = "PORTSC #1",
481 [PORTSC_BEGIN + 8] = "PORTSC #2",
482 [PORTSC_BEGIN + 12] = "PORTSC #3",
483 [PORTSC_BEGIN + 16] = "PORTSC #4",
484 [PORTSC_BEGIN + 20] = "PORTSC #5",
485 [CONFIGFLAG] = "CONFIGFLAG",
486 };
487
488 static const char *nr2str(const char **n, size_t len, uint32_t nr)
489 {
490 if (nr < len && n[nr] != NULL) {
491 return n[nr];
492 } else {
493 return "unknown";
494 }
495 }
496
497 static const char *state2str(uint32_t state)
498 {
499 return nr2str(ehci_state_names, ARRAY_SIZE(ehci_state_names), state);
500 }
501
502 static const char *addr2str(target_phys_addr_t addr)
503 {
504 return nr2str(ehci_mmio_names, ARRAY_SIZE(ehci_mmio_names), addr);
505 }
506
507 static void ehci_trace_usbsts(uint32_t mask, int state)
508 {
509 /* interrupts */
510 if (mask & USBSTS_INT) {
511 trace_usb_ehci_usbsts("INT", state);
512 }
513 if (mask & USBSTS_ERRINT) {
514 trace_usb_ehci_usbsts("ERRINT", state);
515 }
516 if (mask & USBSTS_PCD) {
517 trace_usb_ehci_usbsts("PCD", state);
518 }
519 if (mask & USBSTS_FLR) {
520 trace_usb_ehci_usbsts("FLR", state);
521 }
522 if (mask & USBSTS_HSE) {
523 trace_usb_ehci_usbsts("HSE", state);
524 }
525 if (mask & USBSTS_IAA) {
526 trace_usb_ehci_usbsts("IAA", state);
527 }
528
529 /* status */
530 if (mask & USBSTS_HALT) {
531 trace_usb_ehci_usbsts("HALT", state);
532 }
533 if (mask & USBSTS_REC) {
534 trace_usb_ehci_usbsts("REC", state);
535 }
536 if (mask & USBSTS_PSS) {
537 trace_usb_ehci_usbsts("PSS", state);
538 }
539 if (mask & USBSTS_ASS) {
540 trace_usb_ehci_usbsts("ASS", state);
541 }
542 }
543
544 static inline void ehci_set_usbsts(EHCIState *s, int mask)
545 {
546 if ((s->usbsts & mask) == mask) {
547 return;
548 }
549 ehci_trace_usbsts(mask, 1);
550 s->usbsts |= mask;
551 }
552
553 static inline void ehci_clear_usbsts(EHCIState *s, int mask)
554 {
555 if ((s->usbsts & mask) == 0) {
556 return;
557 }
558 ehci_trace_usbsts(mask, 0);
559 s->usbsts &= ~mask;
560 }
561
562 /* update irq line */
563 static inline void ehci_update_irq(EHCIState *s)
564 {
565 int level = 0;
566
567 if ((s->usbsts & USBINTR_MASK) & s->usbintr) {
568 level = 1;
569 }
570
571 trace_usb_ehci_irq(level, s->frindex, s->usbsts, s->usbintr);
572 qemu_set_irq(s->irq, level);
573 }
574
575 /* flag interrupt condition */
576 static inline void ehci_raise_irq(EHCIState *s, int intr)
577 {
578 s->usbsts_pending |= intr;
579 }
580
581 /*
582 * Commit pending interrupts (added via ehci_raise_irq),
583 * at the rate allowed by "Interrupt Threshold Control".
584 */
585 static inline void ehci_commit_irq(EHCIState *s)
586 {
587 uint32_t itc;
588
589 if (!s->usbsts_pending) {
590 return;
591 }
592 if (s->usbsts_frindex > s->frindex) {
593 return;
594 }
595
596 itc = (s->usbcmd >> 16) & 0xff;
597 s->usbsts |= s->usbsts_pending;
598 s->usbsts_pending = 0;
599 s->usbsts_frindex = s->frindex + itc;
600 ehci_update_irq(s);
601 }
602
603 static void ehci_update_halt(EHCIState *s)
604 {
605 if (s->usbcmd & USBCMD_RUNSTOP) {
606 ehci_clear_usbsts(s, USBSTS_HALT);
607 } else {
608 if (s->astate == EST_INACTIVE && s->pstate == EST_INACTIVE) {
609 ehci_set_usbsts(s, USBSTS_HALT);
610 }
611 }
612 }
613
614 static void ehci_set_state(EHCIState *s, int async, int state)
615 {
616 if (async) {
617 trace_usb_ehci_state("async", state2str(state));
618 s->astate = state;
619 if (s->astate == EST_INACTIVE) {
620 ehci_clear_usbsts(s, USBSTS_ASS);
621 ehci_update_halt(s);
622 } else {
623 ehci_set_usbsts(s, USBSTS_ASS);
624 }
625 } else {
626 trace_usb_ehci_state("periodic", state2str(state));
627 s->pstate = state;
628 if (s->pstate == EST_INACTIVE) {
629 ehci_clear_usbsts(s, USBSTS_PSS);
630 ehci_update_halt(s);
631 } else {
632 ehci_set_usbsts(s, USBSTS_PSS);
633 }
634 }
635 }
636
637 static int ehci_get_state(EHCIState *s, int async)
638 {
639 return async ? s->astate : s->pstate;
640 }
641
642 static void ehci_set_fetch_addr(EHCIState *s, int async, uint32_t addr)
643 {
644 if (async) {
645 s->a_fetch_addr = addr;
646 } else {
647 s->p_fetch_addr = addr;
648 }
649 }
650
651 static int ehci_get_fetch_addr(EHCIState *s, int async)
652 {
653 return async ? s->a_fetch_addr : s->p_fetch_addr;
654 }
655
656 static void ehci_trace_qh(EHCIQueue *q, target_phys_addr_t addr, EHCIqh *qh)
657 {
658 /* need three here due to argument count limits */
659 trace_usb_ehci_qh_ptrs(q, addr, qh->next,
660 qh->current_qtd, qh->next_qtd, qh->altnext_qtd);
661 trace_usb_ehci_qh_fields(addr,
662 get_field(qh->epchar, QH_EPCHAR_RL),
663 get_field(qh->epchar, QH_EPCHAR_MPLEN),
664 get_field(qh->epchar, QH_EPCHAR_EPS),
665 get_field(qh->epchar, QH_EPCHAR_EP),
666 get_field(qh->epchar, QH_EPCHAR_DEVADDR));
667 trace_usb_ehci_qh_bits(addr,
668 (bool)(qh->epchar & QH_EPCHAR_C),
669 (bool)(qh->epchar & QH_EPCHAR_H),
670 (bool)(qh->epchar & QH_EPCHAR_DTC),
671 (bool)(qh->epchar & QH_EPCHAR_I));
672 }
673
674 static void ehci_trace_qtd(EHCIQueue *q, target_phys_addr_t addr, EHCIqtd *qtd)
675 {
676 /* need three here due to argument count limits */
677 trace_usb_ehci_qtd_ptrs(q, addr, qtd->next, qtd->altnext);
678 trace_usb_ehci_qtd_fields(addr,
679 get_field(qtd->token, QTD_TOKEN_TBYTES),
680 get_field(qtd->token, QTD_TOKEN_CPAGE),
681 get_field(qtd->token, QTD_TOKEN_CERR),
682 get_field(qtd->token, QTD_TOKEN_PID));
683 trace_usb_ehci_qtd_bits(addr,
684 (bool)(qtd->token & QTD_TOKEN_IOC),
685 (bool)(qtd->token & QTD_TOKEN_ACTIVE),
686 (bool)(qtd->token & QTD_TOKEN_HALT),
687 (bool)(qtd->token & QTD_TOKEN_BABBLE),
688 (bool)(qtd->token & QTD_TOKEN_XACTERR));
689 }
690
691 static void ehci_trace_itd(EHCIState *s, target_phys_addr_t addr, EHCIitd *itd)
692 {
693 trace_usb_ehci_itd(addr, itd->next,
694 get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT),
695 get_field(itd->bufptr[2], ITD_BUFPTR_MULT),
696 get_field(itd->bufptr[0], ITD_BUFPTR_EP),
697 get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR));
698 }
699
700 static void ehci_trace_sitd(EHCIState *s, target_phys_addr_t addr,
701 EHCIsitd *sitd)
702 {
703 trace_usb_ehci_sitd(addr, sitd->next,
704 (bool)(sitd->results & SITD_RESULTS_ACTIVE));
705 }
706
707 static inline bool ehci_enabled(EHCIState *s)
708 {
709 return s->usbcmd & USBCMD_RUNSTOP;
710 }
711
712 static inline bool ehci_async_enabled(EHCIState *s)
713 {
714 return ehci_enabled(s) && (s->usbcmd & USBCMD_ASE);
715 }
716
717 static inline bool ehci_periodic_enabled(EHCIState *s)
718 {
719 return ehci_enabled(s) && (s->usbcmd & USBCMD_PSE);
720 }
721
722 /* packet management */
723
724 static EHCIPacket *ehci_alloc_packet(EHCIQueue *q)
725 {
726 EHCIPacket *p;
727
728 p = g_new0(EHCIPacket, 1);
729 p->queue = q;
730 usb_packet_init(&p->packet);
731 QTAILQ_INSERT_TAIL(&q->packets, p, next);
732 trace_usb_ehci_packet_action(p->queue, p, "alloc");
733 return p;
734 }
735
736 static void ehci_free_packet(EHCIPacket *p)
737 {
738 trace_usb_ehci_packet_action(p->queue, p, "free");
739 if (p->async == EHCI_ASYNC_INFLIGHT) {
740 usb_cancel_packet(&p->packet);
741 }
742 QTAILQ_REMOVE(&p->queue->packets, p, next);
743 usb_packet_cleanup(&p->packet);
744 g_free(p);
745 }
746
747 /* queue management */
748
749 static EHCIQueue *ehci_alloc_queue(EHCIState *ehci, uint32_t addr, int async)
750 {
751 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
752 EHCIQueue *q;
753
754 q = g_malloc0(sizeof(*q));
755 q->ehci = ehci;
756 q->qhaddr = addr;
757 q->async = async;
758 QTAILQ_INIT(&q->packets);
759 QTAILQ_INSERT_HEAD(head, q, next);
760 trace_usb_ehci_queue_action(q, "alloc");
761 return q;
762 }
763
764 static void ehci_free_queue(EHCIQueue *q)
765 {
766 EHCIQueueHead *head = q->async ? &q->ehci->aqueues : &q->ehci->pqueues;
767 EHCIPacket *p;
768
769 trace_usb_ehci_queue_action(q, "free");
770 while ((p = QTAILQ_FIRST(&q->packets)) != NULL) {
771 ehci_free_packet(p);
772 }
773 QTAILQ_REMOVE(head, q, next);
774 g_free(q);
775 }
776
777 static EHCIQueue *ehci_find_queue_by_qh(EHCIState *ehci, uint32_t addr,
778 int async)
779 {
780 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
781 EHCIQueue *q;
782
783 QTAILQ_FOREACH(q, head, next) {
784 if (addr == q->qhaddr) {
785 return q;
786 }
787 }
788 return NULL;
789 }
790
791 static void ehci_queues_tag_unused_async(EHCIState *ehci)
792 {
793 EHCIQueue *q;
794
795 QTAILQ_FOREACH(q, &ehci->aqueues, next) {
796 if (!q->seen) {
797 q->revalidate = 1;
798 }
799 }
800 }
801
802 static void ehci_queues_rip_unused(EHCIState *ehci, int async)
803 {
804 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
805 uint64_t maxage = FRAME_TIMER_NS * ehci->maxframes * 4;
806 EHCIQueue *q, *tmp;
807
808 QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
809 if (q->seen) {
810 q->seen = 0;
811 q->ts = ehci->last_run_ns;
812 continue;
813 }
814 if (ehci->last_run_ns < q->ts + maxage) {
815 continue;
816 }
817 ehci_free_queue(q);
818 }
819 }
820
821 static void ehci_queues_rip_device(EHCIState *ehci, USBDevice *dev, int async)
822 {
823 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
824 EHCIQueue *q, *tmp;
825
826 QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
827 if (q->dev != dev) {
828 continue;
829 }
830 ehci_free_queue(q);
831 }
832 }
833
834 static void ehci_queues_rip_all(EHCIState *ehci, int async)
835 {
836 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
837 EHCIQueue *q, *tmp;
838
839 QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
840 ehci_free_queue(q);
841 }
842 }
843
844 /* Attach or detach a device on root hub */
845
846 static void ehci_attach(USBPort *port)
847 {
848 EHCIState *s = port->opaque;
849 uint32_t *portsc = &s->portsc[port->index];
850 const char *owner = (*portsc & PORTSC_POWNER) ? "comp" : "ehci";
851
852 trace_usb_ehci_port_attach(port->index, owner, port->dev->product_desc);
853
854 if (*portsc & PORTSC_POWNER) {
855 USBPort *companion = s->companion_ports[port->index];
856 companion->dev = port->dev;
857 companion->ops->attach(companion);
858 return;
859 }
860
861 *portsc |= PORTSC_CONNECT;
862 *portsc |= PORTSC_CSC;
863
864 ehci_raise_irq(s, USBSTS_PCD);
865 ehci_commit_irq(s);
866 }
867
868 static void ehci_detach(USBPort *port)
869 {
870 EHCIState *s = port->opaque;
871 uint32_t *portsc = &s->portsc[port->index];
872 const char *owner = (*portsc & PORTSC_POWNER) ? "comp" : "ehci";
873
874 trace_usb_ehci_port_detach(port->index, owner);
875
876 if (*portsc & PORTSC_POWNER) {
877 USBPort *companion = s->companion_ports[port->index];
878 companion->ops->detach(companion);
879 companion->dev = NULL;
880 /*
881 * EHCI spec 4.2.2: "When a disconnect occurs... On the event,
882 * the port ownership is returned immediately to the EHCI controller."
883 */
884 *portsc &= ~PORTSC_POWNER;
885 return;
886 }
887
888 ehci_queues_rip_device(s, port->dev, 0);
889 ehci_queues_rip_device(s, port->dev, 1);
890
891 *portsc &= ~(PORTSC_CONNECT|PORTSC_PED);
892 *portsc |= PORTSC_CSC;
893
894 ehci_raise_irq(s, USBSTS_PCD);
895 ehci_commit_irq(s);
896 }
897
898 static void ehci_child_detach(USBPort *port, USBDevice *child)
899 {
900 EHCIState *s = port->opaque;
901 uint32_t portsc = s->portsc[port->index];
902
903 if (portsc & PORTSC_POWNER) {
904 USBPort *companion = s->companion_ports[port->index];
905 companion->ops->child_detach(companion, child);
906 return;
907 }
908
909 ehci_queues_rip_device(s, child, 0);
910 ehci_queues_rip_device(s, child, 1);
911 }
912
913 static void ehci_wakeup(USBPort *port)
914 {
915 EHCIState *s = port->opaque;
916 uint32_t portsc = s->portsc[port->index];
917
918 if (portsc & PORTSC_POWNER) {
919 USBPort *companion = s->companion_ports[port->index];
920 if (companion->ops->wakeup) {
921 companion->ops->wakeup(companion);
922 }
923 return;
924 }
925
926 qemu_bh_schedule(s->async_bh);
927 }
928
929 static int ehci_register_companion(USBBus *bus, USBPort *ports[],
930 uint32_t portcount, uint32_t firstport)
931 {
932 EHCIState *s = container_of(bus, EHCIState, bus);
933 uint32_t i;
934
935 if (firstport + portcount > NB_PORTS) {
936 qerror_report(QERR_INVALID_PARAMETER_VALUE, "firstport",
937 "firstport on masterbus");
938 error_printf_unless_qmp(
939 "firstport value of %u makes companion take ports %u - %u, which "
940 "is outside of the valid range of 0 - %u\n", firstport, firstport,
941 firstport + portcount - 1, NB_PORTS - 1);
942 return -1;
943 }
944
945 for (i = 0; i < portcount; i++) {
946 if (s->companion_ports[firstport + i]) {
947 qerror_report(QERR_INVALID_PARAMETER_VALUE, "masterbus",
948 "an USB masterbus");
949 error_printf_unless_qmp(
950 "port %u on masterbus %s already has a companion assigned\n",
951 firstport + i, bus->qbus.name);
952 return -1;
953 }
954 }
955
956 for (i = 0; i < portcount; i++) {
957 s->companion_ports[firstport + i] = ports[i];
958 s->ports[firstport + i].speedmask |=
959 USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL;
960 /* Ensure devs attached before the initial reset go to the companion */
961 s->portsc[firstport + i] = PORTSC_POWNER;
962 }
963
964 s->companion_count++;
965 s->mmio[0x05] = (s->companion_count << 4) | portcount;
966
967 return 0;
968 }
969
970 static USBDevice *ehci_find_device(EHCIState *ehci, uint8_t addr)
971 {
972 USBDevice *dev;
973 USBPort *port;
974 int i;
975
976 for (i = 0; i < NB_PORTS; i++) {
977 port = &ehci->ports[i];
978 if (!(ehci->portsc[i] & PORTSC_PED)) {
979 DPRINTF("Port %d not enabled\n", i);
980 continue;
981 }
982 dev = usb_find_device(port, addr);
983 if (dev != NULL) {
984 return dev;
985 }
986 }
987 return NULL;
988 }
989
990 /* 4.1 host controller initialization */
991 static void ehci_reset(void *opaque)
992 {
993 EHCIState *s = opaque;
994 int i;
995 USBDevice *devs[NB_PORTS];
996
997 trace_usb_ehci_reset();
998
999 /*
1000 * Do the detach before touching portsc, so that it correctly gets send to
1001 * us or to our companion based on PORTSC_POWNER before the reset.
1002 */
1003 for(i = 0; i < NB_PORTS; i++) {
1004 devs[i] = s->ports[i].dev;
1005 if (devs[i] && devs[i]->attached) {
1006 usb_detach(&s->ports[i]);
1007 }
1008 }
1009
1010 memset(&s->mmio[OPREGBASE], 0x00, MMIO_SIZE - OPREGBASE);
1011
1012 s->usbcmd = NB_MAXINTRATE << USBCMD_ITC_SH;
1013 s->usbsts = USBSTS_HALT;
1014 s->usbsts_pending = 0;
1015 s->usbsts_frindex = 0;
1016
1017 s->astate = EST_INACTIVE;
1018 s->pstate = EST_INACTIVE;
1019
1020 for(i = 0; i < NB_PORTS; i++) {
1021 if (s->companion_ports[i]) {
1022 s->portsc[i] = PORTSC_POWNER | PORTSC_PPOWER;
1023 } else {
1024 s->portsc[i] = PORTSC_PPOWER;
1025 }
1026 if (devs[i] && devs[i]->attached) {
1027 usb_attach(&s->ports[i]);
1028 usb_device_reset(devs[i]);
1029 }
1030 }
1031 ehci_queues_rip_all(s, 0);
1032 ehci_queues_rip_all(s, 1);
1033 qemu_del_timer(s->frame_timer);
1034 qemu_bh_cancel(s->async_bh);
1035 }
1036
1037 static uint32_t ehci_mem_readb(void *ptr, target_phys_addr_t addr)
1038 {
1039 EHCIState *s = ptr;
1040 uint32_t val;
1041
1042 val = s->mmio[addr];
1043
1044 return val;
1045 }
1046
1047 static uint32_t ehci_mem_readw(void *ptr, target_phys_addr_t addr)
1048 {
1049 EHCIState *s = ptr;
1050 uint32_t val;
1051
1052 val = s->mmio[addr] | (s->mmio[addr+1] << 8);
1053
1054 return val;
1055 }
1056
1057 static uint32_t ehci_mem_readl(void *ptr, target_phys_addr_t addr)
1058 {
1059 EHCIState *s = ptr;
1060 uint32_t val;
1061
1062 val = s->mmio[addr] | (s->mmio[addr+1] << 8) |
1063 (s->mmio[addr+2] << 16) | (s->mmio[addr+3] << 24);
1064
1065 trace_usb_ehci_mmio_readl(addr, addr2str(addr), val);
1066 return val;
1067 }
1068
1069 static void ehci_mem_writeb(void *ptr, target_phys_addr_t addr, uint32_t val)
1070 {
1071 fprintf(stderr, "EHCI doesn't handle byte writes to MMIO\n");
1072 exit(1);
1073 }
1074
1075 static void ehci_mem_writew(void *ptr, target_phys_addr_t addr, uint32_t val)
1076 {
1077 fprintf(stderr, "EHCI doesn't handle 16-bit writes to MMIO\n");
1078 exit(1);
1079 }
1080
1081 static void handle_port_owner_write(EHCIState *s, int port, uint32_t owner)
1082 {
1083 USBDevice *dev = s->ports[port].dev;
1084 uint32_t *portsc = &s->portsc[port];
1085 uint32_t orig;
1086
1087 if (s->companion_ports[port] == NULL)
1088 return;
1089
1090 owner = owner & PORTSC_POWNER;
1091 orig = *portsc & PORTSC_POWNER;
1092
1093 if (!(owner ^ orig)) {
1094 return;
1095 }
1096
1097 if (dev && dev->attached) {
1098 usb_detach(&s->ports[port]);
1099 }
1100
1101 *portsc &= ~PORTSC_POWNER;
1102 *portsc |= owner;
1103
1104 if (dev && dev->attached) {
1105 usb_attach(&s->ports[port]);
1106 }
1107 }
1108
1109 static void handle_port_status_write(EHCIState *s, int port, uint32_t val)
1110 {
1111 uint32_t *portsc = &s->portsc[port];
1112 USBDevice *dev = s->ports[port].dev;
1113
1114 /* Clear rwc bits */
1115 *portsc &= ~(val & PORTSC_RWC_MASK);
1116 /* The guest may clear, but not set the PED bit */
1117 *portsc &= val | ~PORTSC_PED;
1118 /* POWNER is masked out by RO_MASK as it is RO when we've no companion */
1119 handle_port_owner_write(s, port, val);
1120 /* And finally apply RO_MASK */
1121 val &= PORTSC_RO_MASK;
1122
1123 if ((val & PORTSC_PRESET) && !(*portsc & PORTSC_PRESET)) {
1124 trace_usb_ehci_port_reset(port, 1);
1125 }
1126
1127 if (!(val & PORTSC_PRESET) &&(*portsc & PORTSC_PRESET)) {
1128 trace_usb_ehci_port_reset(port, 0);
1129 if (dev && dev->attached) {
1130 usb_port_reset(&s->ports[port]);
1131 *portsc &= ~PORTSC_CSC;
1132 }
1133
1134 /*
1135 * Table 2.16 Set the enable bit(and enable bit change) to indicate
1136 * to SW that this port has a high speed device attached
1137 */
1138 if (dev && dev->attached && (dev->speedmask & USB_SPEED_MASK_HIGH)) {
1139 val |= PORTSC_PED;
1140 }
1141 }
1142
1143 *portsc &= ~PORTSC_RO_MASK;
1144 *portsc |= val;
1145 }
1146
1147 static void ehci_mem_writel(void *ptr, target_phys_addr_t addr, uint32_t val)
1148 {
1149 EHCIState *s = ptr;
1150 uint32_t *mmio = (uint32_t *)(&s->mmio[addr]);
1151 uint32_t old = *mmio;
1152 int i;
1153
1154 trace_usb_ehci_mmio_writel(addr, addr2str(addr), val);
1155
1156 /* Only aligned reads are allowed on OHCI */
1157 if (addr & 3) {
1158 fprintf(stderr, "usb-ehci: Mis-aligned write to addr 0x"
1159 TARGET_FMT_plx "\n", addr);
1160 return;
1161 }
1162
1163 if (addr >= PORTSC && addr < PORTSC + 4 * NB_PORTS) {
1164 handle_port_status_write(s, (addr-PORTSC)/4, val);
1165 trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
1166 return;
1167 }
1168
1169 if (addr < OPREGBASE) {
1170 fprintf(stderr, "usb-ehci: write attempt to read-only register"
1171 TARGET_FMT_plx "\n", addr);
1172 return;
1173 }
1174
1175
1176 /* Do any register specific pre-write processing here. */
1177 switch(addr) {
1178 case USBCMD:
1179 if (val & USBCMD_HCRESET) {
1180 ehci_reset(s);
1181 val = s->usbcmd;
1182 break;
1183 }
1184
1185 if (((USBCMD_RUNSTOP | USBCMD_PSE | USBCMD_ASE) & val) !=
1186 ((USBCMD_RUNSTOP | USBCMD_PSE | USBCMD_ASE) & s->usbcmd)) {
1187 if (s->pstate == EST_INACTIVE) {
1188 SET_LAST_RUN_CLOCK(s);
1189 }
1190 ehci_update_halt(s);
1191 s->async_stepdown = 0;
1192 qemu_mod_timer(s->frame_timer, qemu_get_clock_ns(vm_clock));
1193 }
1194
1195 /* not supporting dynamic frame list size at the moment */
1196 if ((val & USBCMD_FLS) && !(s->usbcmd & USBCMD_FLS)) {
1197 fprintf(stderr, "attempt to set frame list size -- value %d\n",
1198 val & USBCMD_FLS);
1199 val &= ~USBCMD_FLS;
1200 }
1201 break;
1202
1203 case USBSTS:
1204 val &= USBSTS_RO_MASK; // bits 6 through 31 are RO
1205 ehci_clear_usbsts(s, val); // bits 0 through 5 are R/WC
1206 val = s->usbsts;
1207 ehci_update_irq(s);
1208 break;
1209
1210 case USBINTR:
1211 val &= USBINTR_MASK;
1212 break;
1213
1214 case FRINDEX:
1215 val &= 0x00003ff8; /* frindex is 14bits and always a multiple of 8 */
1216 break;
1217
1218 case CONFIGFLAG:
1219 val &= 0x1;
1220 if (val) {
1221 for(i = 0; i < NB_PORTS; i++)
1222 handle_port_owner_write(s, i, 0);
1223 }
1224 break;
1225
1226 case PERIODICLISTBASE:
1227 if (ehci_periodic_enabled(s)) {
1228 fprintf(stderr,
1229 "ehci: PERIODIC list base register set while periodic schedule\n"
1230 " is enabled and HC is enabled\n");
1231 }
1232 break;
1233
1234 case ASYNCLISTADDR:
1235 if (ehci_async_enabled(s)) {
1236 fprintf(stderr,
1237 "ehci: ASYNC list address register set while async schedule\n"
1238 " is enabled and HC is enabled\n");
1239 }
1240 break;
1241 }
1242
1243 *mmio = val;
1244 trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
1245 }
1246
1247
1248 // TODO : Put in common header file, duplication from usb-ohci.c
1249
1250 /* Get an array of dwords from main memory */
1251 static inline int get_dwords(EHCIState *ehci, uint32_t addr,
1252 uint32_t *buf, int num)
1253 {
1254 int i;
1255
1256 for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1257 pci_dma_read(&ehci->dev, addr, buf, sizeof(*buf));
1258 *buf = le32_to_cpu(*buf);
1259 }
1260
1261 return 1;
1262 }
1263
1264 /* Put an array of dwords in to main memory */
1265 static inline int put_dwords(EHCIState *ehci, uint32_t addr,
1266 uint32_t *buf, int num)
1267 {
1268 int i;
1269
1270 for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1271 uint32_t tmp = cpu_to_le32(*buf);
1272 pci_dma_write(&ehci->dev, addr, &tmp, sizeof(tmp));
1273 }
1274
1275 return 1;
1276 }
1277
1278 /*
1279 * Write the qh back to guest physical memory. This step isn't
1280 * in the EHCI spec but we need to do it since we don't share
1281 * physical memory with our guest VM.
1282 *
1283 * The first three dwords are read-only for the EHCI, so skip them
1284 * when writing back the qh.
1285 */
1286 static void ehci_flush_qh(EHCIQueue *q)
1287 {
1288 uint32_t *qh = (uint32_t *) &q->qh;
1289 uint32_t dwords = sizeof(EHCIqh) >> 2;
1290 uint32_t addr = NLPTR_GET(q->qhaddr);
1291
1292 put_dwords(q->ehci, addr + 3 * sizeof(uint32_t), qh + 3, dwords - 3);
1293 }
1294
1295 // 4.10.2
1296
1297 static int ehci_qh_do_overlay(EHCIQueue *q)
1298 {
1299 EHCIPacket *p = QTAILQ_FIRST(&q->packets);
1300 int i;
1301 int dtoggle;
1302 int ping;
1303 int eps;
1304 int reload;
1305
1306 assert(p != NULL);
1307 assert(p->qtdaddr == q->qtdaddr);
1308
1309 // remember values in fields to preserve in qh after overlay
1310
1311 dtoggle = q->qh.token & QTD_TOKEN_DTOGGLE;
1312 ping = q->qh.token & QTD_TOKEN_PING;
1313
1314 q->qh.current_qtd = p->qtdaddr;
1315 q->qh.next_qtd = p->qtd.next;
1316 q->qh.altnext_qtd = p->qtd.altnext;
1317 q->qh.token = p->qtd.token;
1318
1319
1320 eps = get_field(q->qh.epchar, QH_EPCHAR_EPS);
1321 if (eps == EHCI_QH_EPS_HIGH) {
1322 q->qh.token &= ~QTD_TOKEN_PING;
1323 q->qh.token |= ping;
1324 }
1325
1326 reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1327 set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1328
1329 for (i = 0; i < 5; i++) {
1330 q->qh.bufptr[i] = p->qtd.bufptr[i];
1331 }
1332
1333 if (!(q->qh.epchar & QH_EPCHAR_DTC)) {
1334 // preserve QH DT bit
1335 q->qh.token &= ~QTD_TOKEN_DTOGGLE;
1336 q->qh.token |= dtoggle;
1337 }
1338
1339 q->qh.bufptr[1] &= ~BUFPTR_CPROGMASK_MASK;
1340 q->qh.bufptr[2] &= ~BUFPTR_FRAMETAG_MASK;
1341
1342 ehci_flush_qh(q);
1343
1344 return 0;
1345 }
1346
1347 static int ehci_init_transfer(EHCIPacket *p)
1348 {
1349 uint32_t cpage, offset, bytes, plen;
1350 dma_addr_t page;
1351
1352 cpage = get_field(p->qtd.token, QTD_TOKEN_CPAGE);
1353 bytes = get_field(p->qtd.token, QTD_TOKEN_TBYTES);
1354 offset = p->qtd.bufptr[0] & ~QTD_BUFPTR_MASK;
1355 pci_dma_sglist_init(&p->sgl, &p->queue->ehci->dev, 5);
1356
1357 while (bytes > 0) {
1358 if (cpage > 4) {
1359 fprintf(stderr, "cpage out of range (%d)\n", cpage);
1360 return USB_RET_PROCERR;
1361 }
1362
1363 page = p->qtd.bufptr[cpage] & QTD_BUFPTR_MASK;
1364 page += offset;
1365 plen = bytes;
1366 if (plen > 4096 - offset) {
1367 plen = 4096 - offset;
1368 offset = 0;
1369 cpage++;
1370 }
1371
1372 qemu_sglist_add(&p->sgl, page, plen);
1373 bytes -= plen;
1374 }
1375 return 0;
1376 }
1377
1378 static void ehci_finish_transfer(EHCIQueue *q, int status)
1379 {
1380 uint32_t cpage, offset;
1381
1382 if (status > 0) {
1383 /* update cpage & offset */
1384 cpage = get_field(q->qh.token, QTD_TOKEN_CPAGE);
1385 offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
1386
1387 offset += status;
1388 cpage += offset >> QTD_BUFPTR_SH;
1389 offset &= ~QTD_BUFPTR_MASK;
1390
1391 set_field(&q->qh.token, cpage, QTD_TOKEN_CPAGE);
1392 q->qh.bufptr[0] &= QTD_BUFPTR_MASK;
1393 q->qh.bufptr[0] |= offset;
1394 }
1395 }
1396
1397 static void ehci_async_complete_packet(USBPort *port, USBPacket *packet)
1398 {
1399 EHCIPacket *p;
1400 EHCIState *s = port->opaque;
1401 uint32_t portsc = s->portsc[port->index];
1402
1403 if (portsc & PORTSC_POWNER) {
1404 USBPort *companion = s->companion_ports[port->index];
1405 companion->ops->complete(companion, packet);
1406 return;
1407 }
1408
1409 p = container_of(packet, EHCIPacket, packet);
1410 trace_usb_ehci_packet_action(p->queue, p, "wakeup");
1411 assert(p->async == EHCI_ASYNC_INFLIGHT);
1412 p->async = EHCI_ASYNC_FINISHED;
1413 p->usb_status = packet->result;
1414
1415 if (p->queue->async) {
1416 qemu_bh_schedule(p->queue->ehci->async_bh);
1417 }
1418 }
1419
1420 static void ehci_execute_complete(EHCIQueue *q)
1421 {
1422 EHCIPacket *p = QTAILQ_FIRST(&q->packets);
1423
1424 assert(p != NULL);
1425 assert(p->qtdaddr == q->qtdaddr);
1426 assert(p->async != EHCI_ASYNC_INFLIGHT);
1427 p->async = EHCI_ASYNC_NONE;
1428
1429 DPRINTF("execute_complete: qhaddr 0x%x, next %x, qtdaddr 0x%x, status %d\n",
1430 q->qhaddr, q->qh.next, q->qtdaddr, q->usb_status);
1431
1432 if (p->usb_status < 0) {
1433 switch (p->usb_status) {
1434 case USB_RET_IOERROR:
1435 case USB_RET_NODEV:
1436 q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_XACTERR);
1437 set_field(&q->qh.token, 0, QTD_TOKEN_CERR);
1438 ehci_raise_irq(q->ehci, USBSTS_ERRINT);
1439 break;
1440 case USB_RET_STALL:
1441 q->qh.token |= QTD_TOKEN_HALT;
1442 ehci_raise_irq(q->ehci, USBSTS_ERRINT);
1443 break;
1444 case USB_RET_NAK:
1445 set_field(&q->qh.altnext_qtd, 0, QH_ALTNEXT_NAKCNT);
1446 return; /* We're not done yet with this transaction */
1447 case USB_RET_BABBLE:
1448 q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
1449 ehci_raise_irq(q->ehci, USBSTS_ERRINT);
1450 break;
1451 default:
1452 /* should not be triggerable */
1453 fprintf(stderr, "USB invalid response %d\n", p->usb_status);
1454 assert(0);
1455 break;
1456 }
1457 } else if ((p->usb_status > p->tbytes) && (p->pid == USB_TOKEN_IN)) {
1458 p->usb_status = USB_RET_BABBLE;
1459 q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
1460 ehci_raise_irq(q->ehci, USBSTS_ERRINT);
1461 } else {
1462 // TODO check 4.12 for splits
1463
1464 if (p->tbytes && p->pid == USB_TOKEN_IN) {
1465 p->tbytes -= p->usb_status;
1466 } else {
1467 p->tbytes = 0;
1468 }
1469
1470 DPRINTF("updating tbytes to %d\n", p->tbytes);
1471 set_field(&q->qh.token, p->tbytes, QTD_TOKEN_TBYTES);
1472 }
1473 ehci_finish_transfer(q, p->usb_status);
1474 usb_packet_unmap(&p->packet, &p->sgl);
1475 qemu_sglist_destroy(&p->sgl);
1476
1477 q->qh.token ^= QTD_TOKEN_DTOGGLE;
1478 q->qh.token &= ~QTD_TOKEN_ACTIVE;
1479
1480 if (q->qh.token & QTD_TOKEN_IOC) {
1481 ehci_raise_irq(q->ehci, USBSTS_INT);
1482 }
1483 }
1484
1485 // 4.10.3
1486
1487 static int ehci_execute(EHCIPacket *p, const char *action)
1488 {
1489 USBEndpoint *ep;
1490 int ret;
1491 int endp;
1492
1493 if (!(p->qtd.token & QTD_TOKEN_ACTIVE)) {
1494 fprintf(stderr, "Attempting to execute inactive qtd\n");
1495 return USB_RET_PROCERR;
1496 }
1497
1498 p->tbytes = (p->qtd.token & QTD_TOKEN_TBYTES_MASK) >> QTD_TOKEN_TBYTES_SH;
1499 if (p->tbytes > BUFF_SIZE) {
1500 fprintf(stderr, "Request for more bytes than allowed\n");
1501 return USB_RET_PROCERR;
1502 }
1503
1504 p->pid = (p->qtd.token & QTD_TOKEN_PID_MASK) >> QTD_TOKEN_PID_SH;
1505 switch (p->pid) {
1506 case 0:
1507 p->pid = USB_TOKEN_OUT;
1508 break;
1509 case 1:
1510 p->pid = USB_TOKEN_IN;
1511 break;
1512 case 2:
1513 p->pid = USB_TOKEN_SETUP;
1514 break;
1515 default:
1516 fprintf(stderr, "bad token\n");
1517 break;
1518 }
1519
1520 if (ehci_init_transfer(p) != 0) {
1521 return USB_RET_PROCERR;
1522 }
1523
1524 endp = get_field(p->queue->qh.epchar, QH_EPCHAR_EP);
1525 ep = usb_ep_get(p->queue->dev, p->pid, endp);
1526
1527 usb_packet_setup(&p->packet, p->pid, ep);
1528 usb_packet_map(&p->packet, &p->sgl);
1529
1530 trace_usb_ehci_packet_action(p->queue, p, action);
1531 ret = usb_handle_packet(p->queue->dev, &p->packet);
1532 DPRINTF("submit: qh %x next %x qtd %x pid %x len %zd "
1533 "(total %d) endp %x ret %d\n",
1534 q->qhaddr, q->qh.next, q->qtdaddr, q->pid,
1535 q->packet.iov.size, q->tbytes, endp, ret);
1536
1537 if (ret > BUFF_SIZE) {
1538 fprintf(stderr, "ret from usb_handle_packet > BUFF_SIZE\n");
1539 return USB_RET_PROCERR;
1540 }
1541
1542 return ret;
1543 }
1544
1545 /* 4.7.2
1546 */
1547
1548 static int ehci_process_itd(EHCIState *ehci,
1549 EHCIitd *itd)
1550 {
1551 USBDevice *dev;
1552 USBEndpoint *ep;
1553 int ret;
1554 uint32_t i, len, pid, dir, devaddr, endp;
1555 uint32_t pg, off, ptr1, ptr2, max, mult;
1556
1557 dir =(itd->bufptr[1] & ITD_BUFPTR_DIRECTION);
1558 devaddr = get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR);
1559 endp = get_field(itd->bufptr[0], ITD_BUFPTR_EP);
1560 max = get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT);
1561 mult = get_field(itd->bufptr[2], ITD_BUFPTR_MULT);
1562
1563 for(i = 0; i < 8; i++) {
1564 if (itd->transact[i] & ITD_XACT_ACTIVE) {
1565 pg = get_field(itd->transact[i], ITD_XACT_PGSEL);
1566 off = itd->transact[i] & ITD_XACT_OFFSET_MASK;
1567 ptr1 = (itd->bufptr[pg] & ITD_BUFPTR_MASK);
1568 ptr2 = (itd->bufptr[pg+1] & ITD_BUFPTR_MASK);
1569 len = get_field(itd->transact[i], ITD_XACT_LENGTH);
1570
1571 if (len > max * mult) {
1572 len = max * mult;
1573 }
1574
1575 if (len > BUFF_SIZE) {
1576 return USB_RET_PROCERR;
1577 }
1578
1579 pci_dma_sglist_init(&ehci->isgl, &ehci->dev, 2);
1580 if (off + len > 4096) {
1581 /* transfer crosses page border */
1582 uint32_t len2 = off + len - 4096;
1583 uint32_t len1 = len - len2;
1584 qemu_sglist_add(&ehci->isgl, ptr1 + off, len1);
1585 qemu_sglist_add(&ehci->isgl, ptr2, len2);
1586 } else {
1587 qemu_sglist_add(&ehci->isgl, ptr1 + off, len);
1588 }
1589
1590 pid = dir ? USB_TOKEN_IN : USB_TOKEN_OUT;
1591
1592 dev = ehci_find_device(ehci, devaddr);
1593 ep = usb_ep_get(dev, pid, endp);
1594 if (ep->type == USB_ENDPOINT_XFER_ISOC) {
1595 usb_packet_setup(&ehci->ipacket, pid, ep);
1596 usb_packet_map(&ehci->ipacket, &ehci->isgl);
1597 ret = usb_handle_packet(dev, &ehci->ipacket);
1598 assert(ret != USB_RET_ASYNC);
1599 usb_packet_unmap(&ehci->ipacket, &ehci->isgl);
1600 } else {
1601 DPRINTF("ISOCH: attempt to addess non-iso endpoint\n");
1602 ret = USB_RET_NAK;
1603 }
1604 qemu_sglist_destroy(&ehci->isgl);
1605
1606 if (ret < 0) {
1607 switch (ret) {
1608 default:
1609 fprintf(stderr, "Unexpected iso usb result: %d\n", ret);
1610 /* Fall through */
1611 case USB_RET_IOERROR:
1612 case USB_RET_NODEV:
1613 /* 3.3.2: XACTERR is only allowed on IN transactions */
1614 if (dir) {
1615 itd->transact[i] |= ITD_XACT_XACTERR;
1616 ehci_raise_irq(ehci, USBSTS_ERRINT);
1617 }
1618 break;
1619 case USB_RET_BABBLE:
1620 itd->transact[i] |= ITD_XACT_BABBLE;
1621 ehci_raise_irq(ehci, USBSTS_ERRINT);
1622 break;
1623 case USB_RET_NAK:
1624 /* no data for us, so do a zero-length transfer */
1625 ret = 0;
1626 break;
1627 }
1628 }
1629 if (ret >= 0) {
1630 if (!dir) {
1631 /* OUT */
1632 set_field(&itd->transact[i], len - ret, ITD_XACT_LENGTH);
1633 } else {
1634 /* IN */
1635 set_field(&itd->transact[i], ret, ITD_XACT_LENGTH);
1636 }
1637 }
1638 if (itd->transact[i] & ITD_XACT_IOC) {
1639 ehci_raise_irq(ehci, USBSTS_INT);
1640 }
1641 itd->transact[i] &= ~ITD_XACT_ACTIVE;
1642 }
1643 }
1644 return 0;
1645 }
1646
1647
1648 /* This state is the entry point for asynchronous schedule
1649 * processing. Entry here consitutes a EHCI start event state (4.8.5)
1650 */
1651 static int ehci_state_waitlisthead(EHCIState *ehci, int async)
1652 {
1653 EHCIqh qh;
1654 int i = 0;
1655 int again = 0;
1656 uint32_t entry = ehci->asynclistaddr;
1657
1658 /* set reclamation flag at start event (4.8.6) */
1659 if (async) {
1660 ehci_set_usbsts(ehci, USBSTS_REC);
1661 }
1662
1663 ehci_queues_rip_unused(ehci, async);
1664
1665 /* Find the head of the list (4.9.1.1) */
1666 for(i = 0; i < MAX_QH; i++) {
1667 get_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &qh,
1668 sizeof(EHCIqh) >> 2);
1669 ehci_trace_qh(NULL, NLPTR_GET(entry), &qh);
1670
1671 if (qh.epchar & QH_EPCHAR_H) {
1672 if (async) {
1673 entry |= (NLPTR_TYPE_QH << 1);
1674 }
1675
1676 ehci_set_fetch_addr(ehci, async, entry);
1677 ehci_set_state(ehci, async, EST_FETCHENTRY);
1678 again = 1;
1679 goto out;
1680 }
1681
1682 entry = qh.next;
1683 if (entry == ehci->asynclistaddr) {
1684 break;
1685 }
1686 }
1687
1688 /* no head found for list. */
1689
1690 ehci_set_state(ehci, async, EST_ACTIVE);
1691
1692 out:
1693 return again;
1694 }
1695
1696
1697 /* This state is the entry point for periodic schedule processing as
1698 * well as being a continuation state for async processing.
1699 */
1700 static int ehci_state_fetchentry(EHCIState *ehci, int async)
1701 {
1702 int again = 0;
1703 uint32_t entry = ehci_get_fetch_addr(ehci, async);
1704
1705 if (NLPTR_TBIT(entry)) {
1706 ehci_set_state(ehci, async, EST_ACTIVE);
1707 goto out;
1708 }
1709
1710 /* section 4.8, only QH in async schedule */
1711 if (async && (NLPTR_TYPE_GET(entry) != NLPTR_TYPE_QH)) {
1712 fprintf(stderr, "non queue head request in async schedule\n");
1713 return -1;
1714 }
1715
1716 switch (NLPTR_TYPE_GET(entry)) {
1717 case NLPTR_TYPE_QH:
1718 ehci_set_state(ehci, async, EST_FETCHQH);
1719 again = 1;
1720 break;
1721
1722 case NLPTR_TYPE_ITD:
1723 ehci_set_state(ehci, async, EST_FETCHITD);
1724 again = 1;
1725 break;
1726
1727 case NLPTR_TYPE_STITD:
1728 ehci_set_state(ehci, async, EST_FETCHSITD);
1729 again = 1;
1730 break;
1731
1732 default:
1733 /* TODO: handle FSTN type */
1734 fprintf(stderr, "FETCHENTRY: entry at %X is of type %d "
1735 "which is not supported yet\n", entry, NLPTR_TYPE_GET(entry));
1736 return -1;
1737 }
1738
1739 out:
1740 return again;
1741 }
1742
1743 static EHCIQueue *ehci_state_fetchqh(EHCIState *ehci, int async)
1744 {
1745 EHCIPacket *p;
1746 uint32_t entry, devaddr;
1747 EHCIQueue *q;
1748 EHCIqh qh;
1749
1750 entry = ehci_get_fetch_addr(ehci, async);
1751 q = ehci_find_queue_by_qh(ehci, entry, async);
1752 if (NULL == q) {
1753 q = ehci_alloc_queue(ehci, entry, async);
1754 }
1755 p = QTAILQ_FIRST(&q->packets);
1756
1757 q->seen++;
1758 if (q->seen > 1) {
1759 /* we are going in circles -- stop processing */
1760 ehci_set_state(ehci, async, EST_ACTIVE);
1761 q = NULL;
1762 goto out;
1763 }
1764
1765 get_dwords(ehci, NLPTR_GET(q->qhaddr),
1766 (uint32_t *) &qh, sizeof(EHCIqh) >> 2);
1767 if (q->revalidate && (q->qh.epchar != qh.epchar ||
1768 q->qh.epcap != qh.epcap ||
1769 q->qh.current_qtd != qh.current_qtd)) {
1770 ehci_free_queue(q);
1771 q = ehci_alloc_queue(ehci, entry, async);
1772 q->seen++;
1773 p = NULL;
1774 }
1775 q->qh = qh;
1776 q->revalidate = 0;
1777 ehci_trace_qh(q, NLPTR_GET(q->qhaddr), &q->qh);
1778
1779 devaddr = get_field(q->qh.epchar, QH_EPCHAR_DEVADDR);
1780 if (q->dev != NULL && q->dev->addr != devaddr) {
1781 if (!QTAILQ_EMPTY(&q->packets)) {
1782 /* should not happen (guest bug) */
1783 while ((p = QTAILQ_FIRST(&q->packets)) != NULL) {
1784 ehci_free_packet(p);
1785 }
1786 }
1787 q->dev = NULL;
1788 }
1789 if (q->dev == NULL) {
1790 q->dev = ehci_find_device(q->ehci, devaddr);
1791 }
1792
1793 if (p && p->async == EHCI_ASYNC_INFLIGHT) {
1794 /* I/O still in progress -- skip queue */
1795 ehci_set_state(ehci, async, EST_HORIZONTALQH);
1796 goto out;
1797 }
1798 if (p && p->async == EHCI_ASYNC_FINISHED) {
1799 /* I/O finished -- continue processing queue */
1800 trace_usb_ehci_packet_action(p->queue, p, "complete");
1801 ehci_set_state(ehci, async, EST_EXECUTING);
1802 goto out;
1803 }
1804
1805 if (async && (q->qh.epchar & QH_EPCHAR_H)) {
1806
1807 /* EHCI spec version 1.0 Section 4.8.3 & 4.10.1 */
1808 if (ehci->usbsts & USBSTS_REC) {
1809 ehci_clear_usbsts(ehci, USBSTS_REC);
1810 } else {
1811 DPRINTF("FETCHQH: QH 0x%08x. H-bit set, reclamation status reset"
1812 " - done processing\n", q->qhaddr);
1813 ehci_set_state(ehci, async, EST_ACTIVE);
1814 q = NULL;
1815 goto out;
1816 }
1817 }
1818
1819 #if EHCI_DEBUG
1820 if (q->qhaddr != q->qh.next) {
1821 DPRINTF("FETCHQH: QH 0x%08x (h %x halt %x active %x) next 0x%08x\n",
1822 q->qhaddr,
1823 q->qh.epchar & QH_EPCHAR_H,
1824 q->qh.token & QTD_TOKEN_HALT,
1825 q->qh.token & QTD_TOKEN_ACTIVE,
1826 q->qh.next);
1827 }
1828 #endif
1829
1830 if (q->qh.token & QTD_TOKEN_HALT) {
1831 ehci_set_state(ehci, async, EST_HORIZONTALQH);
1832
1833 } else if ((q->qh.token & QTD_TOKEN_ACTIVE) &&
1834 (NLPTR_TBIT(q->qh.current_qtd) == 0)) {
1835 q->qtdaddr = q->qh.current_qtd;
1836 ehci_set_state(ehci, async, EST_FETCHQTD);
1837
1838 } else {
1839 /* EHCI spec version 1.0 Section 4.10.2 */
1840 ehci_set_state(ehci, async, EST_ADVANCEQUEUE);
1841 }
1842
1843 out:
1844 return q;
1845 }
1846
1847 static int ehci_state_fetchitd(EHCIState *ehci, int async)
1848 {
1849 uint32_t entry;
1850 EHCIitd itd;
1851
1852 assert(!async);
1853 entry = ehci_get_fetch_addr(ehci, async);
1854
1855 get_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &itd,
1856 sizeof(EHCIitd) >> 2);
1857 ehci_trace_itd(ehci, entry, &itd);
1858
1859 if (ehci_process_itd(ehci, &itd) != 0) {
1860 return -1;
1861 }
1862
1863 put_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &itd,
1864 sizeof(EHCIitd) >> 2);
1865 ehci_set_fetch_addr(ehci, async, itd.next);
1866 ehci_set_state(ehci, async, EST_FETCHENTRY);
1867
1868 return 1;
1869 }
1870
1871 static int ehci_state_fetchsitd(EHCIState *ehci, int async)
1872 {
1873 uint32_t entry;
1874 EHCIsitd sitd;
1875
1876 assert(!async);
1877 entry = ehci_get_fetch_addr(ehci, async);
1878
1879 get_dwords(ehci, NLPTR_GET(entry), (uint32_t *)&sitd,
1880 sizeof(EHCIsitd) >> 2);
1881 ehci_trace_sitd(ehci, entry, &sitd);
1882
1883 if (!(sitd.results & SITD_RESULTS_ACTIVE)) {
1884 /* siTD is not active, nothing to do */;
1885 } else {
1886 /* TODO: split transfers are not implemented */
1887 fprintf(stderr, "WARNING: Skipping active siTD\n");
1888 }
1889
1890 ehci_set_fetch_addr(ehci, async, sitd.next);
1891 ehci_set_state(ehci, async, EST_FETCHENTRY);
1892 return 1;
1893 }
1894
1895 /* Section 4.10.2 - paragraph 3 */
1896 static int ehci_state_advqueue(EHCIQueue *q)
1897 {
1898 #if 0
1899 /* TO-DO: 4.10.2 - paragraph 2
1900 * if I-bit is set to 1 and QH is not active
1901 * go to horizontal QH
1902 */
1903 if (I-bit set) {
1904 ehci_set_state(ehci, async, EST_HORIZONTALQH);
1905 goto out;
1906 }
1907 #endif
1908
1909 /*
1910 * want data and alt-next qTD is valid
1911 */
1912 if (((q->qh.token & QTD_TOKEN_TBYTES_MASK) != 0) &&
1913 (NLPTR_TBIT(q->qh.altnext_qtd) == 0)) {
1914 q->qtdaddr = q->qh.altnext_qtd;
1915 ehci_set_state(q->ehci, q->async, EST_FETCHQTD);
1916
1917 /*
1918 * next qTD is valid
1919 */
1920 } else if (NLPTR_TBIT(q->qh.next_qtd) == 0) {
1921 q->qtdaddr = q->qh.next_qtd;
1922 ehci_set_state(q->ehci, q->async, EST_FETCHQTD);
1923
1924 /*
1925 * no valid qTD, try next QH
1926 */
1927 } else {
1928 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
1929 }
1930
1931 return 1;
1932 }
1933
1934 /* Section 4.10.2 - paragraph 4 */
1935 static int ehci_state_fetchqtd(EHCIQueue *q)
1936 {
1937 EHCIqtd qtd;
1938 EHCIPacket *p;
1939 int again = 0;
1940
1941 get_dwords(q->ehci, NLPTR_GET(q->qtdaddr), (uint32_t *) &qtd,
1942 sizeof(EHCIqtd) >> 2);
1943 ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), &qtd);
1944
1945 p = QTAILQ_FIRST(&q->packets);
1946 while (p != NULL && p->qtdaddr != q->qtdaddr) {
1947 /* should not happen (guest bug) */
1948 ehci_free_packet(p);
1949 p = QTAILQ_FIRST(&q->packets);
1950 }
1951 if (p != NULL) {
1952 ehci_qh_do_overlay(q);
1953 ehci_flush_qh(q);
1954 if (p->async == EHCI_ASYNC_INFLIGHT) {
1955 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
1956 } else {
1957 ehci_set_state(q->ehci, q->async, EST_EXECUTING);
1958 }
1959 again = 1;
1960 } else if (qtd.token & QTD_TOKEN_ACTIVE) {
1961 p = ehci_alloc_packet(q);
1962 p->qtdaddr = q->qtdaddr;
1963 p->qtd = qtd;
1964 ehci_set_state(q->ehci, q->async, EST_EXECUTE);
1965 again = 1;
1966 } else {
1967 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
1968 again = 1;
1969 }
1970
1971 return again;
1972 }
1973
1974 static int ehci_state_horizqh(EHCIQueue *q)
1975 {
1976 int again = 0;
1977
1978 if (ehci_get_fetch_addr(q->ehci, q->async) != q->qh.next) {
1979 ehci_set_fetch_addr(q->ehci, q->async, q->qh.next);
1980 ehci_set_state(q->ehci, q->async, EST_FETCHENTRY);
1981 again = 1;
1982 } else {
1983 ehci_set_state(q->ehci, q->async, EST_ACTIVE);
1984 }
1985
1986 return again;
1987 }
1988
1989 static void ehci_fill_queue(EHCIPacket *p)
1990 {
1991 EHCIQueue *q = p->queue;
1992 EHCIqtd qtd = p->qtd;
1993 uint32_t qtdaddr;
1994
1995 for (;;) {
1996 if (NLPTR_TBIT(qtd.altnext) == 0) {
1997 break;
1998 }
1999 if (NLPTR_TBIT(qtd.next) != 0) {
2000 break;
2001 }
2002 qtdaddr = qtd.next;
2003 get_dwords(q->ehci, NLPTR_GET(qtdaddr),
2004 (uint32_t *) &qtd, sizeof(EHCIqtd) >> 2);
2005 ehci_trace_qtd(q, NLPTR_GET(qtdaddr), &qtd);
2006 if (!(qtd.token & QTD_TOKEN_ACTIVE)) {
2007 break;
2008 }
2009 p = ehci_alloc_packet(q);
2010 p->qtdaddr = qtdaddr;
2011 p->qtd = qtd;
2012 p->usb_status = ehci_execute(p, "queue");
2013 assert(p->usb_status = USB_RET_ASYNC);
2014 p->async = EHCI_ASYNC_INFLIGHT;
2015 }
2016 }
2017
2018 static int ehci_state_execute(EHCIQueue *q)
2019 {
2020 EHCIPacket *p = QTAILQ_FIRST(&q->packets);
2021 int again = 0;
2022
2023 assert(p != NULL);
2024 assert(p->qtdaddr == q->qtdaddr);
2025
2026 if (ehci_qh_do_overlay(q) != 0) {
2027 return -1;
2028 }
2029
2030 // TODO verify enough time remains in the uframe as in 4.4.1.1
2031 // TODO write back ptr to async list when done or out of time
2032 // TODO Windows does not seem to ever set the MULT field
2033
2034 if (!q->async) {
2035 int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
2036 if (!transactCtr) {
2037 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
2038 again = 1;
2039 goto out;
2040 }
2041 }
2042
2043 if (q->async) {
2044 ehci_set_usbsts(q->ehci, USBSTS_REC);
2045 }
2046
2047 p->usb_status = ehci_execute(p, "process");
2048 if (p->usb_status == USB_RET_PROCERR) {
2049 again = -1;
2050 goto out;
2051 }
2052 if (p->usb_status == USB_RET_ASYNC) {
2053 ehci_flush_qh(q);
2054 trace_usb_ehci_packet_action(p->queue, p, "async");
2055 p->async = EHCI_ASYNC_INFLIGHT;
2056 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
2057 again = 1;
2058 ehci_fill_queue(p);
2059 goto out;
2060 }
2061
2062 ehci_set_state(q->ehci, q->async, EST_EXECUTING);
2063 again = 1;
2064
2065 out:
2066 return again;
2067 }
2068
2069 static int ehci_state_executing(EHCIQueue *q)
2070 {
2071 EHCIPacket *p = QTAILQ_FIRST(&q->packets);
2072 int again = 0;
2073
2074 assert(p != NULL);
2075 assert(p->qtdaddr == q->qtdaddr);
2076
2077 ehci_execute_complete(q);
2078 if (p->usb_status == USB_RET_ASYNC) {
2079 goto out;
2080 }
2081 if (p->usb_status == USB_RET_PROCERR) {
2082 again = -1;
2083 goto out;
2084 }
2085
2086 // 4.10.3
2087 if (!q->async) {
2088 int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
2089 transactCtr--;
2090 set_field(&q->qh.epcap, transactCtr, QH_EPCAP_MULT);
2091 // 4.10.3, bottom of page 82, should exit this state when transaction
2092 // counter decrements to 0
2093 }
2094
2095 /* 4.10.5 */
2096 if (p->usb_status == USB_RET_NAK) {
2097 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
2098 } else {
2099 ehci_set_state(q->ehci, q->async, EST_WRITEBACK);
2100 }
2101
2102 again = 1;
2103
2104 out:
2105 ehci_flush_qh(q);
2106 return again;
2107 }
2108
2109
2110 static int ehci_state_writeback(EHCIQueue *q)
2111 {
2112 EHCIPacket *p = QTAILQ_FIRST(&q->packets);
2113 uint32_t *qtd, addr;
2114 int again = 0;
2115
2116 /* Write back the QTD from the QH area */
2117 assert(p != NULL);
2118 assert(p->qtdaddr == q->qtdaddr);
2119
2120 ehci_trace_qtd(q, NLPTR_GET(p->qtdaddr), (EHCIqtd *) &q->qh.next_qtd);
2121 qtd = (uint32_t *) &q->qh.next_qtd;
2122 addr = NLPTR_GET(p->qtdaddr);
2123 put_dwords(q->ehci, addr + 2 * sizeof(uint32_t), qtd + 2, 2);
2124 ehci_free_packet(p);
2125
2126 /*
2127 * EHCI specs say go horizontal here.
2128 *
2129 * We can also advance the queue here for performance reasons. We
2130 * need to take care to only take that shortcut in case we've
2131 * processed the qtd just written back without errors, i.e. halt
2132 * bit is clear.
2133 */
2134 if (q->qh.token & QTD_TOKEN_HALT) {
2135 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
2136 again = 1;
2137 } else {
2138 ehci_set_state(q->ehci, q->async, EST_ADVANCEQUEUE);
2139 again = 1;
2140 }
2141 return again;
2142 }
2143
2144 /*
2145 * This is the state machine that is common to both async and periodic
2146 */
2147
2148 static void ehci_advance_state(EHCIState *ehci, int async)
2149 {
2150 EHCIQueue *q = NULL;
2151 int again;
2152
2153 do {
2154 switch(ehci_get_state(ehci, async)) {
2155 case EST_WAITLISTHEAD:
2156 again = ehci_state_waitlisthead(ehci, async);
2157 break;
2158
2159 case EST_FETCHENTRY:
2160 again = ehci_state_fetchentry(ehci, async);
2161 break;
2162
2163 case EST_FETCHQH:
2164 q = ehci_state_fetchqh(ehci, async);
2165 if (q != NULL) {
2166 assert(q->async == async);
2167 again = 1;
2168 } else {
2169 again = 0;
2170 }
2171 break;
2172
2173 case EST_FETCHITD:
2174 again = ehci_state_fetchitd(ehci, async);
2175 break;
2176
2177 case EST_FETCHSITD:
2178 again = ehci_state_fetchsitd(ehci, async);
2179 break;
2180
2181 case EST_ADVANCEQUEUE:
2182 again = ehci_state_advqueue(q);
2183 break;
2184
2185 case EST_FETCHQTD:
2186 again = ehci_state_fetchqtd(q);
2187 break;
2188
2189 case EST_HORIZONTALQH:
2190 again = ehci_state_horizqh(q);
2191 break;
2192
2193 case EST_EXECUTE:
2194 again = ehci_state_execute(q);
2195 if (async) {
2196 ehci->async_stepdown = 0;
2197 }
2198 break;
2199
2200 case EST_EXECUTING:
2201 assert(q != NULL);
2202 if (async) {
2203 ehci->async_stepdown = 0;
2204 }
2205 again = ehci_state_executing(q);
2206 break;
2207
2208 case EST_WRITEBACK:
2209 assert(q != NULL);
2210 again = ehci_state_writeback(q);
2211 break;
2212
2213 default:
2214 fprintf(stderr, "Bad state!\n");
2215 again = -1;
2216 assert(0);
2217 break;
2218 }
2219
2220 if (again < 0) {
2221 fprintf(stderr, "processing error - resetting ehci HC\n");
2222 ehci_reset(ehci);
2223 again = 0;
2224 }
2225 }
2226 while (again);
2227 }
2228
2229 static void ehci_advance_async_state(EHCIState *ehci)
2230 {
2231 const int async = 1;
2232
2233 switch(ehci_get_state(ehci, async)) {
2234 case EST_INACTIVE:
2235 if (!ehci_async_enabled(ehci)) {
2236 break;
2237 }
2238 ehci_set_state(ehci, async, EST_ACTIVE);
2239 // No break, fall through to ACTIVE
2240
2241 case EST_ACTIVE:
2242 if (!ehci_async_enabled(ehci)) {
2243 ehci_queues_rip_all(ehci, async);
2244 ehci_set_state(ehci, async, EST_INACTIVE);
2245 break;
2246 }
2247
2248 /* make sure guest has acknowledged the doorbell interrupt */
2249 /* TO-DO: is this really needed? */
2250 if (ehci->usbsts & USBSTS_IAA) {
2251 DPRINTF("IAA status bit still set.\n");
2252 break;
2253 }
2254
2255 /* check that address register has been set */
2256 if (ehci->asynclistaddr == 0) {
2257 break;
2258 }
2259
2260 ehci_set_state(ehci, async, EST_WAITLISTHEAD);
2261 ehci_advance_state(ehci, async);
2262
2263 /* If the doorbell is set, the guest wants to make a change to the
2264 * schedule. The host controller needs to release cached data.
2265 * (section 4.8.2)
2266 */
2267 if (ehci->usbcmd & USBCMD_IAAD) {
2268 /* Remove all unseen qhs from the async qhs queue */
2269 ehci_queues_tag_unused_async(ehci);
2270 DPRINTF("ASYNC: doorbell request acknowledged\n");
2271 ehci->usbcmd &= ~USBCMD_IAAD;
2272 ehci_raise_irq(ehci, USBSTS_IAA);
2273 }
2274 break;
2275
2276 default:
2277 /* this should only be due to a developer mistake */
2278 fprintf(stderr, "ehci: Bad asynchronous state %d. "
2279 "Resetting to active\n", ehci->astate);
2280 assert(0);
2281 }
2282 }
2283
2284 static void ehci_advance_periodic_state(EHCIState *ehci)
2285 {
2286 uint32_t entry;
2287 uint32_t list;
2288 const int async = 0;
2289
2290 // 4.6
2291
2292 switch(ehci_get_state(ehci, async)) {
2293 case EST_INACTIVE:
2294 if (!(ehci->frindex & 7) && ehci_periodic_enabled(ehci)) {
2295 ehci_set_state(ehci, async, EST_ACTIVE);
2296 // No break, fall through to ACTIVE
2297 } else
2298 break;
2299
2300 case EST_ACTIVE:
2301 if (!(ehci->frindex & 7) && !ehci_periodic_enabled(ehci)) {
2302 ehci_queues_rip_all(ehci, async);
2303 ehci_set_state(ehci, async, EST_INACTIVE);
2304 break;
2305 }
2306
2307 list = ehci->periodiclistbase & 0xfffff000;
2308 /* check that register has been set */
2309 if (list == 0) {
2310 break;
2311 }
2312 list |= ((ehci->frindex & 0x1ff8) >> 1);
2313
2314 pci_dma_read(&ehci->dev, list, &entry, sizeof entry);
2315 entry = le32_to_cpu(entry);
2316
2317 DPRINTF("PERIODIC state adv fr=%d. [%08X] -> %08X\n",
2318 ehci->frindex / 8, list, entry);
2319 ehci_set_fetch_addr(ehci, async,entry);
2320 ehci_set_state(ehci, async, EST_FETCHENTRY);
2321 ehci_advance_state(ehci, async);
2322 ehci_queues_rip_unused(ehci, async);
2323 break;
2324
2325 default:
2326 /* this should only be due to a developer mistake */
2327 fprintf(stderr, "ehci: Bad periodic state %d. "
2328 "Resetting to active\n", ehci->pstate);
2329 assert(0);
2330 }
2331 }
2332
2333 static void ehci_update_frindex(EHCIState *ehci, int frames)
2334 {
2335 int i;
2336
2337 if (!ehci_enabled(ehci)) {
2338 return;
2339 }
2340
2341 for (i = 0; i < frames; i++) {
2342 ehci->frindex += 8;
2343
2344 if (ehci->frindex == 0x00002000) {
2345 ehci_raise_irq(ehci, USBSTS_FLR);
2346 }
2347
2348 if (ehci->frindex == 0x00004000) {
2349 ehci_raise_irq(ehci, USBSTS_FLR);
2350 ehci->frindex = 0;
2351 if (ehci->usbsts_frindex > 0x00004000) {
2352 ehci->usbsts_frindex -= 0x00004000;
2353 } else {
2354 ehci->usbsts_frindex = 0;
2355 }
2356 }
2357 }
2358 }
2359
2360 static void ehci_frame_timer(void *opaque)
2361 {
2362 EHCIState *ehci = opaque;
2363 int need_timer = 0;
2364 int64_t expire_time, t_now;
2365 uint64_t ns_elapsed;
2366 int frames, skipped_frames;
2367 int i;
2368
2369 t_now = qemu_get_clock_ns(vm_clock);
2370 ns_elapsed = t_now - ehci->last_run_ns;
2371 frames = ns_elapsed / FRAME_TIMER_NS;
2372
2373 if (ehci_periodic_enabled(ehci) || ehci->pstate != EST_INACTIVE) {
2374 need_timer++;
2375 ehci->async_stepdown = 0;
2376
2377 if (frames > ehci->maxframes) {
2378 skipped_frames = frames - ehci->maxframes;
2379 ehci_update_frindex(ehci, skipped_frames);
2380 ehci->last_run_ns += FRAME_TIMER_NS * skipped_frames;
2381 frames -= skipped_frames;
2382 DPRINTF("WARNING - EHCI skipped %d frames\n", skipped_frames);
2383 }
2384
2385 for (i = 0; i < frames; i++) {
2386 ehci_update_frindex(ehci, 1);
2387 ehci_advance_periodic_state(ehci);
2388 ehci->last_run_ns += FRAME_TIMER_NS;
2389 }
2390 } else {
2391 if (ehci->async_stepdown < ehci->maxframes / 2) {
2392 ehci->async_stepdown++;
2393 }
2394 ehci_update_frindex(ehci, frames);
2395 ehci->last_run_ns += FRAME_TIMER_NS * frames;
2396 }
2397
2398 /* Async is not inside loop since it executes everything it can once
2399 * called
2400 */
2401 if (ehci_async_enabled(ehci) || ehci->astate != EST_INACTIVE) {
2402 need_timer++;
2403 ehci_advance_async_state(ehci);
2404 }
2405
2406 ehci_commit_irq(ehci);
2407 if (ehci->usbsts_pending) {
2408 need_timer++;
2409 ehci->async_stepdown = 0;
2410 }
2411
2412 if (need_timer) {
2413 expire_time = t_now + (get_ticks_per_sec()
2414 * (ehci->async_stepdown+1) / FRAME_TIMER_FREQ);
2415 qemu_mod_timer(ehci->frame_timer, expire_time);
2416 }
2417 }
2418
2419 static void ehci_async_bh(void *opaque)
2420 {
2421 EHCIState *ehci = opaque;
2422 ehci_advance_async_state(ehci);
2423 }
2424
2425 static const MemoryRegionOps ehci_mem_ops = {
2426 .old_mmio = {
2427 .read = { ehci_mem_readb, ehci_mem_readw, ehci_mem_readl },
2428 .write = { ehci_mem_writeb, ehci_mem_writew, ehci_mem_writel },
2429 },
2430 .endianness = DEVICE_LITTLE_ENDIAN,
2431 };
2432
2433 static int usb_ehci_initfn(PCIDevice *dev);
2434
2435 static USBPortOps ehci_port_ops = {
2436 .attach = ehci_attach,
2437 .detach = ehci_detach,
2438 .child_detach = ehci_child_detach,
2439 .wakeup = ehci_wakeup,
2440 .complete = ehci_async_complete_packet,
2441 };
2442
2443 static USBBusOps ehci_bus_ops = {
2444 .register_companion = ehci_register_companion,
2445 };
2446
2447 static int usb_ehci_post_load(void *opaque, int version_id)
2448 {
2449 EHCIState *s = opaque;
2450 int i;
2451
2452 for (i = 0; i < NB_PORTS; i++) {
2453 USBPort *companion = s->companion_ports[i];
2454 if (companion == NULL) {
2455 continue;
2456 }
2457 if (s->portsc[i] & PORTSC_POWNER) {
2458 companion->dev = s->ports[i].dev;
2459 } else {
2460 companion->dev = NULL;
2461 }
2462 }
2463
2464 return 0;
2465 }
2466
2467 static const VMStateDescription vmstate_ehci = {
2468 .name = "ehci",
2469 .version_id = 1,
2470 .post_load = usb_ehci_post_load,
2471 .fields = (VMStateField[]) {
2472 VMSTATE_PCI_DEVICE(dev, EHCIState),
2473 /* mmio registers */
2474 VMSTATE_UINT32(usbcmd, EHCIState),
2475 VMSTATE_UINT32(usbsts, EHCIState),
2476 VMSTATE_UINT32(usbintr, EHCIState),
2477 VMSTATE_UINT32(frindex, EHCIState),
2478 VMSTATE_UINT32(ctrldssegment, EHCIState),
2479 VMSTATE_UINT32(periodiclistbase, EHCIState),
2480 VMSTATE_UINT32(asynclistaddr, EHCIState),
2481 VMSTATE_UINT32(configflag, EHCIState),
2482 VMSTATE_UINT32(portsc[0], EHCIState),
2483 VMSTATE_UINT32(portsc[1], EHCIState),
2484 VMSTATE_UINT32(portsc[2], EHCIState),
2485 VMSTATE_UINT32(portsc[3], EHCIState),
2486 VMSTATE_UINT32(portsc[4], EHCIState),
2487 VMSTATE_UINT32(portsc[5], EHCIState),
2488 /* frame timer */
2489 VMSTATE_TIMER(frame_timer, EHCIState),
2490 VMSTATE_UINT64(last_run_ns, EHCIState),
2491 VMSTATE_UINT32(async_stepdown, EHCIState),
2492 /* schedule state */
2493 VMSTATE_UINT32(astate, EHCIState),
2494 VMSTATE_UINT32(pstate, EHCIState),
2495 VMSTATE_UINT32(a_fetch_addr, EHCIState),
2496 VMSTATE_UINT32(p_fetch_addr, EHCIState),
2497 VMSTATE_END_OF_LIST()
2498 }
2499 };
2500
2501 static Property ehci_properties[] = {
2502 DEFINE_PROP_UINT32("maxframes", EHCIState, maxframes, 128),
2503 DEFINE_PROP_END_OF_LIST(),
2504 };
2505
2506 static void ehci_class_init(ObjectClass *klass, void *data)
2507 {
2508 DeviceClass *dc = DEVICE_CLASS(klass);
2509 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
2510
2511 k->init = usb_ehci_initfn;
2512 k->vendor_id = PCI_VENDOR_ID_INTEL;
2513 k->device_id = PCI_DEVICE_ID_INTEL_82801D; /* ich4 */
2514 k->revision = 0x10;
2515 k->class_id = PCI_CLASS_SERIAL_USB;
2516 dc->vmsd = &vmstate_ehci;
2517 dc->props = ehci_properties;
2518 }
2519
2520 static TypeInfo ehci_info = {
2521 .name = "usb-ehci",
2522 .parent = TYPE_PCI_DEVICE,
2523 .instance_size = sizeof(EHCIState),
2524 .class_init = ehci_class_init,
2525 };
2526
2527 static void ich9_ehci_class_init(ObjectClass *klass, void *data)
2528 {
2529 DeviceClass *dc = DEVICE_CLASS(klass);
2530 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
2531
2532 k->init = usb_ehci_initfn;
2533 k->vendor_id = PCI_VENDOR_ID_INTEL;
2534 k->device_id = PCI_DEVICE_ID_INTEL_82801I_EHCI1;
2535 k->revision = 0x03;
2536 k->class_id = PCI_CLASS_SERIAL_USB;
2537 dc->vmsd = &vmstate_ehci;
2538 dc->props = ehci_properties;
2539 }
2540
2541 static TypeInfo ich9_ehci_info = {
2542 .name = "ich9-usb-ehci1",
2543 .parent = TYPE_PCI_DEVICE,
2544 .instance_size = sizeof(EHCIState),
2545 .class_init = ich9_ehci_class_init,
2546 };
2547
2548 static int usb_ehci_initfn(PCIDevice *dev)
2549 {
2550 EHCIState *s = DO_UPCAST(EHCIState, dev, dev);
2551 uint8_t *pci_conf = s->dev.config;
2552 int i;
2553
2554 pci_set_byte(&pci_conf[PCI_CLASS_PROG], 0x20);
2555
2556 /* capabilities pointer */
2557 pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x00);
2558 //pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x50);
2559
2560 pci_set_byte(&pci_conf[PCI_INTERRUPT_PIN], 4); /* interrupt pin D */
2561 pci_set_byte(&pci_conf[PCI_MIN_GNT], 0);
2562 pci_set_byte(&pci_conf[PCI_MAX_LAT], 0);
2563
2564 // pci_conf[0x50] = 0x01; // power management caps
2565
2566 pci_set_byte(&pci_conf[USB_SBRN], USB_RELEASE_2); // release number (2.1.4)
2567 pci_set_byte(&pci_conf[0x61], 0x20); // frame length adjustment (2.1.5)
2568 pci_set_word(&pci_conf[0x62], 0x00); // port wake up capability (2.1.6)
2569
2570 pci_conf[0x64] = 0x00;
2571 pci_conf[0x65] = 0x00;
2572 pci_conf[0x66] = 0x00;
2573 pci_conf[0x67] = 0x00;
2574 pci_conf[0x68] = 0x01;
2575 pci_conf[0x69] = 0x00;
2576 pci_conf[0x6a] = 0x00;
2577 pci_conf[0x6b] = 0x00; // USBLEGSUP
2578 pci_conf[0x6c] = 0x00;
2579 pci_conf[0x6d] = 0x00;
2580 pci_conf[0x6e] = 0x00;
2581 pci_conf[0x6f] = 0xc0; // USBLEFCTLSTS
2582
2583 // 2.2 host controller interface version
2584 s->mmio[0x00] = (uint8_t) OPREGBASE;
2585 s->mmio[0x01] = 0x00;
2586 s->mmio[0x02] = 0x00;
2587 s->mmio[0x03] = 0x01; // HC version
2588 s->mmio[0x04] = NB_PORTS; // Number of downstream ports
2589 s->mmio[0x05] = 0x00; // No companion ports at present
2590 s->mmio[0x06] = 0x00;
2591 s->mmio[0x07] = 0x00;
2592 s->mmio[0x08] = 0x80; // We can cache whole frame, not 64-bit capable
2593 s->mmio[0x09] = 0x68; // EECP
2594 s->mmio[0x0a] = 0x00;
2595 s->mmio[0x0b] = 0x00;
2596
2597 s->irq = s->dev.irq[3];
2598
2599 usb_bus_new(&s->bus, &ehci_bus_ops, &s->dev.qdev);
2600 for(i = 0; i < NB_PORTS; i++) {
2601 usb_register_port(&s->bus, &s->ports[i], s, i, &ehci_port_ops,
2602 USB_SPEED_MASK_HIGH);
2603 s->ports[i].dev = 0;
2604 }
2605
2606 s->frame_timer = qemu_new_timer_ns(vm_clock, ehci_frame_timer, s);
2607 s->async_bh = qemu_bh_new(ehci_async_bh, s);
2608 QTAILQ_INIT(&s->aqueues);
2609 QTAILQ_INIT(&s->pqueues);
2610 usb_packet_init(&s->ipacket);
2611
2612 qemu_register_reset(ehci_reset, s);
2613
2614 memory_region_init_io(&s->mem, &ehci_mem_ops, s, "ehci", MMIO_SIZE);
2615 pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->mem);
2616
2617 return 0;
2618 }
2619
2620 static void ehci_register_types(void)
2621 {
2622 type_register_static(&ehci_info);
2623 type_register_static(&ich9_ehci_info);
2624 }
2625
2626 type_init(ehci_register_types)
2627
2628 /*
2629 * vim: expandtab ts=4
2630 */