]> git.proxmox.com Git - qemu.git/blob - hw/usb/hcd-ehci.c
Merge remote-tracking branch 'bonzini/scsi-next' into staging
[qemu.git] / hw / usb / hcd-ehci.c
1 /*
2 * QEMU USB EHCI Emulation
3 *
4 * Copyright(c) 2008 Emutex Ltd. (address@hidden)
5 *
6 * EHCI project was started by Mark Burkley, with contributions by
7 * Niels de Vos. David S. Ahern continued working on it. Kevin Wolf,
8 * Jan Kiszka and Vincent Palatin contributed bugfixes.
9 *
10 *
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2 of the License, or(at your option) any later version.
15 *
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, see <http://www.gnu.org/licenses/>.
23 */
24
25 #include "hw/hw.h"
26 #include "qemu-timer.h"
27 #include "hw/usb.h"
28 #include "hw/pci.h"
29 #include "monitor.h"
30 #include "trace.h"
31 #include "dma.h"
32
33 #define EHCI_DEBUG 0
34
35 #if EHCI_DEBUG
36 #define DPRINTF printf
37 #else
38 #define DPRINTF(...)
39 #endif
40
41 /* internal processing - reset HC to try and recover */
42 #define USB_RET_PROCERR (-99)
43
44 #define MMIO_SIZE 0x1000
45
46 /* Capability Registers Base Address - section 2.2 */
47 #define CAPREGBASE 0x0000
48 #define CAPLENGTH CAPREGBASE + 0x0000 // 1-byte, 0x0001 reserved
49 #define HCIVERSION CAPREGBASE + 0x0002 // 2-bytes, i/f version #
50 #define HCSPARAMS CAPREGBASE + 0x0004 // 4-bytes, structural params
51 #define HCCPARAMS CAPREGBASE + 0x0008 // 4-bytes, capability params
52 #define EECP HCCPARAMS + 1
53 #define HCSPPORTROUTE1 CAPREGBASE + 0x000c
54 #define HCSPPORTROUTE2 CAPREGBASE + 0x0010
55
56 #define OPREGBASE 0x0020 // Operational Registers Base Address
57
58 #define USBCMD OPREGBASE + 0x0000
59 #define USBCMD_RUNSTOP (1 << 0) // run / Stop
60 #define USBCMD_HCRESET (1 << 1) // HC Reset
61 #define USBCMD_FLS (3 << 2) // Frame List Size
62 #define USBCMD_FLS_SH 2 // Frame List Size Shift
63 #define USBCMD_PSE (1 << 4) // Periodic Schedule Enable
64 #define USBCMD_ASE (1 << 5) // Asynch Schedule Enable
65 #define USBCMD_IAAD (1 << 6) // Int Asynch Advance Doorbell
66 #define USBCMD_LHCR (1 << 7) // Light Host Controller Reset
67 #define USBCMD_ASPMC (3 << 8) // Async Sched Park Mode Count
68 #define USBCMD_ASPME (1 << 11) // Async Sched Park Mode Enable
69 #define USBCMD_ITC (0x7f << 16) // Int Threshold Control
70 #define USBCMD_ITC_SH 16 // Int Threshold Control Shift
71
72 #define USBSTS OPREGBASE + 0x0004
73 #define USBSTS_RO_MASK 0x0000003f
74 #define USBSTS_INT (1 << 0) // USB Interrupt
75 #define USBSTS_ERRINT (1 << 1) // Error Interrupt
76 #define USBSTS_PCD (1 << 2) // Port Change Detect
77 #define USBSTS_FLR (1 << 3) // Frame List Rollover
78 #define USBSTS_HSE (1 << 4) // Host System Error
79 #define USBSTS_IAA (1 << 5) // Interrupt on Async Advance
80 #define USBSTS_HALT (1 << 12) // HC Halted
81 #define USBSTS_REC (1 << 13) // Reclamation
82 #define USBSTS_PSS (1 << 14) // Periodic Schedule Status
83 #define USBSTS_ASS (1 << 15) // Asynchronous Schedule Status
84
85 /*
86 * Interrupt enable bits correspond to the interrupt active bits in USBSTS
87 * so no need to redefine here.
88 */
89 #define USBINTR OPREGBASE + 0x0008
90 #define USBINTR_MASK 0x0000003f
91
92 #define FRINDEX OPREGBASE + 0x000c
93 #define CTRLDSSEGMENT OPREGBASE + 0x0010
94 #define PERIODICLISTBASE OPREGBASE + 0x0014
95 #define ASYNCLISTADDR OPREGBASE + 0x0018
96 #define ASYNCLISTADDR_MASK 0xffffffe0
97
98 #define CONFIGFLAG OPREGBASE + 0x0040
99
100 #define PORTSC (OPREGBASE + 0x0044)
101 #define PORTSC_BEGIN PORTSC
102 #define PORTSC_END (PORTSC + 4 * NB_PORTS)
103 /*
104 * Bits that are reserved or are read-only are masked out of values
105 * written to us by software
106 */
107 #define PORTSC_RO_MASK 0x007001c0
108 #define PORTSC_RWC_MASK 0x0000002a
109 #define PORTSC_WKOC_E (1 << 22) // Wake on Over Current Enable
110 #define PORTSC_WKDS_E (1 << 21) // Wake on Disconnect Enable
111 #define PORTSC_WKCN_E (1 << 20) // Wake on Connect Enable
112 #define PORTSC_PTC (15 << 16) // Port Test Control
113 #define PORTSC_PTC_SH 16 // Port Test Control shift
114 #define PORTSC_PIC (3 << 14) // Port Indicator Control
115 #define PORTSC_PIC_SH 14 // Port Indicator Control Shift
116 #define PORTSC_POWNER (1 << 13) // Port Owner
117 #define PORTSC_PPOWER (1 << 12) // Port Power
118 #define PORTSC_LINESTAT (3 << 10) // Port Line Status
119 #define PORTSC_LINESTAT_SH 10 // Port Line Status Shift
120 #define PORTSC_PRESET (1 << 8) // Port Reset
121 #define PORTSC_SUSPEND (1 << 7) // Port Suspend
122 #define PORTSC_FPRES (1 << 6) // Force Port Resume
123 #define PORTSC_OCC (1 << 5) // Over Current Change
124 #define PORTSC_OCA (1 << 4) // Over Current Active
125 #define PORTSC_PEDC (1 << 3) // Port Enable/Disable Change
126 #define PORTSC_PED (1 << 2) // Port Enable/Disable
127 #define PORTSC_CSC (1 << 1) // Connect Status Change
128 #define PORTSC_CONNECT (1 << 0) // Current Connect Status
129
130 #define FRAME_TIMER_FREQ 1000
131 #define FRAME_TIMER_NS (1000000000 / FRAME_TIMER_FREQ)
132
133 #define NB_MAXINTRATE 8 // Max rate at which controller issues ints
134 #define NB_PORTS 6 // Number of downstream ports
135 #define BUFF_SIZE 5*4096 // Max bytes to transfer per transaction
136 #define MAX_ITERATIONS 20 // Max number of QH before we break the loop
137 #define MAX_QH 100 // Max allowable queue heads in a chain
138
139 /* Internal periodic / asynchronous schedule state machine states
140 */
141 typedef enum {
142 EST_INACTIVE = 1000,
143 EST_ACTIVE,
144 EST_EXECUTING,
145 EST_SLEEPING,
146 /* The following states are internal to the state machine function
147 */
148 EST_WAITLISTHEAD,
149 EST_FETCHENTRY,
150 EST_FETCHQH,
151 EST_FETCHITD,
152 EST_FETCHSITD,
153 EST_ADVANCEQUEUE,
154 EST_FETCHQTD,
155 EST_EXECUTE,
156 EST_WRITEBACK,
157 EST_HORIZONTALQH
158 } EHCI_STATES;
159
160 /* macros for accessing fields within next link pointer entry */
161 #define NLPTR_GET(x) ((x) & 0xffffffe0)
162 #define NLPTR_TYPE_GET(x) (((x) >> 1) & 3)
163 #define NLPTR_TBIT(x) ((x) & 1) // 1=invalid, 0=valid
164
165 /* link pointer types */
166 #define NLPTR_TYPE_ITD 0 // isoc xfer descriptor
167 #define NLPTR_TYPE_QH 1 // queue head
168 #define NLPTR_TYPE_STITD 2 // split xaction, isoc xfer descriptor
169 #define NLPTR_TYPE_FSTN 3 // frame span traversal node
170
171
172 /* EHCI spec version 1.0 Section 3.3
173 */
174 typedef struct EHCIitd {
175 uint32_t next;
176
177 uint32_t transact[8];
178 #define ITD_XACT_ACTIVE (1 << 31)
179 #define ITD_XACT_DBERROR (1 << 30)
180 #define ITD_XACT_BABBLE (1 << 29)
181 #define ITD_XACT_XACTERR (1 << 28)
182 #define ITD_XACT_LENGTH_MASK 0x0fff0000
183 #define ITD_XACT_LENGTH_SH 16
184 #define ITD_XACT_IOC (1 << 15)
185 #define ITD_XACT_PGSEL_MASK 0x00007000
186 #define ITD_XACT_PGSEL_SH 12
187 #define ITD_XACT_OFFSET_MASK 0x00000fff
188
189 uint32_t bufptr[7];
190 #define ITD_BUFPTR_MASK 0xfffff000
191 #define ITD_BUFPTR_SH 12
192 #define ITD_BUFPTR_EP_MASK 0x00000f00
193 #define ITD_BUFPTR_EP_SH 8
194 #define ITD_BUFPTR_DEVADDR_MASK 0x0000007f
195 #define ITD_BUFPTR_DEVADDR_SH 0
196 #define ITD_BUFPTR_DIRECTION (1 << 11)
197 #define ITD_BUFPTR_MAXPKT_MASK 0x000007ff
198 #define ITD_BUFPTR_MAXPKT_SH 0
199 #define ITD_BUFPTR_MULT_MASK 0x00000003
200 #define ITD_BUFPTR_MULT_SH 0
201 } EHCIitd;
202
203 /* EHCI spec version 1.0 Section 3.4
204 */
205 typedef struct EHCIsitd {
206 uint32_t next; // Standard next link pointer
207 uint32_t epchar;
208 #define SITD_EPCHAR_IO (1 << 31)
209 #define SITD_EPCHAR_PORTNUM_MASK 0x7f000000
210 #define SITD_EPCHAR_PORTNUM_SH 24
211 #define SITD_EPCHAR_HUBADD_MASK 0x007f0000
212 #define SITD_EPCHAR_HUBADDR_SH 16
213 #define SITD_EPCHAR_EPNUM_MASK 0x00000f00
214 #define SITD_EPCHAR_EPNUM_SH 8
215 #define SITD_EPCHAR_DEVADDR_MASK 0x0000007f
216
217 uint32_t uframe;
218 #define SITD_UFRAME_CMASK_MASK 0x0000ff00
219 #define SITD_UFRAME_CMASK_SH 8
220 #define SITD_UFRAME_SMASK_MASK 0x000000ff
221
222 uint32_t results;
223 #define SITD_RESULTS_IOC (1 << 31)
224 #define SITD_RESULTS_PGSEL (1 << 30)
225 #define SITD_RESULTS_TBYTES_MASK 0x03ff0000
226 #define SITD_RESULTS_TYBYTES_SH 16
227 #define SITD_RESULTS_CPROGMASK_MASK 0x0000ff00
228 #define SITD_RESULTS_CPROGMASK_SH 8
229 #define SITD_RESULTS_ACTIVE (1 << 7)
230 #define SITD_RESULTS_ERR (1 << 6)
231 #define SITD_RESULTS_DBERR (1 << 5)
232 #define SITD_RESULTS_BABBLE (1 << 4)
233 #define SITD_RESULTS_XACTERR (1 << 3)
234 #define SITD_RESULTS_MISSEDUF (1 << 2)
235 #define SITD_RESULTS_SPLITXSTATE (1 << 1)
236
237 uint32_t bufptr[2];
238 #define SITD_BUFPTR_MASK 0xfffff000
239 #define SITD_BUFPTR_CURROFF_MASK 0x00000fff
240 #define SITD_BUFPTR_TPOS_MASK 0x00000018
241 #define SITD_BUFPTR_TPOS_SH 3
242 #define SITD_BUFPTR_TCNT_MASK 0x00000007
243
244 uint32_t backptr; // Standard next link pointer
245 } EHCIsitd;
246
247 /* EHCI spec version 1.0 Section 3.5
248 */
249 typedef struct EHCIqtd {
250 uint32_t next; // Standard next link pointer
251 uint32_t altnext; // Standard next link pointer
252 uint32_t token;
253 #define QTD_TOKEN_DTOGGLE (1 << 31)
254 #define QTD_TOKEN_TBYTES_MASK 0x7fff0000
255 #define QTD_TOKEN_TBYTES_SH 16
256 #define QTD_TOKEN_IOC (1 << 15)
257 #define QTD_TOKEN_CPAGE_MASK 0x00007000
258 #define QTD_TOKEN_CPAGE_SH 12
259 #define QTD_TOKEN_CERR_MASK 0x00000c00
260 #define QTD_TOKEN_CERR_SH 10
261 #define QTD_TOKEN_PID_MASK 0x00000300
262 #define QTD_TOKEN_PID_SH 8
263 #define QTD_TOKEN_ACTIVE (1 << 7)
264 #define QTD_TOKEN_HALT (1 << 6)
265 #define QTD_TOKEN_DBERR (1 << 5)
266 #define QTD_TOKEN_BABBLE (1 << 4)
267 #define QTD_TOKEN_XACTERR (1 << 3)
268 #define QTD_TOKEN_MISSEDUF (1 << 2)
269 #define QTD_TOKEN_SPLITXSTATE (1 << 1)
270 #define QTD_TOKEN_PING (1 << 0)
271
272 uint32_t bufptr[5]; // Standard buffer pointer
273 #define QTD_BUFPTR_MASK 0xfffff000
274 #define QTD_BUFPTR_SH 12
275 } EHCIqtd;
276
277 /* EHCI spec version 1.0 Section 3.6
278 */
279 typedef struct EHCIqh {
280 uint32_t next; // Standard next link pointer
281
282 /* endpoint characteristics */
283 uint32_t epchar;
284 #define QH_EPCHAR_RL_MASK 0xf0000000
285 #define QH_EPCHAR_RL_SH 28
286 #define QH_EPCHAR_C (1 << 27)
287 #define QH_EPCHAR_MPLEN_MASK 0x07FF0000
288 #define QH_EPCHAR_MPLEN_SH 16
289 #define QH_EPCHAR_H (1 << 15)
290 #define QH_EPCHAR_DTC (1 << 14)
291 #define QH_EPCHAR_EPS_MASK 0x00003000
292 #define QH_EPCHAR_EPS_SH 12
293 #define EHCI_QH_EPS_FULL 0
294 #define EHCI_QH_EPS_LOW 1
295 #define EHCI_QH_EPS_HIGH 2
296 #define EHCI_QH_EPS_RESERVED 3
297
298 #define QH_EPCHAR_EP_MASK 0x00000f00
299 #define QH_EPCHAR_EP_SH 8
300 #define QH_EPCHAR_I (1 << 7)
301 #define QH_EPCHAR_DEVADDR_MASK 0x0000007f
302 #define QH_EPCHAR_DEVADDR_SH 0
303
304 /* endpoint capabilities */
305 uint32_t epcap;
306 #define QH_EPCAP_MULT_MASK 0xc0000000
307 #define QH_EPCAP_MULT_SH 30
308 #define QH_EPCAP_PORTNUM_MASK 0x3f800000
309 #define QH_EPCAP_PORTNUM_SH 23
310 #define QH_EPCAP_HUBADDR_MASK 0x007f0000
311 #define QH_EPCAP_HUBADDR_SH 16
312 #define QH_EPCAP_CMASK_MASK 0x0000ff00
313 #define QH_EPCAP_CMASK_SH 8
314 #define QH_EPCAP_SMASK_MASK 0x000000ff
315 #define QH_EPCAP_SMASK_SH 0
316
317 uint32_t current_qtd; // Standard next link pointer
318 uint32_t next_qtd; // Standard next link pointer
319 uint32_t altnext_qtd;
320 #define QH_ALTNEXT_NAKCNT_MASK 0x0000001e
321 #define QH_ALTNEXT_NAKCNT_SH 1
322
323 uint32_t token; // Same as QTD token
324 uint32_t bufptr[5]; // Standard buffer pointer
325 #define BUFPTR_CPROGMASK_MASK 0x000000ff
326 #define BUFPTR_FRAMETAG_MASK 0x0000001f
327 #define BUFPTR_SBYTES_MASK 0x00000fe0
328 #define BUFPTR_SBYTES_SH 5
329 } EHCIqh;
330
331 /* EHCI spec version 1.0 Section 3.7
332 */
333 typedef struct EHCIfstn {
334 uint32_t next; // Standard next link pointer
335 uint32_t backptr; // Standard next link pointer
336 } EHCIfstn;
337
338 typedef struct EHCIQueue EHCIQueue;
339 typedef struct EHCIState EHCIState;
340
341 enum async_state {
342 EHCI_ASYNC_NONE = 0,
343 EHCI_ASYNC_INFLIGHT,
344 EHCI_ASYNC_FINISHED,
345 };
346
347 struct EHCIQueue {
348 EHCIState *ehci;
349 QTAILQ_ENTRY(EHCIQueue) next;
350 uint32_t seen;
351 uint64_t ts;
352
353 /* cached data from guest - needs to be flushed
354 * when guest removes an entry (doorbell, handshake sequence)
355 */
356 EHCIqh qh; // copy of current QH (being worked on)
357 uint32_t qhaddr; // address QH read from
358 EHCIqtd qtd; // copy of current QTD (being worked on)
359 uint32_t qtdaddr; // address QTD read from
360
361 USBPacket packet;
362 QEMUSGList sgl;
363 int pid;
364 uint32_t tbytes;
365 enum async_state async;
366 int usb_status;
367 };
368
369 typedef QTAILQ_HEAD(EHCIQueueHead, EHCIQueue) EHCIQueueHead;
370
371 struct EHCIState {
372 PCIDevice dev;
373 USBBus bus;
374 qemu_irq irq;
375 MemoryRegion mem;
376 int companion_count;
377
378 /* properties */
379 uint32_t freq;
380 uint32_t maxframes;
381
382 /*
383 * EHCI spec version 1.0 Section 2.3
384 * Host Controller Operational Registers
385 */
386 union {
387 uint8_t mmio[MMIO_SIZE];
388 struct {
389 uint8_t cap[OPREGBASE];
390 uint32_t usbcmd;
391 uint32_t usbsts;
392 uint32_t usbintr;
393 uint32_t frindex;
394 uint32_t ctrldssegment;
395 uint32_t periodiclistbase;
396 uint32_t asynclistaddr;
397 uint32_t notused[9];
398 uint32_t configflag;
399 uint32_t portsc[NB_PORTS];
400 };
401 };
402
403 /*
404 * Internal states, shadow registers, etc
405 */
406 QEMUTimer *frame_timer;
407 int attach_poll_counter;
408 int astate; // Current state in asynchronous schedule
409 int pstate; // Current state in periodic schedule
410 USBPort ports[NB_PORTS];
411 USBPort *companion_ports[NB_PORTS];
412 uint32_t usbsts_pending;
413 EHCIQueueHead aqueues;
414 EHCIQueueHead pqueues;
415
416 uint32_t a_fetch_addr; // which address to look at next
417 uint32_t p_fetch_addr; // which address to look at next
418
419 USBPacket ipacket;
420 QEMUSGList isgl;
421
422 uint64_t last_run_ns;
423 };
424
425 #define SET_LAST_RUN_CLOCK(s) \
426 (s)->last_run_ns = qemu_get_clock_ns(vm_clock);
427
428 /* nifty macros from Arnon's EHCI version */
429 #define get_field(data, field) \
430 (((data) & field##_MASK) >> field##_SH)
431
432 #define set_field(data, newval, field) do { \
433 uint32_t val = *data; \
434 val &= ~ field##_MASK; \
435 val |= ((newval) << field##_SH) & field##_MASK; \
436 *data = val; \
437 } while(0)
438
439 static const char *ehci_state_names[] = {
440 [EST_INACTIVE] = "INACTIVE",
441 [EST_ACTIVE] = "ACTIVE",
442 [EST_EXECUTING] = "EXECUTING",
443 [EST_SLEEPING] = "SLEEPING",
444 [EST_WAITLISTHEAD] = "WAITLISTHEAD",
445 [EST_FETCHENTRY] = "FETCH ENTRY",
446 [EST_FETCHQH] = "FETCH QH",
447 [EST_FETCHITD] = "FETCH ITD",
448 [EST_ADVANCEQUEUE] = "ADVANCEQUEUE",
449 [EST_FETCHQTD] = "FETCH QTD",
450 [EST_EXECUTE] = "EXECUTE",
451 [EST_WRITEBACK] = "WRITEBACK",
452 [EST_HORIZONTALQH] = "HORIZONTALQH",
453 };
454
455 static const char *ehci_mmio_names[] = {
456 [CAPLENGTH] = "CAPLENGTH",
457 [HCIVERSION] = "HCIVERSION",
458 [HCSPARAMS] = "HCSPARAMS",
459 [HCCPARAMS] = "HCCPARAMS",
460 [USBCMD] = "USBCMD",
461 [USBSTS] = "USBSTS",
462 [USBINTR] = "USBINTR",
463 [FRINDEX] = "FRINDEX",
464 [PERIODICLISTBASE] = "P-LIST BASE",
465 [ASYNCLISTADDR] = "A-LIST ADDR",
466 [PORTSC_BEGIN] = "PORTSC #0",
467 [PORTSC_BEGIN + 4] = "PORTSC #1",
468 [PORTSC_BEGIN + 8] = "PORTSC #2",
469 [PORTSC_BEGIN + 12] = "PORTSC #3",
470 [PORTSC_BEGIN + 16] = "PORTSC #4",
471 [PORTSC_BEGIN + 20] = "PORTSC #5",
472 [CONFIGFLAG] = "CONFIGFLAG",
473 };
474
475 static const char *nr2str(const char **n, size_t len, uint32_t nr)
476 {
477 if (nr < len && n[nr] != NULL) {
478 return n[nr];
479 } else {
480 return "unknown";
481 }
482 }
483
484 static const char *state2str(uint32_t state)
485 {
486 return nr2str(ehci_state_names, ARRAY_SIZE(ehci_state_names), state);
487 }
488
489 static const char *addr2str(target_phys_addr_t addr)
490 {
491 return nr2str(ehci_mmio_names, ARRAY_SIZE(ehci_mmio_names), addr);
492 }
493
494 static void ehci_trace_usbsts(uint32_t mask, int state)
495 {
496 /* interrupts */
497 if (mask & USBSTS_INT) {
498 trace_usb_ehci_usbsts("INT", state);
499 }
500 if (mask & USBSTS_ERRINT) {
501 trace_usb_ehci_usbsts("ERRINT", state);
502 }
503 if (mask & USBSTS_PCD) {
504 trace_usb_ehci_usbsts("PCD", state);
505 }
506 if (mask & USBSTS_FLR) {
507 trace_usb_ehci_usbsts("FLR", state);
508 }
509 if (mask & USBSTS_HSE) {
510 trace_usb_ehci_usbsts("HSE", state);
511 }
512 if (mask & USBSTS_IAA) {
513 trace_usb_ehci_usbsts("IAA", state);
514 }
515
516 /* status */
517 if (mask & USBSTS_HALT) {
518 trace_usb_ehci_usbsts("HALT", state);
519 }
520 if (mask & USBSTS_REC) {
521 trace_usb_ehci_usbsts("REC", state);
522 }
523 if (mask & USBSTS_PSS) {
524 trace_usb_ehci_usbsts("PSS", state);
525 }
526 if (mask & USBSTS_ASS) {
527 trace_usb_ehci_usbsts("ASS", state);
528 }
529 }
530
531 static inline void ehci_set_usbsts(EHCIState *s, int mask)
532 {
533 if ((s->usbsts & mask) == mask) {
534 return;
535 }
536 ehci_trace_usbsts(mask, 1);
537 s->usbsts |= mask;
538 }
539
540 static inline void ehci_clear_usbsts(EHCIState *s, int mask)
541 {
542 if ((s->usbsts & mask) == 0) {
543 return;
544 }
545 ehci_trace_usbsts(mask, 0);
546 s->usbsts &= ~mask;
547 }
548
549 static inline void ehci_set_interrupt(EHCIState *s, int intr)
550 {
551 int level = 0;
552
553 // TODO honour interrupt threshold requests
554
555 ehci_set_usbsts(s, intr);
556
557 if ((s->usbsts & USBINTR_MASK) & s->usbintr) {
558 level = 1;
559 }
560
561 qemu_set_irq(s->irq, level);
562 }
563
564 static inline void ehci_record_interrupt(EHCIState *s, int intr)
565 {
566 s->usbsts_pending |= intr;
567 }
568
569 static inline void ehci_commit_interrupt(EHCIState *s)
570 {
571 if (!s->usbsts_pending) {
572 return;
573 }
574 ehci_set_interrupt(s, s->usbsts_pending);
575 s->usbsts_pending = 0;
576 }
577
578 static void ehci_set_state(EHCIState *s, int async, int state)
579 {
580 if (async) {
581 trace_usb_ehci_state("async", state2str(state));
582 s->astate = state;
583 } else {
584 trace_usb_ehci_state("periodic", state2str(state));
585 s->pstate = state;
586 }
587 }
588
589 static int ehci_get_state(EHCIState *s, int async)
590 {
591 return async ? s->astate : s->pstate;
592 }
593
594 static void ehci_set_fetch_addr(EHCIState *s, int async, uint32_t addr)
595 {
596 if (async) {
597 s->a_fetch_addr = addr;
598 } else {
599 s->p_fetch_addr = addr;
600 }
601 }
602
603 static int ehci_get_fetch_addr(EHCIState *s, int async)
604 {
605 return async ? s->a_fetch_addr : s->p_fetch_addr;
606 }
607
608 static void ehci_trace_qh(EHCIQueue *q, target_phys_addr_t addr, EHCIqh *qh)
609 {
610 /* need three here due to argument count limits */
611 trace_usb_ehci_qh_ptrs(q, addr, qh->next,
612 qh->current_qtd, qh->next_qtd, qh->altnext_qtd);
613 trace_usb_ehci_qh_fields(addr,
614 get_field(qh->epchar, QH_EPCHAR_RL),
615 get_field(qh->epchar, QH_EPCHAR_MPLEN),
616 get_field(qh->epchar, QH_EPCHAR_EPS),
617 get_field(qh->epchar, QH_EPCHAR_EP),
618 get_field(qh->epchar, QH_EPCHAR_DEVADDR));
619 trace_usb_ehci_qh_bits(addr,
620 (bool)(qh->epchar & QH_EPCHAR_C),
621 (bool)(qh->epchar & QH_EPCHAR_H),
622 (bool)(qh->epchar & QH_EPCHAR_DTC),
623 (bool)(qh->epchar & QH_EPCHAR_I));
624 }
625
626 static void ehci_trace_qtd(EHCIQueue *q, target_phys_addr_t addr, EHCIqtd *qtd)
627 {
628 /* need three here due to argument count limits */
629 trace_usb_ehci_qtd_ptrs(q, addr, qtd->next, qtd->altnext);
630 trace_usb_ehci_qtd_fields(addr,
631 get_field(qtd->token, QTD_TOKEN_TBYTES),
632 get_field(qtd->token, QTD_TOKEN_CPAGE),
633 get_field(qtd->token, QTD_TOKEN_CERR),
634 get_field(qtd->token, QTD_TOKEN_PID));
635 trace_usb_ehci_qtd_bits(addr,
636 (bool)(qtd->token & QTD_TOKEN_IOC),
637 (bool)(qtd->token & QTD_TOKEN_ACTIVE),
638 (bool)(qtd->token & QTD_TOKEN_HALT),
639 (bool)(qtd->token & QTD_TOKEN_BABBLE),
640 (bool)(qtd->token & QTD_TOKEN_XACTERR));
641 }
642
643 static void ehci_trace_itd(EHCIState *s, target_phys_addr_t addr, EHCIitd *itd)
644 {
645 trace_usb_ehci_itd(addr, itd->next,
646 get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT),
647 get_field(itd->bufptr[2], ITD_BUFPTR_MULT),
648 get_field(itd->bufptr[0], ITD_BUFPTR_EP),
649 get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR));
650 }
651
652 static void ehci_trace_sitd(EHCIState *s, target_phys_addr_t addr,
653 EHCIsitd *sitd)
654 {
655 trace_usb_ehci_sitd(addr, sitd->next,
656 (bool)(sitd->results & SITD_RESULTS_ACTIVE));
657 }
658
659 /* queue management */
660
661 static EHCIQueue *ehci_alloc_queue(EHCIState *ehci, int async)
662 {
663 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
664 EHCIQueue *q;
665
666 q = g_malloc0(sizeof(*q));
667 q->ehci = ehci;
668 QTAILQ_INSERT_HEAD(head, q, next);
669 trace_usb_ehci_queue_action(q, "alloc");
670 return q;
671 }
672
673 static void ehci_free_queue(EHCIQueue *q, int async)
674 {
675 EHCIQueueHead *head = async ? &q->ehci->aqueues : &q->ehci->pqueues;
676 trace_usb_ehci_queue_action(q, "free");
677 if (q->async == EHCI_ASYNC_INFLIGHT) {
678 usb_cancel_packet(&q->packet);
679 }
680 QTAILQ_REMOVE(head, q, next);
681 g_free(q);
682 }
683
684 static EHCIQueue *ehci_find_queue_by_qh(EHCIState *ehci, uint32_t addr,
685 int async)
686 {
687 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
688 EHCIQueue *q;
689
690 QTAILQ_FOREACH(q, head, next) {
691 if (addr == q->qhaddr) {
692 return q;
693 }
694 }
695 return NULL;
696 }
697
698 static void ehci_queues_rip_unused(EHCIState *ehci, int async, int flush)
699 {
700 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
701 EHCIQueue *q, *tmp;
702
703 QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
704 if (q->seen) {
705 q->seen = 0;
706 q->ts = ehci->last_run_ns;
707 continue;
708 }
709 if (!flush && ehci->last_run_ns < q->ts + 250000000) {
710 /* allow 0.25 sec idle */
711 continue;
712 }
713 ehci_free_queue(q, async);
714 }
715 }
716
717 static void ehci_queues_rip_device(EHCIState *ehci, USBDevice *dev, int async)
718 {
719 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
720 EHCIQueue *q, *tmp;
721
722 QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
723 if (!usb_packet_is_inflight(&q->packet) ||
724 q->packet.ep->dev != dev) {
725 continue;
726 }
727 ehci_free_queue(q, async);
728 }
729 }
730
731 static void ehci_queues_rip_all(EHCIState *ehci, int async)
732 {
733 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
734 EHCIQueue *q, *tmp;
735
736 QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
737 ehci_free_queue(q, async);
738 }
739 }
740
741 /* Attach or detach a device on root hub */
742
743 static void ehci_attach(USBPort *port)
744 {
745 EHCIState *s = port->opaque;
746 uint32_t *portsc = &s->portsc[port->index];
747
748 trace_usb_ehci_port_attach(port->index, port->dev->product_desc);
749
750 if (*portsc & PORTSC_POWNER) {
751 USBPort *companion = s->companion_ports[port->index];
752 companion->dev = port->dev;
753 companion->ops->attach(companion);
754 return;
755 }
756
757 *portsc |= PORTSC_CONNECT;
758 *portsc |= PORTSC_CSC;
759
760 ehci_set_interrupt(s, USBSTS_PCD);
761 }
762
763 static void ehci_detach(USBPort *port)
764 {
765 EHCIState *s = port->opaque;
766 uint32_t *portsc = &s->portsc[port->index];
767
768 trace_usb_ehci_port_detach(port->index);
769
770 if (*portsc & PORTSC_POWNER) {
771 USBPort *companion = s->companion_ports[port->index];
772 companion->ops->detach(companion);
773 companion->dev = NULL;
774 /*
775 * EHCI spec 4.2.2: "When a disconnect occurs... On the event,
776 * the port ownership is returned immediately to the EHCI controller."
777 */
778 *portsc &= ~PORTSC_POWNER;
779 return;
780 }
781
782 ehci_queues_rip_device(s, port->dev, 0);
783 ehci_queues_rip_device(s, port->dev, 1);
784
785 *portsc &= ~(PORTSC_CONNECT|PORTSC_PED);
786 *portsc |= PORTSC_CSC;
787
788 ehci_set_interrupt(s, USBSTS_PCD);
789 }
790
791 static void ehci_child_detach(USBPort *port, USBDevice *child)
792 {
793 EHCIState *s = port->opaque;
794 uint32_t portsc = s->portsc[port->index];
795
796 if (portsc & PORTSC_POWNER) {
797 USBPort *companion = s->companion_ports[port->index];
798 companion->ops->child_detach(companion, child);
799 return;
800 }
801
802 ehci_queues_rip_device(s, child, 0);
803 ehci_queues_rip_device(s, child, 1);
804 }
805
806 static void ehci_wakeup(USBPort *port)
807 {
808 EHCIState *s = port->opaque;
809 uint32_t portsc = s->portsc[port->index];
810
811 if (portsc & PORTSC_POWNER) {
812 USBPort *companion = s->companion_ports[port->index];
813 if (companion->ops->wakeup) {
814 companion->ops->wakeup(companion);
815 }
816 }
817 }
818
819 static int ehci_register_companion(USBBus *bus, USBPort *ports[],
820 uint32_t portcount, uint32_t firstport)
821 {
822 EHCIState *s = container_of(bus, EHCIState, bus);
823 uint32_t i;
824
825 if (firstport + portcount > NB_PORTS) {
826 qerror_report(QERR_INVALID_PARAMETER_VALUE, "firstport",
827 "firstport on masterbus");
828 error_printf_unless_qmp(
829 "firstport value of %u makes companion take ports %u - %u, which "
830 "is outside of the valid range of 0 - %u\n", firstport, firstport,
831 firstport + portcount - 1, NB_PORTS - 1);
832 return -1;
833 }
834
835 for (i = 0; i < portcount; i++) {
836 if (s->companion_ports[firstport + i]) {
837 qerror_report(QERR_INVALID_PARAMETER_VALUE, "masterbus",
838 "an USB masterbus");
839 error_printf_unless_qmp(
840 "port %u on masterbus %s already has a companion assigned\n",
841 firstport + i, bus->qbus.name);
842 return -1;
843 }
844 }
845
846 for (i = 0; i < portcount; i++) {
847 s->companion_ports[firstport + i] = ports[i];
848 s->ports[firstport + i].speedmask |=
849 USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL;
850 /* Ensure devs attached before the initial reset go to the companion */
851 s->portsc[firstport + i] = PORTSC_POWNER;
852 }
853
854 s->companion_count++;
855 s->mmio[0x05] = (s->companion_count << 4) | portcount;
856
857 return 0;
858 }
859
860 static USBDevice *ehci_find_device(EHCIState *ehci, uint8_t addr)
861 {
862 USBDevice *dev;
863 USBPort *port;
864 int i;
865
866 for (i = 0; i < NB_PORTS; i++) {
867 port = &ehci->ports[i];
868 if (!(ehci->portsc[i] & PORTSC_PED)) {
869 DPRINTF("Port %d not enabled\n", i);
870 continue;
871 }
872 dev = usb_find_device(port, addr);
873 if (dev != NULL) {
874 return dev;
875 }
876 }
877 return NULL;
878 }
879
880 /* 4.1 host controller initialization */
881 static void ehci_reset(void *opaque)
882 {
883 EHCIState *s = opaque;
884 int i;
885 USBDevice *devs[NB_PORTS];
886
887 trace_usb_ehci_reset();
888
889 /*
890 * Do the detach before touching portsc, so that it correctly gets send to
891 * us or to our companion based on PORTSC_POWNER before the reset.
892 */
893 for(i = 0; i < NB_PORTS; i++) {
894 devs[i] = s->ports[i].dev;
895 if (devs[i] && devs[i]->attached) {
896 usb_detach(&s->ports[i]);
897 }
898 }
899
900 memset(&s->mmio[OPREGBASE], 0x00, MMIO_SIZE - OPREGBASE);
901
902 s->usbcmd = NB_MAXINTRATE << USBCMD_ITC_SH;
903 s->usbsts = USBSTS_HALT;
904
905 s->astate = EST_INACTIVE;
906 s->pstate = EST_INACTIVE;
907 s->attach_poll_counter = 0;
908
909 for(i = 0; i < NB_PORTS; i++) {
910 if (s->companion_ports[i]) {
911 s->portsc[i] = PORTSC_POWNER | PORTSC_PPOWER;
912 } else {
913 s->portsc[i] = PORTSC_PPOWER;
914 }
915 if (devs[i] && devs[i]->attached) {
916 usb_attach(&s->ports[i]);
917 usb_device_reset(devs[i]);
918 }
919 }
920 ehci_queues_rip_all(s, 0);
921 ehci_queues_rip_all(s, 1);
922 qemu_del_timer(s->frame_timer);
923 }
924
925 static uint32_t ehci_mem_readb(void *ptr, target_phys_addr_t addr)
926 {
927 EHCIState *s = ptr;
928 uint32_t val;
929
930 val = s->mmio[addr];
931
932 return val;
933 }
934
935 static uint32_t ehci_mem_readw(void *ptr, target_phys_addr_t addr)
936 {
937 EHCIState *s = ptr;
938 uint32_t val;
939
940 val = s->mmio[addr] | (s->mmio[addr+1] << 8);
941
942 return val;
943 }
944
945 static uint32_t ehci_mem_readl(void *ptr, target_phys_addr_t addr)
946 {
947 EHCIState *s = ptr;
948 uint32_t val;
949
950 val = s->mmio[addr] | (s->mmio[addr+1] << 8) |
951 (s->mmio[addr+2] << 16) | (s->mmio[addr+3] << 24);
952
953 trace_usb_ehci_mmio_readl(addr, addr2str(addr), val);
954 return val;
955 }
956
957 static void ehci_mem_writeb(void *ptr, target_phys_addr_t addr, uint32_t val)
958 {
959 fprintf(stderr, "EHCI doesn't handle byte writes to MMIO\n");
960 exit(1);
961 }
962
963 static void ehci_mem_writew(void *ptr, target_phys_addr_t addr, uint32_t val)
964 {
965 fprintf(stderr, "EHCI doesn't handle 16-bit writes to MMIO\n");
966 exit(1);
967 }
968
969 static void handle_port_owner_write(EHCIState *s, int port, uint32_t owner)
970 {
971 USBDevice *dev = s->ports[port].dev;
972 uint32_t *portsc = &s->portsc[port];
973 uint32_t orig;
974
975 if (s->companion_ports[port] == NULL)
976 return;
977
978 owner = owner & PORTSC_POWNER;
979 orig = *portsc & PORTSC_POWNER;
980
981 if (!(owner ^ orig)) {
982 return;
983 }
984
985 if (dev && dev->attached) {
986 usb_detach(&s->ports[port]);
987 }
988
989 *portsc &= ~PORTSC_POWNER;
990 *portsc |= owner;
991
992 if (dev && dev->attached) {
993 usb_attach(&s->ports[port]);
994 }
995 }
996
997 static void handle_port_status_write(EHCIState *s, int port, uint32_t val)
998 {
999 uint32_t *portsc = &s->portsc[port];
1000 USBDevice *dev = s->ports[port].dev;
1001
1002 /* Clear rwc bits */
1003 *portsc &= ~(val & PORTSC_RWC_MASK);
1004 /* The guest may clear, but not set the PED bit */
1005 *portsc &= val | ~PORTSC_PED;
1006 /* POWNER is masked out by RO_MASK as it is RO when we've no companion */
1007 handle_port_owner_write(s, port, val);
1008 /* And finally apply RO_MASK */
1009 val &= PORTSC_RO_MASK;
1010
1011 if ((val & PORTSC_PRESET) && !(*portsc & PORTSC_PRESET)) {
1012 trace_usb_ehci_port_reset(port, 1);
1013 }
1014
1015 if (!(val & PORTSC_PRESET) &&(*portsc & PORTSC_PRESET)) {
1016 trace_usb_ehci_port_reset(port, 0);
1017 if (dev && dev->attached) {
1018 usb_port_reset(&s->ports[port]);
1019 *portsc &= ~PORTSC_CSC;
1020 }
1021
1022 /*
1023 * Table 2.16 Set the enable bit(and enable bit change) to indicate
1024 * to SW that this port has a high speed device attached
1025 */
1026 if (dev && dev->attached && (dev->speedmask & USB_SPEED_MASK_HIGH)) {
1027 val |= PORTSC_PED;
1028 }
1029 }
1030
1031 *portsc &= ~PORTSC_RO_MASK;
1032 *portsc |= val;
1033 }
1034
1035 static void ehci_mem_writel(void *ptr, target_phys_addr_t addr, uint32_t val)
1036 {
1037 EHCIState *s = ptr;
1038 uint32_t *mmio = (uint32_t *)(&s->mmio[addr]);
1039 uint32_t old = *mmio;
1040 int i;
1041
1042 trace_usb_ehci_mmio_writel(addr, addr2str(addr), val);
1043
1044 /* Only aligned reads are allowed on OHCI */
1045 if (addr & 3) {
1046 fprintf(stderr, "usb-ehci: Mis-aligned write to addr 0x"
1047 TARGET_FMT_plx "\n", addr);
1048 return;
1049 }
1050
1051 if (addr >= PORTSC && addr < PORTSC + 4 * NB_PORTS) {
1052 handle_port_status_write(s, (addr-PORTSC)/4, val);
1053 trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
1054 return;
1055 }
1056
1057 if (addr < OPREGBASE) {
1058 fprintf(stderr, "usb-ehci: write attempt to read-only register"
1059 TARGET_FMT_plx "\n", addr);
1060 return;
1061 }
1062
1063
1064 /* Do any register specific pre-write processing here. */
1065 switch(addr) {
1066 case USBCMD:
1067 if ((val & USBCMD_RUNSTOP) && !(s->usbcmd & USBCMD_RUNSTOP)) {
1068 qemu_mod_timer(s->frame_timer, qemu_get_clock_ns(vm_clock));
1069 SET_LAST_RUN_CLOCK(s);
1070 ehci_clear_usbsts(s, USBSTS_HALT);
1071 }
1072
1073 if (!(val & USBCMD_RUNSTOP) && (s->usbcmd & USBCMD_RUNSTOP)) {
1074 qemu_del_timer(s->frame_timer);
1075 ehci_queues_rip_all(s, 0);
1076 ehci_queues_rip_all(s, 1);
1077 ehci_set_usbsts(s, USBSTS_HALT);
1078 }
1079
1080 if (val & USBCMD_HCRESET) {
1081 ehci_reset(s);
1082 val = s->usbcmd;
1083 }
1084
1085 /* not supporting dynamic frame list size at the moment */
1086 if ((val & USBCMD_FLS) && !(s->usbcmd & USBCMD_FLS)) {
1087 fprintf(stderr, "attempt to set frame list size -- value %d\n",
1088 val & USBCMD_FLS);
1089 val &= ~USBCMD_FLS;
1090 }
1091 break;
1092
1093 case USBSTS:
1094 val &= USBSTS_RO_MASK; // bits 6 thru 31 are RO
1095 ehci_clear_usbsts(s, val); // bits 0 thru 5 are R/WC
1096 val = s->usbsts;
1097 ehci_set_interrupt(s, 0);
1098 break;
1099
1100 case USBINTR:
1101 val &= USBINTR_MASK;
1102 break;
1103
1104 case CONFIGFLAG:
1105 val &= 0x1;
1106 if (val) {
1107 for(i = 0; i < NB_PORTS; i++)
1108 handle_port_owner_write(s, i, 0);
1109 }
1110 break;
1111
1112 case PERIODICLISTBASE:
1113 if ((s->usbcmd & USBCMD_PSE) && (s->usbcmd & USBCMD_RUNSTOP)) {
1114 fprintf(stderr,
1115 "ehci: PERIODIC list base register set while periodic schedule\n"
1116 " is enabled and HC is enabled\n");
1117 }
1118 break;
1119
1120 case ASYNCLISTADDR:
1121 if ((s->usbcmd & USBCMD_ASE) && (s->usbcmd & USBCMD_RUNSTOP)) {
1122 fprintf(stderr,
1123 "ehci: ASYNC list address register set while async schedule\n"
1124 " is enabled and HC is enabled\n");
1125 }
1126 break;
1127 }
1128
1129 *mmio = val;
1130 trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
1131 }
1132
1133
1134 // TODO : Put in common header file, duplication from usb-ohci.c
1135
1136 /* Get an array of dwords from main memory */
1137 static inline int get_dwords(EHCIState *ehci, uint32_t addr,
1138 uint32_t *buf, int num)
1139 {
1140 int i;
1141
1142 for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1143 pci_dma_read(&ehci->dev, addr, buf, sizeof(*buf));
1144 *buf = le32_to_cpu(*buf);
1145 }
1146
1147 return 1;
1148 }
1149
1150 /* Put an array of dwords in to main memory */
1151 static inline int put_dwords(EHCIState *ehci, uint32_t addr,
1152 uint32_t *buf, int num)
1153 {
1154 int i;
1155
1156 for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1157 uint32_t tmp = cpu_to_le32(*buf);
1158 pci_dma_write(&ehci->dev, addr, &tmp, sizeof(tmp));
1159 }
1160
1161 return 1;
1162 }
1163
1164 // 4.10.2
1165
1166 static int ehci_qh_do_overlay(EHCIQueue *q)
1167 {
1168 int i;
1169 int dtoggle;
1170 int ping;
1171 int eps;
1172 int reload;
1173
1174 // remember values in fields to preserve in qh after overlay
1175
1176 dtoggle = q->qh.token & QTD_TOKEN_DTOGGLE;
1177 ping = q->qh.token & QTD_TOKEN_PING;
1178
1179 q->qh.current_qtd = q->qtdaddr;
1180 q->qh.next_qtd = q->qtd.next;
1181 q->qh.altnext_qtd = q->qtd.altnext;
1182 q->qh.token = q->qtd.token;
1183
1184
1185 eps = get_field(q->qh.epchar, QH_EPCHAR_EPS);
1186 if (eps == EHCI_QH_EPS_HIGH) {
1187 q->qh.token &= ~QTD_TOKEN_PING;
1188 q->qh.token |= ping;
1189 }
1190
1191 reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1192 set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1193
1194 for (i = 0; i < 5; i++) {
1195 q->qh.bufptr[i] = q->qtd.bufptr[i];
1196 }
1197
1198 if (!(q->qh.epchar & QH_EPCHAR_DTC)) {
1199 // preserve QH DT bit
1200 q->qh.token &= ~QTD_TOKEN_DTOGGLE;
1201 q->qh.token |= dtoggle;
1202 }
1203
1204 q->qh.bufptr[1] &= ~BUFPTR_CPROGMASK_MASK;
1205 q->qh.bufptr[2] &= ~BUFPTR_FRAMETAG_MASK;
1206
1207 put_dwords(q->ehci, NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh,
1208 sizeof(EHCIqh) >> 2);
1209
1210 return 0;
1211 }
1212
1213 static int ehci_init_transfer(EHCIQueue *q)
1214 {
1215 uint32_t cpage, offset, bytes, plen;
1216 dma_addr_t page;
1217
1218 cpage = get_field(q->qh.token, QTD_TOKEN_CPAGE);
1219 bytes = get_field(q->qh.token, QTD_TOKEN_TBYTES);
1220 offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
1221 pci_dma_sglist_init(&q->sgl, &q->ehci->dev, 5);
1222
1223 while (bytes > 0) {
1224 if (cpage > 4) {
1225 fprintf(stderr, "cpage out of range (%d)\n", cpage);
1226 return USB_RET_PROCERR;
1227 }
1228
1229 page = q->qh.bufptr[cpage] & QTD_BUFPTR_MASK;
1230 page += offset;
1231 plen = bytes;
1232 if (plen > 4096 - offset) {
1233 plen = 4096 - offset;
1234 offset = 0;
1235 cpage++;
1236 }
1237
1238 qemu_sglist_add(&q->sgl, page, plen);
1239 bytes -= plen;
1240 }
1241 return 0;
1242 }
1243
1244 static void ehci_finish_transfer(EHCIQueue *q, int status)
1245 {
1246 uint32_t cpage, offset;
1247
1248 qemu_sglist_destroy(&q->sgl);
1249
1250 if (status > 0) {
1251 /* update cpage & offset */
1252 cpage = get_field(q->qh.token, QTD_TOKEN_CPAGE);
1253 offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
1254
1255 offset += status;
1256 cpage += offset >> QTD_BUFPTR_SH;
1257 offset &= ~QTD_BUFPTR_MASK;
1258
1259 set_field(&q->qh.token, cpage, QTD_TOKEN_CPAGE);
1260 q->qh.bufptr[0] &= QTD_BUFPTR_MASK;
1261 q->qh.bufptr[0] |= offset;
1262 }
1263 }
1264
1265 static void ehci_async_complete_packet(USBPort *port, USBPacket *packet)
1266 {
1267 EHCIQueue *q;
1268 EHCIState *s = port->opaque;
1269 uint32_t portsc = s->portsc[port->index];
1270
1271 if (portsc & PORTSC_POWNER) {
1272 USBPort *companion = s->companion_ports[port->index];
1273 companion->ops->complete(companion, packet);
1274 return;
1275 }
1276
1277 q = container_of(packet, EHCIQueue, packet);
1278 trace_usb_ehci_queue_action(q, "wakeup");
1279 assert(q->async == EHCI_ASYNC_INFLIGHT);
1280 q->async = EHCI_ASYNC_FINISHED;
1281 q->usb_status = packet->result;
1282 }
1283
1284 static void ehci_execute_complete(EHCIQueue *q)
1285 {
1286 assert(q->async != EHCI_ASYNC_INFLIGHT);
1287 q->async = EHCI_ASYNC_NONE;
1288
1289 DPRINTF("execute_complete: qhaddr 0x%x, next %x, qtdaddr 0x%x, status %d\n",
1290 q->qhaddr, q->qh.next, q->qtdaddr, q->usb_status);
1291
1292 if (q->usb_status < 0) {
1293 switch(q->usb_status) {
1294 case USB_RET_IOERROR:
1295 case USB_RET_NODEV:
1296 q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_XACTERR);
1297 set_field(&q->qh.token, 0, QTD_TOKEN_CERR);
1298 ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1299 break;
1300 case USB_RET_STALL:
1301 q->qh.token |= QTD_TOKEN_HALT;
1302 ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1303 break;
1304 case USB_RET_NAK:
1305 set_field(&q->qh.altnext_qtd, 0, QH_ALTNEXT_NAKCNT);
1306 return; /* We're not done yet with this transaction */
1307 case USB_RET_BABBLE:
1308 q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
1309 ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1310 break;
1311 default:
1312 /* should not be triggerable */
1313 fprintf(stderr, "USB invalid response %d to handle\n", q->usb_status);
1314 assert(0);
1315 break;
1316 }
1317 } else if ((q->usb_status > q->tbytes) && (q->pid == USB_TOKEN_IN)) {
1318 q->usb_status = USB_RET_BABBLE;
1319 q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
1320 ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1321 } else {
1322 // TODO check 4.12 for splits
1323
1324 if (q->tbytes && q->pid == USB_TOKEN_IN) {
1325 q->tbytes -= q->usb_status;
1326 } else {
1327 q->tbytes = 0;
1328 }
1329
1330 DPRINTF("updating tbytes to %d\n", q->tbytes);
1331 set_field(&q->qh.token, q->tbytes, QTD_TOKEN_TBYTES);
1332 }
1333 ehci_finish_transfer(q, q->usb_status);
1334 usb_packet_unmap(&q->packet);
1335
1336 q->qh.token ^= QTD_TOKEN_DTOGGLE;
1337 q->qh.token &= ~QTD_TOKEN_ACTIVE;
1338
1339 if (q->qh.token & QTD_TOKEN_IOC) {
1340 ehci_record_interrupt(q->ehci, USBSTS_INT);
1341 }
1342 }
1343
1344 // 4.10.3
1345
1346 static int ehci_execute(EHCIQueue *q)
1347 {
1348 USBDevice *dev;
1349 USBEndpoint *ep;
1350 int ret;
1351 int endp;
1352 int devadr;
1353
1354 if ( !(q->qh.token & QTD_TOKEN_ACTIVE)) {
1355 fprintf(stderr, "Attempting to execute inactive QH\n");
1356 return USB_RET_PROCERR;
1357 }
1358
1359 q->tbytes = (q->qh.token & QTD_TOKEN_TBYTES_MASK) >> QTD_TOKEN_TBYTES_SH;
1360 if (q->tbytes > BUFF_SIZE) {
1361 fprintf(stderr, "Request for more bytes than allowed\n");
1362 return USB_RET_PROCERR;
1363 }
1364
1365 q->pid = (q->qh.token & QTD_TOKEN_PID_MASK) >> QTD_TOKEN_PID_SH;
1366 switch(q->pid) {
1367 case 0: q->pid = USB_TOKEN_OUT; break;
1368 case 1: q->pid = USB_TOKEN_IN; break;
1369 case 2: q->pid = USB_TOKEN_SETUP; break;
1370 default: fprintf(stderr, "bad token\n"); break;
1371 }
1372
1373 if (ehci_init_transfer(q) != 0) {
1374 return USB_RET_PROCERR;
1375 }
1376
1377 endp = get_field(q->qh.epchar, QH_EPCHAR_EP);
1378 devadr = get_field(q->qh.epchar, QH_EPCHAR_DEVADDR);
1379
1380 /* TODO: associating device with ehci port */
1381 dev = ehci_find_device(q->ehci, devadr);
1382 ep = usb_ep_get(dev, q->pid, endp);
1383
1384 usb_packet_setup(&q->packet, q->pid, ep);
1385 usb_packet_map(&q->packet, &q->sgl);
1386
1387 ret = usb_handle_packet(dev, &q->packet);
1388 DPRINTF("submit: qh %x next %x qtd %x pid %x len %zd "
1389 "(total %d) endp %x ret %d\n",
1390 q->qhaddr, q->qh.next, q->qtdaddr, q->pid,
1391 q->packet.iov.size, q->tbytes, endp, ret);
1392
1393 if (ret > BUFF_SIZE) {
1394 fprintf(stderr, "ret from usb_handle_packet > BUFF_SIZE\n");
1395 return USB_RET_PROCERR;
1396 }
1397
1398 return ret;
1399 }
1400
1401 /* 4.7.2
1402 */
1403
1404 static int ehci_process_itd(EHCIState *ehci,
1405 EHCIitd *itd)
1406 {
1407 USBDevice *dev;
1408 USBEndpoint *ep;
1409 int ret;
1410 uint32_t i, len, pid, dir, devaddr, endp;
1411 uint32_t pg, off, ptr1, ptr2, max, mult;
1412
1413 dir =(itd->bufptr[1] & ITD_BUFPTR_DIRECTION);
1414 devaddr = get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR);
1415 endp = get_field(itd->bufptr[0], ITD_BUFPTR_EP);
1416 max = get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT);
1417 mult = get_field(itd->bufptr[2], ITD_BUFPTR_MULT);
1418
1419 for(i = 0; i < 8; i++) {
1420 if (itd->transact[i] & ITD_XACT_ACTIVE) {
1421 pg = get_field(itd->transact[i], ITD_XACT_PGSEL);
1422 off = itd->transact[i] & ITD_XACT_OFFSET_MASK;
1423 ptr1 = (itd->bufptr[pg] & ITD_BUFPTR_MASK);
1424 ptr2 = (itd->bufptr[pg+1] & ITD_BUFPTR_MASK);
1425 len = get_field(itd->transact[i], ITD_XACT_LENGTH);
1426
1427 if (len > max * mult) {
1428 len = max * mult;
1429 }
1430
1431 if (len > BUFF_SIZE) {
1432 return USB_RET_PROCERR;
1433 }
1434
1435 pci_dma_sglist_init(&ehci->isgl, &ehci->dev, 2);
1436 if (off + len > 4096) {
1437 /* transfer crosses page border */
1438 uint32_t len2 = off + len - 4096;
1439 uint32_t len1 = len - len2;
1440 qemu_sglist_add(&ehci->isgl, ptr1 + off, len1);
1441 qemu_sglist_add(&ehci->isgl, ptr2, len2);
1442 } else {
1443 qemu_sglist_add(&ehci->isgl, ptr1 + off, len);
1444 }
1445
1446 pid = dir ? USB_TOKEN_IN : USB_TOKEN_OUT;
1447
1448 dev = ehci_find_device(ehci, devaddr);
1449 ep = usb_ep_get(dev, pid, endp);
1450 if (ep->type == USB_ENDPOINT_XFER_ISOC) {
1451 usb_packet_setup(&ehci->ipacket, pid, ep);
1452 usb_packet_map(&ehci->ipacket, &ehci->isgl);
1453 ret = usb_handle_packet(dev, &ehci->ipacket);
1454 assert(ret != USB_RET_ASYNC);
1455 usb_packet_unmap(&ehci->ipacket);
1456 } else {
1457 DPRINTF("ISOCH: attempt to addess non-iso endpoint\n");
1458 ret = USB_RET_NAK;
1459 }
1460 qemu_sglist_destroy(&ehci->isgl);
1461
1462 if (ret < 0) {
1463 switch (ret) {
1464 default:
1465 fprintf(stderr, "Unexpected iso usb result: %d\n", ret);
1466 /* Fall through */
1467 case USB_RET_IOERROR:
1468 case USB_RET_NODEV:
1469 /* 3.3.2: XACTERR is only allowed on IN transactions */
1470 if (dir) {
1471 itd->transact[i] |= ITD_XACT_XACTERR;
1472 ehci_record_interrupt(ehci, USBSTS_ERRINT);
1473 }
1474 break;
1475 case USB_RET_BABBLE:
1476 itd->transact[i] |= ITD_XACT_BABBLE;
1477 ehci_record_interrupt(ehci, USBSTS_ERRINT);
1478 break;
1479 case USB_RET_NAK:
1480 /* no data for us, so do a zero-length transfer */
1481 ret = 0;
1482 break;
1483 }
1484 }
1485 if (ret >= 0) {
1486 if (!dir) {
1487 /* OUT */
1488 set_field(&itd->transact[i], len - ret, ITD_XACT_LENGTH);
1489 } else {
1490 /* IN */
1491 set_field(&itd->transact[i], ret, ITD_XACT_LENGTH);
1492 }
1493 }
1494 if (itd->transact[i] & ITD_XACT_IOC) {
1495 ehci_record_interrupt(ehci, USBSTS_INT);
1496 }
1497 itd->transact[i] &= ~ITD_XACT_ACTIVE;
1498 }
1499 }
1500 return 0;
1501 }
1502
1503 /* This state is the entry point for asynchronous schedule
1504 * processing. Entry here consitutes a EHCI start event state (4.8.5)
1505 */
1506 static int ehci_state_waitlisthead(EHCIState *ehci, int async)
1507 {
1508 EHCIqh qh;
1509 int i = 0;
1510 int again = 0;
1511 uint32_t entry = ehci->asynclistaddr;
1512
1513 /* set reclamation flag at start event (4.8.6) */
1514 if (async) {
1515 ehci_set_usbsts(ehci, USBSTS_REC);
1516 }
1517
1518 ehci_queues_rip_unused(ehci, async, 0);
1519
1520 /* Find the head of the list (4.9.1.1) */
1521 for(i = 0; i < MAX_QH; i++) {
1522 get_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &qh,
1523 sizeof(EHCIqh) >> 2);
1524 ehci_trace_qh(NULL, NLPTR_GET(entry), &qh);
1525
1526 if (qh.epchar & QH_EPCHAR_H) {
1527 if (async) {
1528 entry |= (NLPTR_TYPE_QH << 1);
1529 }
1530
1531 ehci_set_fetch_addr(ehci, async, entry);
1532 ehci_set_state(ehci, async, EST_FETCHENTRY);
1533 again = 1;
1534 goto out;
1535 }
1536
1537 entry = qh.next;
1538 if (entry == ehci->asynclistaddr) {
1539 break;
1540 }
1541 }
1542
1543 /* no head found for list. */
1544
1545 ehci_set_state(ehci, async, EST_ACTIVE);
1546
1547 out:
1548 return again;
1549 }
1550
1551
1552 /* This state is the entry point for periodic schedule processing as
1553 * well as being a continuation state for async processing.
1554 */
1555 static int ehci_state_fetchentry(EHCIState *ehci, int async)
1556 {
1557 int again = 0;
1558 uint32_t entry = ehci_get_fetch_addr(ehci, async);
1559
1560 if (NLPTR_TBIT(entry)) {
1561 ehci_set_state(ehci, async, EST_ACTIVE);
1562 goto out;
1563 }
1564
1565 /* section 4.8, only QH in async schedule */
1566 if (async && (NLPTR_TYPE_GET(entry) != NLPTR_TYPE_QH)) {
1567 fprintf(stderr, "non queue head request in async schedule\n");
1568 return -1;
1569 }
1570
1571 switch (NLPTR_TYPE_GET(entry)) {
1572 case NLPTR_TYPE_QH:
1573 ehci_set_state(ehci, async, EST_FETCHQH);
1574 again = 1;
1575 break;
1576
1577 case NLPTR_TYPE_ITD:
1578 ehci_set_state(ehci, async, EST_FETCHITD);
1579 again = 1;
1580 break;
1581
1582 case NLPTR_TYPE_STITD:
1583 ehci_set_state(ehci, async, EST_FETCHSITD);
1584 again = 1;
1585 break;
1586
1587 default:
1588 /* TODO: handle FSTN type */
1589 fprintf(stderr, "FETCHENTRY: entry at %X is of type %d "
1590 "which is not supported yet\n", entry, NLPTR_TYPE_GET(entry));
1591 return -1;
1592 }
1593
1594 out:
1595 return again;
1596 }
1597
1598 static EHCIQueue *ehci_state_fetchqh(EHCIState *ehci, int async)
1599 {
1600 uint32_t entry;
1601 EHCIQueue *q;
1602
1603 entry = ehci_get_fetch_addr(ehci, async);
1604 q = ehci_find_queue_by_qh(ehci, entry, async);
1605 if (NULL == q) {
1606 q = ehci_alloc_queue(ehci, async);
1607 }
1608 q->qhaddr = entry;
1609 q->seen++;
1610
1611 if (q->seen > 1) {
1612 /* we are going in circles -- stop processing */
1613 ehci_set_state(ehci, async, EST_ACTIVE);
1614 q = NULL;
1615 goto out;
1616 }
1617
1618 get_dwords(ehci, NLPTR_GET(q->qhaddr),
1619 (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1620 ehci_trace_qh(q, NLPTR_GET(q->qhaddr), &q->qh);
1621
1622 if (q->async == EHCI_ASYNC_INFLIGHT) {
1623 /* I/O still in progress -- skip queue */
1624 ehci_set_state(ehci, async, EST_HORIZONTALQH);
1625 goto out;
1626 }
1627 if (q->async == EHCI_ASYNC_FINISHED) {
1628 /* I/O finished -- continue processing queue */
1629 trace_usb_ehci_queue_action(q, "resume");
1630 ehci_set_state(ehci, async, EST_EXECUTING);
1631 goto out;
1632 }
1633
1634 if (async && (q->qh.epchar & QH_EPCHAR_H)) {
1635
1636 /* EHCI spec version 1.0 Section 4.8.3 & 4.10.1 */
1637 if (ehci->usbsts & USBSTS_REC) {
1638 ehci_clear_usbsts(ehci, USBSTS_REC);
1639 } else {
1640 DPRINTF("FETCHQH: QH 0x%08x. H-bit set, reclamation status reset"
1641 " - done processing\n", q->qhaddr);
1642 ehci_set_state(ehci, async, EST_ACTIVE);
1643 q = NULL;
1644 goto out;
1645 }
1646 }
1647
1648 #if EHCI_DEBUG
1649 if (q->qhaddr != q->qh.next) {
1650 DPRINTF("FETCHQH: QH 0x%08x (h %x halt %x active %x) next 0x%08x\n",
1651 q->qhaddr,
1652 q->qh.epchar & QH_EPCHAR_H,
1653 q->qh.token & QTD_TOKEN_HALT,
1654 q->qh.token & QTD_TOKEN_ACTIVE,
1655 q->qh.next);
1656 }
1657 #endif
1658
1659 if (q->qh.token & QTD_TOKEN_HALT) {
1660 ehci_set_state(ehci, async, EST_HORIZONTALQH);
1661
1662 } else if ((q->qh.token & QTD_TOKEN_ACTIVE) &&
1663 (NLPTR_TBIT(q->qh.current_qtd) == 0)) {
1664 q->qtdaddr = q->qh.current_qtd;
1665 ehci_set_state(ehci, async, EST_FETCHQTD);
1666
1667 } else {
1668 /* EHCI spec version 1.0 Section 4.10.2 */
1669 ehci_set_state(ehci, async, EST_ADVANCEQUEUE);
1670 }
1671
1672 out:
1673 return q;
1674 }
1675
1676 static int ehci_state_fetchitd(EHCIState *ehci, int async)
1677 {
1678 uint32_t entry;
1679 EHCIitd itd;
1680
1681 assert(!async);
1682 entry = ehci_get_fetch_addr(ehci, async);
1683
1684 get_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &itd,
1685 sizeof(EHCIitd) >> 2);
1686 ehci_trace_itd(ehci, entry, &itd);
1687
1688 if (ehci_process_itd(ehci, &itd) != 0) {
1689 return -1;
1690 }
1691
1692 put_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &itd,
1693 sizeof(EHCIitd) >> 2);
1694 ehci_set_fetch_addr(ehci, async, itd.next);
1695 ehci_set_state(ehci, async, EST_FETCHENTRY);
1696
1697 return 1;
1698 }
1699
1700 static int ehci_state_fetchsitd(EHCIState *ehci, int async)
1701 {
1702 uint32_t entry;
1703 EHCIsitd sitd;
1704
1705 assert(!async);
1706 entry = ehci_get_fetch_addr(ehci, async);
1707
1708 get_dwords(ehci, NLPTR_GET(entry), (uint32_t *)&sitd,
1709 sizeof(EHCIsitd) >> 2);
1710 ehci_trace_sitd(ehci, entry, &sitd);
1711
1712 if (!(sitd.results & SITD_RESULTS_ACTIVE)) {
1713 /* siTD is not active, nothing to do */;
1714 } else {
1715 /* TODO: split transfers are not implemented */
1716 fprintf(stderr, "WARNING: Skipping active siTD\n");
1717 }
1718
1719 ehci_set_fetch_addr(ehci, async, sitd.next);
1720 ehci_set_state(ehci, async, EST_FETCHENTRY);
1721 return 1;
1722 }
1723
1724 /* Section 4.10.2 - paragraph 3 */
1725 static int ehci_state_advqueue(EHCIQueue *q, int async)
1726 {
1727 #if 0
1728 /* TO-DO: 4.10.2 - paragraph 2
1729 * if I-bit is set to 1 and QH is not active
1730 * go to horizontal QH
1731 */
1732 if (I-bit set) {
1733 ehci_set_state(ehci, async, EST_HORIZONTALQH);
1734 goto out;
1735 }
1736 #endif
1737
1738 /*
1739 * want data and alt-next qTD is valid
1740 */
1741 if (((q->qh.token & QTD_TOKEN_TBYTES_MASK) != 0) &&
1742 (NLPTR_TBIT(q->qh.altnext_qtd) == 0)) {
1743 q->qtdaddr = q->qh.altnext_qtd;
1744 ehci_set_state(q->ehci, async, EST_FETCHQTD);
1745
1746 /*
1747 * next qTD is valid
1748 */
1749 } else if (NLPTR_TBIT(q->qh.next_qtd) == 0) {
1750 q->qtdaddr = q->qh.next_qtd;
1751 ehci_set_state(q->ehci, async, EST_FETCHQTD);
1752
1753 /*
1754 * no valid qTD, try next QH
1755 */
1756 } else {
1757 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1758 }
1759
1760 return 1;
1761 }
1762
1763 /* Section 4.10.2 - paragraph 4 */
1764 static int ehci_state_fetchqtd(EHCIQueue *q, int async)
1765 {
1766 int again = 0;
1767
1768 get_dwords(q->ehci, NLPTR_GET(q->qtdaddr), (uint32_t *) &q->qtd,
1769 sizeof(EHCIqtd) >> 2);
1770 ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), &q->qtd);
1771
1772 if (q->qtd.token & QTD_TOKEN_ACTIVE) {
1773 ehci_set_state(q->ehci, async, EST_EXECUTE);
1774 again = 1;
1775 } else {
1776 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1777 again = 1;
1778 }
1779
1780 return again;
1781 }
1782
1783 static int ehci_state_horizqh(EHCIQueue *q, int async)
1784 {
1785 int again = 0;
1786
1787 if (ehci_get_fetch_addr(q->ehci, async) != q->qh.next) {
1788 ehci_set_fetch_addr(q->ehci, async, q->qh.next);
1789 ehci_set_state(q->ehci, async, EST_FETCHENTRY);
1790 again = 1;
1791 } else {
1792 ehci_set_state(q->ehci, async, EST_ACTIVE);
1793 }
1794
1795 return again;
1796 }
1797
1798 /*
1799 * Write the qh back to guest physical memory. This step isn't
1800 * in the EHCI spec but we need to do it since we don't share
1801 * physical memory with our guest VM.
1802 *
1803 * The first three dwords are read-only for the EHCI, so skip them
1804 * when writing back the qh.
1805 */
1806 static void ehci_flush_qh(EHCIQueue *q)
1807 {
1808 uint32_t *qh = (uint32_t *) &q->qh;
1809 uint32_t dwords = sizeof(EHCIqh) >> 2;
1810 uint32_t addr = NLPTR_GET(q->qhaddr);
1811
1812 put_dwords(q->ehci, addr + 3 * sizeof(uint32_t), qh + 3, dwords - 3);
1813 }
1814
1815 static int ehci_state_execute(EHCIQueue *q, int async)
1816 {
1817 int again = 0;
1818
1819 if (ehci_qh_do_overlay(q) != 0) {
1820 return -1;
1821 }
1822
1823 // TODO verify enough time remains in the uframe as in 4.4.1.1
1824 // TODO write back ptr to async list when done or out of time
1825 // TODO Windows does not seem to ever set the MULT field
1826
1827 if (!async) {
1828 int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1829 if (!transactCtr) {
1830 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1831 again = 1;
1832 goto out;
1833 }
1834 }
1835
1836 if (async) {
1837 ehci_set_usbsts(q->ehci, USBSTS_REC);
1838 }
1839
1840 q->usb_status = ehci_execute(q);
1841 if (q->usb_status == USB_RET_PROCERR) {
1842 again = -1;
1843 goto out;
1844 }
1845 if (q->usb_status == USB_RET_ASYNC) {
1846 ehci_flush_qh(q);
1847 trace_usb_ehci_queue_action(q, "suspend");
1848 q->async = EHCI_ASYNC_INFLIGHT;
1849 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1850 again = 1;
1851 goto out;
1852 }
1853
1854 ehci_set_state(q->ehci, async, EST_EXECUTING);
1855 again = 1;
1856
1857 out:
1858 return again;
1859 }
1860
1861 static int ehci_state_executing(EHCIQueue *q, int async)
1862 {
1863 int again = 0;
1864
1865 ehci_execute_complete(q);
1866 if (q->usb_status == USB_RET_ASYNC) {
1867 goto out;
1868 }
1869 if (q->usb_status == USB_RET_PROCERR) {
1870 again = -1;
1871 goto out;
1872 }
1873
1874 // 4.10.3
1875 if (!async) {
1876 int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1877 transactCtr--;
1878 set_field(&q->qh.epcap, transactCtr, QH_EPCAP_MULT);
1879 // 4.10.3, bottom of page 82, should exit this state when transaction
1880 // counter decrements to 0
1881 }
1882
1883 /* 4.10.5 */
1884 if (q->usb_status == USB_RET_NAK) {
1885 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1886 } else {
1887 ehci_set_state(q->ehci, async, EST_WRITEBACK);
1888 }
1889
1890 again = 1;
1891
1892 out:
1893 ehci_flush_qh(q);
1894 return again;
1895 }
1896
1897
1898 static int ehci_state_writeback(EHCIQueue *q, int async)
1899 {
1900 int again = 0;
1901
1902 /* Write back the QTD from the QH area */
1903 ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), (EHCIqtd*) &q->qh.next_qtd);
1904 put_dwords(q->ehci, NLPTR_GET(q->qtdaddr), (uint32_t *) &q->qh.next_qtd,
1905 sizeof(EHCIqtd) >> 2);
1906
1907 /*
1908 * EHCI specs say go horizontal here.
1909 *
1910 * We can also advance the queue here for performance reasons. We
1911 * need to take care to only take that shortcut in case we've
1912 * processed the qtd just written back without errors, i.e. halt
1913 * bit is clear.
1914 */
1915 if (q->qh.token & QTD_TOKEN_HALT) {
1916 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1917 again = 1;
1918 } else {
1919 ehci_set_state(q->ehci, async, EST_ADVANCEQUEUE);
1920 again = 1;
1921 }
1922 return again;
1923 }
1924
1925 /*
1926 * This is the state machine that is common to both async and periodic
1927 */
1928
1929 static void ehci_advance_state(EHCIState *ehci,
1930 int async)
1931 {
1932 EHCIQueue *q = NULL;
1933 int again;
1934 int iter = 0;
1935
1936 do {
1937 if (ehci_get_state(ehci, async) == EST_FETCHQH) {
1938 iter++;
1939 /* if we are roaming a lot of QH without executing a qTD
1940 * something is wrong with the linked list. TO-DO: why is
1941 * this hack needed?
1942 */
1943 assert(iter < MAX_ITERATIONS);
1944 #if 0
1945 if (iter > MAX_ITERATIONS) {
1946 DPRINTF("\n*** advance_state: bailing on MAX ITERATIONS***\n");
1947 ehci_set_state(ehci, async, EST_ACTIVE);
1948 break;
1949 }
1950 #endif
1951 }
1952 switch(ehci_get_state(ehci, async)) {
1953 case EST_WAITLISTHEAD:
1954 again = ehci_state_waitlisthead(ehci, async);
1955 break;
1956
1957 case EST_FETCHENTRY:
1958 again = ehci_state_fetchentry(ehci, async);
1959 break;
1960
1961 case EST_FETCHQH:
1962 q = ehci_state_fetchqh(ehci, async);
1963 again = q ? 1 : 0;
1964 break;
1965
1966 case EST_FETCHITD:
1967 again = ehci_state_fetchitd(ehci, async);
1968 break;
1969
1970 case EST_FETCHSITD:
1971 again = ehci_state_fetchsitd(ehci, async);
1972 break;
1973
1974 case EST_ADVANCEQUEUE:
1975 again = ehci_state_advqueue(q, async);
1976 break;
1977
1978 case EST_FETCHQTD:
1979 again = ehci_state_fetchqtd(q, async);
1980 break;
1981
1982 case EST_HORIZONTALQH:
1983 again = ehci_state_horizqh(q, async);
1984 break;
1985
1986 case EST_EXECUTE:
1987 iter = 0;
1988 again = ehci_state_execute(q, async);
1989 break;
1990
1991 case EST_EXECUTING:
1992 assert(q != NULL);
1993 again = ehci_state_executing(q, async);
1994 break;
1995
1996 case EST_WRITEBACK:
1997 assert(q != NULL);
1998 again = ehci_state_writeback(q, async);
1999 break;
2000
2001 default:
2002 fprintf(stderr, "Bad state!\n");
2003 again = -1;
2004 assert(0);
2005 break;
2006 }
2007
2008 if (again < 0) {
2009 fprintf(stderr, "processing error - resetting ehci HC\n");
2010 ehci_reset(ehci);
2011 again = 0;
2012 }
2013 }
2014 while (again);
2015
2016 ehci_commit_interrupt(ehci);
2017 }
2018
2019 static void ehci_advance_async_state(EHCIState *ehci)
2020 {
2021 const int async = 1;
2022
2023 switch(ehci_get_state(ehci, async)) {
2024 case EST_INACTIVE:
2025 if (!(ehci->usbcmd & USBCMD_ASE)) {
2026 break;
2027 }
2028 ehci_set_usbsts(ehci, USBSTS_ASS);
2029 ehci_set_state(ehci, async, EST_ACTIVE);
2030 // No break, fall through to ACTIVE
2031
2032 case EST_ACTIVE:
2033 if ( !(ehci->usbcmd & USBCMD_ASE)) {
2034 ehci_queues_rip_all(ehci, async);
2035 ehci_clear_usbsts(ehci, USBSTS_ASS);
2036 ehci_set_state(ehci, async, EST_INACTIVE);
2037 break;
2038 }
2039
2040 /* make sure guest has acknowledged the doorbell interrupt */
2041 /* TO-DO: is this really needed? */
2042 if (ehci->usbsts & USBSTS_IAA) {
2043 DPRINTF("IAA status bit still set.\n");
2044 break;
2045 }
2046
2047 /* check that address register has been set */
2048 if (ehci->asynclistaddr == 0) {
2049 break;
2050 }
2051
2052 ehci_set_state(ehci, async, EST_WAITLISTHEAD);
2053 ehci_advance_state(ehci, async);
2054
2055 /* If the doorbell is set, the guest wants to make a change to the
2056 * schedule. The host controller needs to release cached data.
2057 * (section 4.8.2)
2058 */
2059 if (ehci->usbcmd & USBCMD_IAAD) {
2060 /* Remove all unseen qhs from the async qhs queue */
2061 ehci_queues_rip_unused(ehci, async, 1);
2062 DPRINTF("ASYNC: doorbell request acknowledged\n");
2063 ehci->usbcmd &= ~USBCMD_IAAD;
2064 ehci_set_interrupt(ehci, USBSTS_IAA);
2065 }
2066 break;
2067
2068 default:
2069 /* this should only be due to a developer mistake */
2070 fprintf(stderr, "ehci: Bad asynchronous state %d. "
2071 "Resetting to active\n", ehci->astate);
2072 assert(0);
2073 }
2074 }
2075
2076 static void ehci_advance_periodic_state(EHCIState *ehci)
2077 {
2078 uint32_t entry;
2079 uint32_t list;
2080 const int async = 0;
2081
2082 // 4.6
2083
2084 switch(ehci_get_state(ehci, async)) {
2085 case EST_INACTIVE:
2086 if ( !(ehci->frindex & 7) && (ehci->usbcmd & USBCMD_PSE)) {
2087 ehci_set_usbsts(ehci, USBSTS_PSS);
2088 ehci_set_state(ehci, async, EST_ACTIVE);
2089 // No break, fall through to ACTIVE
2090 } else
2091 break;
2092
2093 case EST_ACTIVE:
2094 if ( !(ehci->frindex & 7) && !(ehci->usbcmd & USBCMD_PSE)) {
2095 ehci_queues_rip_all(ehci, async);
2096 ehci_clear_usbsts(ehci, USBSTS_PSS);
2097 ehci_set_state(ehci, async, EST_INACTIVE);
2098 break;
2099 }
2100
2101 list = ehci->periodiclistbase & 0xfffff000;
2102 /* check that register has been set */
2103 if (list == 0) {
2104 break;
2105 }
2106 list |= ((ehci->frindex & 0x1ff8) >> 1);
2107
2108 pci_dma_read(&ehci->dev, list, &entry, sizeof entry);
2109 entry = le32_to_cpu(entry);
2110
2111 DPRINTF("PERIODIC state adv fr=%d. [%08X] -> %08X\n",
2112 ehci->frindex / 8, list, entry);
2113 ehci_set_fetch_addr(ehci, async,entry);
2114 ehci_set_state(ehci, async, EST_FETCHENTRY);
2115 ehci_advance_state(ehci, async);
2116 ehci_queues_rip_unused(ehci, async, 0);
2117 break;
2118
2119 default:
2120 /* this should only be due to a developer mistake */
2121 fprintf(stderr, "ehci: Bad periodic state %d. "
2122 "Resetting to active\n", ehci->pstate);
2123 assert(0);
2124 }
2125 }
2126
2127 static void ehci_frame_timer(void *opaque)
2128 {
2129 EHCIState *ehci = opaque;
2130 int64_t expire_time, t_now;
2131 uint64_t ns_elapsed;
2132 int frames;
2133 int i;
2134 int skipped_frames = 0;
2135
2136 t_now = qemu_get_clock_ns(vm_clock);
2137 expire_time = t_now + (get_ticks_per_sec() / ehci->freq);
2138
2139 ns_elapsed = t_now - ehci->last_run_ns;
2140 frames = ns_elapsed / FRAME_TIMER_NS;
2141
2142 for (i = 0; i < frames; i++) {
2143 if ( !(ehci->usbsts & USBSTS_HALT)) {
2144 ehci->frindex += 8;
2145
2146 if (ehci->frindex == 0x00002000) {
2147 ehci_set_interrupt(ehci, USBSTS_FLR);
2148 }
2149
2150 if (ehci->frindex == 0x00004000) {
2151 ehci_set_interrupt(ehci, USBSTS_FLR);
2152 ehci->frindex = 0;
2153 }
2154 }
2155
2156 if (frames - i > ehci->maxframes) {
2157 skipped_frames++;
2158 } else {
2159 ehci_advance_periodic_state(ehci);
2160 }
2161
2162 ehci->last_run_ns += FRAME_TIMER_NS;
2163 }
2164
2165 #if 0
2166 if (skipped_frames) {
2167 DPRINTF("WARNING - EHCI skipped %d frames\n", skipped_frames);
2168 }
2169 #endif
2170
2171 /* Async is not inside loop since it executes everything it can once
2172 * called
2173 */
2174 ehci_advance_async_state(ehci);
2175
2176 qemu_mod_timer(ehci->frame_timer, expire_time);
2177 }
2178
2179
2180 static const MemoryRegionOps ehci_mem_ops = {
2181 .old_mmio = {
2182 .read = { ehci_mem_readb, ehci_mem_readw, ehci_mem_readl },
2183 .write = { ehci_mem_writeb, ehci_mem_writew, ehci_mem_writel },
2184 },
2185 .endianness = DEVICE_LITTLE_ENDIAN,
2186 };
2187
2188 static int usb_ehci_initfn(PCIDevice *dev);
2189
2190 static USBPortOps ehci_port_ops = {
2191 .attach = ehci_attach,
2192 .detach = ehci_detach,
2193 .child_detach = ehci_child_detach,
2194 .wakeup = ehci_wakeup,
2195 .complete = ehci_async_complete_packet,
2196 };
2197
2198 static USBBusOps ehci_bus_ops = {
2199 .register_companion = ehci_register_companion,
2200 };
2201
2202 static const VMStateDescription vmstate_ehci = {
2203 .name = "ehci",
2204 .unmigratable = 1,
2205 };
2206
2207 static Property ehci_properties[] = {
2208 DEFINE_PROP_UINT32("freq", EHCIState, freq, FRAME_TIMER_FREQ),
2209 DEFINE_PROP_UINT32("maxframes", EHCIState, maxframes, 128),
2210 DEFINE_PROP_END_OF_LIST(),
2211 };
2212
2213 static void ehci_class_init(ObjectClass *klass, void *data)
2214 {
2215 DeviceClass *dc = DEVICE_CLASS(klass);
2216 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
2217
2218 k->init = usb_ehci_initfn;
2219 k->vendor_id = PCI_VENDOR_ID_INTEL;
2220 k->device_id = PCI_DEVICE_ID_INTEL_82801D; /* ich4 */
2221 k->revision = 0x10;
2222 k->class_id = PCI_CLASS_SERIAL_USB;
2223 dc->vmsd = &vmstate_ehci;
2224 dc->props = ehci_properties;
2225 }
2226
2227 static TypeInfo ehci_info = {
2228 .name = "usb-ehci",
2229 .parent = TYPE_PCI_DEVICE,
2230 .instance_size = sizeof(EHCIState),
2231 .class_init = ehci_class_init,
2232 };
2233
2234 static void ich9_ehci_class_init(ObjectClass *klass, void *data)
2235 {
2236 DeviceClass *dc = DEVICE_CLASS(klass);
2237 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
2238
2239 k->init = usb_ehci_initfn;
2240 k->vendor_id = PCI_VENDOR_ID_INTEL;
2241 k->device_id = PCI_DEVICE_ID_INTEL_82801I_EHCI1;
2242 k->revision = 0x03;
2243 k->class_id = PCI_CLASS_SERIAL_USB;
2244 dc->vmsd = &vmstate_ehci;
2245 dc->props = ehci_properties;
2246 }
2247
2248 static TypeInfo ich9_ehci_info = {
2249 .name = "ich9-usb-ehci1",
2250 .parent = TYPE_PCI_DEVICE,
2251 .instance_size = sizeof(EHCIState),
2252 .class_init = ich9_ehci_class_init,
2253 };
2254
2255 static int usb_ehci_initfn(PCIDevice *dev)
2256 {
2257 EHCIState *s = DO_UPCAST(EHCIState, dev, dev);
2258 uint8_t *pci_conf = s->dev.config;
2259 int i;
2260
2261 pci_set_byte(&pci_conf[PCI_CLASS_PROG], 0x20);
2262
2263 /* capabilities pointer */
2264 pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x00);
2265 //pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x50);
2266
2267 pci_set_byte(&pci_conf[PCI_INTERRUPT_PIN], 4); /* interrupt pin D */
2268 pci_set_byte(&pci_conf[PCI_MIN_GNT], 0);
2269 pci_set_byte(&pci_conf[PCI_MAX_LAT], 0);
2270
2271 // pci_conf[0x50] = 0x01; // power management caps
2272
2273 pci_set_byte(&pci_conf[USB_SBRN], USB_RELEASE_2); // release number (2.1.4)
2274 pci_set_byte(&pci_conf[0x61], 0x20); // frame length adjustment (2.1.5)
2275 pci_set_word(&pci_conf[0x62], 0x00); // port wake up capability (2.1.6)
2276
2277 pci_conf[0x64] = 0x00;
2278 pci_conf[0x65] = 0x00;
2279 pci_conf[0x66] = 0x00;
2280 pci_conf[0x67] = 0x00;
2281 pci_conf[0x68] = 0x01;
2282 pci_conf[0x69] = 0x00;
2283 pci_conf[0x6a] = 0x00;
2284 pci_conf[0x6b] = 0x00; // USBLEGSUP
2285 pci_conf[0x6c] = 0x00;
2286 pci_conf[0x6d] = 0x00;
2287 pci_conf[0x6e] = 0x00;
2288 pci_conf[0x6f] = 0xc0; // USBLEFCTLSTS
2289
2290 // 2.2 host controller interface version
2291 s->mmio[0x00] = (uint8_t) OPREGBASE;
2292 s->mmio[0x01] = 0x00;
2293 s->mmio[0x02] = 0x00;
2294 s->mmio[0x03] = 0x01; // HC version
2295 s->mmio[0x04] = NB_PORTS; // Number of downstream ports
2296 s->mmio[0x05] = 0x00; // No companion ports at present
2297 s->mmio[0x06] = 0x00;
2298 s->mmio[0x07] = 0x00;
2299 s->mmio[0x08] = 0x80; // We can cache whole frame, not 64-bit capable
2300 s->mmio[0x09] = 0x68; // EECP
2301 s->mmio[0x0a] = 0x00;
2302 s->mmio[0x0b] = 0x00;
2303
2304 s->irq = s->dev.irq[3];
2305
2306 usb_bus_new(&s->bus, &ehci_bus_ops, &s->dev.qdev);
2307 for(i = 0; i < NB_PORTS; i++) {
2308 usb_register_port(&s->bus, &s->ports[i], s, i, &ehci_port_ops,
2309 USB_SPEED_MASK_HIGH);
2310 s->ports[i].dev = 0;
2311 }
2312
2313 s->frame_timer = qemu_new_timer_ns(vm_clock, ehci_frame_timer, s);
2314 QTAILQ_INIT(&s->aqueues);
2315 QTAILQ_INIT(&s->pqueues);
2316
2317 qemu_register_reset(ehci_reset, s);
2318
2319 memory_region_init_io(&s->mem, &ehci_mem_ops, s, "ehci", MMIO_SIZE);
2320 pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->mem);
2321
2322 return 0;
2323 }
2324
2325 static void ehci_register_types(void)
2326 {
2327 type_register_static(&ehci_info);
2328 type_register_static(&ich9_ehci_info);
2329 }
2330
2331 type_init(ehci_register_types)
2332
2333 /*
2334 * vim: expandtab ts=4
2335 */