]> git.proxmox.com Git - qemu.git/blob - hw/usb/hcd-ehci.c
Merge remote-tracking branch 'qmp/queue/qmp' into staging
[qemu.git] / hw / usb / hcd-ehci.c
1 /*
2 * QEMU USB EHCI Emulation
3 *
4 * Copyright(c) 2008 Emutex Ltd. (address@hidden)
5 *
6 * EHCI project was started by Mark Burkley, with contributions by
7 * Niels de Vos. David S. Ahern continued working on it. Kevin Wolf,
8 * Jan Kiszka and Vincent Palatin contributed bugfixes.
9 *
10 *
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2 of the License, or(at your option) any later version.
15 *
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, see <http://www.gnu.org/licenses/>.
23 */
24
25 #include "hw/hw.h"
26 #include "qemu-timer.h"
27 #include "hw/usb.h"
28 #include "hw/pci.h"
29 #include "monitor.h"
30 #include "trace.h"
31 #include "dma.h"
32
33 #define EHCI_DEBUG 0
34
35 #if EHCI_DEBUG
36 #define DPRINTF printf
37 #else
38 #define DPRINTF(...)
39 #endif
40
41 /* internal processing - reset HC to try and recover */
42 #define USB_RET_PROCERR (-99)
43
44 #define MMIO_SIZE 0x1000
45
46 /* Capability Registers Base Address - section 2.2 */
47 #define CAPREGBASE 0x0000
48 #define CAPLENGTH CAPREGBASE + 0x0000 // 1-byte, 0x0001 reserved
49 #define HCIVERSION CAPREGBASE + 0x0002 // 2-bytes, i/f version #
50 #define HCSPARAMS CAPREGBASE + 0x0004 // 4-bytes, structural params
51 #define HCCPARAMS CAPREGBASE + 0x0008 // 4-bytes, capability params
52 #define EECP HCCPARAMS + 1
53 #define HCSPPORTROUTE1 CAPREGBASE + 0x000c
54 #define HCSPPORTROUTE2 CAPREGBASE + 0x0010
55
56 #define OPREGBASE 0x0020 // Operational Registers Base Address
57
58 #define USBCMD OPREGBASE + 0x0000
59 #define USBCMD_RUNSTOP (1 << 0) // run / Stop
60 #define USBCMD_HCRESET (1 << 1) // HC Reset
61 #define USBCMD_FLS (3 << 2) // Frame List Size
62 #define USBCMD_FLS_SH 2 // Frame List Size Shift
63 #define USBCMD_PSE (1 << 4) // Periodic Schedule Enable
64 #define USBCMD_ASE (1 << 5) // Asynch Schedule Enable
65 #define USBCMD_IAAD (1 << 6) // Int Asynch Advance Doorbell
66 #define USBCMD_LHCR (1 << 7) // Light Host Controller Reset
67 #define USBCMD_ASPMC (3 << 8) // Async Sched Park Mode Count
68 #define USBCMD_ASPME (1 << 11) // Async Sched Park Mode Enable
69 #define USBCMD_ITC (0x7f << 16) // Int Threshold Control
70 #define USBCMD_ITC_SH 16 // Int Threshold Control Shift
71
72 #define USBSTS OPREGBASE + 0x0004
73 #define USBSTS_RO_MASK 0x0000003f
74 #define USBSTS_INT (1 << 0) // USB Interrupt
75 #define USBSTS_ERRINT (1 << 1) // Error Interrupt
76 #define USBSTS_PCD (1 << 2) // Port Change Detect
77 #define USBSTS_FLR (1 << 3) // Frame List Rollover
78 #define USBSTS_HSE (1 << 4) // Host System Error
79 #define USBSTS_IAA (1 << 5) // Interrupt on Async Advance
80 #define USBSTS_HALT (1 << 12) // HC Halted
81 #define USBSTS_REC (1 << 13) // Reclamation
82 #define USBSTS_PSS (1 << 14) // Periodic Schedule Status
83 #define USBSTS_ASS (1 << 15) // Asynchronous Schedule Status
84
85 /*
86 * Interrupt enable bits correspond to the interrupt active bits in USBSTS
87 * so no need to redefine here.
88 */
89 #define USBINTR OPREGBASE + 0x0008
90 #define USBINTR_MASK 0x0000003f
91
92 #define FRINDEX OPREGBASE + 0x000c
93 #define CTRLDSSEGMENT OPREGBASE + 0x0010
94 #define PERIODICLISTBASE OPREGBASE + 0x0014
95 #define ASYNCLISTADDR OPREGBASE + 0x0018
96 #define ASYNCLISTADDR_MASK 0xffffffe0
97
98 #define CONFIGFLAG OPREGBASE + 0x0040
99
100 #define PORTSC (OPREGBASE + 0x0044)
101 #define PORTSC_BEGIN PORTSC
102 #define PORTSC_END (PORTSC + 4 * NB_PORTS)
103 /*
104 * Bits that are reserved or are read-only are masked out of values
105 * written to us by software
106 */
107 #define PORTSC_RO_MASK 0x007001c0
108 #define PORTSC_RWC_MASK 0x0000002a
109 #define PORTSC_WKOC_E (1 << 22) // Wake on Over Current Enable
110 #define PORTSC_WKDS_E (1 << 21) // Wake on Disconnect Enable
111 #define PORTSC_WKCN_E (1 << 20) // Wake on Connect Enable
112 #define PORTSC_PTC (15 << 16) // Port Test Control
113 #define PORTSC_PTC_SH 16 // Port Test Control shift
114 #define PORTSC_PIC (3 << 14) // Port Indicator Control
115 #define PORTSC_PIC_SH 14 // Port Indicator Control Shift
116 #define PORTSC_POWNER (1 << 13) // Port Owner
117 #define PORTSC_PPOWER (1 << 12) // Port Power
118 #define PORTSC_LINESTAT (3 << 10) // Port Line Status
119 #define PORTSC_LINESTAT_SH 10 // Port Line Status Shift
120 #define PORTSC_PRESET (1 << 8) // Port Reset
121 #define PORTSC_SUSPEND (1 << 7) // Port Suspend
122 #define PORTSC_FPRES (1 << 6) // Force Port Resume
123 #define PORTSC_OCC (1 << 5) // Over Current Change
124 #define PORTSC_OCA (1 << 4) // Over Current Active
125 #define PORTSC_PEDC (1 << 3) // Port Enable/Disable Change
126 #define PORTSC_PED (1 << 2) // Port Enable/Disable
127 #define PORTSC_CSC (1 << 1) // Connect Status Change
128 #define PORTSC_CONNECT (1 << 0) // Current Connect Status
129
130 #define FRAME_TIMER_FREQ 1000
131 #define FRAME_TIMER_NS (1000000000 / FRAME_TIMER_FREQ)
132
133 #define NB_MAXINTRATE 8 // Max rate at which controller issues ints
134 #define NB_PORTS 6 // Number of downstream ports
135 #define BUFF_SIZE 5*4096 // Max bytes to transfer per transaction
136 #define MAX_QH 100 // Max allowable queue heads in a chain
137
138 /* Internal periodic / asynchronous schedule state machine states
139 */
140 typedef enum {
141 EST_INACTIVE = 1000,
142 EST_ACTIVE,
143 EST_EXECUTING,
144 EST_SLEEPING,
145 /* The following states are internal to the state machine function
146 */
147 EST_WAITLISTHEAD,
148 EST_FETCHENTRY,
149 EST_FETCHQH,
150 EST_FETCHITD,
151 EST_FETCHSITD,
152 EST_ADVANCEQUEUE,
153 EST_FETCHQTD,
154 EST_EXECUTE,
155 EST_WRITEBACK,
156 EST_HORIZONTALQH
157 } EHCI_STATES;
158
159 /* macros for accessing fields within next link pointer entry */
160 #define NLPTR_GET(x) ((x) & 0xffffffe0)
161 #define NLPTR_TYPE_GET(x) (((x) >> 1) & 3)
162 #define NLPTR_TBIT(x) ((x) & 1) // 1=invalid, 0=valid
163
164 /* link pointer types */
165 #define NLPTR_TYPE_ITD 0 // isoc xfer descriptor
166 #define NLPTR_TYPE_QH 1 // queue head
167 #define NLPTR_TYPE_STITD 2 // split xaction, isoc xfer descriptor
168 #define NLPTR_TYPE_FSTN 3 // frame span traversal node
169
170
171 /* EHCI spec version 1.0 Section 3.3
172 */
173 typedef struct EHCIitd {
174 uint32_t next;
175
176 uint32_t transact[8];
177 #define ITD_XACT_ACTIVE (1 << 31)
178 #define ITD_XACT_DBERROR (1 << 30)
179 #define ITD_XACT_BABBLE (1 << 29)
180 #define ITD_XACT_XACTERR (1 << 28)
181 #define ITD_XACT_LENGTH_MASK 0x0fff0000
182 #define ITD_XACT_LENGTH_SH 16
183 #define ITD_XACT_IOC (1 << 15)
184 #define ITD_XACT_PGSEL_MASK 0x00007000
185 #define ITD_XACT_PGSEL_SH 12
186 #define ITD_XACT_OFFSET_MASK 0x00000fff
187
188 uint32_t bufptr[7];
189 #define ITD_BUFPTR_MASK 0xfffff000
190 #define ITD_BUFPTR_SH 12
191 #define ITD_BUFPTR_EP_MASK 0x00000f00
192 #define ITD_BUFPTR_EP_SH 8
193 #define ITD_BUFPTR_DEVADDR_MASK 0x0000007f
194 #define ITD_BUFPTR_DEVADDR_SH 0
195 #define ITD_BUFPTR_DIRECTION (1 << 11)
196 #define ITD_BUFPTR_MAXPKT_MASK 0x000007ff
197 #define ITD_BUFPTR_MAXPKT_SH 0
198 #define ITD_BUFPTR_MULT_MASK 0x00000003
199 #define ITD_BUFPTR_MULT_SH 0
200 } EHCIitd;
201
202 /* EHCI spec version 1.0 Section 3.4
203 */
204 typedef struct EHCIsitd {
205 uint32_t next; // Standard next link pointer
206 uint32_t epchar;
207 #define SITD_EPCHAR_IO (1 << 31)
208 #define SITD_EPCHAR_PORTNUM_MASK 0x7f000000
209 #define SITD_EPCHAR_PORTNUM_SH 24
210 #define SITD_EPCHAR_HUBADD_MASK 0x007f0000
211 #define SITD_EPCHAR_HUBADDR_SH 16
212 #define SITD_EPCHAR_EPNUM_MASK 0x00000f00
213 #define SITD_EPCHAR_EPNUM_SH 8
214 #define SITD_EPCHAR_DEVADDR_MASK 0x0000007f
215
216 uint32_t uframe;
217 #define SITD_UFRAME_CMASK_MASK 0x0000ff00
218 #define SITD_UFRAME_CMASK_SH 8
219 #define SITD_UFRAME_SMASK_MASK 0x000000ff
220
221 uint32_t results;
222 #define SITD_RESULTS_IOC (1 << 31)
223 #define SITD_RESULTS_PGSEL (1 << 30)
224 #define SITD_RESULTS_TBYTES_MASK 0x03ff0000
225 #define SITD_RESULTS_TYBYTES_SH 16
226 #define SITD_RESULTS_CPROGMASK_MASK 0x0000ff00
227 #define SITD_RESULTS_CPROGMASK_SH 8
228 #define SITD_RESULTS_ACTIVE (1 << 7)
229 #define SITD_RESULTS_ERR (1 << 6)
230 #define SITD_RESULTS_DBERR (1 << 5)
231 #define SITD_RESULTS_BABBLE (1 << 4)
232 #define SITD_RESULTS_XACTERR (1 << 3)
233 #define SITD_RESULTS_MISSEDUF (1 << 2)
234 #define SITD_RESULTS_SPLITXSTATE (1 << 1)
235
236 uint32_t bufptr[2];
237 #define SITD_BUFPTR_MASK 0xfffff000
238 #define SITD_BUFPTR_CURROFF_MASK 0x00000fff
239 #define SITD_BUFPTR_TPOS_MASK 0x00000018
240 #define SITD_BUFPTR_TPOS_SH 3
241 #define SITD_BUFPTR_TCNT_MASK 0x00000007
242
243 uint32_t backptr; // Standard next link pointer
244 } EHCIsitd;
245
246 /* EHCI spec version 1.0 Section 3.5
247 */
248 typedef struct EHCIqtd {
249 uint32_t next; // Standard next link pointer
250 uint32_t altnext; // Standard next link pointer
251 uint32_t token;
252 #define QTD_TOKEN_DTOGGLE (1 << 31)
253 #define QTD_TOKEN_TBYTES_MASK 0x7fff0000
254 #define QTD_TOKEN_TBYTES_SH 16
255 #define QTD_TOKEN_IOC (1 << 15)
256 #define QTD_TOKEN_CPAGE_MASK 0x00007000
257 #define QTD_TOKEN_CPAGE_SH 12
258 #define QTD_TOKEN_CERR_MASK 0x00000c00
259 #define QTD_TOKEN_CERR_SH 10
260 #define QTD_TOKEN_PID_MASK 0x00000300
261 #define QTD_TOKEN_PID_SH 8
262 #define QTD_TOKEN_ACTIVE (1 << 7)
263 #define QTD_TOKEN_HALT (1 << 6)
264 #define QTD_TOKEN_DBERR (1 << 5)
265 #define QTD_TOKEN_BABBLE (1 << 4)
266 #define QTD_TOKEN_XACTERR (1 << 3)
267 #define QTD_TOKEN_MISSEDUF (1 << 2)
268 #define QTD_TOKEN_SPLITXSTATE (1 << 1)
269 #define QTD_TOKEN_PING (1 << 0)
270
271 uint32_t bufptr[5]; // Standard buffer pointer
272 #define QTD_BUFPTR_MASK 0xfffff000
273 #define QTD_BUFPTR_SH 12
274 } EHCIqtd;
275
276 /* EHCI spec version 1.0 Section 3.6
277 */
278 typedef struct EHCIqh {
279 uint32_t next; // Standard next link pointer
280
281 /* endpoint characteristics */
282 uint32_t epchar;
283 #define QH_EPCHAR_RL_MASK 0xf0000000
284 #define QH_EPCHAR_RL_SH 28
285 #define QH_EPCHAR_C (1 << 27)
286 #define QH_EPCHAR_MPLEN_MASK 0x07FF0000
287 #define QH_EPCHAR_MPLEN_SH 16
288 #define QH_EPCHAR_H (1 << 15)
289 #define QH_EPCHAR_DTC (1 << 14)
290 #define QH_EPCHAR_EPS_MASK 0x00003000
291 #define QH_EPCHAR_EPS_SH 12
292 #define EHCI_QH_EPS_FULL 0
293 #define EHCI_QH_EPS_LOW 1
294 #define EHCI_QH_EPS_HIGH 2
295 #define EHCI_QH_EPS_RESERVED 3
296
297 #define QH_EPCHAR_EP_MASK 0x00000f00
298 #define QH_EPCHAR_EP_SH 8
299 #define QH_EPCHAR_I (1 << 7)
300 #define QH_EPCHAR_DEVADDR_MASK 0x0000007f
301 #define QH_EPCHAR_DEVADDR_SH 0
302
303 /* endpoint capabilities */
304 uint32_t epcap;
305 #define QH_EPCAP_MULT_MASK 0xc0000000
306 #define QH_EPCAP_MULT_SH 30
307 #define QH_EPCAP_PORTNUM_MASK 0x3f800000
308 #define QH_EPCAP_PORTNUM_SH 23
309 #define QH_EPCAP_HUBADDR_MASK 0x007f0000
310 #define QH_EPCAP_HUBADDR_SH 16
311 #define QH_EPCAP_CMASK_MASK 0x0000ff00
312 #define QH_EPCAP_CMASK_SH 8
313 #define QH_EPCAP_SMASK_MASK 0x000000ff
314 #define QH_EPCAP_SMASK_SH 0
315
316 uint32_t current_qtd; // Standard next link pointer
317 uint32_t next_qtd; // Standard next link pointer
318 uint32_t altnext_qtd;
319 #define QH_ALTNEXT_NAKCNT_MASK 0x0000001e
320 #define QH_ALTNEXT_NAKCNT_SH 1
321
322 uint32_t token; // Same as QTD token
323 uint32_t bufptr[5]; // Standard buffer pointer
324 #define BUFPTR_CPROGMASK_MASK 0x000000ff
325 #define BUFPTR_FRAMETAG_MASK 0x0000001f
326 #define BUFPTR_SBYTES_MASK 0x00000fe0
327 #define BUFPTR_SBYTES_SH 5
328 } EHCIqh;
329
330 /* EHCI spec version 1.0 Section 3.7
331 */
332 typedef struct EHCIfstn {
333 uint32_t next; // Standard next link pointer
334 uint32_t backptr; // Standard next link pointer
335 } EHCIfstn;
336
337 typedef struct EHCIQueue EHCIQueue;
338 typedef struct EHCIState EHCIState;
339
340 enum async_state {
341 EHCI_ASYNC_NONE = 0,
342 EHCI_ASYNC_INFLIGHT,
343 EHCI_ASYNC_FINISHED,
344 };
345
346 struct EHCIQueue {
347 EHCIState *ehci;
348 QTAILQ_ENTRY(EHCIQueue) next;
349 uint32_t seen;
350 uint64_t ts;
351
352 /* cached data from guest - needs to be flushed
353 * when guest removes an entry (doorbell, handshake sequence)
354 */
355 EHCIqh qh; // copy of current QH (being worked on)
356 uint32_t qhaddr; // address QH read from
357 EHCIqtd qtd; // copy of current QTD (being worked on)
358 uint32_t qtdaddr; // address QTD read from
359
360 USBPacket packet;
361 QEMUSGList sgl;
362 int pid;
363 uint32_t tbytes;
364 enum async_state async;
365 int usb_status;
366 };
367
368 typedef QTAILQ_HEAD(EHCIQueueHead, EHCIQueue) EHCIQueueHead;
369
370 struct EHCIState {
371 PCIDevice dev;
372 USBBus bus;
373 qemu_irq irq;
374 MemoryRegion mem;
375 int companion_count;
376
377 /* properties */
378 uint32_t freq;
379 uint32_t maxframes;
380
381 /*
382 * EHCI spec version 1.0 Section 2.3
383 * Host Controller Operational Registers
384 */
385 union {
386 uint8_t mmio[MMIO_SIZE];
387 struct {
388 uint8_t cap[OPREGBASE];
389 uint32_t usbcmd;
390 uint32_t usbsts;
391 uint32_t usbintr;
392 uint32_t frindex;
393 uint32_t ctrldssegment;
394 uint32_t periodiclistbase;
395 uint32_t asynclistaddr;
396 uint32_t notused[9];
397 uint32_t configflag;
398 uint32_t portsc[NB_PORTS];
399 };
400 };
401
402 /*
403 * Internal states, shadow registers, etc
404 */
405 QEMUTimer *frame_timer;
406 int attach_poll_counter;
407 int astate; // Current state in asynchronous schedule
408 int pstate; // Current state in periodic schedule
409 USBPort ports[NB_PORTS];
410 USBPort *companion_ports[NB_PORTS];
411 uint32_t usbsts_pending;
412 EHCIQueueHead aqueues;
413 EHCIQueueHead pqueues;
414
415 uint32_t a_fetch_addr; // which address to look at next
416 uint32_t p_fetch_addr; // which address to look at next
417
418 USBPacket ipacket;
419 QEMUSGList isgl;
420
421 uint64_t last_run_ns;
422 };
423
424 #define SET_LAST_RUN_CLOCK(s) \
425 (s)->last_run_ns = qemu_get_clock_ns(vm_clock);
426
427 /* nifty macros from Arnon's EHCI version */
428 #define get_field(data, field) \
429 (((data) & field##_MASK) >> field##_SH)
430
431 #define set_field(data, newval, field) do { \
432 uint32_t val = *data; \
433 val &= ~ field##_MASK; \
434 val |= ((newval) << field##_SH) & field##_MASK; \
435 *data = val; \
436 } while(0)
437
438 static const char *ehci_state_names[] = {
439 [EST_INACTIVE] = "INACTIVE",
440 [EST_ACTIVE] = "ACTIVE",
441 [EST_EXECUTING] = "EXECUTING",
442 [EST_SLEEPING] = "SLEEPING",
443 [EST_WAITLISTHEAD] = "WAITLISTHEAD",
444 [EST_FETCHENTRY] = "FETCH ENTRY",
445 [EST_FETCHQH] = "FETCH QH",
446 [EST_FETCHITD] = "FETCH ITD",
447 [EST_ADVANCEQUEUE] = "ADVANCEQUEUE",
448 [EST_FETCHQTD] = "FETCH QTD",
449 [EST_EXECUTE] = "EXECUTE",
450 [EST_WRITEBACK] = "WRITEBACK",
451 [EST_HORIZONTALQH] = "HORIZONTALQH",
452 };
453
454 static const char *ehci_mmio_names[] = {
455 [CAPLENGTH] = "CAPLENGTH",
456 [HCIVERSION] = "HCIVERSION",
457 [HCSPARAMS] = "HCSPARAMS",
458 [HCCPARAMS] = "HCCPARAMS",
459 [USBCMD] = "USBCMD",
460 [USBSTS] = "USBSTS",
461 [USBINTR] = "USBINTR",
462 [FRINDEX] = "FRINDEX",
463 [PERIODICLISTBASE] = "P-LIST BASE",
464 [ASYNCLISTADDR] = "A-LIST ADDR",
465 [PORTSC_BEGIN] = "PORTSC #0",
466 [PORTSC_BEGIN + 4] = "PORTSC #1",
467 [PORTSC_BEGIN + 8] = "PORTSC #2",
468 [PORTSC_BEGIN + 12] = "PORTSC #3",
469 [PORTSC_BEGIN + 16] = "PORTSC #4",
470 [PORTSC_BEGIN + 20] = "PORTSC #5",
471 [CONFIGFLAG] = "CONFIGFLAG",
472 };
473
474 static const char *nr2str(const char **n, size_t len, uint32_t nr)
475 {
476 if (nr < len && n[nr] != NULL) {
477 return n[nr];
478 } else {
479 return "unknown";
480 }
481 }
482
483 static const char *state2str(uint32_t state)
484 {
485 return nr2str(ehci_state_names, ARRAY_SIZE(ehci_state_names), state);
486 }
487
488 static const char *addr2str(target_phys_addr_t addr)
489 {
490 return nr2str(ehci_mmio_names, ARRAY_SIZE(ehci_mmio_names), addr);
491 }
492
493 static void ehci_trace_usbsts(uint32_t mask, int state)
494 {
495 /* interrupts */
496 if (mask & USBSTS_INT) {
497 trace_usb_ehci_usbsts("INT", state);
498 }
499 if (mask & USBSTS_ERRINT) {
500 trace_usb_ehci_usbsts("ERRINT", state);
501 }
502 if (mask & USBSTS_PCD) {
503 trace_usb_ehci_usbsts("PCD", state);
504 }
505 if (mask & USBSTS_FLR) {
506 trace_usb_ehci_usbsts("FLR", state);
507 }
508 if (mask & USBSTS_HSE) {
509 trace_usb_ehci_usbsts("HSE", state);
510 }
511 if (mask & USBSTS_IAA) {
512 trace_usb_ehci_usbsts("IAA", state);
513 }
514
515 /* status */
516 if (mask & USBSTS_HALT) {
517 trace_usb_ehci_usbsts("HALT", state);
518 }
519 if (mask & USBSTS_REC) {
520 trace_usb_ehci_usbsts("REC", state);
521 }
522 if (mask & USBSTS_PSS) {
523 trace_usb_ehci_usbsts("PSS", state);
524 }
525 if (mask & USBSTS_ASS) {
526 trace_usb_ehci_usbsts("ASS", state);
527 }
528 }
529
530 static inline void ehci_set_usbsts(EHCIState *s, int mask)
531 {
532 if ((s->usbsts & mask) == mask) {
533 return;
534 }
535 ehci_trace_usbsts(mask, 1);
536 s->usbsts |= mask;
537 }
538
539 static inline void ehci_clear_usbsts(EHCIState *s, int mask)
540 {
541 if ((s->usbsts & mask) == 0) {
542 return;
543 }
544 ehci_trace_usbsts(mask, 0);
545 s->usbsts &= ~mask;
546 }
547
548 static inline void ehci_set_interrupt(EHCIState *s, int intr)
549 {
550 int level = 0;
551
552 // TODO honour interrupt threshold requests
553
554 ehci_set_usbsts(s, intr);
555
556 if ((s->usbsts & USBINTR_MASK) & s->usbintr) {
557 level = 1;
558 }
559
560 qemu_set_irq(s->irq, level);
561 }
562
563 static inline void ehci_record_interrupt(EHCIState *s, int intr)
564 {
565 s->usbsts_pending |= intr;
566 }
567
568 static inline void ehci_commit_interrupt(EHCIState *s)
569 {
570 if (!s->usbsts_pending) {
571 return;
572 }
573 ehci_set_interrupt(s, s->usbsts_pending);
574 s->usbsts_pending = 0;
575 }
576
577 static void ehci_set_state(EHCIState *s, int async, int state)
578 {
579 if (async) {
580 trace_usb_ehci_state("async", state2str(state));
581 s->astate = state;
582 } else {
583 trace_usb_ehci_state("periodic", state2str(state));
584 s->pstate = state;
585 }
586 }
587
588 static int ehci_get_state(EHCIState *s, int async)
589 {
590 return async ? s->astate : s->pstate;
591 }
592
593 static void ehci_set_fetch_addr(EHCIState *s, int async, uint32_t addr)
594 {
595 if (async) {
596 s->a_fetch_addr = addr;
597 } else {
598 s->p_fetch_addr = addr;
599 }
600 }
601
602 static int ehci_get_fetch_addr(EHCIState *s, int async)
603 {
604 return async ? s->a_fetch_addr : s->p_fetch_addr;
605 }
606
607 static void ehci_trace_qh(EHCIQueue *q, target_phys_addr_t addr, EHCIqh *qh)
608 {
609 /* need three here due to argument count limits */
610 trace_usb_ehci_qh_ptrs(q, addr, qh->next,
611 qh->current_qtd, qh->next_qtd, qh->altnext_qtd);
612 trace_usb_ehci_qh_fields(addr,
613 get_field(qh->epchar, QH_EPCHAR_RL),
614 get_field(qh->epchar, QH_EPCHAR_MPLEN),
615 get_field(qh->epchar, QH_EPCHAR_EPS),
616 get_field(qh->epchar, QH_EPCHAR_EP),
617 get_field(qh->epchar, QH_EPCHAR_DEVADDR));
618 trace_usb_ehci_qh_bits(addr,
619 (bool)(qh->epchar & QH_EPCHAR_C),
620 (bool)(qh->epchar & QH_EPCHAR_H),
621 (bool)(qh->epchar & QH_EPCHAR_DTC),
622 (bool)(qh->epchar & QH_EPCHAR_I));
623 }
624
625 static void ehci_trace_qtd(EHCIQueue *q, target_phys_addr_t addr, EHCIqtd *qtd)
626 {
627 /* need three here due to argument count limits */
628 trace_usb_ehci_qtd_ptrs(q, addr, qtd->next, qtd->altnext);
629 trace_usb_ehci_qtd_fields(addr,
630 get_field(qtd->token, QTD_TOKEN_TBYTES),
631 get_field(qtd->token, QTD_TOKEN_CPAGE),
632 get_field(qtd->token, QTD_TOKEN_CERR),
633 get_field(qtd->token, QTD_TOKEN_PID));
634 trace_usb_ehci_qtd_bits(addr,
635 (bool)(qtd->token & QTD_TOKEN_IOC),
636 (bool)(qtd->token & QTD_TOKEN_ACTIVE),
637 (bool)(qtd->token & QTD_TOKEN_HALT),
638 (bool)(qtd->token & QTD_TOKEN_BABBLE),
639 (bool)(qtd->token & QTD_TOKEN_XACTERR));
640 }
641
642 static void ehci_trace_itd(EHCIState *s, target_phys_addr_t addr, EHCIitd *itd)
643 {
644 trace_usb_ehci_itd(addr, itd->next,
645 get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT),
646 get_field(itd->bufptr[2], ITD_BUFPTR_MULT),
647 get_field(itd->bufptr[0], ITD_BUFPTR_EP),
648 get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR));
649 }
650
651 static void ehci_trace_sitd(EHCIState *s, target_phys_addr_t addr,
652 EHCIsitd *sitd)
653 {
654 trace_usb_ehci_sitd(addr, sitd->next,
655 (bool)(sitd->results & SITD_RESULTS_ACTIVE));
656 }
657
658 /* queue management */
659
660 static EHCIQueue *ehci_alloc_queue(EHCIState *ehci, int async)
661 {
662 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
663 EHCIQueue *q;
664
665 q = g_malloc0(sizeof(*q));
666 q->ehci = ehci;
667 usb_packet_init(&q->packet);
668 QTAILQ_INSERT_HEAD(head, q, next);
669 trace_usb_ehci_queue_action(q, "alloc");
670 return q;
671 }
672
673 static void ehci_free_queue(EHCIQueue *q, int async)
674 {
675 EHCIQueueHead *head = async ? &q->ehci->aqueues : &q->ehci->pqueues;
676 trace_usb_ehci_queue_action(q, "free");
677 if (q->async == EHCI_ASYNC_INFLIGHT) {
678 usb_cancel_packet(&q->packet);
679 }
680 QTAILQ_REMOVE(head, q, next);
681 g_free(q);
682 }
683
684 static EHCIQueue *ehci_find_queue_by_qh(EHCIState *ehci, uint32_t addr,
685 int async)
686 {
687 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
688 EHCIQueue *q;
689
690 QTAILQ_FOREACH(q, head, next) {
691 if (addr == q->qhaddr) {
692 return q;
693 }
694 }
695 return NULL;
696 }
697
698 static void ehci_queues_rip_unused(EHCIState *ehci, int async, int flush)
699 {
700 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
701 EHCIQueue *q, *tmp;
702
703 QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
704 if (q->seen) {
705 q->seen = 0;
706 q->ts = ehci->last_run_ns;
707 continue;
708 }
709 if (!flush && ehci->last_run_ns < q->ts + 250000000) {
710 /* allow 0.25 sec idle */
711 continue;
712 }
713 ehci_free_queue(q, async);
714 }
715 }
716
717 static void ehci_queues_rip_device(EHCIState *ehci, USBDevice *dev, int async)
718 {
719 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
720 EHCIQueue *q, *tmp;
721
722 QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
723 if (!usb_packet_is_inflight(&q->packet) ||
724 q->packet.ep->dev != dev) {
725 continue;
726 }
727 ehci_free_queue(q, async);
728 }
729 }
730
731 static void ehci_queues_rip_all(EHCIState *ehci, int async)
732 {
733 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
734 EHCIQueue *q, *tmp;
735
736 QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
737 ehci_free_queue(q, async);
738 }
739 }
740
741 /* Attach or detach a device on root hub */
742
743 static void ehci_attach(USBPort *port)
744 {
745 EHCIState *s = port->opaque;
746 uint32_t *portsc = &s->portsc[port->index];
747
748 trace_usb_ehci_port_attach(port->index, port->dev->product_desc);
749
750 if (*portsc & PORTSC_POWNER) {
751 USBPort *companion = s->companion_ports[port->index];
752 companion->dev = port->dev;
753 companion->ops->attach(companion);
754 return;
755 }
756
757 *portsc |= PORTSC_CONNECT;
758 *portsc |= PORTSC_CSC;
759
760 ehci_set_interrupt(s, USBSTS_PCD);
761 }
762
763 static void ehci_detach(USBPort *port)
764 {
765 EHCIState *s = port->opaque;
766 uint32_t *portsc = &s->portsc[port->index];
767
768 trace_usb_ehci_port_detach(port->index);
769
770 if (*portsc & PORTSC_POWNER) {
771 USBPort *companion = s->companion_ports[port->index];
772 companion->ops->detach(companion);
773 companion->dev = NULL;
774 /*
775 * EHCI spec 4.2.2: "When a disconnect occurs... On the event,
776 * the port ownership is returned immediately to the EHCI controller."
777 */
778 *portsc &= ~PORTSC_POWNER;
779 return;
780 }
781
782 ehci_queues_rip_device(s, port->dev, 0);
783 ehci_queues_rip_device(s, port->dev, 1);
784
785 *portsc &= ~(PORTSC_CONNECT|PORTSC_PED);
786 *portsc |= PORTSC_CSC;
787
788 ehci_set_interrupt(s, USBSTS_PCD);
789 }
790
791 static void ehci_child_detach(USBPort *port, USBDevice *child)
792 {
793 EHCIState *s = port->opaque;
794 uint32_t portsc = s->portsc[port->index];
795
796 if (portsc & PORTSC_POWNER) {
797 USBPort *companion = s->companion_ports[port->index];
798 companion->ops->child_detach(companion, child);
799 return;
800 }
801
802 ehci_queues_rip_device(s, child, 0);
803 ehci_queues_rip_device(s, child, 1);
804 }
805
806 static void ehci_wakeup(USBPort *port)
807 {
808 EHCIState *s = port->opaque;
809 uint32_t portsc = s->portsc[port->index];
810
811 if (portsc & PORTSC_POWNER) {
812 USBPort *companion = s->companion_ports[port->index];
813 if (companion->ops->wakeup) {
814 companion->ops->wakeup(companion);
815 }
816 }
817 }
818
819 static int ehci_register_companion(USBBus *bus, USBPort *ports[],
820 uint32_t portcount, uint32_t firstport)
821 {
822 EHCIState *s = container_of(bus, EHCIState, bus);
823 uint32_t i;
824
825 if (firstport + portcount > NB_PORTS) {
826 qerror_report(QERR_INVALID_PARAMETER_VALUE, "firstport",
827 "firstport on masterbus");
828 error_printf_unless_qmp(
829 "firstport value of %u makes companion take ports %u - %u, which "
830 "is outside of the valid range of 0 - %u\n", firstport, firstport,
831 firstport + portcount - 1, NB_PORTS - 1);
832 return -1;
833 }
834
835 for (i = 0; i < portcount; i++) {
836 if (s->companion_ports[firstport + i]) {
837 qerror_report(QERR_INVALID_PARAMETER_VALUE, "masterbus",
838 "an USB masterbus");
839 error_printf_unless_qmp(
840 "port %u on masterbus %s already has a companion assigned\n",
841 firstport + i, bus->qbus.name);
842 return -1;
843 }
844 }
845
846 for (i = 0; i < portcount; i++) {
847 s->companion_ports[firstport + i] = ports[i];
848 s->ports[firstport + i].speedmask |=
849 USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL;
850 /* Ensure devs attached before the initial reset go to the companion */
851 s->portsc[firstport + i] = PORTSC_POWNER;
852 }
853
854 s->companion_count++;
855 s->mmio[0x05] = (s->companion_count << 4) | portcount;
856
857 return 0;
858 }
859
860 static USBDevice *ehci_find_device(EHCIState *ehci, uint8_t addr)
861 {
862 USBDevice *dev;
863 USBPort *port;
864 int i;
865
866 for (i = 0; i < NB_PORTS; i++) {
867 port = &ehci->ports[i];
868 if (!(ehci->portsc[i] & PORTSC_PED)) {
869 DPRINTF("Port %d not enabled\n", i);
870 continue;
871 }
872 dev = usb_find_device(port, addr);
873 if (dev != NULL) {
874 return dev;
875 }
876 }
877 return NULL;
878 }
879
880 /* 4.1 host controller initialization */
881 static void ehci_reset(void *opaque)
882 {
883 EHCIState *s = opaque;
884 int i;
885 USBDevice *devs[NB_PORTS];
886
887 trace_usb_ehci_reset();
888
889 /*
890 * Do the detach before touching portsc, so that it correctly gets send to
891 * us or to our companion based on PORTSC_POWNER before the reset.
892 */
893 for(i = 0; i < NB_PORTS; i++) {
894 devs[i] = s->ports[i].dev;
895 if (devs[i] && devs[i]->attached) {
896 usb_detach(&s->ports[i]);
897 }
898 }
899
900 memset(&s->mmio[OPREGBASE], 0x00, MMIO_SIZE - OPREGBASE);
901
902 s->usbcmd = NB_MAXINTRATE << USBCMD_ITC_SH;
903 s->usbsts = USBSTS_HALT;
904
905 s->astate = EST_INACTIVE;
906 s->pstate = EST_INACTIVE;
907 s->attach_poll_counter = 0;
908
909 for(i = 0; i < NB_PORTS; i++) {
910 if (s->companion_ports[i]) {
911 s->portsc[i] = PORTSC_POWNER | PORTSC_PPOWER;
912 } else {
913 s->portsc[i] = PORTSC_PPOWER;
914 }
915 if (devs[i] && devs[i]->attached) {
916 usb_attach(&s->ports[i]);
917 usb_device_reset(devs[i]);
918 }
919 }
920 ehci_queues_rip_all(s, 0);
921 ehci_queues_rip_all(s, 1);
922 qemu_del_timer(s->frame_timer);
923 }
924
925 static uint32_t ehci_mem_readb(void *ptr, target_phys_addr_t addr)
926 {
927 EHCIState *s = ptr;
928 uint32_t val;
929
930 val = s->mmio[addr];
931
932 return val;
933 }
934
935 static uint32_t ehci_mem_readw(void *ptr, target_phys_addr_t addr)
936 {
937 EHCIState *s = ptr;
938 uint32_t val;
939
940 val = s->mmio[addr] | (s->mmio[addr+1] << 8);
941
942 return val;
943 }
944
945 static uint32_t ehci_mem_readl(void *ptr, target_phys_addr_t addr)
946 {
947 EHCIState *s = ptr;
948 uint32_t val;
949
950 val = s->mmio[addr] | (s->mmio[addr+1] << 8) |
951 (s->mmio[addr+2] << 16) | (s->mmio[addr+3] << 24);
952
953 trace_usb_ehci_mmio_readl(addr, addr2str(addr), val);
954 return val;
955 }
956
957 static void ehci_mem_writeb(void *ptr, target_phys_addr_t addr, uint32_t val)
958 {
959 fprintf(stderr, "EHCI doesn't handle byte writes to MMIO\n");
960 exit(1);
961 }
962
963 static void ehci_mem_writew(void *ptr, target_phys_addr_t addr, uint32_t val)
964 {
965 fprintf(stderr, "EHCI doesn't handle 16-bit writes to MMIO\n");
966 exit(1);
967 }
968
969 static void handle_port_owner_write(EHCIState *s, int port, uint32_t owner)
970 {
971 USBDevice *dev = s->ports[port].dev;
972 uint32_t *portsc = &s->portsc[port];
973 uint32_t orig;
974
975 if (s->companion_ports[port] == NULL)
976 return;
977
978 owner = owner & PORTSC_POWNER;
979 orig = *portsc & PORTSC_POWNER;
980
981 if (!(owner ^ orig)) {
982 return;
983 }
984
985 if (dev && dev->attached) {
986 usb_detach(&s->ports[port]);
987 }
988
989 *portsc &= ~PORTSC_POWNER;
990 *portsc |= owner;
991
992 if (dev && dev->attached) {
993 usb_attach(&s->ports[port]);
994 }
995 }
996
997 static void handle_port_status_write(EHCIState *s, int port, uint32_t val)
998 {
999 uint32_t *portsc = &s->portsc[port];
1000 USBDevice *dev = s->ports[port].dev;
1001
1002 /* Clear rwc bits */
1003 *portsc &= ~(val & PORTSC_RWC_MASK);
1004 /* The guest may clear, but not set the PED bit */
1005 *portsc &= val | ~PORTSC_PED;
1006 /* POWNER is masked out by RO_MASK as it is RO when we've no companion */
1007 handle_port_owner_write(s, port, val);
1008 /* And finally apply RO_MASK */
1009 val &= PORTSC_RO_MASK;
1010
1011 if ((val & PORTSC_PRESET) && !(*portsc & PORTSC_PRESET)) {
1012 trace_usb_ehci_port_reset(port, 1);
1013 }
1014
1015 if (!(val & PORTSC_PRESET) &&(*portsc & PORTSC_PRESET)) {
1016 trace_usb_ehci_port_reset(port, 0);
1017 if (dev && dev->attached) {
1018 usb_port_reset(&s->ports[port]);
1019 *portsc &= ~PORTSC_CSC;
1020 }
1021
1022 /*
1023 * Table 2.16 Set the enable bit(and enable bit change) to indicate
1024 * to SW that this port has a high speed device attached
1025 */
1026 if (dev && dev->attached && (dev->speedmask & USB_SPEED_MASK_HIGH)) {
1027 val |= PORTSC_PED;
1028 }
1029 }
1030
1031 *portsc &= ~PORTSC_RO_MASK;
1032 *portsc |= val;
1033 }
1034
1035 static void ehci_mem_writel(void *ptr, target_phys_addr_t addr, uint32_t val)
1036 {
1037 EHCIState *s = ptr;
1038 uint32_t *mmio = (uint32_t *)(&s->mmio[addr]);
1039 uint32_t old = *mmio;
1040 int i;
1041
1042 trace_usb_ehci_mmio_writel(addr, addr2str(addr), val);
1043
1044 /* Only aligned reads are allowed on OHCI */
1045 if (addr & 3) {
1046 fprintf(stderr, "usb-ehci: Mis-aligned write to addr 0x"
1047 TARGET_FMT_plx "\n", addr);
1048 return;
1049 }
1050
1051 if (addr >= PORTSC && addr < PORTSC + 4 * NB_PORTS) {
1052 handle_port_status_write(s, (addr-PORTSC)/4, val);
1053 trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
1054 return;
1055 }
1056
1057 if (addr < OPREGBASE) {
1058 fprintf(stderr, "usb-ehci: write attempt to read-only register"
1059 TARGET_FMT_plx "\n", addr);
1060 return;
1061 }
1062
1063
1064 /* Do any register specific pre-write processing here. */
1065 switch(addr) {
1066 case USBCMD:
1067 if ((val & USBCMD_RUNSTOP) && !(s->usbcmd & USBCMD_RUNSTOP)) {
1068 qemu_mod_timer(s->frame_timer, qemu_get_clock_ns(vm_clock));
1069 SET_LAST_RUN_CLOCK(s);
1070 ehci_clear_usbsts(s, USBSTS_HALT);
1071 }
1072
1073 if (!(val & USBCMD_RUNSTOP) && (s->usbcmd & USBCMD_RUNSTOP)) {
1074 qemu_del_timer(s->frame_timer);
1075 ehci_queues_rip_all(s, 0);
1076 ehci_queues_rip_all(s, 1);
1077 ehci_set_usbsts(s, USBSTS_HALT);
1078 }
1079
1080 if (val & USBCMD_HCRESET) {
1081 ehci_reset(s);
1082 val = s->usbcmd;
1083 }
1084
1085 /* not supporting dynamic frame list size at the moment */
1086 if ((val & USBCMD_FLS) && !(s->usbcmd & USBCMD_FLS)) {
1087 fprintf(stderr, "attempt to set frame list size -- value %d\n",
1088 val & USBCMD_FLS);
1089 val &= ~USBCMD_FLS;
1090 }
1091 break;
1092
1093 case USBSTS:
1094 val &= USBSTS_RO_MASK; // bits 6 thru 31 are RO
1095 ehci_clear_usbsts(s, val); // bits 0 thru 5 are R/WC
1096 val = s->usbsts;
1097 ehci_set_interrupt(s, 0);
1098 break;
1099
1100 case USBINTR:
1101 val &= USBINTR_MASK;
1102 break;
1103
1104 case FRINDEX:
1105 val &= 0x00003ff8; /* frindex is 14bits and always a multiple of 8 */
1106 break;
1107
1108 case CONFIGFLAG:
1109 val &= 0x1;
1110 if (val) {
1111 for(i = 0; i < NB_PORTS; i++)
1112 handle_port_owner_write(s, i, 0);
1113 }
1114 break;
1115
1116 case PERIODICLISTBASE:
1117 if ((s->usbcmd & USBCMD_PSE) && (s->usbcmd & USBCMD_RUNSTOP)) {
1118 fprintf(stderr,
1119 "ehci: PERIODIC list base register set while periodic schedule\n"
1120 " is enabled and HC is enabled\n");
1121 }
1122 break;
1123
1124 case ASYNCLISTADDR:
1125 if ((s->usbcmd & USBCMD_ASE) && (s->usbcmd & USBCMD_RUNSTOP)) {
1126 fprintf(stderr,
1127 "ehci: ASYNC list address register set while async schedule\n"
1128 " is enabled and HC is enabled\n");
1129 }
1130 break;
1131 }
1132
1133 *mmio = val;
1134 trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
1135 }
1136
1137
1138 // TODO : Put in common header file, duplication from usb-ohci.c
1139
1140 /* Get an array of dwords from main memory */
1141 static inline int get_dwords(EHCIState *ehci, uint32_t addr,
1142 uint32_t *buf, int num)
1143 {
1144 int i;
1145
1146 for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1147 pci_dma_read(&ehci->dev, addr, buf, sizeof(*buf));
1148 *buf = le32_to_cpu(*buf);
1149 }
1150
1151 return 1;
1152 }
1153
1154 /* Put an array of dwords in to main memory */
1155 static inline int put_dwords(EHCIState *ehci, uint32_t addr,
1156 uint32_t *buf, int num)
1157 {
1158 int i;
1159
1160 for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1161 uint32_t tmp = cpu_to_le32(*buf);
1162 pci_dma_write(&ehci->dev, addr, &tmp, sizeof(tmp));
1163 }
1164
1165 return 1;
1166 }
1167
1168 // 4.10.2
1169
1170 static int ehci_qh_do_overlay(EHCIQueue *q)
1171 {
1172 int i;
1173 int dtoggle;
1174 int ping;
1175 int eps;
1176 int reload;
1177
1178 // remember values in fields to preserve in qh after overlay
1179
1180 dtoggle = q->qh.token & QTD_TOKEN_DTOGGLE;
1181 ping = q->qh.token & QTD_TOKEN_PING;
1182
1183 q->qh.current_qtd = q->qtdaddr;
1184 q->qh.next_qtd = q->qtd.next;
1185 q->qh.altnext_qtd = q->qtd.altnext;
1186 q->qh.token = q->qtd.token;
1187
1188
1189 eps = get_field(q->qh.epchar, QH_EPCHAR_EPS);
1190 if (eps == EHCI_QH_EPS_HIGH) {
1191 q->qh.token &= ~QTD_TOKEN_PING;
1192 q->qh.token |= ping;
1193 }
1194
1195 reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1196 set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1197
1198 for (i = 0; i < 5; i++) {
1199 q->qh.bufptr[i] = q->qtd.bufptr[i];
1200 }
1201
1202 if (!(q->qh.epchar & QH_EPCHAR_DTC)) {
1203 // preserve QH DT bit
1204 q->qh.token &= ~QTD_TOKEN_DTOGGLE;
1205 q->qh.token |= dtoggle;
1206 }
1207
1208 q->qh.bufptr[1] &= ~BUFPTR_CPROGMASK_MASK;
1209 q->qh.bufptr[2] &= ~BUFPTR_FRAMETAG_MASK;
1210
1211 put_dwords(q->ehci, NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh,
1212 sizeof(EHCIqh) >> 2);
1213
1214 return 0;
1215 }
1216
1217 static int ehci_init_transfer(EHCIQueue *q)
1218 {
1219 uint32_t cpage, offset, bytes, plen;
1220 dma_addr_t page;
1221
1222 cpage = get_field(q->qh.token, QTD_TOKEN_CPAGE);
1223 bytes = get_field(q->qh.token, QTD_TOKEN_TBYTES);
1224 offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
1225 pci_dma_sglist_init(&q->sgl, &q->ehci->dev, 5);
1226
1227 while (bytes > 0) {
1228 if (cpage > 4) {
1229 fprintf(stderr, "cpage out of range (%d)\n", cpage);
1230 return USB_RET_PROCERR;
1231 }
1232
1233 page = q->qh.bufptr[cpage] & QTD_BUFPTR_MASK;
1234 page += offset;
1235 plen = bytes;
1236 if (plen > 4096 - offset) {
1237 plen = 4096 - offset;
1238 offset = 0;
1239 cpage++;
1240 }
1241
1242 qemu_sglist_add(&q->sgl, page, plen);
1243 bytes -= plen;
1244 }
1245 return 0;
1246 }
1247
1248 static void ehci_finish_transfer(EHCIQueue *q, int status)
1249 {
1250 uint32_t cpage, offset;
1251
1252 qemu_sglist_destroy(&q->sgl);
1253
1254 if (status > 0) {
1255 /* update cpage & offset */
1256 cpage = get_field(q->qh.token, QTD_TOKEN_CPAGE);
1257 offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
1258
1259 offset += status;
1260 cpage += offset >> QTD_BUFPTR_SH;
1261 offset &= ~QTD_BUFPTR_MASK;
1262
1263 set_field(&q->qh.token, cpage, QTD_TOKEN_CPAGE);
1264 q->qh.bufptr[0] &= QTD_BUFPTR_MASK;
1265 q->qh.bufptr[0] |= offset;
1266 }
1267 }
1268
1269 static void ehci_async_complete_packet(USBPort *port, USBPacket *packet)
1270 {
1271 EHCIQueue *q;
1272 EHCIState *s = port->opaque;
1273 uint32_t portsc = s->portsc[port->index];
1274
1275 if (portsc & PORTSC_POWNER) {
1276 USBPort *companion = s->companion_ports[port->index];
1277 companion->ops->complete(companion, packet);
1278 return;
1279 }
1280
1281 q = container_of(packet, EHCIQueue, packet);
1282 trace_usb_ehci_queue_action(q, "wakeup");
1283 assert(q->async == EHCI_ASYNC_INFLIGHT);
1284 q->async = EHCI_ASYNC_FINISHED;
1285 q->usb_status = packet->result;
1286 }
1287
1288 static void ehci_execute_complete(EHCIQueue *q)
1289 {
1290 assert(q->async != EHCI_ASYNC_INFLIGHT);
1291 q->async = EHCI_ASYNC_NONE;
1292
1293 DPRINTF("execute_complete: qhaddr 0x%x, next %x, qtdaddr 0x%x, status %d\n",
1294 q->qhaddr, q->qh.next, q->qtdaddr, q->usb_status);
1295
1296 if (q->usb_status < 0) {
1297 switch(q->usb_status) {
1298 case USB_RET_IOERROR:
1299 case USB_RET_NODEV:
1300 q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_XACTERR);
1301 set_field(&q->qh.token, 0, QTD_TOKEN_CERR);
1302 ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1303 break;
1304 case USB_RET_STALL:
1305 q->qh.token |= QTD_TOKEN_HALT;
1306 ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1307 break;
1308 case USB_RET_NAK:
1309 set_field(&q->qh.altnext_qtd, 0, QH_ALTNEXT_NAKCNT);
1310 return; /* We're not done yet with this transaction */
1311 case USB_RET_BABBLE:
1312 q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
1313 ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1314 break;
1315 default:
1316 /* should not be triggerable */
1317 fprintf(stderr, "USB invalid response %d to handle\n", q->usb_status);
1318 assert(0);
1319 break;
1320 }
1321 } else if ((q->usb_status > q->tbytes) && (q->pid == USB_TOKEN_IN)) {
1322 q->usb_status = USB_RET_BABBLE;
1323 q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
1324 ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1325 } else {
1326 // TODO check 4.12 for splits
1327
1328 if (q->tbytes && q->pid == USB_TOKEN_IN) {
1329 q->tbytes -= q->usb_status;
1330 } else {
1331 q->tbytes = 0;
1332 }
1333
1334 DPRINTF("updating tbytes to %d\n", q->tbytes);
1335 set_field(&q->qh.token, q->tbytes, QTD_TOKEN_TBYTES);
1336 }
1337 ehci_finish_transfer(q, q->usb_status);
1338 usb_packet_unmap(&q->packet);
1339
1340 q->qh.token ^= QTD_TOKEN_DTOGGLE;
1341 q->qh.token &= ~QTD_TOKEN_ACTIVE;
1342
1343 if (q->qh.token & QTD_TOKEN_IOC) {
1344 ehci_record_interrupt(q->ehci, USBSTS_INT);
1345 }
1346 }
1347
1348 // 4.10.3
1349
1350 static int ehci_execute(EHCIQueue *q)
1351 {
1352 USBDevice *dev;
1353 USBEndpoint *ep;
1354 int ret;
1355 int endp;
1356 int devadr;
1357
1358 if ( !(q->qh.token & QTD_TOKEN_ACTIVE)) {
1359 fprintf(stderr, "Attempting to execute inactive QH\n");
1360 return USB_RET_PROCERR;
1361 }
1362
1363 q->tbytes = (q->qh.token & QTD_TOKEN_TBYTES_MASK) >> QTD_TOKEN_TBYTES_SH;
1364 if (q->tbytes > BUFF_SIZE) {
1365 fprintf(stderr, "Request for more bytes than allowed\n");
1366 return USB_RET_PROCERR;
1367 }
1368
1369 q->pid = (q->qh.token & QTD_TOKEN_PID_MASK) >> QTD_TOKEN_PID_SH;
1370 switch(q->pid) {
1371 case 0: q->pid = USB_TOKEN_OUT; break;
1372 case 1: q->pid = USB_TOKEN_IN; break;
1373 case 2: q->pid = USB_TOKEN_SETUP; break;
1374 default: fprintf(stderr, "bad token\n"); break;
1375 }
1376
1377 if (ehci_init_transfer(q) != 0) {
1378 return USB_RET_PROCERR;
1379 }
1380
1381 endp = get_field(q->qh.epchar, QH_EPCHAR_EP);
1382 devadr = get_field(q->qh.epchar, QH_EPCHAR_DEVADDR);
1383
1384 /* TODO: associating device with ehci port */
1385 dev = ehci_find_device(q->ehci, devadr);
1386 ep = usb_ep_get(dev, q->pid, endp);
1387
1388 usb_packet_setup(&q->packet, q->pid, ep);
1389 usb_packet_map(&q->packet, &q->sgl);
1390
1391 ret = usb_handle_packet(dev, &q->packet);
1392 DPRINTF("submit: qh %x next %x qtd %x pid %x len %zd "
1393 "(total %d) endp %x ret %d\n",
1394 q->qhaddr, q->qh.next, q->qtdaddr, q->pid,
1395 q->packet.iov.size, q->tbytes, endp, ret);
1396
1397 if (ret > BUFF_SIZE) {
1398 fprintf(stderr, "ret from usb_handle_packet > BUFF_SIZE\n");
1399 return USB_RET_PROCERR;
1400 }
1401
1402 return ret;
1403 }
1404
1405 /* 4.7.2
1406 */
1407
1408 static int ehci_process_itd(EHCIState *ehci,
1409 EHCIitd *itd)
1410 {
1411 USBDevice *dev;
1412 USBEndpoint *ep;
1413 int ret;
1414 uint32_t i, len, pid, dir, devaddr, endp;
1415 uint32_t pg, off, ptr1, ptr2, max, mult;
1416
1417 dir =(itd->bufptr[1] & ITD_BUFPTR_DIRECTION);
1418 devaddr = get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR);
1419 endp = get_field(itd->bufptr[0], ITD_BUFPTR_EP);
1420 max = get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT);
1421 mult = get_field(itd->bufptr[2], ITD_BUFPTR_MULT);
1422
1423 for(i = 0; i < 8; i++) {
1424 if (itd->transact[i] & ITD_XACT_ACTIVE) {
1425 pg = get_field(itd->transact[i], ITD_XACT_PGSEL);
1426 off = itd->transact[i] & ITD_XACT_OFFSET_MASK;
1427 ptr1 = (itd->bufptr[pg] & ITD_BUFPTR_MASK);
1428 ptr2 = (itd->bufptr[pg+1] & ITD_BUFPTR_MASK);
1429 len = get_field(itd->transact[i], ITD_XACT_LENGTH);
1430
1431 if (len > max * mult) {
1432 len = max * mult;
1433 }
1434
1435 if (len > BUFF_SIZE) {
1436 return USB_RET_PROCERR;
1437 }
1438
1439 pci_dma_sglist_init(&ehci->isgl, &ehci->dev, 2);
1440 if (off + len > 4096) {
1441 /* transfer crosses page border */
1442 uint32_t len2 = off + len - 4096;
1443 uint32_t len1 = len - len2;
1444 qemu_sglist_add(&ehci->isgl, ptr1 + off, len1);
1445 qemu_sglist_add(&ehci->isgl, ptr2, len2);
1446 } else {
1447 qemu_sglist_add(&ehci->isgl, ptr1 + off, len);
1448 }
1449
1450 pid = dir ? USB_TOKEN_IN : USB_TOKEN_OUT;
1451
1452 dev = ehci_find_device(ehci, devaddr);
1453 ep = usb_ep_get(dev, pid, endp);
1454 if (ep->type == USB_ENDPOINT_XFER_ISOC) {
1455 usb_packet_setup(&ehci->ipacket, pid, ep);
1456 usb_packet_map(&ehci->ipacket, &ehci->isgl);
1457 ret = usb_handle_packet(dev, &ehci->ipacket);
1458 assert(ret != USB_RET_ASYNC);
1459 usb_packet_unmap(&ehci->ipacket);
1460 } else {
1461 DPRINTF("ISOCH: attempt to addess non-iso endpoint\n");
1462 ret = USB_RET_NAK;
1463 }
1464 qemu_sglist_destroy(&ehci->isgl);
1465
1466 if (ret < 0) {
1467 switch (ret) {
1468 default:
1469 fprintf(stderr, "Unexpected iso usb result: %d\n", ret);
1470 /* Fall through */
1471 case USB_RET_IOERROR:
1472 case USB_RET_NODEV:
1473 /* 3.3.2: XACTERR is only allowed on IN transactions */
1474 if (dir) {
1475 itd->transact[i] |= ITD_XACT_XACTERR;
1476 ehci_record_interrupt(ehci, USBSTS_ERRINT);
1477 }
1478 break;
1479 case USB_RET_BABBLE:
1480 itd->transact[i] |= ITD_XACT_BABBLE;
1481 ehci_record_interrupt(ehci, USBSTS_ERRINT);
1482 break;
1483 case USB_RET_NAK:
1484 /* no data for us, so do a zero-length transfer */
1485 ret = 0;
1486 break;
1487 }
1488 }
1489 if (ret >= 0) {
1490 if (!dir) {
1491 /* OUT */
1492 set_field(&itd->transact[i], len - ret, ITD_XACT_LENGTH);
1493 } else {
1494 /* IN */
1495 set_field(&itd->transact[i], ret, ITD_XACT_LENGTH);
1496 }
1497 }
1498 if (itd->transact[i] & ITD_XACT_IOC) {
1499 ehci_record_interrupt(ehci, USBSTS_INT);
1500 }
1501 itd->transact[i] &= ~ITD_XACT_ACTIVE;
1502 }
1503 }
1504 return 0;
1505 }
1506
1507 /* This state is the entry point for asynchronous schedule
1508 * processing. Entry here consitutes a EHCI start event state (4.8.5)
1509 */
1510 static int ehci_state_waitlisthead(EHCIState *ehci, int async)
1511 {
1512 EHCIqh qh;
1513 int i = 0;
1514 int again = 0;
1515 uint32_t entry = ehci->asynclistaddr;
1516
1517 /* set reclamation flag at start event (4.8.6) */
1518 if (async) {
1519 ehci_set_usbsts(ehci, USBSTS_REC);
1520 }
1521
1522 ehci_queues_rip_unused(ehci, async, 0);
1523
1524 /* Find the head of the list (4.9.1.1) */
1525 for(i = 0; i < MAX_QH; i++) {
1526 get_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &qh,
1527 sizeof(EHCIqh) >> 2);
1528 ehci_trace_qh(NULL, NLPTR_GET(entry), &qh);
1529
1530 if (qh.epchar & QH_EPCHAR_H) {
1531 if (async) {
1532 entry |= (NLPTR_TYPE_QH << 1);
1533 }
1534
1535 ehci_set_fetch_addr(ehci, async, entry);
1536 ehci_set_state(ehci, async, EST_FETCHENTRY);
1537 again = 1;
1538 goto out;
1539 }
1540
1541 entry = qh.next;
1542 if (entry == ehci->asynclistaddr) {
1543 break;
1544 }
1545 }
1546
1547 /* no head found for list. */
1548
1549 ehci_set_state(ehci, async, EST_ACTIVE);
1550
1551 out:
1552 return again;
1553 }
1554
1555
1556 /* This state is the entry point for periodic schedule processing as
1557 * well as being a continuation state for async processing.
1558 */
1559 static int ehci_state_fetchentry(EHCIState *ehci, int async)
1560 {
1561 int again = 0;
1562 uint32_t entry = ehci_get_fetch_addr(ehci, async);
1563
1564 if (NLPTR_TBIT(entry)) {
1565 ehci_set_state(ehci, async, EST_ACTIVE);
1566 goto out;
1567 }
1568
1569 /* section 4.8, only QH in async schedule */
1570 if (async && (NLPTR_TYPE_GET(entry) != NLPTR_TYPE_QH)) {
1571 fprintf(stderr, "non queue head request in async schedule\n");
1572 return -1;
1573 }
1574
1575 switch (NLPTR_TYPE_GET(entry)) {
1576 case NLPTR_TYPE_QH:
1577 ehci_set_state(ehci, async, EST_FETCHQH);
1578 again = 1;
1579 break;
1580
1581 case NLPTR_TYPE_ITD:
1582 ehci_set_state(ehci, async, EST_FETCHITD);
1583 again = 1;
1584 break;
1585
1586 case NLPTR_TYPE_STITD:
1587 ehci_set_state(ehci, async, EST_FETCHSITD);
1588 again = 1;
1589 break;
1590
1591 default:
1592 /* TODO: handle FSTN type */
1593 fprintf(stderr, "FETCHENTRY: entry at %X is of type %d "
1594 "which is not supported yet\n", entry, NLPTR_TYPE_GET(entry));
1595 return -1;
1596 }
1597
1598 out:
1599 return again;
1600 }
1601
1602 static EHCIQueue *ehci_state_fetchqh(EHCIState *ehci, int async)
1603 {
1604 uint32_t entry;
1605 EHCIQueue *q;
1606
1607 entry = ehci_get_fetch_addr(ehci, async);
1608 q = ehci_find_queue_by_qh(ehci, entry, async);
1609 if (NULL == q) {
1610 q = ehci_alloc_queue(ehci, async);
1611 }
1612 q->qhaddr = entry;
1613 q->seen++;
1614
1615 if (q->seen > 1) {
1616 /* we are going in circles -- stop processing */
1617 ehci_set_state(ehci, async, EST_ACTIVE);
1618 q = NULL;
1619 goto out;
1620 }
1621
1622 get_dwords(ehci, NLPTR_GET(q->qhaddr),
1623 (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1624 ehci_trace_qh(q, NLPTR_GET(q->qhaddr), &q->qh);
1625
1626 if (q->async == EHCI_ASYNC_INFLIGHT) {
1627 /* I/O still in progress -- skip queue */
1628 ehci_set_state(ehci, async, EST_HORIZONTALQH);
1629 goto out;
1630 }
1631 if (q->async == EHCI_ASYNC_FINISHED) {
1632 /* I/O finished -- continue processing queue */
1633 trace_usb_ehci_queue_action(q, "resume");
1634 ehci_set_state(ehci, async, EST_EXECUTING);
1635 goto out;
1636 }
1637
1638 if (async && (q->qh.epchar & QH_EPCHAR_H)) {
1639
1640 /* EHCI spec version 1.0 Section 4.8.3 & 4.10.1 */
1641 if (ehci->usbsts & USBSTS_REC) {
1642 ehci_clear_usbsts(ehci, USBSTS_REC);
1643 } else {
1644 DPRINTF("FETCHQH: QH 0x%08x. H-bit set, reclamation status reset"
1645 " - done processing\n", q->qhaddr);
1646 ehci_set_state(ehci, async, EST_ACTIVE);
1647 q = NULL;
1648 goto out;
1649 }
1650 }
1651
1652 #if EHCI_DEBUG
1653 if (q->qhaddr != q->qh.next) {
1654 DPRINTF("FETCHQH: QH 0x%08x (h %x halt %x active %x) next 0x%08x\n",
1655 q->qhaddr,
1656 q->qh.epchar & QH_EPCHAR_H,
1657 q->qh.token & QTD_TOKEN_HALT,
1658 q->qh.token & QTD_TOKEN_ACTIVE,
1659 q->qh.next);
1660 }
1661 #endif
1662
1663 if (q->qh.token & QTD_TOKEN_HALT) {
1664 ehci_set_state(ehci, async, EST_HORIZONTALQH);
1665
1666 } else if ((q->qh.token & QTD_TOKEN_ACTIVE) &&
1667 (NLPTR_TBIT(q->qh.current_qtd) == 0)) {
1668 q->qtdaddr = q->qh.current_qtd;
1669 ehci_set_state(ehci, async, EST_FETCHQTD);
1670
1671 } else {
1672 /* EHCI spec version 1.0 Section 4.10.2 */
1673 ehci_set_state(ehci, async, EST_ADVANCEQUEUE);
1674 }
1675
1676 out:
1677 return q;
1678 }
1679
1680 static int ehci_state_fetchitd(EHCIState *ehci, int async)
1681 {
1682 uint32_t entry;
1683 EHCIitd itd;
1684
1685 assert(!async);
1686 entry = ehci_get_fetch_addr(ehci, async);
1687
1688 get_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &itd,
1689 sizeof(EHCIitd) >> 2);
1690 ehci_trace_itd(ehci, entry, &itd);
1691
1692 if (ehci_process_itd(ehci, &itd) != 0) {
1693 return -1;
1694 }
1695
1696 put_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &itd,
1697 sizeof(EHCIitd) >> 2);
1698 ehci_set_fetch_addr(ehci, async, itd.next);
1699 ehci_set_state(ehci, async, EST_FETCHENTRY);
1700
1701 return 1;
1702 }
1703
1704 static int ehci_state_fetchsitd(EHCIState *ehci, int async)
1705 {
1706 uint32_t entry;
1707 EHCIsitd sitd;
1708
1709 assert(!async);
1710 entry = ehci_get_fetch_addr(ehci, async);
1711
1712 get_dwords(ehci, NLPTR_GET(entry), (uint32_t *)&sitd,
1713 sizeof(EHCIsitd) >> 2);
1714 ehci_trace_sitd(ehci, entry, &sitd);
1715
1716 if (!(sitd.results & SITD_RESULTS_ACTIVE)) {
1717 /* siTD is not active, nothing to do */;
1718 } else {
1719 /* TODO: split transfers are not implemented */
1720 fprintf(stderr, "WARNING: Skipping active siTD\n");
1721 }
1722
1723 ehci_set_fetch_addr(ehci, async, sitd.next);
1724 ehci_set_state(ehci, async, EST_FETCHENTRY);
1725 return 1;
1726 }
1727
1728 /* Section 4.10.2 - paragraph 3 */
1729 static int ehci_state_advqueue(EHCIQueue *q, int async)
1730 {
1731 #if 0
1732 /* TO-DO: 4.10.2 - paragraph 2
1733 * if I-bit is set to 1 and QH is not active
1734 * go to horizontal QH
1735 */
1736 if (I-bit set) {
1737 ehci_set_state(ehci, async, EST_HORIZONTALQH);
1738 goto out;
1739 }
1740 #endif
1741
1742 /*
1743 * want data and alt-next qTD is valid
1744 */
1745 if (((q->qh.token & QTD_TOKEN_TBYTES_MASK) != 0) &&
1746 (NLPTR_TBIT(q->qh.altnext_qtd) == 0)) {
1747 q->qtdaddr = q->qh.altnext_qtd;
1748 ehci_set_state(q->ehci, async, EST_FETCHQTD);
1749
1750 /*
1751 * next qTD is valid
1752 */
1753 } else if (NLPTR_TBIT(q->qh.next_qtd) == 0) {
1754 q->qtdaddr = q->qh.next_qtd;
1755 ehci_set_state(q->ehci, async, EST_FETCHQTD);
1756
1757 /*
1758 * no valid qTD, try next QH
1759 */
1760 } else {
1761 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1762 }
1763
1764 return 1;
1765 }
1766
1767 /* Section 4.10.2 - paragraph 4 */
1768 static int ehci_state_fetchqtd(EHCIQueue *q, int async)
1769 {
1770 int again = 0;
1771
1772 get_dwords(q->ehci, NLPTR_GET(q->qtdaddr), (uint32_t *) &q->qtd,
1773 sizeof(EHCIqtd) >> 2);
1774 ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), &q->qtd);
1775
1776 if (q->qtd.token & QTD_TOKEN_ACTIVE) {
1777 ehci_set_state(q->ehci, async, EST_EXECUTE);
1778 again = 1;
1779 } else {
1780 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1781 again = 1;
1782 }
1783
1784 return again;
1785 }
1786
1787 static int ehci_state_horizqh(EHCIQueue *q, int async)
1788 {
1789 int again = 0;
1790
1791 if (ehci_get_fetch_addr(q->ehci, async) != q->qh.next) {
1792 ehci_set_fetch_addr(q->ehci, async, q->qh.next);
1793 ehci_set_state(q->ehci, async, EST_FETCHENTRY);
1794 again = 1;
1795 } else {
1796 ehci_set_state(q->ehci, async, EST_ACTIVE);
1797 }
1798
1799 return again;
1800 }
1801
1802 /*
1803 * Write the qh back to guest physical memory. This step isn't
1804 * in the EHCI spec but we need to do it since we don't share
1805 * physical memory with our guest VM.
1806 *
1807 * The first three dwords are read-only for the EHCI, so skip them
1808 * when writing back the qh.
1809 */
1810 static void ehci_flush_qh(EHCIQueue *q)
1811 {
1812 uint32_t *qh = (uint32_t *) &q->qh;
1813 uint32_t dwords = sizeof(EHCIqh) >> 2;
1814 uint32_t addr = NLPTR_GET(q->qhaddr);
1815
1816 put_dwords(q->ehci, addr + 3 * sizeof(uint32_t), qh + 3, dwords - 3);
1817 }
1818
1819 static int ehci_state_execute(EHCIQueue *q, int async)
1820 {
1821 int again = 0;
1822
1823 if (ehci_qh_do_overlay(q) != 0) {
1824 return -1;
1825 }
1826
1827 // TODO verify enough time remains in the uframe as in 4.4.1.1
1828 // TODO write back ptr to async list when done or out of time
1829 // TODO Windows does not seem to ever set the MULT field
1830
1831 if (!async) {
1832 int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1833 if (!transactCtr) {
1834 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1835 again = 1;
1836 goto out;
1837 }
1838 }
1839
1840 if (async) {
1841 ehci_set_usbsts(q->ehci, USBSTS_REC);
1842 }
1843
1844 q->usb_status = ehci_execute(q);
1845 if (q->usb_status == USB_RET_PROCERR) {
1846 again = -1;
1847 goto out;
1848 }
1849 if (q->usb_status == USB_RET_ASYNC) {
1850 ehci_flush_qh(q);
1851 trace_usb_ehci_queue_action(q, "suspend");
1852 q->async = EHCI_ASYNC_INFLIGHT;
1853 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1854 again = 1;
1855 goto out;
1856 }
1857
1858 ehci_set_state(q->ehci, async, EST_EXECUTING);
1859 again = 1;
1860
1861 out:
1862 return again;
1863 }
1864
1865 static int ehci_state_executing(EHCIQueue *q, int async)
1866 {
1867 int again = 0;
1868
1869 ehci_execute_complete(q);
1870 if (q->usb_status == USB_RET_ASYNC) {
1871 goto out;
1872 }
1873 if (q->usb_status == USB_RET_PROCERR) {
1874 again = -1;
1875 goto out;
1876 }
1877
1878 // 4.10.3
1879 if (!async) {
1880 int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1881 transactCtr--;
1882 set_field(&q->qh.epcap, transactCtr, QH_EPCAP_MULT);
1883 // 4.10.3, bottom of page 82, should exit this state when transaction
1884 // counter decrements to 0
1885 }
1886
1887 /* 4.10.5 */
1888 if (q->usb_status == USB_RET_NAK) {
1889 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1890 } else {
1891 ehci_set_state(q->ehci, async, EST_WRITEBACK);
1892 }
1893
1894 again = 1;
1895
1896 out:
1897 ehci_flush_qh(q);
1898 return again;
1899 }
1900
1901
1902 static int ehci_state_writeback(EHCIQueue *q, int async)
1903 {
1904 int again = 0;
1905
1906 /* Write back the QTD from the QH area */
1907 ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), (EHCIqtd*) &q->qh.next_qtd);
1908 put_dwords(q->ehci, NLPTR_GET(q->qtdaddr), (uint32_t *) &q->qh.next_qtd,
1909 sizeof(EHCIqtd) >> 2);
1910
1911 /*
1912 * EHCI specs say go horizontal here.
1913 *
1914 * We can also advance the queue here for performance reasons. We
1915 * need to take care to only take that shortcut in case we've
1916 * processed the qtd just written back without errors, i.e. halt
1917 * bit is clear.
1918 */
1919 if (q->qh.token & QTD_TOKEN_HALT) {
1920 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1921 again = 1;
1922 } else {
1923 ehci_set_state(q->ehci, async, EST_ADVANCEQUEUE);
1924 again = 1;
1925 }
1926 return again;
1927 }
1928
1929 /*
1930 * This is the state machine that is common to both async and periodic
1931 */
1932
1933 static void ehci_advance_state(EHCIState *ehci,
1934 int async)
1935 {
1936 EHCIQueue *q = NULL;
1937 int again;
1938
1939 do {
1940 switch(ehci_get_state(ehci, async)) {
1941 case EST_WAITLISTHEAD:
1942 again = ehci_state_waitlisthead(ehci, async);
1943 break;
1944
1945 case EST_FETCHENTRY:
1946 again = ehci_state_fetchentry(ehci, async);
1947 break;
1948
1949 case EST_FETCHQH:
1950 q = ehci_state_fetchqh(ehci, async);
1951 again = q ? 1 : 0;
1952 break;
1953
1954 case EST_FETCHITD:
1955 again = ehci_state_fetchitd(ehci, async);
1956 break;
1957
1958 case EST_FETCHSITD:
1959 again = ehci_state_fetchsitd(ehci, async);
1960 break;
1961
1962 case EST_ADVANCEQUEUE:
1963 again = ehci_state_advqueue(q, async);
1964 break;
1965
1966 case EST_FETCHQTD:
1967 again = ehci_state_fetchqtd(q, async);
1968 break;
1969
1970 case EST_HORIZONTALQH:
1971 again = ehci_state_horizqh(q, async);
1972 break;
1973
1974 case EST_EXECUTE:
1975 again = ehci_state_execute(q, async);
1976 break;
1977
1978 case EST_EXECUTING:
1979 assert(q != NULL);
1980 again = ehci_state_executing(q, async);
1981 break;
1982
1983 case EST_WRITEBACK:
1984 assert(q != NULL);
1985 again = ehci_state_writeback(q, async);
1986 break;
1987
1988 default:
1989 fprintf(stderr, "Bad state!\n");
1990 again = -1;
1991 assert(0);
1992 break;
1993 }
1994
1995 if (again < 0) {
1996 fprintf(stderr, "processing error - resetting ehci HC\n");
1997 ehci_reset(ehci);
1998 again = 0;
1999 }
2000 }
2001 while (again);
2002
2003 ehci_commit_interrupt(ehci);
2004 }
2005
2006 static void ehci_advance_async_state(EHCIState *ehci)
2007 {
2008 const int async = 1;
2009
2010 switch(ehci_get_state(ehci, async)) {
2011 case EST_INACTIVE:
2012 if (!(ehci->usbcmd & USBCMD_ASE)) {
2013 break;
2014 }
2015 ehci_set_usbsts(ehci, USBSTS_ASS);
2016 ehci_set_state(ehci, async, EST_ACTIVE);
2017 // No break, fall through to ACTIVE
2018
2019 case EST_ACTIVE:
2020 if ( !(ehci->usbcmd & USBCMD_ASE)) {
2021 ehci_queues_rip_all(ehci, async);
2022 ehci_clear_usbsts(ehci, USBSTS_ASS);
2023 ehci_set_state(ehci, async, EST_INACTIVE);
2024 break;
2025 }
2026
2027 /* make sure guest has acknowledged the doorbell interrupt */
2028 /* TO-DO: is this really needed? */
2029 if (ehci->usbsts & USBSTS_IAA) {
2030 DPRINTF("IAA status bit still set.\n");
2031 break;
2032 }
2033
2034 /* check that address register has been set */
2035 if (ehci->asynclistaddr == 0) {
2036 break;
2037 }
2038
2039 ehci_set_state(ehci, async, EST_WAITLISTHEAD);
2040 ehci_advance_state(ehci, async);
2041
2042 /* If the doorbell is set, the guest wants to make a change to the
2043 * schedule. The host controller needs to release cached data.
2044 * (section 4.8.2)
2045 */
2046 if (ehci->usbcmd & USBCMD_IAAD) {
2047 /* Remove all unseen qhs from the async qhs queue */
2048 ehci_queues_rip_unused(ehci, async, 1);
2049 DPRINTF("ASYNC: doorbell request acknowledged\n");
2050 ehci->usbcmd &= ~USBCMD_IAAD;
2051 ehci_set_interrupt(ehci, USBSTS_IAA);
2052 }
2053 break;
2054
2055 default:
2056 /* this should only be due to a developer mistake */
2057 fprintf(stderr, "ehci: Bad asynchronous state %d. "
2058 "Resetting to active\n", ehci->astate);
2059 assert(0);
2060 }
2061 }
2062
2063 static void ehci_advance_periodic_state(EHCIState *ehci)
2064 {
2065 uint32_t entry;
2066 uint32_t list;
2067 const int async = 0;
2068
2069 // 4.6
2070
2071 switch(ehci_get_state(ehci, async)) {
2072 case EST_INACTIVE:
2073 if ( !(ehci->frindex & 7) && (ehci->usbcmd & USBCMD_PSE)) {
2074 ehci_set_usbsts(ehci, USBSTS_PSS);
2075 ehci_set_state(ehci, async, EST_ACTIVE);
2076 // No break, fall through to ACTIVE
2077 } else
2078 break;
2079
2080 case EST_ACTIVE:
2081 if ( !(ehci->frindex & 7) && !(ehci->usbcmd & USBCMD_PSE)) {
2082 ehci_queues_rip_all(ehci, async);
2083 ehci_clear_usbsts(ehci, USBSTS_PSS);
2084 ehci_set_state(ehci, async, EST_INACTIVE);
2085 break;
2086 }
2087
2088 list = ehci->periodiclistbase & 0xfffff000;
2089 /* check that register has been set */
2090 if (list == 0) {
2091 break;
2092 }
2093 list |= ((ehci->frindex & 0x1ff8) >> 1);
2094
2095 pci_dma_read(&ehci->dev, list, &entry, sizeof entry);
2096 entry = le32_to_cpu(entry);
2097
2098 DPRINTF("PERIODIC state adv fr=%d. [%08X] -> %08X\n",
2099 ehci->frindex / 8, list, entry);
2100 ehci_set_fetch_addr(ehci, async,entry);
2101 ehci_set_state(ehci, async, EST_FETCHENTRY);
2102 ehci_advance_state(ehci, async);
2103 ehci_queues_rip_unused(ehci, async, 0);
2104 break;
2105
2106 default:
2107 /* this should only be due to a developer mistake */
2108 fprintf(stderr, "ehci: Bad periodic state %d. "
2109 "Resetting to active\n", ehci->pstate);
2110 assert(0);
2111 }
2112 }
2113
2114 static void ehci_frame_timer(void *opaque)
2115 {
2116 EHCIState *ehci = opaque;
2117 int64_t expire_time, t_now;
2118 uint64_t ns_elapsed;
2119 int frames;
2120 int i;
2121 int skipped_frames = 0;
2122
2123 t_now = qemu_get_clock_ns(vm_clock);
2124 expire_time = t_now + (get_ticks_per_sec() / ehci->freq);
2125
2126 ns_elapsed = t_now - ehci->last_run_ns;
2127 frames = ns_elapsed / FRAME_TIMER_NS;
2128
2129 for (i = 0; i < frames; i++) {
2130 if ( !(ehci->usbsts & USBSTS_HALT)) {
2131 ehci->frindex += 8;
2132
2133 if (ehci->frindex == 0x00002000) {
2134 ehci_set_interrupt(ehci, USBSTS_FLR);
2135 }
2136
2137 if (ehci->frindex == 0x00004000) {
2138 ehci_set_interrupt(ehci, USBSTS_FLR);
2139 ehci->frindex = 0;
2140 }
2141 }
2142
2143 if (frames - i > ehci->maxframes) {
2144 skipped_frames++;
2145 } else {
2146 ehci_advance_periodic_state(ehci);
2147 }
2148
2149 ehci->last_run_ns += FRAME_TIMER_NS;
2150 }
2151
2152 #if 0
2153 if (skipped_frames) {
2154 DPRINTF("WARNING - EHCI skipped %d frames\n", skipped_frames);
2155 }
2156 #endif
2157
2158 /* Async is not inside loop since it executes everything it can once
2159 * called
2160 */
2161 ehci_advance_async_state(ehci);
2162
2163 qemu_mod_timer(ehci->frame_timer, expire_time);
2164 }
2165
2166
2167 static const MemoryRegionOps ehci_mem_ops = {
2168 .old_mmio = {
2169 .read = { ehci_mem_readb, ehci_mem_readw, ehci_mem_readl },
2170 .write = { ehci_mem_writeb, ehci_mem_writew, ehci_mem_writel },
2171 },
2172 .endianness = DEVICE_LITTLE_ENDIAN,
2173 };
2174
2175 static int usb_ehci_initfn(PCIDevice *dev);
2176
2177 static USBPortOps ehci_port_ops = {
2178 .attach = ehci_attach,
2179 .detach = ehci_detach,
2180 .child_detach = ehci_child_detach,
2181 .wakeup = ehci_wakeup,
2182 .complete = ehci_async_complete_packet,
2183 };
2184
2185 static USBBusOps ehci_bus_ops = {
2186 .register_companion = ehci_register_companion,
2187 };
2188
2189 static const VMStateDescription vmstate_ehci = {
2190 .name = "ehci",
2191 .unmigratable = 1,
2192 };
2193
2194 static Property ehci_properties[] = {
2195 DEFINE_PROP_UINT32("freq", EHCIState, freq, FRAME_TIMER_FREQ),
2196 DEFINE_PROP_UINT32("maxframes", EHCIState, maxframes, 128),
2197 DEFINE_PROP_END_OF_LIST(),
2198 };
2199
2200 static void ehci_class_init(ObjectClass *klass, void *data)
2201 {
2202 DeviceClass *dc = DEVICE_CLASS(klass);
2203 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
2204
2205 k->init = usb_ehci_initfn;
2206 k->vendor_id = PCI_VENDOR_ID_INTEL;
2207 k->device_id = PCI_DEVICE_ID_INTEL_82801D; /* ich4 */
2208 k->revision = 0x10;
2209 k->class_id = PCI_CLASS_SERIAL_USB;
2210 dc->vmsd = &vmstate_ehci;
2211 dc->props = ehci_properties;
2212 }
2213
2214 static TypeInfo ehci_info = {
2215 .name = "usb-ehci",
2216 .parent = TYPE_PCI_DEVICE,
2217 .instance_size = sizeof(EHCIState),
2218 .class_init = ehci_class_init,
2219 };
2220
2221 static void ich9_ehci_class_init(ObjectClass *klass, void *data)
2222 {
2223 DeviceClass *dc = DEVICE_CLASS(klass);
2224 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
2225
2226 k->init = usb_ehci_initfn;
2227 k->vendor_id = PCI_VENDOR_ID_INTEL;
2228 k->device_id = PCI_DEVICE_ID_INTEL_82801I_EHCI1;
2229 k->revision = 0x03;
2230 k->class_id = PCI_CLASS_SERIAL_USB;
2231 dc->vmsd = &vmstate_ehci;
2232 dc->props = ehci_properties;
2233 }
2234
2235 static TypeInfo ich9_ehci_info = {
2236 .name = "ich9-usb-ehci1",
2237 .parent = TYPE_PCI_DEVICE,
2238 .instance_size = sizeof(EHCIState),
2239 .class_init = ich9_ehci_class_init,
2240 };
2241
2242 static int usb_ehci_initfn(PCIDevice *dev)
2243 {
2244 EHCIState *s = DO_UPCAST(EHCIState, dev, dev);
2245 uint8_t *pci_conf = s->dev.config;
2246 int i;
2247
2248 pci_set_byte(&pci_conf[PCI_CLASS_PROG], 0x20);
2249
2250 /* capabilities pointer */
2251 pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x00);
2252 //pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x50);
2253
2254 pci_set_byte(&pci_conf[PCI_INTERRUPT_PIN], 4); /* interrupt pin D */
2255 pci_set_byte(&pci_conf[PCI_MIN_GNT], 0);
2256 pci_set_byte(&pci_conf[PCI_MAX_LAT], 0);
2257
2258 // pci_conf[0x50] = 0x01; // power management caps
2259
2260 pci_set_byte(&pci_conf[USB_SBRN], USB_RELEASE_2); // release number (2.1.4)
2261 pci_set_byte(&pci_conf[0x61], 0x20); // frame length adjustment (2.1.5)
2262 pci_set_word(&pci_conf[0x62], 0x00); // port wake up capability (2.1.6)
2263
2264 pci_conf[0x64] = 0x00;
2265 pci_conf[0x65] = 0x00;
2266 pci_conf[0x66] = 0x00;
2267 pci_conf[0x67] = 0x00;
2268 pci_conf[0x68] = 0x01;
2269 pci_conf[0x69] = 0x00;
2270 pci_conf[0x6a] = 0x00;
2271 pci_conf[0x6b] = 0x00; // USBLEGSUP
2272 pci_conf[0x6c] = 0x00;
2273 pci_conf[0x6d] = 0x00;
2274 pci_conf[0x6e] = 0x00;
2275 pci_conf[0x6f] = 0xc0; // USBLEFCTLSTS
2276
2277 // 2.2 host controller interface version
2278 s->mmio[0x00] = (uint8_t) OPREGBASE;
2279 s->mmio[0x01] = 0x00;
2280 s->mmio[0x02] = 0x00;
2281 s->mmio[0x03] = 0x01; // HC version
2282 s->mmio[0x04] = NB_PORTS; // Number of downstream ports
2283 s->mmio[0x05] = 0x00; // No companion ports at present
2284 s->mmio[0x06] = 0x00;
2285 s->mmio[0x07] = 0x00;
2286 s->mmio[0x08] = 0x80; // We can cache whole frame, not 64-bit capable
2287 s->mmio[0x09] = 0x68; // EECP
2288 s->mmio[0x0a] = 0x00;
2289 s->mmio[0x0b] = 0x00;
2290
2291 s->irq = s->dev.irq[3];
2292
2293 usb_bus_new(&s->bus, &ehci_bus_ops, &s->dev.qdev);
2294 for(i = 0; i < NB_PORTS; i++) {
2295 usb_register_port(&s->bus, &s->ports[i], s, i, &ehci_port_ops,
2296 USB_SPEED_MASK_HIGH);
2297 s->ports[i].dev = 0;
2298 }
2299
2300 s->frame_timer = qemu_new_timer_ns(vm_clock, ehci_frame_timer, s);
2301 QTAILQ_INIT(&s->aqueues);
2302 QTAILQ_INIT(&s->pqueues);
2303
2304 qemu_register_reset(ehci_reset, s);
2305
2306 memory_region_init_io(&s->mem, &ehci_mem_ops, s, "ehci", MMIO_SIZE);
2307 pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->mem);
2308
2309 return 0;
2310 }
2311
2312 static void ehci_register_types(void)
2313 {
2314 type_register_static(&ehci_info);
2315 type_register_static(&ich9_ehci_info);
2316 }
2317
2318 type_init(ehci_register_types)
2319
2320 /*
2321 * vim: expandtab ts=4
2322 */