]> git.proxmox.com Git - qemu.git/blob - hw/usb/hcd-ehci.c
ehci: update status bits in ehci_set_state
[qemu.git] / hw / usb / hcd-ehci.c
1 /*
2 * QEMU USB EHCI Emulation
3 *
4 * Copyright(c) 2008 Emutex Ltd. (address@hidden)
5 *
6 * EHCI project was started by Mark Burkley, with contributions by
7 * Niels de Vos. David S. Ahern continued working on it. Kevin Wolf,
8 * Jan Kiszka and Vincent Palatin contributed bugfixes.
9 *
10 *
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2 of the License, or(at your option) any later version.
15 *
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, see <http://www.gnu.org/licenses/>.
23 */
24
25 #include "hw/hw.h"
26 #include "qemu-timer.h"
27 #include "hw/usb.h"
28 #include "hw/pci.h"
29 #include "monitor.h"
30 #include "trace.h"
31 #include "dma.h"
32
33 #define EHCI_DEBUG 0
34
35 #if EHCI_DEBUG
36 #define DPRINTF printf
37 #else
38 #define DPRINTF(...)
39 #endif
40
41 /* internal processing - reset HC to try and recover */
42 #define USB_RET_PROCERR (-99)
43
44 #define MMIO_SIZE 0x1000
45
46 /* Capability Registers Base Address - section 2.2 */
47 #define CAPREGBASE 0x0000
48 #define CAPLENGTH CAPREGBASE + 0x0000 // 1-byte, 0x0001 reserved
49 #define HCIVERSION CAPREGBASE + 0x0002 // 2-bytes, i/f version #
50 #define HCSPARAMS CAPREGBASE + 0x0004 // 4-bytes, structural params
51 #define HCCPARAMS CAPREGBASE + 0x0008 // 4-bytes, capability params
52 #define EECP HCCPARAMS + 1
53 #define HCSPPORTROUTE1 CAPREGBASE + 0x000c
54 #define HCSPPORTROUTE2 CAPREGBASE + 0x0010
55
56 #define OPREGBASE 0x0020 // Operational Registers Base Address
57
58 #define USBCMD OPREGBASE + 0x0000
59 #define USBCMD_RUNSTOP (1 << 0) // run / Stop
60 #define USBCMD_HCRESET (1 << 1) // HC Reset
61 #define USBCMD_FLS (3 << 2) // Frame List Size
62 #define USBCMD_FLS_SH 2 // Frame List Size Shift
63 #define USBCMD_PSE (1 << 4) // Periodic Schedule Enable
64 #define USBCMD_ASE (1 << 5) // Asynch Schedule Enable
65 #define USBCMD_IAAD (1 << 6) // Int Asynch Advance Doorbell
66 #define USBCMD_LHCR (1 << 7) // Light Host Controller Reset
67 #define USBCMD_ASPMC (3 << 8) // Async Sched Park Mode Count
68 #define USBCMD_ASPME (1 << 11) // Async Sched Park Mode Enable
69 #define USBCMD_ITC (0x7f << 16) // Int Threshold Control
70 #define USBCMD_ITC_SH 16 // Int Threshold Control Shift
71
72 #define USBSTS OPREGBASE + 0x0004
73 #define USBSTS_RO_MASK 0x0000003f
74 #define USBSTS_INT (1 << 0) // USB Interrupt
75 #define USBSTS_ERRINT (1 << 1) // Error Interrupt
76 #define USBSTS_PCD (1 << 2) // Port Change Detect
77 #define USBSTS_FLR (1 << 3) // Frame List Rollover
78 #define USBSTS_HSE (1 << 4) // Host System Error
79 #define USBSTS_IAA (1 << 5) // Interrupt on Async Advance
80 #define USBSTS_HALT (1 << 12) // HC Halted
81 #define USBSTS_REC (1 << 13) // Reclamation
82 #define USBSTS_PSS (1 << 14) // Periodic Schedule Status
83 #define USBSTS_ASS (1 << 15) // Asynchronous Schedule Status
84
85 /*
86 * Interrupt enable bits correspond to the interrupt active bits in USBSTS
87 * so no need to redefine here.
88 */
89 #define USBINTR OPREGBASE + 0x0008
90 #define USBINTR_MASK 0x0000003f
91
92 #define FRINDEX OPREGBASE + 0x000c
93 #define CTRLDSSEGMENT OPREGBASE + 0x0010
94 #define PERIODICLISTBASE OPREGBASE + 0x0014
95 #define ASYNCLISTADDR OPREGBASE + 0x0018
96 #define ASYNCLISTADDR_MASK 0xffffffe0
97
98 #define CONFIGFLAG OPREGBASE + 0x0040
99
100 #define PORTSC (OPREGBASE + 0x0044)
101 #define PORTSC_BEGIN PORTSC
102 #define PORTSC_END (PORTSC + 4 * NB_PORTS)
103 /*
104 * Bits that are reserved or are read-only are masked out of values
105 * written to us by software
106 */
107 #define PORTSC_RO_MASK 0x007001c0
108 #define PORTSC_RWC_MASK 0x0000002a
109 #define PORTSC_WKOC_E (1 << 22) // Wake on Over Current Enable
110 #define PORTSC_WKDS_E (1 << 21) // Wake on Disconnect Enable
111 #define PORTSC_WKCN_E (1 << 20) // Wake on Connect Enable
112 #define PORTSC_PTC (15 << 16) // Port Test Control
113 #define PORTSC_PTC_SH 16 // Port Test Control shift
114 #define PORTSC_PIC (3 << 14) // Port Indicator Control
115 #define PORTSC_PIC_SH 14 // Port Indicator Control Shift
116 #define PORTSC_POWNER (1 << 13) // Port Owner
117 #define PORTSC_PPOWER (1 << 12) // Port Power
118 #define PORTSC_LINESTAT (3 << 10) // Port Line Status
119 #define PORTSC_LINESTAT_SH 10 // Port Line Status Shift
120 #define PORTSC_PRESET (1 << 8) // Port Reset
121 #define PORTSC_SUSPEND (1 << 7) // Port Suspend
122 #define PORTSC_FPRES (1 << 6) // Force Port Resume
123 #define PORTSC_OCC (1 << 5) // Over Current Change
124 #define PORTSC_OCA (1 << 4) // Over Current Active
125 #define PORTSC_PEDC (1 << 3) // Port Enable/Disable Change
126 #define PORTSC_PED (1 << 2) // Port Enable/Disable
127 #define PORTSC_CSC (1 << 1) // Connect Status Change
128 #define PORTSC_CONNECT (1 << 0) // Current Connect Status
129
130 #define FRAME_TIMER_FREQ 1000
131 #define FRAME_TIMER_NS (1000000000 / FRAME_TIMER_FREQ)
132
133 #define NB_MAXINTRATE 8 // Max rate at which controller issues ints
134 #define NB_PORTS 6 // Number of downstream ports
135 #define BUFF_SIZE 5*4096 // Max bytes to transfer per transaction
136 #define MAX_QH 100 // Max allowable queue heads in a chain
137
138 /* Internal periodic / asynchronous schedule state machine states
139 */
140 typedef enum {
141 EST_INACTIVE = 1000,
142 EST_ACTIVE,
143 EST_EXECUTING,
144 EST_SLEEPING,
145 /* The following states are internal to the state machine function
146 */
147 EST_WAITLISTHEAD,
148 EST_FETCHENTRY,
149 EST_FETCHQH,
150 EST_FETCHITD,
151 EST_FETCHSITD,
152 EST_ADVANCEQUEUE,
153 EST_FETCHQTD,
154 EST_EXECUTE,
155 EST_WRITEBACK,
156 EST_HORIZONTALQH
157 } EHCI_STATES;
158
159 /* macros for accessing fields within next link pointer entry */
160 #define NLPTR_GET(x) ((x) & 0xffffffe0)
161 #define NLPTR_TYPE_GET(x) (((x) >> 1) & 3)
162 #define NLPTR_TBIT(x) ((x) & 1) // 1=invalid, 0=valid
163
164 /* link pointer types */
165 #define NLPTR_TYPE_ITD 0 // isoc xfer descriptor
166 #define NLPTR_TYPE_QH 1 // queue head
167 #define NLPTR_TYPE_STITD 2 // split xaction, isoc xfer descriptor
168 #define NLPTR_TYPE_FSTN 3 // frame span traversal node
169
170
171 /* EHCI spec version 1.0 Section 3.3
172 */
173 typedef struct EHCIitd {
174 uint32_t next;
175
176 uint32_t transact[8];
177 #define ITD_XACT_ACTIVE (1 << 31)
178 #define ITD_XACT_DBERROR (1 << 30)
179 #define ITD_XACT_BABBLE (1 << 29)
180 #define ITD_XACT_XACTERR (1 << 28)
181 #define ITD_XACT_LENGTH_MASK 0x0fff0000
182 #define ITD_XACT_LENGTH_SH 16
183 #define ITD_XACT_IOC (1 << 15)
184 #define ITD_XACT_PGSEL_MASK 0x00007000
185 #define ITD_XACT_PGSEL_SH 12
186 #define ITD_XACT_OFFSET_MASK 0x00000fff
187
188 uint32_t bufptr[7];
189 #define ITD_BUFPTR_MASK 0xfffff000
190 #define ITD_BUFPTR_SH 12
191 #define ITD_BUFPTR_EP_MASK 0x00000f00
192 #define ITD_BUFPTR_EP_SH 8
193 #define ITD_BUFPTR_DEVADDR_MASK 0x0000007f
194 #define ITD_BUFPTR_DEVADDR_SH 0
195 #define ITD_BUFPTR_DIRECTION (1 << 11)
196 #define ITD_BUFPTR_MAXPKT_MASK 0x000007ff
197 #define ITD_BUFPTR_MAXPKT_SH 0
198 #define ITD_BUFPTR_MULT_MASK 0x00000003
199 #define ITD_BUFPTR_MULT_SH 0
200 } EHCIitd;
201
202 /* EHCI spec version 1.0 Section 3.4
203 */
204 typedef struct EHCIsitd {
205 uint32_t next; // Standard next link pointer
206 uint32_t epchar;
207 #define SITD_EPCHAR_IO (1 << 31)
208 #define SITD_EPCHAR_PORTNUM_MASK 0x7f000000
209 #define SITD_EPCHAR_PORTNUM_SH 24
210 #define SITD_EPCHAR_HUBADD_MASK 0x007f0000
211 #define SITD_EPCHAR_HUBADDR_SH 16
212 #define SITD_EPCHAR_EPNUM_MASK 0x00000f00
213 #define SITD_EPCHAR_EPNUM_SH 8
214 #define SITD_EPCHAR_DEVADDR_MASK 0x0000007f
215
216 uint32_t uframe;
217 #define SITD_UFRAME_CMASK_MASK 0x0000ff00
218 #define SITD_UFRAME_CMASK_SH 8
219 #define SITD_UFRAME_SMASK_MASK 0x000000ff
220
221 uint32_t results;
222 #define SITD_RESULTS_IOC (1 << 31)
223 #define SITD_RESULTS_PGSEL (1 << 30)
224 #define SITD_RESULTS_TBYTES_MASK 0x03ff0000
225 #define SITD_RESULTS_TYBYTES_SH 16
226 #define SITD_RESULTS_CPROGMASK_MASK 0x0000ff00
227 #define SITD_RESULTS_CPROGMASK_SH 8
228 #define SITD_RESULTS_ACTIVE (1 << 7)
229 #define SITD_RESULTS_ERR (1 << 6)
230 #define SITD_RESULTS_DBERR (1 << 5)
231 #define SITD_RESULTS_BABBLE (1 << 4)
232 #define SITD_RESULTS_XACTERR (1 << 3)
233 #define SITD_RESULTS_MISSEDUF (1 << 2)
234 #define SITD_RESULTS_SPLITXSTATE (1 << 1)
235
236 uint32_t bufptr[2];
237 #define SITD_BUFPTR_MASK 0xfffff000
238 #define SITD_BUFPTR_CURROFF_MASK 0x00000fff
239 #define SITD_BUFPTR_TPOS_MASK 0x00000018
240 #define SITD_BUFPTR_TPOS_SH 3
241 #define SITD_BUFPTR_TCNT_MASK 0x00000007
242
243 uint32_t backptr; // Standard next link pointer
244 } EHCIsitd;
245
246 /* EHCI spec version 1.0 Section 3.5
247 */
248 typedef struct EHCIqtd {
249 uint32_t next; // Standard next link pointer
250 uint32_t altnext; // Standard next link pointer
251 uint32_t token;
252 #define QTD_TOKEN_DTOGGLE (1 << 31)
253 #define QTD_TOKEN_TBYTES_MASK 0x7fff0000
254 #define QTD_TOKEN_TBYTES_SH 16
255 #define QTD_TOKEN_IOC (1 << 15)
256 #define QTD_TOKEN_CPAGE_MASK 0x00007000
257 #define QTD_TOKEN_CPAGE_SH 12
258 #define QTD_TOKEN_CERR_MASK 0x00000c00
259 #define QTD_TOKEN_CERR_SH 10
260 #define QTD_TOKEN_PID_MASK 0x00000300
261 #define QTD_TOKEN_PID_SH 8
262 #define QTD_TOKEN_ACTIVE (1 << 7)
263 #define QTD_TOKEN_HALT (1 << 6)
264 #define QTD_TOKEN_DBERR (1 << 5)
265 #define QTD_TOKEN_BABBLE (1 << 4)
266 #define QTD_TOKEN_XACTERR (1 << 3)
267 #define QTD_TOKEN_MISSEDUF (1 << 2)
268 #define QTD_TOKEN_SPLITXSTATE (1 << 1)
269 #define QTD_TOKEN_PING (1 << 0)
270
271 uint32_t bufptr[5]; // Standard buffer pointer
272 #define QTD_BUFPTR_MASK 0xfffff000
273 #define QTD_BUFPTR_SH 12
274 } EHCIqtd;
275
276 /* EHCI spec version 1.0 Section 3.6
277 */
278 typedef struct EHCIqh {
279 uint32_t next; // Standard next link pointer
280
281 /* endpoint characteristics */
282 uint32_t epchar;
283 #define QH_EPCHAR_RL_MASK 0xf0000000
284 #define QH_EPCHAR_RL_SH 28
285 #define QH_EPCHAR_C (1 << 27)
286 #define QH_EPCHAR_MPLEN_MASK 0x07FF0000
287 #define QH_EPCHAR_MPLEN_SH 16
288 #define QH_EPCHAR_H (1 << 15)
289 #define QH_EPCHAR_DTC (1 << 14)
290 #define QH_EPCHAR_EPS_MASK 0x00003000
291 #define QH_EPCHAR_EPS_SH 12
292 #define EHCI_QH_EPS_FULL 0
293 #define EHCI_QH_EPS_LOW 1
294 #define EHCI_QH_EPS_HIGH 2
295 #define EHCI_QH_EPS_RESERVED 3
296
297 #define QH_EPCHAR_EP_MASK 0x00000f00
298 #define QH_EPCHAR_EP_SH 8
299 #define QH_EPCHAR_I (1 << 7)
300 #define QH_EPCHAR_DEVADDR_MASK 0x0000007f
301 #define QH_EPCHAR_DEVADDR_SH 0
302
303 /* endpoint capabilities */
304 uint32_t epcap;
305 #define QH_EPCAP_MULT_MASK 0xc0000000
306 #define QH_EPCAP_MULT_SH 30
307 #define QH_EPCAP_PORTNUM_MASK 0x3f800000
308 #define QH_EPCAP_PORTNUM_SH 23
309 #define QH_EPCAP_HUBADDR_MASK 0x007f0000
310 #define QH_EPCAP_HUBADDR_SH 16
311 #define QH_EPCAP_CMASK_MASK 0x0000ff00
312 #define QH_EPCAP_CMASK_SH 8
313 #define QH_EPCAP_SMASK_MASK 0x000000ff
314 #define QH_EPCAP_SMASK_SH 0
315
316 uint32_t current_qtd; // Standard next link pointer
317 uint32_t next_qtd; // Standard next link pointer
318 uint32_t altnext_qtd;
319 #define QH_ALTNEXT_NAKCNT_MASK 0x0000001e
320 #define QH_ALTNEXT_NAKCNT_SH 1
321
322 uint32_t token; // Same as QTD token
323 uint32_t bufptr[5]; // Standard buffer pointer
324 #define BUFPTR_CPROGMASK_MASK 0x000000ff
325 #define BUFPTR_FRAMETAG_MASK 0x0000001f
326 #define BUFPTR_SBYTES_MASK 0x00000fe0
327 #define BUFPTR_SBYTES_SH 5
328 } EHCIqh;
329
330 /* EHCI spec version 1.0 Section 3.7
331 */
332 typedef struct EHCIfstn {
333 uint32_t next; // Standard next link pointer
334 uint32_t backptr; // Standard next link pointer
335 } EHCIfstn;
336
337 typedef struct EHCIPacket EHCIPacket;
338 typedef struct EHCIQueue EHCIQueue;
339 typedef struct EHCIState EHCIState;
340
341 enum async_state {
342 EHCI_ASYNC_NONE = 0,
343 EHCI_ASYNC_INFLIGHT,
344 EHCI_ASYNC_FINISHED,
345 };
346
347 struct EHCIPacket {
348 EHCIQueue *queue;
349 QTAILQ_ENTRY(EHCIPacket) next;
350
351 EHCIqtd qtd; /* copy of current QTD (being worked on) */
352 uint32_t qtdaddr; /* address QTD read from */
353
354 USBPacket packet;
355 QEMUSGList sgl;
356 int pid;
357 uint32_t tbytes;
358 enum async_state async;
359 int usb_status;
360 };
361
362 struct EHCIQueue {
363 EHCIState *ehci;
364 QTAILQ_ENTRY(EHCIQueue) next;
365 uint32_t seen;
366 uint64_t ts;
367 int async;
368
369 /* cached data from guest - needs to be flushed
370 * when guest removes an entry (doorbell, handshake sequence)
371 */
372 EHCIqh qh; /* copy of current QH (being worked on) */
373 uint32_t qhaddr; /* address QH read from */
374 uint32_t qtdaddr; /* address QTD read from */
375 USBDevice *dev;
376 QTAILQ_HEAD(, EHCIPacket) packets;
377 };
378
379 typedef QTAILQ_HEAD(EHCIQueueHead, EHCIQueue) EHCIQueueHead;
380
381 struct EHCIState {
382 PCIDevice dev;
383 USBBus bus;
384 qemu_irq irq;
385 MemoryRegion mem;
386 int companion_count;
387
388 /* properties */
389 uint32_t freq;
390 uint32_t maxframes;
391
392 /*
393 * EHCI spec version 1.0 Section 2.3
394 * Host Controller Operational Registers
395 */
396 union {
397 uint8_t mmio[MMIO_SIZE];
398 struct {
399 uint8_t cap[OPREGBASE];
400 uint32_t usbcmd;
401 uint32_t usbsts;
402 uint32_t usbintr;
403 uint32_t frindex;
404 uint32_t ctrldssegment;
405 uint32_t periodiclistbase;
406 uint32_t asynclistaddr;
407 uint32_t notused[9];
408 uint32_t configflag;
409 uint32_t portsc[NB_PORTS];
410 };
411 };
412
413 /*
414 * Internal states, shadow registers, etc
415 */
416 QEMUTimer *frame_timer;
417 QEMUBH *async_bh;
418 int attach_poll_counter;
419 int astate; // Current state in asynchronous schedule
420 int pstate; // Current state in periodic schedule
421 USBPort ports[NB_PORTS];
422 USBPort *companion_ports[NB_PORTS];
423 uint32_t usbsts_pending;
424 EHCIQueueHead aqueues;
425 EHCIQueueHead pqueues;
426
427 uint32_t a_fetch_addr; // which address to look at next
428 uint32_t p_fetch_addr; // which address to look at next
429
430 USBPacket ipacket;
431 QEMUSGList isgl;
432
433 uint64_t last_run_ns;
434 };
435
436 #define SET_LAST_RUN_CLOCK(s) \
437 (s)->last_run_ns = qemu_get_clock_ns(vm_clock);
438
439 /* nifty macros from Arnon's EHCI version */
440 #define get_field(data, field) \
441 (((data) & field##_MASK) >> field##_SH)
442
443 #define set_field(data, newval, field) do { \
444 uint32_t val = *data; \
445 val &= ~ field##_MASK; \
446 val |= ((newval) << field##_SH) & field##_MASK; \
447 *data = val; \
448 } while(0)
449
450 static const char *ehci_state_names[] = {
451 [EST_INACTIVE] = "INACTIVE",
452 [EST_ACTIVE] = "ACTIVE",
453 [EST_EXECUTING] = "EXECUTING",
454 [EST_SLEEPING] = "SLEEPING",
455 [EST_WAITLISTHEAD] = "WAITLISTHEAD",
456 [EST_FETCHENTRY] = "FETCH ENTRY",
457 [EST_FETCHQH] = "FETCH QH",
458 [EST_FETCHITD] = "FETCH ITD",
459 [EST_ADVANCEQUEUE] = "ADVANCEQUEUE",
460 [EST_FETCHQTD] = "FETCH QTD",
461 [EST_EXECUTE] = "EXECUTE",
462 [EST_WRITEBACK] = "WRITEBACK",
463 [EST_HORIZONTALQH] = "HORIZONTALQH",
464 };
465
466 static const char *ehci_mmio_names[] = {
467 [CAPLENGTH] = "CAPLENGTH",
468 [HCIVERSION] = "HCIVERSION",
469 [HCSPARAMS] = "HCSPARAMS",
470 [HCCPARAMS] = "HCCPARAMS",
471 [USBCMD] = "USBCMD",
472 [USBSTS] = "USBSTS",
473 [USBINTR] = "USBINTR",
474 [FRINDEX] = "FRINDEX",
475 [PERIODICLISTBASE] = "P-LIST BASE",
476 [ASYNCLISTADDR] = "A-LIST ADDR",
477 [PORTSC_BEGIN] = "PORTSC #0",
478 [PORTSC_BEGIN + 4] = "PORTSC #1",
479 [PORTSC_BEGIN + 8] = "PORTSC #2",
480 [PORTSC_BEGIN + 12] = "PORTSC #3",
481 [PORTSC_BEGIN + 16] = "PORTSC #4",
482 [PORTSC_BEGIN + 20] = "PORTSC #5",
483 [CONFIGFLAG] = "CONFIGFLAG",
484 };
485
486 static const char *nr2str(const char **n, size_t len, uint32_t nr)
487 {
488 if (nr < len && n[nr] != NULL) {
489 return n[nr];
490 } else {
491 return "unknown";
492 }
493 }
494
495 static const char *state2str(uint32_t state)
496 {
497 return nr2str(ehci_state_names, ARRAY_SIZE(ehci_state_names), state);
498 }
499
500 static const char *addr2str(target_phys_addr_t addr)
501 {
502 return nr2str(ehci_mmio_names, ARRAY_SIZE(ehci_mmio_names), addr);
503 }
504
505 static void ehci_trace_usbsts(uint32_t mask, int state)
506 {
507 /* interrupts */
508 if (mask & USBSTS_INT) {
509 trace_usb_ehci_usbsts("INT", state);
510 }
511 if (mask & USBSTS_ERRINT) {
512 trace_usb_ehci_usbsts("ERRINT", state);
513 }
514 if (mask & USBSTS_PCD) {
515 trace_usb_ehci_usbsts("PCD", state);
516 }
517 if (mask & USBSTS_FLR) {
518 trace_usb_ehci_usbsts("FLR", state);
519 }
520 if (mask & USBSTS_HSE) {
521 trace_usb_ehci_usbsts("HSE", state);
522 }
523 if (mask & USBSTS_IAA) {
524 trace_usb_ehci_usbsts("IAA", state);
525 }
526
527 /* status */
528 if (mask & USBSTS_HALT) {
529 trace_usb_ehci_usbsts("HALT", state);
530 }
531 if (mask & USBSTS_REC) {
532 trace_usb_ehci_usbsts("REC", state);
533 }
534 if (mask & USBSTS_PSS) {
535 trace_usb_ehci_usbsts("PSS", state);
536 }
537 if (mask & USBSTS_ASS) {
538 trace_usb_ehci_usbsts("ASS", state);
539 }
540 }
541
542 static inline void ehci_set_usbsts(EHCIState *s, int mask)
543 {
544 if ((s->usbsts & mask) == mask) {
545 return;
546 }
547 ehci_trace_usbsts(mask, 1);
548 s->usbsts |= mask;
549 }
550
551 static inline void ehci_clear_usbsts(EHCIState *s, int mask)
552 {
553 if ((s->usbsts & mask) == 0) {
554 return;
555 }
556 ehci_trace_usbsts(mask, 0);
557 s->usbsts &= ~mask;
558 }
559
560 static inline void ehci_set_interrupt(EHCIState *s, int intr)
561 {
562 int level = 0;
563
564 // TODO honour interrupt threshold requests
565
566 ehci_set_usbsts(s, intr);
567
568 if ((s->usbsts & USBINTR_MASK) & s->usbintr) {
569 level = 1;
570 }
571
572 qemu_set_irq(s->irq, level);
573 }
574
575 static inline void ehci_record_interrupt(EHCIState *s, int intr)
576 {
577 s->usbsts_pending |= intr;
578 }
579
580 static inline void ehci_commit_interrupt(EHCIState *s)
581 {
582 if (!s->usbsts_pending) {
583 return;
584 }
585 ehci_set_interrupt(s, s->usbsts_pending);
586 s->usbsts_pending = 0;
587 }
588
589 static void ehci_set_state(EHCIState *s, int async, int state)
590 {
591 if (async) {
592 trace_usb_ehci_state("async", state2str(state));
593 s->astate = state;
594 if (s->astate == EST_INACTIVE) {
595 ehci_clear_usbsts(s, USBSTS_ASS);
596 } else {
597 ehci_set_usbsts(s, USBSTS_ASS);
598 }
599 } else {
600 trace_usb_ehci_state("periodic", state2str(state));
601 s->pstate = state;
602 if (s->pstate == EST_INACTIVE) {
603 ehci_clear_usbsts(s, USBSTS_PSS);
604 } else {
605 ehci_set_usbsts(s, USBSTS_PSS);
606 }
607 }
608 }
609
610 static int ehci_get_state(EHCIState *s, int async)
611 {
612 return async ? s->astate : s->pstate;
613 }
614
615 static void ehci_set_fetch_addr(EHCIState *s, int async, uint32_t addr)
616 {
617 if (async) {
618 s->a_fetch_addr = addr;
619 } else {
620 s->p_fetch_addr = addr;
621 }
622 }
623
624 static int ehci_get_fetch_addr(EHCIState *s, int async)
625 {
626 return async ? s->a_fetch_addr : s->p_fetch_addr;
627 }
628
629 static void ehci_trace_qh(EHCIQueue *q, target_phys_addr_t addr, EHCIqh *qh)
630 {
631 /* need three here due to argument count limits */
632 trace_usb_ehci_qh_ptrs(q, addr, qh->next,
633 qh->current_qtd, qh->next_qtd, qh->altnext_qtd);
634 trace_usb_ehci_qh_fields(addr,
635 get_field(qh->epchar, QH_EPCHAR_RL),
636 get_field(qh->epchar, QH_EPCHAR_MPLEN),
637 get_field(qh->epchar, QH_EPCHAR_EPS),
638 get_field(qh->epchar, QH_EPCHAR_EP),
639 get_field(qh->epchar, QH_EPCHAR_DEVADDR));
640 trace_usb_ehci_qh_bits(addr,
641 (bool)(qh->epchar & QH_EPCHAR_C),
642 (bool)(qh->epchar & QH_EPCHAR_H),
643 (bool)(qh->epchar & QH_EPCHAR_DTC),
644 (bool)(qh->epchar & QH_EPCHAR_I));
645 }
646
647 static void ehci_trace_qtd(EHCIQueue *q, target_phys_addr_t addr, EHCIqtd *qtd)
648 {
649 /* need three here due to argument count limits */
650 trace_usb_ehci_qtd_ptrs(q, addr, qtd->next, qtd->altnext);
651 trace_usb_ehci_qtd_fields(addr,
652 get_field(qtd->token, QTD_TOKEN_TBYTES),
653 get_field(qtd->token, QTD_TOKEN_CPAGE),
654 get_field(qtd->token, QTD_TOKEN_CERR),
655 get_field(qtd->token, QTD_TOKEN_PID));
656 trace_usb_ehci_qtd_bits(addr,
657 (bool)(qtd->token & QTD_TOKEN_IOC),
658 (bool)(qtd->token & QTD_TOKEN_ACTIVE),
659 (bool)(qtd->token & QTD_TOKEN_HALT),
660 (bool)(qtd->token & QTD_TOKEN_BABBLE),
661 (bool)(qtd->token & QTD_TOKEN_XACTERR));
662 }
663
664 static void ehci_trace_itd(EHCIState *s, target_phys_addr_t addr, EHCIitd *itd)
665 {
666 trace_usb_ehci_itd(addr, itd->next,
667 get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT),
668 get_field(itd->bufptr[2], ITD_BUFPTR_MULT),
669 get_field(itd->bufptr[0], ITD_BUFPTR_EP),
670 get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR));
671 }
672
673 static void ehci_trace_sitd(EHCIState *s, target_phys_addr_t addr,
674 EHCIsitd *sitd)
675 {
676 trace_usb_ehci_sitd(addr, sitd->next,
677 (bool)(sitd->results & SITD_RESULTS_ACTIVE));
678 }
679
680 static inline bool ehci_enabled(EHCIState *s)
681 {
682 return s->usbcmd & USBCMD_RUNSTOP;
683 }
684
685 static inline bool ehci_async_enabled(EHCIState *s)
686 {
687 return ehci_enabled(s) && (s->usbcmd & USBCMD_ASE);
688 }
689
690 static inline bool ehci_periodic_enabled(EHCIState *s)
691 {
692 return ehci_enabled(s) && (s->usbcmd & USBCMD_PSE);
693 }
694
695 /* packet management */
696
697 static EHCIPacket *ehci_alloc_packet(EHCIQueue *q)
698 {
699 EHCIPacket *p;
700
701 p = g_new0(EHCIPacket, 1);
702 p->queue = q;
703 usb_packet_init(&p->packet);
704 QTAILQ_INSERT_TAIL(&q->packets, p, next);
705 trace_usb_ehci_packet_action(p->queue, p, "alloc");
706 return p;
707 }
708
709 static void ehci_free_packet(EHCIPacket *p)
710 {
711 trace_usb_ehci_packet_action(p->queue, p, "free");
712 if (p->async == EHCI_ASYNC_INFLIGHT) {
713 usb_cancel_packet(&p->packet);
714 }
715 QTAILQ_REMOVE(&p->queue->packets, p, next);
716 usb_packet_cleanup(&p->packet);
717 g_free(p);
718 }
719
720 /* queue management */
721
722 static EHCIQueue *ehci_alloc_queue(EHCIState *ehci, uint32_t addr, int async)
723 {
724 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
725 EHCIQueue *q;
726
727 q = g_malloc0(sizeof(*q));
728 q->ehci = ehci;
729 q->qhaddr = addr;
730 q->async = async;
731 QTAILQ_INIT(&q->packets);
732 QTAILQ_INSERT_HEAD(head, q, next);
733 trace_usb_ehci_queue_action(q, "alloc");
734 return q;
735 }
736
737 static void ehci_free_queue(EHCIQueue *q)
738 {
739 EHCIQueueHead *head = q->async ? &q->ehci->aqueues : &q->ehci->pqueues;
740 EHCIPacket *p;
741
742 trace_usb_ehci_queue_action(q, "free");
743 while ((p = QTAILQ_FIRST(&q->packets)) != NULL) {
744 ehci_free_packet(p);
745 }
746 QTAILQ_REMOVE(head, q, next);
747 g_free(q);
748 }
749
750 static EHCIQueue *ehci_find_queue_by_qh(EHCIState *ehci, uint32_t addr,
751 int async)
752 {
753 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
754 EHCIQueue *q;
755
756 QTAILQ_FOREACH(q, head, next) {
757 if (addr == q->qhaddr) {
758 return q;
759 }
760 }
761 return NULL;
762 }
763
764 static void ehci_queues_rip_unused(EHCIState *ehci, int async, int flush)
765 {
766 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
767 EHCIQueue *q, *tmp;
768
769 QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
770 if (q->seen) {
771 q->seen = 0;
772 q->ts = ehci->last_run_ns;
773 continue;
774 }
775 if (!flush && ehci->last_run_ns < q->ts + 250000000) {
776 /* allow 0.25 sec idle */
777 continue;
778 }
779 ehci_free_queue(q);
780 }
781 }
782
783 static void ehci_queues_rip_device(EHCIState *ehci, USBDevice *dev, int async)
784 {
785 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
786 EHCIQueue *q, *tmp;
787
788 QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
789 if (q->dev != dev) {
790 continue;
791 }
792 ehci_free_queue(q);
793 }
794 }
795
796 static void ehci_queues_rip_all(EHCIState *ehci, int async)
797 {
798 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
799 EHCIQueue *q, *tmp;
800
801 QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
802 ehci_free_queue(q);
803 }
804 }
805
806 /* Attach or detach a device on root hub */
807
808 static void ehci_attach(USBPort *port)
809 {
810 EHCIState *s = port->opaque;
811 uint32_t *portsc = &s->portsc[port->index];
812
813 trace_usb_ehci_port_attach(port->index, port->dev->product_desc);
814
815 if (*portsc & PORTSC_POWNER) {
816 USBPort *companion = s->companion_ports[port->index];
817 companion->dev = port->dev;
818 companion->ops->attach(companion);
819 return;
820 }
821
822 *portsc |= PORTSC_CONNECT;
823 *portsc |= PORTSC_CSC;
824
825 ehci_set_interrupt(s, USBSTS_PCD);
826 }
827
828 static void ehci_detach(USBPort *port)
829 {
830 EHCIState *s = port->opaque;
831 uint32_t *portsc = &s->portsc[port->index];
832
833 trace_usb_ehci_port_detach(port->index);
834
835 if (*portsc & PORTSC_POWNER) {
836 USBPort *companion = s->companion_ports[port->index];
837 companion->ops->detach(companion);
838 companion->dev = NULL;
839 /*
840 * EHCI spec 4.2.2: "When a disconnect occurs... On the event,
841 * the port ownership is returned immediately to the EHCI controller."
842 */
843 *portsc &= ~PORTSC_POWNER;
844 return;
845 }
846
847 ehci_queues_rip_device(s, port->dev, 0);
848 ehci_queues_rip_device(s, port->dev, 1);
849
850 *portsc &= ~(PORTSC_CONNECT|PORTSC_PED);
851 *portsc |= PORTSC_CSC;
852
853 ehci_set_interrupt(s, USBSTS_PCD);
854 }
855
856 static void ehci_child_detach(USBPort *port, USBDevice *child)
857 {
858 EHCIState *s = port->opaque;
859 uint32_t portsc = s->portsc[port->index];
860
861 if (portsc & PORTSC_POWNER) {
862 USBPort *companion = s->companion_ports[port->index];
863 companion->ops->child_detach(companion, child);
864 return;
865 }
866
867 ehci_queues_rip_device(s, child, 0);
868 ehci_queues_rip_device(s, child, 1);
869 }
870
871 static void ehci_wakeup(USBPort *port)
872 {
873 EHCIState *s = port->opaque;
874 uint32_t portsc = s->portsc[port->index];
875
876 if (portsc & PORTSC_POWNER) {
877 USBPort *companion = s->companion_ports[port->index];
878 if (companion->ops->wakeup) {
879 companion->ops->wakeup(companion);
880 } else {
881 qemu_bh_schedule(s->async_bh);
882 }
883 }
884 }
885
886 static int ehci_register_companion(USBBus *bus, USBPort *ports[],
887 uint32_t portcount, uint32_t firstport)
888 {
889 EHCIState *s = container_of(bus, EHCIState, bus);
890 uint32_t i;
891
892 if (firstport + portcount > NB_PORTS) {
893 qerror_report(QERR_INVALID_PARAMETER_VALUE, "firstport",
894 "firstport on masterbus");
895 error_printf_unless_qmp(
896 "firstport value of %u makes companion take ports %u - %u, which "
897 "is outside of the valid range of 0 - %u\n", firstport, firstport,
898 firstport + portcount - 1, NB_PORTS - 1);
899 return -1;
900 }
901
902 for (i = 0; i < portcount; i++) {
903 if (s->companion_ports[firstport + i]) {
904 qerror_report(QERR_INVALID_PARAMETER_VALUE, "masterbus",
905 "an USB masterbus");
906 error_printf_unless_qmp(
907 "port %u on masterbus %s already has a companion assigned\n",
908 firstport + i, bus->qbus.name);
909 return -1;
910 }
911 }
912
913 for (i = 0; i < portcount; i++) {
914 s->companion_ports[firstport + i] = ports[i];
915 s->ports[firstport + i].speedmask |=
916 USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL;
917 /* Ensure devs attached before the initial reset go to the companion */
918 s->portsc[firstport + i] = PORTSC_POWNER;
919 }
920
921 s->companion_count++;
922 s->mmio[0x05] = (s->companion_count << 4) | portcount;
923
924 return 0;
925 }
926
927 static USBDevice *ehci_find_device(EHCIState *ehci, uint8_t addr)
928 {
929 USBDevice *dev;
930 USBPort *port;
931 int i;
932
933 for (i = 0; i < NB_PORTS; i++) {
934 port = &ehci->ports[i];
935 if (!(ehci->portsc[i] & PORTSC_PED)) {
936 DPRINTF("Port %d not enabled\n", i);
937 continue;
938 }
939 dev = usb_find_device(port, addr);
940 if (dev != NULL) {
941 return dev;
942 }
943 }
944 return NULL;
945 }
946
947 /* 4.1 host controller initialization */
948 static void ehci_reset(void *opaque)
949 {
950 EHCIState *s = opaque;
951 int i;
952 USBDevice *devs[NB_PORTS];
953
954 trace_usb_ehci_reset();
955
956 /*
957 * Do the detach before touching portsc, so that it correctly gets send to
958 * us or to our companion based on PORTSC_POWNER before the reset.
959 */
960 for(i = 0; i < NB_PORTS; i++) {
961 devs[i] = s->ports[i].dev;
962 if (devs[i] && devs[i]->attached) {
963 usb_detach(&s->ports[i]);
964 }
965 }
966
967 memset(&s->mmio[OPREGBASE], 0x00, MMIO_SIZE - OPREGBASE);
968
969 s->usbcmd = NB_MAXINTRATE << USBCMD_ITC_SH;
970 s->usbsts = USBSTS_HALT;
971
972 s->astate = EST_INACTIVE;
973 s->pstate = EST_INACTIVE;
974 s->attach_poll_counter = 0;
975
976 for(i = 0; i < NB_PORTS; i++) {
977 if (s->companion_ports[i]) {
978 s->portsc[i] = PORTSC_POWNER | PORTSC_PPOWER;
979 } else {
980 s->portsc[i] = PORTSC_PPOWER;
981 }
982 if (devs[i] && devs[i]->attached) {
983 usb_attach(&s->ports[i]);
984 usb_device_reset(devs[i]);
985 }
986 }
987 ehci_queues_rip_all(s, 0);
988 ehci_queues_rip_all(s, 1);
989 qemu_del_timer(s->frame_timer);
990 qemu_bh_cancel(s->async_bh);
991 }
992
993 static uint32_t ehci_mem_readb(void *ptr, target_phys_addr_t addr)
994 {
995 EHCIState *s = ptr;
996 uint32_t val;
997
998 val = s->mmio[addr];
999
1000 return val;
1001 }
1002
1003 static uint32_t ehci_mem_readw(void *ptr, target_phys_addr_t addr)
1004 {
1005 EHCIState *s = ptr;
1006 uint32_t val;
1007
1008 val = s->mmio[addr] | (s->mmio[addr+1] << 8);
1009
1010 return val;
1011 }
1012
1013 static uint32_t ehci_mem_readl(void *ptr, target_phys_addr_t addr)
1014 {
1015 EHCIState *s = ptr;
1016 uint32_t val;
1017
1018 val = s->mmio[addr] | (s->mmio[addr+1] << 8) |
1019 (s->mmio[addr+2] << 16) | (s->mmio[addr+3] << 24);
1020
1021 trace_usb_ehci_mmio_readl(addr, addr2str(addr), val);
1022 return val;
1023 }
1024
1025 static void ehci_mem_writeb(void *ptr, target_phys_addr_t addr, uint32_t val)
1026 {
1027 fprintf(stderr, "EHCI doesn't handle byte writes to MMIO\n");
1028 exit(1);
1029 }
1030
1031 static void ehci_mem_writew(void *ptr, target_phys_addr_t addr, uint32_t val)
1032 {
1033 fprintf(stderr, "EHCI doesn't handle 16-bit writes to MMIO\n");
1034 exit(1);
1035 }
1036
1037 static void handle_port_owner_write(EHCIState *s, int port, uint32_t owner)
1038 {
1039 USBDevice *dev = s->ports[port].dev;
1040 uint32_t *portsc = &s->portsc[port];
1041 uint32_t orig;
1042
1043 if (s->companion_ports[port] == NULL)
1044 return;
1045
1046 owner = owner & PORTSC_POWNER;
1047 orig = *portsc & PORTSC_POWNER;
1048
1049 if (!(owner ^ orig)) {
1050 return;
1051 }
1052
1053 if (dev && dev->attached) {
1054 usb_detach(&s->ports[port]);
1055 }
1056
1057 *portsc &= ~PORTSC_POWNER;
1058 *portsc |= owner;
1059
1060 if (dev && dev->attached) {
1061 usb_attach(&s->ports[port]);
1062 }
1063 }
1064
1065 static void handle_port_status_write(EHCIState *s, int port, uint32_t val)
1066 {
1067 uint32_t *portsc = &s->portsc[port];
1068 USBDevice *dev = s->ports[port].dev;
1069
1070 /* Clear rwc bits */
1071 *portsc &= ~(val & PORTSC_RWC_MASK);
1072 /* The guest may clear, but not set the PED bit */
1073 *portsc &= val | ~PORTSC_PED;
1074 /* POWNER is masked out by RO_MASK as it is RO when we've no companion */
1075 handle_port_owner_write(s, port, val);
1076 /* And finally apply RO_MASK */
1077 val &= PORTSC_RO_MASK;
1078
1079 if ((val & PORTSC_PRESET) && !(*portsc & PORTSC_PRESET)) {
1080 trace_usb_ehci_port_reset(port, 1);
1081 }
1082
1083 if (!(val & PORTSC_PRESET) &&(*portsc & PORTSC_PRESET)) {
1084 trace_usb_ehci_port_reset(port, 0);
1085 if (dev && dev->attached) {
1086 usb_port_reset(&s->ports[port]);
1087 *portsc &= ~PORTSC_CSC;
1088 }
1089
1090 /*
1091 * Table 2.16 Set the enable bit(and enable bit change) to indicate
1092 * to SW that this port has a high speed device attached
1093 */
1094 if (dev && dev->attached && (dev->speedmask & USB_SPEED_MASK_HIGH)) {
1095 val |= PORTSC_PED;
1096 }
1097 }
1098
1099 *portsc &= ~PORTSC_RO_MASK;
1100 *portsc |= val;
1101 }
1102
1103 static void ehci_mem_writel(void *ptr, target_phys_addr_t addr, uint32_t val)
1104 {
1105 EHCIState *s = ptr;
1106 uint32_t *mmio = (uint32_t *)(&s->mmio[addr]);
1107 uint32_t old = *mmio;
1108 int i;
1109
1110 trace_usb_ehci_mmio_writel(addr, addr2str(addr), val);
1111
1112 /* Only aligned reads are allowed on OHCI */
1113 if (addr & 3) {
1114 fprintf(stderr, "usb-ehci: Mis-aligned write to addr 0x"
1115 TARGET_FMT_plx "\n", addr);
1116 return;
1117 }
1118
1119 if (addr >= PORTSC && addr < PORTSC + 4 * NB_PORTS) {
1120 handle_port_status_write(s, (addr-PORTSC)/4, val);
1121 trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
1122 return;
1123 }
1124
1125 if (addr < OPREGBASE) {
1126 fprintf(stderr, "usb-ehci: write attempt to read-only register"
1127 TARGET_FMT_plx "\n", addr);
1128 return;
1129 }
1130
1131
1132 /* Do any register specific pre-write processing here. */
1133 switch(addr) {
1134 case USBCMD:
1135 if (val & USBCMD_HCRESET) {
1136 ehci_reset(s);
1137 val = s->usbcmd;
1138 break;
1139 }
1140
1141 if ((val & USBCMD_RUNSTOP) && !(s->usbcmd & USBCMD_RUNSTOP)) {
1142 qemu_mod_timer(s->frame_timer, qemu_get_clock_ns(vm_clock));
1143 SET_LAST_RUN_CLOCK(s);
1144 ehci_clear_usbsts(s, USBSTS_HALT);
1145 }
1146
1147 if (!(val & USBCMD_RUNSTOP) && (s->usbcmd & USBCMD_RUNSTOP)) {
1148 qemu_del_timer(s->frame_timer);
1149 qemu_bh_cancel(s->async_bh);
1150 ehci_queues_rip_all(s, 0);
1151 ehci_queues_rip_all(s, 1);
1152 ehci_set_usbsts(s, USBSTS_HALT);
1153 }
1154
1155
1156 /* not supporting dynamic frame list size at the moment */
1157 if ((val & USBCMD_FLS) && !(s->usbcmd & USBCMD_FLS)) {
1158 fprintf(stderr, "attempt to set frame list size -- value %d\n",
1159 val & USBCMD_FLS);
1160 val &= ~USBCMD_FLS;
1161 }
1162 break;
1163
1164 case USBSTS:
1165 val &= USBSTS_RO_MASK; // bits 6 through 31 are RO
1166 ehci_clear_usbsts(s, val); // bits 0 through 5 are R/WC
1167 val = s->usbsts;
1168 ehci_set_interrupt(s, 0);
1169 break;
1170
1171 case USBINTR:
1172 val &= USBINTR_MASK;
1173 break;
1174
1175 case FRINDEX:
1176 val &= 0x00003ff8; /* frindex is 14bits and always a multiple of 8 */
1177 break;
1178
1179 case CONFIGFLAG:
1180 val &= 0x1;
1181 if (val) {
1182 for(i = 0; i < NB_PORTS; i++)
1183 handle_port_owner_write(s, i, 0);
1184 }
1185 break;
1186
1187 case PERIODICLISTBASE:
1188 if (ehci_periodic_enabled(s)) {
1189 fprintf(stderr,
1190 "ehci: PERIODIC list base register set while periodic schedule\n"
1191 " is enabled and HC is enabled\n");
1192 }
1193 break;
1194
1195 case ASYNCLISTADDR:
1196 if (ehci_async_enabled(s)) {
1197 fprintf(stderr,
1198 "ehci: ASYNC list address register set while async schedule\n"
1199 " is enabled and HC is enabled\n");
1200 }
1201 break;
1202 }
1203
1204 *mmio = val;
1205 trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
1206 }
1207
1208
1209 // TODO : Put in common header file, duplication from usb-ohci.c
1210
1211 /* Get an array of dwords from main memory */
1212 static inline int get_dwords(EHCIState *ehci, uint32_t addr,
1213 uint32_t *buf, int num)
1214 {
1215 int i;
1216
1217 for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1218 pci_dma_read(&ehci->dev, addr, buf, sizeof(*buf));
1219 *buf = le32_to_cpu(*buf);
1220 }
1221
1222 return 1;
1223 }
1224
1225 /* Put an array of dwords in to main memory */
1226 static inline int put_dwords(EHCIState *ehci, uint32_t addr,
1227 uint32_t *buf, int num)
1228 {
1229 int i;
1230
1231 for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1232 uint32_t tmp = cpu_to_le32(*buf);
1233 pci_dma_write(&ehci->dev, addr, &tmp, sizeof(tmp));
1234 }
1235
1236 return 1;
1237 }
1238
1239 // 4.10.2
1240
1241 static int ehci_qh_do_overlay(EHCIQueue *q)
1242 {
1243 EHCIPacket *p = QTAILQ_FIRST(&q->packets);
1244 int i;
1245 int dtoggle;
1246 int ping;
1247 int eps;
1248 int reload;
1249
1250 assert(p != NULL);
1251 assert(p->qtdaddr == q->qtdaddr);
1252
1253 // remember values in fields to preserve in qh after overlay
1254
1255 dtoggle = q->qh.token & QTD_TOKEN_DTOGGLE;
1256 ping = q->qh.token & QTD_TOKEN_PING;
1257
1258 q->qh.current_qtd = p->qtdaddr;
1259 q->qh.next_qtd = p->qtd.next;
1260 q->qh.altnext_qtd = p->qtd.altnext;
1261 q->qh.token = p->qtd.token;
1262
1263
1264 eps = get_field(q->qh.epchar, QH_EPCHAR_EPS);
1265 if (eps == EHCI_QH_EPS_HIGH) {
1266 q->qh.token &= ~QTD_TOKEN_PING;
1267 q->qh.token |= ping;
1268 }
1269
1270 reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1271 set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1272
1273 for (i = 0; i < 5; i++) {
1274 q->qh.bufptr[i] = p->qtd.bufptr[i];
1275 }
1276
1277 if (!(q->qh.epchar & QH_EPCHAR_DTC)) {
1278 // preserve QH DT bit
1279 q->qh.token &= ~QTD_TOKEN_DTOGGLE;
1280 q->qh.token |= dtoggle;
1281 }
1282
1283 q->qh.bufptr[1] &= ~BUFPTR_CPROGMASK_MASK;
1284 q->qh.bufptr[2] &= ~BUFPTR_FRAMETAG_MASK;
1285
1286 put_dwords(q->ehci, NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh,
1287 sizeof(EHCIqh) >> 2);
1288
1289 return 0;
1290 }
1291
1292 static int ehci_init_transfer(EHCIPacket *p)
1293 {
1294 uint32_t cpage, offset, bytes, plen;
1295 dma_addr_t page;
1296
1297 cpage = get_field(p->qtd.token, QTD_TOKEN_CPAGE);
1298 bytes = get_field(p->qtd.token, QTD_TOKEN_TBYTES);
1299 offset = p->qtd.bufptr[0] & ~QTD_BUFPTR_MASK;
1300 pci_dma_sglist_init(&p->sgl, &p->queue->ehci->dev, 5);
1301
1302 while (bytes > 0) {
1303 if (cpage > 4) {
1304 fprintf(stderr, "cpage out of range (%d)\n", cpage);
1305 return USB_RET_PROCERR;
1306 }
1307
1308 page = p->qtd.bufptr[cpage] & QTD_BUFPTR_MASK;
1309 page += offset;
1310 plen = bytes;
1311 if (plen > 4096 - offset) {
1312 plen = 4096 - offset;
1313 offset = 0;
1314 cpage++;
1315 }
1316
1317 qemu_sglist_add(&p->sgl, page, plen);
1318 bytes -= plen;
1319 }
1320 return 0;
1321 }
1322
1323 static void ehci_finish_transfer(EHCIQueue *q, int status)
1324 {
1325 uint32_t cpage, offset;
1326
1327 if (status > 0) {
1328 /* update cpage & offset */
1329 cpage = get_field(q->qh.token, QTD_TOKEN_CPAGE);
1330 offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
1331
1332 offset += status;
1333 cpage += offset >> QTD_BUFPTR_SH;
1334 offset &= ~QTD_BUFPTR_MASK;
1335
1336 set_field(&q->qh.token, cpage, QTD_TOKEN_CPAGE);
1337 q->qh.bufptr[0] &= QTD_BUFPTR_MASK;
1338 q->qh.bufptr[0] |= offset;
1339 }
1340 }
1341
1342 static void ehci_async_complete_packet(USBPort *port, USBPacket *packet)
1343 {
1344 EHCIPacket *p;
1345 EHCIState *s = port->opaque;
1346 uint32_t portsc = s->portsc[port->index];
1347
1348 if (portsc & PORTSC_POWNER) {
1349 USBPort *companion = s->companion_ports[port->index];
1350 companion->ops->complete(companion, packet);
1351 return;
1352 }
1353
1354 p = container_of(packet, EHCIPacket, packet);
1355 trace_usb_ehci_packet_action(p->queue, p, "wakeup");
1356 assert(p->async == EHCI_ASYNC_INFLIGHT);
1357 p->async = EHCI_ASYNC_FINISHED;
1358 p->usb_status = packet->result;
1359
1360 if (p->queue->async) {
1361 qemu_bh_schedule(p->queue->ehci->async_bh);
1362 }
1363 }
1364
1365 static void ehci_execute_complete(EHCIQueue *q)
1366 {
1367 EHCIPacket *p = QTAILQ_FIRST(&q->packets);
1368
1369 assert(p != NULL);
1370 assert(p->qtdaddr == q->qtdaddr);
1371 assert(p->async != EHCI_ASYNC_INFLIGHT);
1372 p->async = EHCI_ASYNC_NONE;
1373
1374 DPRINTF("execute_complete: qhaddr 0x%x, next %x, qtdaddr 0x%x, status %d\n",
1375 q->qhaddr, q->qh.next, q->qtdaddr, q->usb_status);
1376
1377 if (p->usb_status < 0) {
1378 switch (p->usb_status) {
1379 case USB_RET_IOERROR:
1380 case USB_RET_NODEV:
1381 q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_XACTERR);
1382 set_field(&q->qh.token, 0, QTD_TOKEN_CERR);
1383 ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1384 break;
1385 case USB_RET_STALL:
1386 q->qh.token |= QTD_TOKEN_HALT;
1387 ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1388 break;
1389 case USB_RET_NAK:
1390 set_field(&q->qh.altnext_qtd, 0, QH_ALTNEXT_NAKCNT);
1391 return; /* We're not done yet with this transaction */
1392 case USB_RET_BABBLE:
1393 q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
1394 ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1395 break;
1396 default:
1397 /* should not be triggerable */
1398 fprintf(stderr, "USB invalid response %d\n", p->usb_status);
1399 assert(0);
1400 break;
1401 }
1402 } else if ((p->usb_status > p->tbytes) && (p->pid == USB_TOKEN_IN)) {
1403 p->usb_status = USB_RET_BABBLE;
1404 q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
1405 ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1406 } else {
1407 // TODO check 4.12 for splits
1408
1409 if (p->tbytes && p->pid == USB_TOKEN_IN) {
1410 p->tbytes -= p->usb_status;
1411 } else {
1412 p->tbytes = 0;
1413 }
1414
1415 DPRINTF("updating tbytes to %d\n", p->tbytes);
1416 set_field(&q->qh.token, p->tbytes, QTD_TOKEN_TBYTES);
1417 }
1418 ehci_finish_transfer(q, p->usb_status);
1419 qemu_sglist_destroy(&p->sgl);
1420 usb_packet_unmap(&p->packet);
1421
1422 q->qh.token ^= QTD_TOKEN_DTOGGLE;
1423 q->qh.token &= ~QTD_TOKEN_ACTIVE;
1424
1425 if (q->qh.token & QTD_TOKEN_IOC) {
1426 ehci_record_interrupt(q->ehci, USBSTS_INT);
1427 }
1428 }
1429
1430 // 4.10.3
1431
1432 static int ehci_execute(EHCIPacket *p, const char *action)
1433 {
1434 USBEndpoint *ep;
1435 int ret;
1436 int endp;
1437
1438 if (!(p->qtd.token & QTD_TOKEN_ACTIVE)) {
1439 fprintf(stderr, "Attempting to execute inactive qtd\n");
1440 return USB_RET_PROCERR;
1441 }
1442
1443 p->tbytes = (p->qtd.token & QTD_TOKEN_TBYTES_MASK) >> QTD_TOKEN_TBYTES_SH;
1444 if (p->tbytes > BUFF_SIZE) {
1445 fprintf(stderr, "Request for more bytes than allowed\n");
1446 return USB_RET_PROCERR;
1447 }
1448
1449 p->pid = (p->qtd.token & QTD_TOKEN_PID_MASK) >> QTD_TOKEN_PID_SH;
1450 switch (p->pid) {
1451 case 0:
1452 p->pid = USB_TOKEN_OUT;
1453 break;
1454 case 1:
1455 p->pid = USB_TOKEN_IN;
1456 break;
1457 case 2:
1458 p->pid = USB_TOKEN_SETUP;
1459 break;
1460 default:
1461 fprintf(stderr, "bad token\n");
1462 break;
1463 }
1464
1465 if (ehci_init_transfer(p) != 0) {
1466 return USB_RET_PROCERR;
1467 }
1468
1469 endp = get_field(p->queue->qh.epchar, QH_EPCHAR_EP);
1470 ep = usb_ep_get(p->queue->dev, p->pid, endp);
1471
1472 usb_packet_setup(&p->packet, p->pid, ep);
1473 usb_packet_map(&p->packet, &p->sgl);
1474
1475 trace_usb_ehci_packet_action(p->queue, p, action);
1476 ret = usb_handle_packet(p->queue->dev, &p->packet);
1477 DPRINTF("submit: qh %x next %x qtd %x pid %x len %zd "
1478 "(total %d) endp %x ret %d\n",
1479 q->qhaddr, q->qh.next, q->qtdaddr, q->pid,
1480 q->packet.iov.size, q->tbytes, endp, ret);
1481
1482 if (ret > BUFF_SIZE) {
1483 fprintf(stderr, "ret from usb_handle_packet > BUFF_SIZE\n");
1484 return USB_RET_PROCERR;
1485 }
1486
1487 return ret;
1488 }
1489
1490 /* 4.7.2
1491 */
1492
1493 static int ehci_process_itd(EHCIState *ehci,
1494 EHCIitd *itd)
1495 {
1496 USBDevice *dev;
1497 USBEndpoint *ep;
1498 int ret;
1499 uint32_t i, len, pid, dir, devaddr, endp;
1500 uint32_t pg, off, ptr1, ptr2, max, mult;
1501
1502 dir =(itd->bufptr[1] & ITD_BUFPTR_DIRECTION);
1503 devaddr = get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR);
1504 endp = get_field(itd->bufptr[0], ITD_BUFPTR_EP);
1505 max = get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT);
1506 mult = get_field(itd->bufptr[2], ITD_BUFPTR_MULT);
1507
1508 for(i = 0; i < 8; i++) {
1509 if (itd->transact[i] & ITD_XACT_ACTIVE) {
1510 pg = get_field(itd->transact[i], ITD_XACT_PGSEL);
1511 off = itd->transact[i] & ITD_XACT_OFFSET_MASK;
1512 ptr1 = (itd->bufptr[pg] & ITD_BUFPTR_MASK);
1513 ptr2 = (itd->bufptr[pg+1] & ITD_BUFPTR_MASK);
1514 len = get_field(itd->transact[i], ITD_XACT_LENGTH);
1515
1516 if (len > max * mult) {
1517 len = max * mult;
1518 }
1519
1520 if (len > BUFF_SIZE) {
1521 return USB_RET_PROCERR;
1522 }
1523
1524 pci_dma_sglist_init(&ehci->isgl, &ehci->dev, 2);
1525 if (off + len > 4096) {
1526 /* transfer crosses page border */
1527 uint32_t len2 = off + len - 4096;
1528 uint32_t len1 = len - len2;
1529 qemu_sglist_add(&ehci->isgl, ptr1 + off, len1);
1530 qemu_sglist_add(&ehci->isgl, ptr2, len2);
1531 } else {
1532 qemu_sglist_add(&ehci->isgl, ptr1 + off, len);
1533 }
1534
1535 pid = dir ? USB_TOKEN_IN : USB_TOKEN_OUT;
1536
1537 dev = ehci_find_device(ehci, devaddr);
1538 ep = usb_ep_get(dev, pid, endp);
1539 if (ep->type == USB_ENDPOINT_XFER_ISOC) {
1540 usb_packet_setup(&ehci->ipacket, pid, ep);
1541 usb_packet_map(&ehci->ipacket, &ehci->isgl);
1542 ret = usb_handle_packet(dev, &ehci->ipacket);
1543 assert(ret != USB_RET_ASYNC);
1544 usb_packet_unmap(&ehci->ipacket);
1545 } else {
1546 DPRINTF("ISOCH: attempt to addess non-iso endpoint\n");
1547 ret = USB_RET_NAK;
1548 }
1549 qemu_sglist_destroy(&ehci->isgl);
1550
1551 if (ret < 0) {
1552 switch (ret) {
1553 default:
1554 fprintf(stderr, "Unexpected iso usb result: %d\n", ret);
1555 /* Fall through */
1556 case USB_RET_IOERROR:
1557 case USB_RET_NODEV:
1558 /* 3.3.2: XACTERR is only allowed on IN transactions */
1559 if (dir) {
1560 itd->transact[i] |= ITD_XACT_XACTERR;
1561 ehci_record_interrupt(ehci, USBSTS_ERRINT);
1562 }
1563 break;
1564 case USB_RET_BABBLE:
1565 itd->transact[i] |= ITD_XACT_BABBLE;
1566 ehci_record_interrupt(ehci, USBSTS_ERRINT);
1567 break;
1568 case USB_RET_NAK:
1569 /* no data for us, so do a zero-length transfer */
1570 ret = 0;
1571 break;
1572 }
1573 }
1574 if (ret >= 0) {
1575 if (!dir) {
1576 /* OUT */
1577 set_field(&itd->transact[i], len - ret, ITD_XACT_LENGTH);
1578 } else {
1579 /* IN */
1580 set_field(&itd->transact[i], ret, ITD_XACT_LENGTH);
1581 }
1582 }
1583 if (itd->transact[i] & ITD_XACT_IOC) {
1584 ehci_record_interrupt(ehci, USBSTS_INT);
1585 }
1586 itd->transact[i] &= ~ITD_XACT_ACTIVE;
1587 }
1588 }
1589 return 0;
1590 }
1591
1592
1593 /*
1594 * Write the qh back to guest physical memory. This step isn't
1595 * in the EHCI spec but we need to do it since we don't share
1596 * physical memory with our guest VM.
1597 *
1598 * The first three dwords are read-only for the EHCI, so skip them
1599 * when writing back the qh.
1600 */
1601 static void ehci_flush_qh(EHCIQueue *q)
1602 {
1603 uint32_t *qh = (uint32_t *) &q->qh;
1604 uint32_t dwords = sizeof(EHCIqh) >> 2;
1605 uint32_t addr = NLPTR_GET(q->qhaddr);
1606
1607 put_dwords(q->ehci, addr + 3 * sizeof(uint32_t), qh + 3, dwords - 3);
1608 }
1609
1610 /* This state is the entry point for asynchronous schedule
1611 * processing. Entry here consitutes a EHCI start event state (4.8.5)
1612 */
1613 static int ehci_state_waitlisthead(EHCIState *ehci, int async)
1614 {
1615 EHCIqh qh;
1616 int i = 0;
1617 int again = 0;
1618 uint32_t entry = ehci->asynclistaddr;
1619
1620 /* set reclamation flag at start event (4.8.6) */
1621 if (async) {
1622 ehci_set_usbsts(ehci, USBSTS_REC);
1623 }
1624
1625 ehci_queues_rip_unused(ehci, async, 0);
1626
1627 /* Find the head of the list (4.9.1.1) */
1628 for(i = 0; i < MAX_QH; i++) {
1629 get_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &qh,
1630 sizeof(EHCIqh) >> 2);
1631 ehci_trace_qh(NULL, NLPTR_GET(entry), &qh);
1632
1633 if (qh.epchar & QH_EPCHAR_H) {
1634 if (async) {
1635 entry |= (NLPTR_TYPE_QH << 1);
1636 }
1637
1638 ehci_set_fetch_addr(ehci, async, entry);
1639 ehci_set_state(ehci, async, EST_FETCHENTRY);
1640 again = 1;
1641 goto out;
1642 }
1643
1644 entry = qh.next;
1645 if (entry == ehci->asynclistaddr) {
1646 break;
1647 }
1648 }
1649
1650 /* no head found for list. */
1651
1652 ehci_set_state(ehci, async, EST_ACTIVE);
1653
1654 out:
1655 return again;
1656 }
1657
1658
1659 /* This state is the entry point for periodic schedule processing as
1660 * well as being a continuation state for async processing.
1661 */
1662 static int ehci_state_fetchentry(EHCIState *ehci, int async)
1663 {
1664 int again = 0;
1665 uint32_t entry = ehci_get_fetch_addr(ehci, async);
1666
1667 if (NLPTR_TBIT(entry)) {
1668 ehci_set_state(ehci, async, EST_ACTIVE);
1669 goto out;
1670 }
1671
1672 /* section 4.8, only QH in async schedule */
1673 if (async && (NLPTR_TYPE_GET(entry) != NLPTR_TYPE_QH)) {
1674 fprintf(stderr, "non queue head request in async schedule\n");
1675 return -1;
1676 }
1677
1678 switch (NLPTR_TYPE_GET(entry)) {
1679 case NLPTR_TYPE_QH:
1680 ehci_set_state(ehci, async, EST_FETCHQH);
1681 again = 1;
1682 break;
1683
1684 case NLPTR_TYPE_ITD:
1685 ehci_set_state(ehci, async, EST_FETCHITD);
1686 again = 1;
1687 break;
1688
1689 case NLPTR_TYPE_STITD:
1690 ehci_set_state(ehci, async, EST_FETCHSITD);
1691 again = 1;
1692 break;
1693
1694 default:
1695 /* TODO: handle FSTN type */
1696 fprintf(stderr, "FETCHENTRY: entry at %X is of type %d "
1697 "which is not supported yet\n", entry, NLPTR_TYPE_GET(entry));
1698 return -1;
1699 }
1700
1701 out:
1702 return again;
1703 }
1704
1705 static EHCIQueue *ehci_state_fetchqh(EHCIState *ehci, int async)
1706 {
1707 EHCIPacket *p;
1708 uint32_t entry, devaddr;
1709 EHCIQueue *q;
1710
1711 entry = ehci_get_fetch_addr(ehci, async);
1712 q = ehci_find_queue_by_qh(ehci, entry, async);
1713 if (NULL == q) {
1714 q = ehci_alloc_queue(ehci, entry, async);
1715 }
1716 p = QTAILQ_FIRST(&q->packets);
1717
1718 q->seen++;
1719 if (q->seen > 1) {
1720 /* we are going in circles -- stop processing */
1721 ehci_set_state(ehci, async, EST_ACTIVE);
1722 q = NULL;
1723 goto out;
1724 }
1725
1726 get_dwords(ehci, NLPTR_GET(q->qhaddr),
1727 (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1728 ehci_trace_qh(q, NLPTR_GET(q->qhaddr), &q->qh);
1729
1730 devaddr = get_field(q->qh.epchar, QH_EPCHAR_DEVADDR);
1731 if (q->dev != NULL && q->dev->addr != devaddr) {
1732 if (!QTAILQ_EMPTY(&q->packets)) {
1733 /* should not happen (guest bug) */
1734 while ((p = QTAILQ_FIRST(&q->packets)) != NULL) {
1735 ehci_free_packet(p);
1736 }
1737 }
1738 q->dev = NULL;
1739 }
1740 if (q->dev == NULL) {
1741 q->dev = ehci_find_device(q->ehci, devaddr);
1742 }
1743
1744 if (p && p->async == EHCI_ASYNC_INFLIGHT) {
1745 /* I/O still in progress -- skip queue */
1746 ehci_set_state(ehci, async, EST_HORIZONTALQH);
1747 goto out;
1748 }
1749 if (p && p->async == EHCI_ASYNC_FINISHED) {
1750 /* I/O finished -- continue processing queue */
1751 trace_usb_ehci_packet_action(p->queue, p, "complete");
1752 ehci_set_state(ehci, async, EST_EXECUTING);
1753 goto out;
1754 }
1755
1756 if (async && (q->qh.epchar & QH_EPCHAR_H)) {
1757
1758 /* EHCI spec version 1.0 Section 4.8.3 & 4.10.1 */
1759 if (ehci->usbsts & USBSTS_REC) {
1760 ehci_clear_usbsts(ehci, USBSTS_REC);
1761 } else {
1762 DPRINTF("FETCHQH: QH 0x%08x. H-bit set, reclamation status reset"
1763 " - done processing\n", q->qhaddr);
1764 ehci_set_state(ehci, async, EST_ACTIVE);
1765 q = NULL;
1766 goto out;
1767 }
1768 }
1769
1770 #if EHCI_DEBUG
1771 if (q->qhaddr != q->qh.next) {
1772 DPRINTF("FETCHQH: QH 0x%08x (h %x halt %x active %x) next 0x%08x\n",
1773 q->qhaddr,
1774 q->qh.epchar & QH_EPCHAR_H,
1775 q->qh.token & QTD_TOKEN_HALT,
1776 q->qh.token & QTD_TOKEN_ACTIVE,
1777 q->qh.next);
1778 }
1779 #endif
1780
1781 if (q->qh.token & QTD_TOKEN_HALT) {
1782 ehci_set_state(ehci, async, EST_HORIZONTALQH);
1783
1784 } else if ((q->qh.token & QTD_TOKEN_ACTIVE) &&
1785 (NLPTR_TBIT(q->qh.current_qtd) == 0)) {
1786 q->qtdaddr = q->qh.current_qtd;
1787 ehci_set_state(ehci, async, EST_FETCHQTD);
1788
1789 } else {
1790 /* EHCI spec version 1.0 Section 4.10.2 */
1791 ehci_set_state(ehci, async, EST_ADVANCEQUEUE);
1792 }
1793
1794 out:
1795 return q;
1796 }
1797
1798 static int ehci_state_fetchitd(EHCIState *ehci, int async)
1799 {
1800 uint32_t entry;
1801 EHCIitd itd;
1802
1803 assert(!async);
1804 entry = ehci_get_fetch_addr(ehci, async);
1805
1806 get_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &itd,
1807 sizeof(EHCIitd) >> 2);
1808 ehci_trace_itd(ehci, entry, &itd);
1809
1810 if (ehci_process_itd(ehci, &itd) != 0) {
1811 return -1;
1812 }
1813
1814 put_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &itd,
1815 sizeof(EHCIitd) >> 2);
1816 ehci_set_fetch_addr(ehci, async, itd.next);
1817 ehci_set_state(ehci, async, EST_FETCHENTRY);
1818
1819 return 1;
1820 }
1821
1822 static int ehci_state_fetchsitd(EHCIState *ehci, int async)
1823 {
1824 uint32_t entry;
1825 EHCIsitd sitd;
1826
1827 assert(!async);
1828 entry = ehci_get_fetch_addr(ehci, async);
1829
1830 get_dwords(ehci, NLPTR_GET(entry), (uint32_t *)&sitd,
1831 sizeof(EHCIsitd) >> 2);
1832 ehci_trace_sitd(ehci, entry, &sitd);
1833
1834 if (!(sitd.results & SITD_RESULTS_ACTIVE)) {
1835 /* siTD is not active, nothing to do */;
1836 } else {
1837 /* TODO: split transfers are not implemented */
1838 fprintf(stderr, "WARNING: Skipping active siTD\n");
1839 }
1840
1841 ehci_set_fetch_addr(ehci, async, sitd.next);
1842 ehci_set_state(ehci, async, EST_FETCHENTRY);
1843 return 1;
1844 }
1845
1846 /* Section 4.10.2 - paragraph 3 */
1847 static int ehci_state_advqueue(EHCIQueue *q)
1848 {
1849 #if 0
1850 /* TO-DO: 4.10.2 - paragraph 2
1851 * if I-bit is set to 1 and QH is not active
1852 * go to horizontal QH
1853 */
1854 if (I-bit set) {
1855 ehci_set_state(ehci, async, EST_HORIZONTALQH);
1856 goto out;
1857 }
1858 #endif
1859
1860 /*
1861 * want data and alt-next qTD is valid
1862 */
1863 if (((q->qh.token & QTD_TOKEN_TBYTES_MASK) != 0) &&
1864 (NLPTR_TBIT(q->qh.altnext_qtd) == 0)) {
1865 q->qtdaddr = q->qh.altnext_qtd;
1866 ehci_set_state(q->ehci, q->async, EST_FETCHQTD);
1867
1868 /*
1869 * next qTD is valid
1870 */
1871 } else if (NLPTR_TBIT(q->qh.next_qtd) == 0) {
1872 q->qtdaddr = q->qh.next_qtd;
1873 ehci_set_state(q->ehci, q->async, EST_FETCHQTD);
1874
1875 /*
1876 * no valid qTD, try next QH
1877 */
1878 } else {
1879 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
1880 }
1881
1882 return 1;
1883 }
1884
1885 /* Section 4.10.2 - paragraph 4 */
1886 static int ehci_state_fetchqtd(EHCIQueue *q)
1887 {
1888 EHCIqtd qtd;
1889 EHCIPacket *p;
1890 int again = 0;
1891
1892 get_dwords(q->ehci, NLPTR_GET(q->qtdaddr), (uint32_t *) &qtd,
1893 sizeof(EHCIqtd) >> 2);
1894 ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), &qtd);
1895
1896 p = QTAILQ_FIRST(&q->packets);
1897 while (p != NULL && p->qtdaddr != q->qtdaddr) {
1898 /* should not happen (guest bug) */
1899 ehci_free_packet(p);
1900 p = QTAILQ_FIRST(&q->packets);
1901 }
1902 if (p != NULL) {
1903 ehci_qh_do_overlay(q);
1904 ehci_flush_qh(q);
1905 if (p->async == EHCI_ASYNC_INFLIGHT) {
1906 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
1907 } else {
1908 ehci_set_state(q->ehci, q->async, EST_EXECUTING);
1909 }
1910 again = 1;
1911 } else if (qtd.token & QTD_TOKEN_ACTIVE) {
1912 p = ehci_alloc_packet(q);
1913 p->qtdaddr = q->qtdaddr;
1914 p->qtd = qtd;
1915 ehci_set_state(q->ehci, q->async, EST_EXECUTE);
1916 again = 1;
1917 } else {
1918 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
1919 again = 1;
1920 }
1921
1922 return again;
1923 }
1924
1925 static int ehci_state_horizqh(EHCIQueue *q)
1926 {
1927 int again = 0;
1928
1929 if (ehci_get_fetch_addr(q->ehci, q->async) != q->qh.next) {
1930 ehci_set_fetch_addr(q->ehci, q->async, q->qh.next);
1931 ehci_set_state(q->ehci, q->async, EST_FETCHENTRY);
1932 again = 1;
1933 } else {
1934 ehci_set_state(q->ehci, q->async, EST_ACTIVE);
1935 }
1936
1937 return again;
1938 }
1939
1940 static void ehci_fill_queue(EHCIPacket *p)
1941 {
1942 EHCIQueue *q = p->queue;
1943 EHCIqtd qtd = p->qtd;
1944 uint32_t qtdaddr;
1945
1946 for (;;) {
1947 if (NLPTR_TBIT(qtd.altnext) == 0) {
1948 break;
1949 }
1950 if (NLPTR_TBIT(qtd.next) != 0) {
1951 break;
1952 }
1953 qtdaddr = qtd.next;
1954 get_dwords(q->ehci, NLPTR_GET(qtdaddr),
1955 (uint32_t *) &qtd, sizeof(EHCIqtd) >> 2);
1956 ehci_trace_qtd(q, NLPTR_GET(qtdaddr), &qtd);
1957 if (!(qtd.token & QTD_TOKEN_ACTIVE)) {
1958 break;
1959 }
1960 p = ehci_alloc_packet(q);
1961 p->qtdaddr = qtdaddr;
1962 p->qtd = qtd;
1963 p->usb_status = ehci_execute(p, "queue");
1964 assert(p->usb_status = USB_RET_ASYNC);
1965 p->async = EHCI_ASYNC_INFLIGHT;
1966 }
1967 }
1968
1969 static int ehci_state_execute(EHCIQueue *q)
1970 {
1971 EHCIPacket *p = QTAILQ_FIRST(&q->packets);
1972 int again = 0;
1973
1974 assert(p != NULL);
1975 assert(p->qtdaddr == q->qtdaddr);
1976
1977 if (ehci_qh_do_overlay(q) != 0) {
1978 return -1;
1979 }
1980
1981 // TODO verify enough time remains in the uframe as in 4.4.1.1
1982 // TODO write back ptr to async list when done or out of time
1983 // TODO Windows does not seem to ever set the MULT field
1984
1985 if (!q->async) {
1986 int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1987 if (!transactCtr) {
1988 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
1989 again = 1;
1990 goto out;
1991 }
1992 }
1993
1994 if (q->async) {
1995 ehci_set_usbsts(q->ehci, USBSTS_REC);
1996 }
1997
1998 p->usb_status = ehci_execute(p, "process");
1999 if (p->usb_status == USB_RET_PROCERR) {
2000 again = -1;
2001 goto out;
2002 }
2003 if (p->usb_status == USB_RET_ASYNC) {
2004 ehci_flush_qh(q);
2005 trace_usb_ehci_packet_action(p->queue, p, "async");
2006 p->async = EHCI_ASYNC_INFLIGHT;
2007 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
2008 again = 1;
2009 ehci_fill_queue(p);
2010 goto out;
2011 }
2012
2013 ehci_set_state(q->ehci, q->async, EST_EXECUTING);
2014 again = 1;
2015
2016 out:
2017 return again;
2018 }
2019
2020 static int ehci_state_executing(EHCIQueue *q)
2021 {
2022 EHCIPacket *p = QTAILQ_FIRST(&q->packets);
2023 int again = 0;
2024
2025 assert(p != NULL);
2026 assert(p->qtdaddr == q->qtdaddr);
2027
2028 ehci_execute_complete(q);
2029 if (p->usb_status == USB_RET_ASYNC) {
2030 goto out;
2031 }
2032 if (p->usb_status == USB_RET_PROCERR) {
2033 again = -1;
2034 goto out;
2035 }
2036
2037 // 4.10.3
2038 if (!q->async) {
2039 int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
2040 transactCtr--;
2041 set_field(&q->qh.epcap, transactCtr, QH_EPCAP_MULT);
2042 // 4.10.3, bottom of page 82, should exit this state when transaction
2043 // counter decrements to 0
2044 }
2045
2046 /* 4.10.5 */
2047 if (p->usb_status == USB_RET_NAK) {
2048 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
2049 } else {
2050 ehci_set_state(q->ehci, q->async, EST_WRITEBACK);
2051 }
2052
2053 again = 1;
2054
2055 out:
2056 ehci_flush_qh(q);
2057 return again;
2058 }
2059
2060
2061 static int ehci_state_writeback(EHCIQueue *q)
2062 {
2063 EHCIPacket *p = QTAILQ_FIRST(&q->packets);
2064 int again = 0;
2065
2066 /* Write back the QTD from the QH area */
2067 assert(p != NULL);
2068 assert(p->qtdaddr == q->qtdaddr);
2069
2070 ehci_trace_qtd(q, NLPTR_GET(p->qtdaddr), (EHCIqtd *) &q->qh.next_qtd);
2071 put_dwords(q->ehci, NLPTR_GET(p->qtdaddr), (uint32_t *) &q->qh.next_qtd,
2072 sizeof(EHCIqtd) >> 2);
2073 ehci_free_packet(p);
2074
2075 /*
2076 * EHCI specs say go horizontal here.
2077 *
2078 * We can also advance the queue here for performance reasons. We
2079 * need to take care to only take that shortcut in case we've
2080 * processed the qtd just written back without errors, i.e. halt
2081 * bit is clear.
2082 */
2083 if (q->qh.token & QTD_TOKEN_HALT) {
2084 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
2085 again = 1;
2086 } else {
2087 ehci_set_state(q->ehci, q->async, EST_ADVANCEQUEUE);
2088 again = 1;
2089 }
2090 return again;
2091 }
2092
2093 /*
2094 * This is the state machine that is common to both async and periodic
2095 */
2096
2097 static void ehci_advance_state(EHCIState *ehci, int async)
2098 {
2099 EHCIQueue *q = NULL;
2100 int again;
2101
2102 do {
2103 switch(ehci_get_state(ehci, async)) {
2104 case EST_WAITLISTHEAD:
2105 again = ehci_state_waitlisthead(ehci, async);
2106 break;
2107
2108 case EST_FETCHENTRY:
2109 again = ehci_state_fetchentry(ehci, async);
2110 break;
2111
2112 case EST_FETCHQH:
2113 q = ehci_state_fetchqh(ehci, async);
2114 if (q != NULL) {
2115 assert(q->async == async);
2116 again = 1;
2117 } else {
2118 again = 0;
2119 }
2120 break;
2121
2122 case EST_FETCHITD:
2123 again = ehci_state_fetchitd(ehci, async);
2124 break;
2125
2126 case EST_FETCHSITD:
2127 again = ehci_state_fetchsitd(ehci, async);
2128 break;
2129
2130 case EST_ADVANCEQUEUE:
2131 again = ehci_state_advqueue(q);
2132 break;
2133
2134 case EST_FETCHQTD:
2135 again = ehci_state_fetchqtd(q);
2136 break;
2137
2138 case EST_HORIZONTALQH:
2139 again = ehci_state_horizqh(q);
2140 break;
2141
2142 case EST_EXECUTE:
2143 again = ehci_state_execute(q);
2144 break;
2145
2146 case EST_EXECUTING:
2147 assert(q != NULL);
2148 again = ehci_state_executing(q);
2149 break;
2150
2151 case EST_WRITEBACK:
2152 assert(q != NULL);
2153 again = ehci_state_writeback(q);
2154 break;
2155
2156 default:
2157 fprintf(stderr, "Bad state!\n");
2158 again = -1;
2159 assert(0);
2160 break;
2161 }
2162
2163 if (again < 0) {
2164 fprintf(stderr, "processing error - resetting ehci HC\n");
2165 ehci_reset(ehci);
2166 again = 0;
2167 }
2168 }
2169 while (again);
2170
2171 ehci_commit_interrupt(ehci);
2172 }
2173
2174 static void ehci_advance_async_state(EHCIState *ehci)
2175 {
2176 const int async = 1;
2177
2178 switch(ehci_get_state(ehci, async)) {
2179 case EST_INACTIVE:
2180 if (!ehci_async_enabled(ehci)) {
2181 break;
2182 }
2183 ehci_set_state(ehci, async, EST_ACTIVE);
2184 // No break, fall through to ACTIVE
2185
2186 case EST_ACTIVE:
2187 if (!ehci_async_enabled(ehci)) {
2188 ehci_queues_rip_all(ehci, async);
2189 ehci_set_state(ehci, async, EST_INACTIVE);
2190 break;
2191 }
2192
2193 /* make sure guest has acknowledged the doorbell interrupt */
2194 /* TO-DO: is this really needed? */
2195 if (ehci->usbsts & USBSTS_IAA) {
2196 DPRINTF("IAA status bit still set.\n");
2197 break;
2198 }
2199
2200 /* check that address register has been set */
2201 if (ehci->asynclistaddr == 0) {
2202 break;
2203 }
2204
2205 ehci_set_state(ehci, async, EST_WAITLISTHEAD);
2206 ehci_advance_state(ehci, async);
2207
2208 /* If the doorbell is set, the guest wants to make a change to the
2209 * schedule. The host controller needs to release cached data.
2210 * (section 4.8.2)
2211 */
2212 if (ehci->usbcmd & USBCMD_IAAD) {
2213 /* Remove all unseen qhs from the async qhs queue */
2214 ehci_queues_rip_unused(ehci, async, 1);
2215 DPRINTF("ASYNC: doorbell request acknowledged\n");
2216 ehci->usbcmd &= ~USBCMD_IAAD;
2217 ehci_set_interrupt(ehci, USBSTS_IAA);
2218 }
2219 break;
2220
2221 default:
2222 /* this should only be due to a developer mistake */
2223 fprintf(stderr, "ehci: Bad asynchronous state %d. "
2224 "Resetting to active\n", ehci->astate);
2225 assert(0);
2226 }
2227 }
2228
2229 static void ehci_advance_periodic_state(EHCIState *ehci)
2230 {
2231 uint32_t entry;
2232 uint32_t list;
2233 const int async = 0;
2234
2235 // 4.6
2236
2237 switch(ehci_get_state(ehci, async)) {
2238 case EST_INACTIVE:
2239 if (!(ehci->frindex & 7) && ehci_periodic_enabled(ehci)) {
2240 ehci_set_state(ehci, async, EST_ACTIVE);
2241 // No break, fall through to ACTIVE
2242 } else
2243 break;
2244
2245 case EST_ACTIVE:
2246 if (!(ehci->frindex & 7) && !ehci_periodic_enabled(ehci)) {
2247 ehci_queues_rip_all(ehci, async);
2248 ehci_set_state(ehci, async, EST_INACTIVE);
2249 break;
2250 }
2251
2252 list = ehci->periodiclistbase & 0xfffff000;
2253 /* check that register has been set */
2254 if (list == 0) {
2255 break;
2256 }
2257 list |= ((ehci->frindex & 0x1ff8) >> 1);
2258
2259 pci_dma_read(&ehci->dev, list, &entry, sizeof entry);
2260 entry = le32_to_cpu(entry);
2261
2262 DPRINTF("PERIODIC state adv fr=%d. [%08X] -> %08X\n",
2263 ehci->frindex / 8, list, entry);
2264 ehci_set_fetch_addr(ehci, async,entry);
2265 ehci_set_state(ehci, async, EST_FETCHENTRY);
2266 ehci_advance_state(ehci, async);
2267 ehci_queues_rip_unused(ehci, async, 0);
2268 break;
2269
2270 default:
2271 /* this should only be due to a developer mistake */
2272 fprintf(stderr, "ehci: Bad periodic state %d. "
2273 "Resetting to active\n", ehci->pstate);
2274 assert(0);
2275 }
2276 }
2277
2278 static void ehci_frame_timer(void *opaque)
2279 {
2280 EHCIState *ehci = opaque;
2281 int64_t expire_time, t_now;
2282 uint64_t ns_elapsed;
2283 int frames;
2284 int i;
2285 int skipped_frames = 0;
2286
2287 t_now = qemu_get_clock_ns(vm_clock);
2288 expire_time = t_now + (get_ticks_per_sec() / ehci->freq);
2289
2290 ns_elapsed = t_now - ehci->last_run_ns;
2291 frames = ns_elapsed / FRAME_TIMER_NS;
2292
2293 for (i = 0; i < frames; i++) {
2294 if ( !(ehci->usbsts & USBSTS_HALT)) {
2295 ehci->frindex += 8;
2296
2297 if (ehci->frindex == 0x00002000) {
2298 ehci_set_interrupt(ehci, USBSTS_FLR);
2299 }
2300
2301 if (ehci->frindex == 0x00004000) {
2302 ehci_set_interrupt(ehci, USBSTS_FLR);
2303 ehci->frindex = 0;
2304 }
2305 }
2306
2307 if (frames - i > ehci->maxframes) {
2308 skipped_frames++;
2309 } else {
2310 ehci_advance_periodic_state(ehci);
2311 }
2312
2313 ehci->last_run_ns += FRAME_TIMER_NS;
2314 }
2315
2316 #if 0
2317 if (skipped_frames) {
2318 DPRINTF("WARNING - EHCI skipped %d frames\n", skipped_frames);
2319 }
2320 #endif
2321
2322 /* Async is not inside loop since it executes everything it can once
2323 * called
2324 */
2325 qemu_bh_schedule(ehci->async_bh);
2326
2327 qemu_mod_timer(ehci->frame_timer, expire_time);
2328 }
2329
2330 static void ehci_async_bh(void *opaque)
2331 {
2332 EHCIState *ehci = opaque;
2333 ehci_advance_async_state(ehci);
2334 }
2335
2336 static const MemoryRegionOps ehci_mem_ops = {
2337 .old_mmio = {
2338 .read = { ehci_mem_readb, ehci_mem_readw, ehci_mem_readl },
2339 .write = { ehci_mem_writeb, ehci_mem_writew, ehci_mem_writel },
2340 },
2341 .endianness = DEVICE_LITTLE_ENDIAN,
2342 };
2343
2344 static int usb_ehci_initfn(PCIDevice *dev);
2345
2346 static USBPortOps ehci_port_ops = {
2347 .attach = ehci_attach,
2348 .detach = ehci_detach,
2349 .child_detach = ehci_child_detach,
2350 .wakeup = ehci_wakeup,
2351 .complete = ehci_async_complete_packet,
2352 };
2353
2354 static USBBusOps ehci_bus_ops = {
2355 .register_companion = ehci_register_companion,
2356 };
2357
2358 static const VMStateDescription vmstate_ehci = {
2359 .name = "ehci",
2360 .unmigratable = 1,
2361 };
2362
2363 static Property ehci_properties[] = {
2364 DEFINE_PROP_UINT32("freq", EHCIState, freq, FRAME_TIMER_FREQ),
2365 DEFINE_PROP_UINT32("maxframes", EHCIState, maxframes, 128),
2366 DEFINE_PROP_END_OF_LIST(),
2367 };
2368
2369 static void ehci_class_init(ObjectClass *klass, void *data)
2370 {
2371 DeviceClass *dc = DEVICE_CLASS(klass);
2372 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
2373
2374 k->init = usb_ehci_initfn;
2375 k->vendor_id = PCI_VENDOR_ID_INTEL;
2376 k->device_id = PCI_DEVICE_ID_INTEL_82801D; /* ich4 */
2377 k->revision = 0x10;
2378 k->class_id = PCI_CLASS_SERIAL_USB;
2379 dc->vmsd = &vmstate_ehci;
2380 dc->props = ehci_properties;
2381 }
2382
2383 static TypeInfo ehci_info = {
2384 .name = "usb-ehci",
2385 .parent = TYPE_PCI_DEVICE,
2386 .instance_size = sizeof(EHCIState),
2387 .class_init = ehci_class_init,
2388 };
2389
2390 static void ich9_ehci_class_init(ObjectClass *klass, void *data)
2391 {
2392 DeviceClass *dc = DEVICE_CLASS(klass);
2393 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
2394
2395 k->init = usb_ehci_initfn;
2396 k->vendor_id = PCI_VENDOR_ID_INTEL;
2397 k->device_id = PCI_DEVICE_ID_INTEL_82801I_EHCI1;
2398 k->revision = 0x03;
2399 k->class_id = PCI_CLASS_SERIAL_USB;
2400 dc->vmsd = &vmstate_ehci;
2401 dc->props = ehci_properties;
2402 }
2403
2404 static TypeInfo ich9_ehci_info = {
2405 .name = "ich9-usb-ehci1",
2406 .parent = TYPE_PCI_DEVICE,
2407 .instance_size = sizeof(EHCIState),
2408 .class_init = ich9_ehci_class_init,
2409 };
2410
2411 static int usb_ehci_initfn(PCIDevice *dev)
2412 {
2413 EHCIState *s = DO_UPCAST(EHCIState, dev, dev);
2414 uint8_t *pci_conf = s->dev.config;
2415 int i;
2416
2417 pci_set_byte(&pci_conf[PCI_CLASS_PROG], 0x20);
2418
2419 /* capabilities pointer */
2420 pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x00);
2421 //pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x50);
2422
2423 pci_set_byte(&pci_conf[PCI_INTERRUPT_PIN], 4); /* interrupt pin D */
2424 pci_set_byte(&pci_conf[PCI_MIN_GNT], 0);
2425 pci_set_byte(&pci_conf[PCI_MAX_LAT], 0);
2426
2427 // pci_conf[0x50] = 0x01; // power management caps
2428
2429 pci_set_byte(&pci_conf[USB_SBRN], USB_RELEASE_2); // release number (2.1.4)
2430 pci_set_byte(&pci_conf[0x61], 0x20); // frame length adjustment (2.1.5)
2431 pci_set_word(&pci_conf[0x62], 0x00); // port wake up capability (2.1.6)
2432
2433 pci_conf[0x64] = 0x00;
2434 pci_conf[0x65] = 0x00;
2435 pci_conf[0x66] = 0x00;
2436 pci_conf[0x67] = 0x00;
2437 pci_conf[0x68] = 0x01;
2438 pci_conf[0x69] = 0x00;
2439 pci_conf[0x6a] = 0x00;
2440 pci_conf[0x6b] = 0x00; // USBLEGSUP
2441 pci_conf[0x6c] = 0x00;
2442 pci_conf[0x6d] = 0x00;
2443 pci_conf[0x6e] = 0x00;
2444 pci_conf[0x6f] = 0xc0; // USBLEFCTLSTS
2445
2446 // 2.2 host controller interface version
2447 s->mmio[0x00] = (uint8_t) OPREGBASE;
2448 s->mmio[0x01] = 0x00;
2449 s->mmio[0x02] = 0x00;
2450 s->mmio[0x03] = 0x01; // HC version
2451 s->mmio[0x04] = NB_PORTS; // Number of downstream ports
2452 s->mmio[0x05] = 0x00; // No companion ports at present
2453 s->mmio[0x06] = 0x00;
2454 s->mmio[0x07] = 0x00;
2455 s->mmio[0x08] = 0x80; // We can cache whole frame, not 64-bit capable
2456 s->mmio[0x09] = 0x68; // EECP
2457 s->mmio[0x0a] = 0x00;
2458 s->mmio[0x0b] = 0x00;
2459
2460 s->irq = s->dev.irq[3];
2461
2462 usb_bus_new(&s->bus, &ehci_bus_ops, &s->dev.qdev);
2463 for(i = 0; i < NB_PORTS; i++) {
2464 usb_register_port(&s->bus, &s->ports[i], s, i, &ehci_port_ops,
2465 USB_SPEED_MASK_HIGH);
2466 s->ports[i].dev = 0;
2467 }
2468
2469 s->frame_timer = qemu_new_timer_ns(vm_clock, ehci_frame_timer, s);
2470 s->async_bh = qemu_bh_new(ehci_async_bh, s);
2471 QTAILQ_INIT(&s->aqueues);
2472 QTAILQ_INIT(&s->pqueues);
2473
2474 qemu_register_reset(ehci_reset, s);
2475
2476 memory_region_init_io(&s->mem, &ehci_mem_ops, s, "ehci", MMIO_SIZE);
2477 pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->mem);
2478
2479 return 0;
2480 }
2481
2482 static void ehci_register_types(void)
2483 {
2484 type_register_static(&ehci_info);
2485 type_register_static(&ich9_ehci_info);
2486 }
2487
2488 type_init(ehci_register_types)
2489
2490 /*
2491 * vim: expandtab ts=4
2492 */