]> git.proxmox.com Git - qemu.git/blob - hw/usb/hcd-ehci.c
ehci: add ehci_*_enabled() helpers
[qemu.git] / hw / usb / hcd-ehci.c
1 /*
2 * QEMU USB EHCI Emulation
3 *
4 * Copyright(c) 2008 Emutex Ltd. (address@hidden)
5 *
6 * EHCI project was started by Mark Burkley, with contributions by
7 * Niels de Vos. David S. Ahern continued working on it. Kevin Wolf,
8 * Jan Kiszka and Vincent Palatin contributed bugfixes.
9 *
10 *
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2 of the License, or(at your option) any later version.
15 *
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, see <http://www.gnu.org/licenses/>.
23 */
24
25 #include "hw/hw.h"
26 #include "qemu-timer.h"
27 #include "hw/usb.h"
28 #include "hw/pci.h"
29 #include "monitor.h"
30 #include "trace.h"
31 #include "dma.h"
32
33 #define EHCI_DEBUG 0
34
35 #if EHCI_DEBUG
36 #define DPRINTF printf
37 #else
38 #define DPRINTF(...)
39 #endif
40
41 /* internal processing - reset HC to try and recover */
42 #define USB_RET_PROCERR (-99)
43
44 #define MMIO_SIZE 0x1000
45
46 /* Capability Registers Base Address - section 2.2 */
47 #define CAPREGBASE 0x0000
48 #define CAPLENGTH CAPREGBASE + 0x0000 // 1-byte, 0x0001 reserved
49 #define HCIVERSION CAPREGBASE + 0x0002 // 2-bytes, i/f version #
50 #define HCSPARAMS CAPREGBASE + 0x0004 // 4-bytes, structural params
51 #define HCCPARAMS CAPREGBASE + 0x0008 // 4-bytes, capability params
52 #define EECP HCCPARAMS + 1
53 #define HCSPPORTROUTE1 CAPREGBASE + 0x000c
54 #define HCSPPORTROUTE2 CAPREGBASE + 0x0010
55
56 #define OPREGBASE 0x0020 // Operational Registers Base Address
57
58 #define USBCMD OPREGBASE + 0x0000
59 #define USBCMD_RUNSTOP (1 << 0) // run / Stop
60 #define USBCMD_HCRESET (1 << 1) // HC Reset
61 #define USBCMD_FLS (3 << 2) // Frame List Size
62 #define USBCMD_FLS_SH 2 // Frame List Size Shift
63 #define USBCMD_PSE (1 << 4) // Periodic Schedule Enable
64 #define USBCMD_ASE (1 << 5) // Asynch Schedule Enable
65 #define USBCMD_IAAD (1 << 6) // Int Asynch Advance Doorbell
66 #define USBCMD_LHCR (1 << 7) // Light Host Controller Reset
67 #define USBCMD_ASPMC (3 << 8) // Async Sched Park Mode Count
68 #define USBCMD_ASPME (1 << 11) // Async Sched Park Mode Enable
69 #define USBCMD_ITC (0x7f << 16) // Int Threshold Control
70 #define USBCMD_ITC_SH 16 // Int Threshold Control Shift
71
72 #define USBSTS OPREGBASE + 0x0004
73 #define USBSTS_RO_MASK 0x0000003f
74 #define USBSTS_INT (1 << 0) // USB Interrupt
75 #define USBSTS_ERRINT (1 << 1) // Error Interrupt
76 #define USBSTS_PCD (1 << 2) // Port Change Detect
77 #define USBSTS_FLR (1 << 3) // Frame List Rollover
78 #define USBSTS_HSE (1 << 4) // Host System Error
79 #define USBSTS_IAA (1 << 5) // Interrupt on Async Advance
80 #define USBSTS_HALT (1 << 12) // HC Halted
81 #define USBSTS_REC (1 << 13) // Reclamation
82 #define USBSTS_PSS (1 << 14) // Periodic Schedule Status
83 #define USBSTS_ASS (1 << 15) // Asynchronous Schedule Status
84
85 /*
86 * Interrupt enable bits correspond to the interrupt active bits in USBSTS
87 * so no need to redefine here.
88 */
89 #define USBINTR OPREGBASE + 0x0008
90 #define USBINTR_MASK 0x0000003f
91
92 #define FRINDEX OPREGBASE + 0x000c
93 #define CTRLDSSEGMENT OPREGBASE + 0x0010
94 #define PERIODICLISTBASE OPREGBASE + 0x0014
95 #define ASYNCLISTADDR OPREGBASE + 0x0018
96 #define ASYNCLISTADDR_MASK 0xffffffe0
97
98 #define CONFIGFLAG OPREGBASE + 0x0040
99
100 #define PORTSC (OPREGBASE + 0x0044)
101 #define PORTSC_BEGIN PORTSC
102 #define PORTSC_END (PORTSC + 4 * NB_PORTS)
103 /*
104 * Bits that are reserved or are read-only are masked out of values
105 * written to us by software
106 */
107 #define PORTSC_RO_MASK 0x007001c0
108 #define PORTSC_RWC_MASK 0x0000002a
109 #define PORTSC_WKOC_E (1 << 22) // Wake on Over Current Enable
110 #define PORTSC_WKDS_E (1 << 21) // Wake on Disconnect Enable
111 #define PORTSC_WKCN_E (1 << 20) // Wake on Connect Enable
112 #define PORTSC_PTC (15 << 16) // Port Test Control
113 #define PORTSC_PTC_SH 16 // Port Test Control shift
114 #define PORTSC_PIC (3 << 14) // Port Indicator Control
115 #define PORTSC_PIC_SH 14 // Port Indicator Control Shift
116 #define PORTSC_POWNER (1 << 13) // Port Owner
117 #define PORTSC_PPOWER (1 << 12) // Port Power
118 #define PORTSC_LINESTAT (3 << 10) // Port Line Status
119 #define PORTSC_LINESTAT_SH 10 // Port Line Status Shift
120 #define PORTSC_PRESET (1 << 8) // Port Reset
121 #define PORTSC_SUSPEND (1 << 7) // Port Suspend
122 #define PORTSC_FPRES (1 << 6) // Force Port Resume
123 #define PORTSC_OCC (1 << 5) // Over Current Change
124 #define PORTSC_OCA (1 << 4) // Over Current Active
125 #define PORTSC_PEDC (1 << 3) // Port Enable/Disable Change
126 #define PORTSC_PED (1 << 2) // Port Enable/Disable
127 #define PORTSC_CSC (1 << 1) // Connect Status Change
128 #define PORTSC_CONNECT (1 << 0) // Current Connect Status
129
130 #define FRAME_TIMER_FREQ 1000
131 #define FRAME_TIMER_NS (1000000000 / FRAME_TIMER_FREQ)
132
133 #define NB_MAXINTRATE 8 // Max rate at which controller issues ints
134 #define NB_PORTS 6 // Number of downstream ports
135 #define BUFF_SIZE 5*4096 // Max bytes to transfer per transaction
136 #define MAX_QH 100 // Max allowable queue heads in a chain
137
138 /* Internal periodic / asynchronous schedule state machine states
139 */
140 typedef enum {
141 EST_INACTIVE = 1000,
142 EST_ACTIVE,
143 EST_EXECUTING,
144 EST_SLEEPING,
145 /* The following states are internal to the state machine function
146 */
147 EST_WAITLISTHEAD,
148 EST_FETCHENTRY,
149 EST_FETCHQH,
150 EST_FETCHITD,
151 EST_FETCHSITD,
152 EST_ADVANCEQUEUE,
153 EST_FETCHQTD,
154 EST_EXECUTE,
155 EST_WRITEBACK,
156 EST_HORIZONTALQH
157 } EHCI_STATES;
158
159 /* macros for accessing fields within next link pointer entry */
160 #define NLPTR_GET(x) ((x) & 0xffffffe0)
161 #define NLPTR_TYPE_GET(x) (((x) >> 1) & 3)
162 #define NLPTR_TBIT(x) ((x) & 1) // 1=invalid, 0=valid
163
164 /* link pointer types */
165 #define NLPTR_TYPE_ITD 0 // isoc xfer descriptor
166 #define NLPTR_TYPE_QH 1 // queue head
167 #define NLPTR_TYPE_STITD 2 // split xaction, isoc xfer descriptor
168 #define NLPTR_TYPE_FSTN 3 // frame span traversal node
169
170
171 /* EHCI spec version 1.0 Section 3.3
172 */
173 typedef struct EHCIitd {
174 uint32_t next;
175
176 uint32_t transact[8];
177 #define ITD_XACT_ACTIVE (1 << 31)
178 #define ITD_XACT_DBERROR (1 << 30)
179 #define ITD_XACT_BABBLE (1 << 29)
180 #define ITD_XACT_XACTERR (1 << 28)
181 #define ITD_XACT_LENGTH_MASK 0x0fff0000
182 #define ITD_XACT_LENGTH_SH 16
183 #define ITD_XACT_IOC (1 << 15)
184 #define ITD_XACT_PGSEL_MASK 0x00007000
185 #define ITD_XACT_PGSEL_SH 12
186 #define ITD_XACT_OFFSET_MASK 0x00000fff
187
188 uint32_t bufptr[7];
189 #define ITD_BUFPTR_MASK 0xfffff000
190 #define ITD_BUFPTR_SH 12
191 #define ITD_BUFPTR_EP_MASK 0x00000f00
192 #define ITD_BUFPTR_EP_SH 8
193 #define ITD_BUFPTR_DEVADDR_MASK 0x0000007f
194 #define ITD_BUFPTR_DEVADDR_SH 0
195 #define ITD_BUFPTR_DIRECTION (1 << 11)
196 #define ITD_BUFPTR_MAXPKT_MASK 0x000007ff
197 #define ITD_BUFPTR_MAXPKT_SH 0
198 #define ITD_BUFPTR_MULT_MASK 0x00000003
199 #define ITD_BUFPTR_MULT_SH 0
200 } EHCIitd;
201
202 /* EHCI spec version 1.0 Section 3.4
203 */
204 typedef struct EHCIsitd {
205 uint32_t next; // Standard next link pointer
206 uint32_t epchar;
207 #define SITD_EPCHAR_IO (1 << 31)
208 #define SITD_EPCHAR_PORTNUM_MASK 0x7f000000
209 #define SITD_EPCHAR_PORTNUM_SH 24
210 #define SITD_EPCHAR_HUBADD_MASK 0x007f0000
211 #define SITD_EPCHAR_HUBADDR_SH 16
212 #define SITD_EPCHAR_EPNUM_MASK 0x00000f00
213 #define SITD_EPCHAR_EPNUM_SH 8
214 #define SITD_EPCHAR_DEVADDR_MASK 0x0000007f
215
216 uint32_t uframe;
217 #define SITD_UFRAME_CMASK_MASK 0x0000ff00
218 #define SITD_UFRAME_CMASK_SH 8
219 #define SITD_UFRAME_SMASK_MASK 0x000000ff
220
221 uint32_t results;
222 #define SITD_RESULTS_IOC (1 << 31)
223 #define SITD_RESULTS_PGSEL (1 << 30)
224 #define SITD_RESULTS_TBYTES_MASK 0x03ff0000
225 #define SITD_RESULTS_TYBYTES_SH 16
226 #define SITD_RESULTS_CPROGMASK_MASK 0x0000ff00
227 #define SITD_RESULTS_CPROGMASK_SH 8
228 #define SITD_RESULTS_ACTIVE (1 << 7)
229 #define SITD_RESULTS_ERR (1 << 6)
230 #define SITD_RESULTS_DBERR (1 << 5)
231 #define SITD_RESULTS_BABBLE (1 << 4)
232 #define SITD_RESULTS_XACTERR (1 << 3)
233 #define SITD_RESULTS_MISSEDUF (1 << 2)
234 #define SITD_RESULTS_SPLITXSTATE (1 << 1)
235
236 uint32_t bufptr[2];
237 #define SITD_BUFPTR_MASK 0xfffff000
238 #define SITD_BUFPTR_CURROFF_MASK 0x00000fff
239 #define SITD_BUFPTR_TPOS_MASK 0x00000018
240 #define SITD_BUFPTR_TPOS_SH 3
241 #define SITD_BUFPTR_TCNT_MASK 0x00000007
242
243 uint32_t backptr; // Standard next link pointer
244 } EHCIsitd;
245
246 /* EHCI spec version 1.0 Section 3.5
247 */
248 typedef struct EHCIqtd {
249 uint32_t next; // Standard next link pointer
250 uint32_t altnext; // Standard next link pointer
251 uint32_t token;
252 #define QTD_TOKEN_DTOGGLE (1 << 31)
253 #define QTD_TOKEN_TBYTES_MASK 0x7fff0000
254 #define QTD_TOKEN_TBYTES_SH 16
255 #define QTD_TOKEN_IOC (1 << 15)
256 #define QTD_TOKEN_CPAGE_MASK 0x00007000
257 #define QTD_TOKEN_CPAGE_SH 12
258 #define QTD_TOKEN_CERR_MASK 0x00000c00
259 #define QTD_TOKEN_CERR_SH 10
260 #define QTD_TOKEN_PID_MASK 0x00000300
261 #define QTD_TOKEN_PID_SH 8
262 #define QTD_TOKEN_ACTIVE (1 << 7)
263 #define QTD_TOKEN_HALT (1 << 6)
264 #define QTD_TOKEN_DBERR (1 << 5)
265 #define QTD_TOKEN_BABBLE (1 << 4)
266 #define QTD_TOKEN_XACTERR (1 << 3)
267 #define QTD_TOKEN_MISSEDUF (1 << 2)
268 #define QTD_TOKEN_SPLITXSTATE (1 << 1)
269 #define QTD_TOKEN_PING (1 << 0)
270
271 uint32_t bufptr[5]; // Standard buffer pointer
272 #define QTD_BUFPTR_MASK 0xfffff000
273 #define QTD_BUFPTR_SH 12
274 } EHCIqtd;
275
276 /* EHCI spec version 1.0 Section 3.6
277 */
278 typedef struct EHCIqh {
279 uint32_t next; // Standard next link pointer
280
281 /* endpoint characteristics */
282 uint32_t epchar;
283 #define QH_EPCHAR_RL_MASK 0xf0000000
284 #define QH_EPCHAR_RL_SH 28
285 #define QH_EPCHAR_C (1 << 27)
286 #define QH_EPCHAR_MPLEN_MASK 0x07FF0000
287 #define QH_EPCHAR_MPLEN_SH 16
288 #define QH_EPCHAR_H (1 << 15)
289 #define QH_EPCHAR_DTC (1 << 14)
290 #define QH_EPCHAR_EPS_MASK 0x00003000
291 #define QH_EPCHAR_EPS_SH 12
292 #define EHCI_QH_EPS_FULL 0
293 #define EHCI_QH_EPS_LOW 1
294 #define EHCI_QH_EPS_HIGH 2
295 #define EHCI_QH_EPS_RESERVED 3
296
297 #define QH_EPCHAR_EP_MASK 0x00000f00
298 #define QH_EPCHAR_EP_SH 8
299 #define QH_EPCHAR_I (1 << 7)
300 #define QH_EPCHAR_DEVADDR_MASK 0x0000007f
301 #define QH_EPCHAR_DEVADDR_SH 0
302
303 /* endpoint capabilities */
304 uint32_t epcap;
305 #define QH_EPCAP_MULT_MASK 0xc0000000
306 #define QH_EPCAP_MULT_SH 30
307 #define QH_EPCAP_PORTNUM_MASK 0x3f800000
308 #define QH_EPCAP_PORTNUM_SH 23
309 #define QH_EPCAP_HUBADDR_MASK 0x007f0000
310 #define QH_EPCAP_HUBADDR_SH 16
311 #define QH_EPCAP_CMASK_MASK 0x0000ff00
312 #define QH_EPCAP_CMASK_SH 8
313 #define QH_EPCAP_SMASK_MASK 0x000000ff
314 #define QH_EPCAP_SMASK_SH 0
315
316 uint32_t current_qtd; // Standard next link pointer
317 uint32_t next_qtd; // Standard next link pointer
318 uint32_t altnext_qtd;
319 #define QH_ALTNEXT_NAKCNT_MASK 0x0000001e
320 #define QH_ALTNEXT_NAKCNT_SH 1
321
322 uint32_t token; // Same as QTD token
323 uint32_t bufptr[5]; // Standard buffer pointer
324 #define BUFPTR_CPROGMASK_MASK 0x000000ff
325 #define BUFPTR_FRAMETAG_MASK 0x0000001f
326 #define BUFPTR_SBYTES_MASK 0x00000fe0
327 #define BUFPTR_SBYTES_SH 5
328 } EHCIqh;
329
330 /* EHCI spec version 1.0 Section 3.7
331 */
332 typedef struct EHCIfstn {
333 uint32_t next; // Standard next link pointer
334 uint32_t backptr; // Standard next link pointer
335 } EHCIfstn;
336
337 typedef struct EHCIPacket EHCIPacket;
338 typedef struct EHCIQueue EHCIQueue;
339 typedef struct EHCIState EHCIState;
340
341 enum async_state {
342 EHCI_ASYNC_NONE = 0,
343 EHCI_ASYNC_INFLIGHT,
344 EHCI_ASYNC_FINISHED,
345 };
346
347 struct EHCIPacket {
348 EHCIQueue *queue;
349 QTAILQ_ENTRY(EHCIPacket) next;
350
351 EHCIqtd qtd; /* copy of current QTD (being worked on) */
352 uint32_t qtdaddr; /* address QTD read from */
353
354 USBPacket packet;
355 QEMUSGList sgl;
356 int pid;
357 uint32_t tbytes;
358 enum async_state async;
359 int usb_status;
360 };
361
362 struct EHCIQueue {
363 EHCIState *ehci;
364 QTAILQ_ENTRY(EHCIQueue) next;
365 uint32_t seen;
366 uint64_t ts;
367 int async;
368
369 /* cached data from guest - needs to be flushed
370 * when guest removes an entry (doorbell, handshake sequence)
371 */
372 EHCIqh qh; /* copy of current QH (being worked on) */
373 uint32_t qhaddr; /* address QH read from */
374 uint32_t qtdaddr; /* address QTD read from */
375 USBDevice *dev;
376 QTAILQ_HEAD(, EHCIPacket) packets;
377 };
378
379 typedef QTAILQ_HEAD(EHCIQueueHead, EHCIQueue) EHCIQueueHead;
380
381 struct EHCIState {
382 PCIDevice dev;
383 USBBus bus;
384 qemu_irq irq;
385 MemoryRegion mem;
386 int companion_count;
387
388 /* properties */
389 uint32_t freq;
390 uint32_t maxframes;
391
392 /*
393 * EHCI spec version 1.0 Section 2.3
394 * Host Controller Operational Registers
395 */
396 union {
397 uint8_t mmio[MMIO_SIZE];
398 struct {
399 uint8_t cap[OPREGBASE];
400 uint32_t usbcmd;
401 uint32_t usbsts;
402 uint32_t usbintr;
403 uint32_t frindex;
404 uint32_t ctrldssegment;
405 uint32_t periodiclistbase;
406 uint32_t asynclistaddr;
407 uint32_t notused[9];
408 uint32_t configflag;
409 uint32_t portsc[NB_PORTS];
410 };
411 };
412
413 /*
414 * Internal states, shadow registers, etc
415 */
416 QEMUTimer *frame_timer;
417 QEMUBH *async_bh;
418 int attach_poll_counter;
419 int astate; // Current state in asynchronous schedule
420 int pstate; // Current state in periodic schedule
421 USBPort ports[NB_PORTS];
422 USBPort *companion_ports[NB_PORTS];
423 uint32_t usbsts_pending;
424 EHCIQueueHead aqueues;
425 EHCIQueueHead pqueues;
426
427 uint32_t a_fetch_addr; // which address to look at next
428 uint32_t p_fetch_addr; // which address to look at next
429
430 USBPacket ipacket;
431 QEMUSGList isgl;
432
433 uint64_t last_run_ns;
434 };
435
436 #define SET_LAST_RUN_CLOCK(s) \
437 (s)->last_run_ns = qemu_get_clock_ns(vm_clock);
438
439 /* nifty macros from Arnon's EHCI version */
440 #define get_field(data, field) \
441 (((data) & field##_MASK) >> field##_SH)
442
443 #define set_field(data, newval, field) do { \
444 uint32_t val = *data; \
445 val &= ~ field##_MASK; \
446 val |= ((newval) << field##_SH) & field##_MASK; \
447 *data = val; \
448 } while(0)
449
450 static const char *ehci_state_names[] = {
451 [EST_INACTIVE] = "INACTIVE",
452 [EST_ACTIVE] = "ACTIVE",
453 [EST_EXECUTING] = "EXECUTING",
454 [EST_SLEEPING] = "SLEEPING",
455 [EST_WAITLISTHEAD] = "WAITLISTHEAD",
456 [EST_FETCHENTRY] = "FETCH ENTRY",
457 [EST_FETCHQH] = "FETCH QH",
458 [EST_FETCHITD] = "FETCH ITD",
459 [EST_ADVANCEQUEUE] = "ADVANCEQUEUE",
460 [EST_FETCHQTD] = "FETCH QTD",
461 [EST_EXECUTE] = "EXECUTE",
462 [EST_WRITEBACK] = "WRITEBACK",
463 [EST_HORIZONTALQH] = "HORIZONTALQH",
464 };
465
466 static const char *ehci_mmio_names[] = {
467 [CAPLENGTH] = "CAPLENGTH",
468 [HCIVERSION] = "HCIVERSION",
469 [HCSPARAMS] = "HCSPARAMS",
470 [HCCPARAMS] = "HCCPARAMS",
471 [USBCMD] = "USBCMD",
472 [USBSTS] = "USBSTS",
473 [USBINTR] = "USBINTR",
474 [FRINDEX] = "FRINDEX",
475 [PERIODICLISTBASE] = "P-LIST BASE",
476 [ASYNCLISTADDR] = "A-LIST ADDR",
477 [PORTSC_BEGIN] = "PORTSC #0",
478 [PORTSC_BEGIN + 4] = "PORTSC #1",
479 [PORTSC_BEGIN + 8] = "PORTSC #2",
480 [PORTSC_BEGIN + 12] = "PORTSC #3",
481 [PORTSC_BEGIN + 16] = "PORTSC #4",
482 [PORTSC_BEGIN + 20] = "PORTSC #5",
483 [CONFIGFLAG] = "CONFIGFLAG",
484 };
485
486 static const char *nr2str(const char **n, size_t len, uint32_t nr)
487 {
488 if (nr < len && n[nr] != NULL) {
489 return n[nr];
490 } else {
491 return "unknown";
492 }
493 }
494
495 static const char *state2str(uint32_t state)
496 {
497 return nr2str(ehci_state_names, ARRAY_SIZE(ehci_state_names), state);
498 }
499
500 static const char *addr2str(target_phys_addr_t addr)
501 {
502 return nr2str(ehci_mmio_names, ARRAY_SIZE(ehci_mmio_names), addr);
503 }
504
505 static void ehci_trace_usbsts(uint32_t mask, int state)
506 {
507 /* interrupts */
508 if (mask & USBSTS_INT) {
509 trace_usb_ehci_usbsts("INT", state);
510 }
511 if (mask & USBSTS_ERRINT) {
512 trace_usb_ehci_usbsts("ERRINT", state);
513 }
514 if (mask & USBSTS_PCD) {
515 trace_usb_ehci_usbsts("PCD", state);
516 }
517 if (mask & USBSTS_FLR) {
518 trace_usb_ehci_usbsts("FLR", state);
519 }
520 if (mask & USBSTS_HSE) {
521 trace_usb_ehci_usbsts("HSE", state);
522 }
523 if (mask & USBSTS_IAA) {
524 trace_usb_ehci_usbsts("IAA", state);
525 }
526
527 /* status */
528 if (mask & USBSTS_HALT) {
529 trace_usb_ehci_usbsts("HALT", state);
530 }
531 if (mask & USBSTS_REC) {
532 trace_usb_ehci_usbsts("REC", state);
533 }
534 if (mask & USBSTS_PSS) {
535 trace_usb_ehci_usbsts("PSS", state);
536 }
537 if (mask & USBSTS_ASS) {
538 trace_usb_ehci_usbsts("ASS", state);
539 }
540 }
541
542 static inline void ehci_set_usbsts(EHCIState *s, int mask)
543 {
544 if ((s->usbsts & mask) == mask) {
545 return;
546 }
547 ehci_trace_usbsts(mask, 1);
548 s->usbsts |= mask;
549 }
550
551 static inline void ehci_clear_usbsts(EHCIState *s, int mask)
552 {
553 if ((s->usbsts & mask) == 0) {
554 return;
555 }
556 ehci_trace_usbsts(mask, 0);
557 s->usbsts &= ~mask;
558 }
559
560 static inline void ehci_set_interrupt(EHCIState *s, int intr)
561 {
562 int level = 0;
563
564 // TODO honour interrupt threshold requests
565
566 ehci_set_usbsts(s, intr);
567
568 if ((s->usbsts & USBINTR_MASK) & s->usbintr) {
569 level = 1;
570 }
571
572 qemu_set_irq(s->irq, level);
573 }
574
575 static inline void ehci_record_interrupt(EHCIState *s, int intr)
576 {
577 s->usbsts_pending |= intr;
578 }
579
580 static inline void ehci_commit_interrupt(EHCIState *s)
581 {
582 if (!s->usbsts_pending) {
583 return;
584 }
585 ehci_set_interrupt(s, s->usbsts_pending);
586 s->usbsts_pending = 0;
587 }
588
589 static void ehci_set_state(EHCIState *s, int async, int state)
590 {
591 if (async) {
592 trace_usb_ehci_state("async", state2str(state));
593 s->astate = state;
594 } else {
595 trace_usb_ehci_state("periodic", state2str(state));
596 s->pstate = state;
597 }
598 }
599
600 static int ehci_get_state(EHCIState *s, int async)
601 {
602 return async ? s->astate : s->pstate;
603 }
604
605 static void ehci_set_fetch_addr(EHCIState *s, int async, uint32_t addr)
606 {
607 if (async) {
608 s->a_fetch_addr = addr;
609 } else {
610 s->p_fetch_addr = addr;
611 }
612 }
613
614 static int ehci_get_fetch_addr(EHCIState *s, int async)
615 {
616 return async ? s->a_fetch_addr : s->p_fetch_addr;
617 }
618
619 static void ehci_trace_qh(EHCIQueue *q, target_phys_addr_t addr, EHCIqh *qh)
620 {
621 /* need three here due to argument count limits */
622 trace_usb_ehci_qh_ptrs(q, addr, qh->next,
623 qh->current_qtd, qh->next_qtd, qh->altnext_qtd);
624 trace_usb_ehci_qh_fields(addr,
625 get_field(qh->epchar, QH_EPCHAR_RL),
626 get_field(qh->epchar, QH_EPCHAR_MPLEN),
627 get_field(qh->epchar, QH_EPCHAR_EPS),
628 get_field(qh->epchar, QH_EPCHAR_EP),
629 get_field(qh->epchar, QH_EPCHAR_DEVADDR));
630 trace_usb_ehci_qh_bits(addr,
631 (bool)(qh->epchar & QH_EPCHAR_C),
632 (bool)(qh->epchar & QH_EPCHAR_H),
633 (bool)(qh->epchar & QH_EPCHAR_DTC),
634 (bool)(qh->epchar & QH_EPCHAR_I));
635 }
636
637 static void ehci_trace_qtd(EHCIQueue *q, target_phys_addr_t addr, EHCIqtd *qtd)
638 {
639 /* need three here due to argument count limits */
640 trace_usb_ehci_qtd_ptrs(q, addr, qtd->next, qtd->altnext);
641 trace_usb_ehci_qtd_fields(addr,
642 get_field(qtd->token, QTD_TOKEN_TBYTES),
643 get_field(qtd->token, QTD_TOKEN_CPAGE),
644 get_field(qtd->token, QTD_TOKEN_CERR),
645 get_field(qtd->token, QTD_TOKEN_PID));
646 trace_usb_ehci_qtd_bits(addr,
647 (bool)(qtd->token & QTD_TOKEN_IOC),
648 (bool)(qtd->token & QTD_TOKEN_ACTIVE),
649 (bool)(qtd->token & QTD_TOKEN_HALT),
650 (bool)(qtd->token & QTD_TOKEN_BABBLE),
651 (bool)(qtd->token & QTD_TOKEN_XACTERR));
652 }
653
654 static void ehci_trace_itd(EHCIState *s, target_phys_addr_t addr, EHCIitd *itd)
655 {
656 trace_usb_ehci_itd(addr, itd->next,
657 get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT),
658 get_field(itd->bufptr[2], ITD_BUFPTR_MULT),
659 get_field(itd->bufptr[0], ITD_BUFPTR_EP),
660 get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR));
661 }
662
663 static void ehci_trace_sitd(EHCIState *s, target_phys_addr_t addr,
664 EHCIsitd *sitd)
665 {
666 trace_usb_ehci_sitd(addr, sitd->next,
667 (bool)(sitd->results & SITD_RESULTS_ACTIVE));
668 }
669
670 static inline bool ehci_enabled(EHCIState *s)
671 {
672 return s->usbcmd & USBCMD_RUNSTOP;
673 }
674
675 static inline bool ehci_async_enabled(EHCIState *s)
676 {
677 return ehci_enabled(s) && (s->usbcmd & USBCMD_ASE);
678 }
679
680 static inline bool ehci_periodic_enabled(EHCIState *s)
681 {
682 return ehci_enabled(s) && (s->usbcmd & USBCMD_PSE);
683 }
684
685 /* packet management */
686
687 static EHCIPacket *ehci_alloc_packet(EHCIQueue *q)
688 {
689 EHCIPacket *p;
690
691 p = g_new0(EHCIPacket, 1);
692 p->queue = q;
693 usb_packet_init(&p->packet);
694 QTAILQ_INSERT_TAIL(&q->packets, p, next);
695 trace_usb_ehci_packet_action(p->queue, p, "alloc");
696 return p;
697 }
698
699 static void ehci_free_packet(EHCIPacket *p)
700 {
701 trace_usb_ehci_packet_action(p->queue, p, "free");
702 if (p->async == EHCI_ASYNC_INFLIGHT) {
703 usb_cancel_packet(&p->packet);
704 }
705 QTAILQ_REMOVE(&p->queue->packets, p, next);
706 usb_packet_cleanup(&p->packet);
707 g_free(p);
708 }
709
710 /* queue management */
711
712 static EHCIQueue *ehci_alloc_queue(EHCIState *ehci, uint32_t addr, int async)
713 {
714 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
715 EHCIQueue *q;
716
717 q = g_malloc0(sizeof(*q));
718 q->ehci = ehci;
719 q->qhaddr = addr;
720 q->async = async;
721 QTAILQ_INIT(&q->packets);
722 QTAILQ_INSERT_HEAD(head, q, next);
723 trace_usb_ehci_queue_action(q, "alloc");
724 return q;
725 }
726
727 static void ehci_free_queue(EHCIQueue *q)
728 {
729 EHCIQueueHead *head = q->async ? &q->ehci->aqueues : &q->ehci->pqueues;
730 EHCIPacket *p;
731
732 trace_usb_ehci_queue_action(q, "free");
733 while ((p = QTAILQ_FIRST(&q->packets)) != NULL) {
734 ehci_free_packet(p);
735 }
736 QTAILQ_REMOVE(head, q, next);
737 g_free(q);
738 }
739
740 static EHCIQueue *ehci_find_queue_by_qh(EHCIState *ehci, uint32_t addr,
741 int async)
742 {
743 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
744 EHCIQueue *q;
745
746 QTAILQ_FOREACH(q, head, next) {
747 if (addr == q->qhaddr) {
748 return q;
749 }
750 }
751 return NULL;
752 }
753
754 static void ehci_queues_rip_unused(EHCIState *ehci, int async, int flush)
755 {
756 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
757 EHCIQueue *q, *tmp;
758
759 QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
760 if (q->seen) {
761 q->seen = 0;
762 q->ts = ehci->last_run_ns;
763 continue;
764 }
765 if (!flush && ehci->last_run_ns < q->ts + 250000000) {
766 /* allow 0.25 sec idle */
767 continue;
768 }
769 ehci_free_queue(q);
770 }
771 }
772
773 static void ehci_queues_rip_device(EHCIState *ehci, USBDevice *dev, int async)
774 {
775 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
776 EHCIQueue *q, *tmp;
777
778 QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
779 if (q->dev != dev) {
780 continue;
781 }
782 ehci_free_queue(q);
783 }
784 }
785
786 static void ehci_queues_rip_all(EHCIState *ehci, int async)
787 {
788 EHCIQueueHead *head = async ? &ehci->aqueues : &ehci->pqueues;
789 EHCIQueue *q, *tmp;
790
791 QTAILQ_FOREACH_SAFE(q, head, next, tmp) {
792 ehci_free_queue(q);
793 }
794 }
795
796 /* Attach or detach a device on root hub */
797
798 static void ehci_attach(USBPort *port)
799 {
800 EHCIState *s = port->opaque;
801 uint32_t *portsc = &s->portsc[port->index];
802
803 trace_usb_ehci_port_attach(port->index, port->dev->product_desc);
804
805 if (*portsc & PORTSC_POWNER) {
806 USBPort *companion = s->companion_ports[port->index];
807 companion->dev = port->dev;
808 companion->ops->attach(companion);
809 return;
810 }
811
812 *portsc |= PORTSC_CONNECT;
813 *portsc |= PORTSC_CSC;
814
815 ehci_set_interrupt(s, USBSTS_PCD);
816 }
817
818 static void ehci_detach(USBPort *port)
819 {
820 EHCIState *s = port->opaque;
821 uint32_t *portsc = &s->portsc[port->index];
822
823 trace_usb_ehci_port_detach(port->index);
824
825 if (*portsc & PORTSC_POWNER) {
826 USBPort *companion = s->companion_ports[port->index];
827 companion->ops->detach(companion);
828 companion->dev = NULL;
829 /*
830 * EHCI spec 4.2.2: "When a disconnect occurs... On the event,
831 * the port ownership is returned immediately to the EHCI controller."
832 */
833 *portsc &= ~PORTSC_POWNER;
834 return;
835 }
836
837 ehci_queues_rip_device(s, port->dev, 0);
838 ehci_queues_rip_device(s, port->dev, 1);
839
840 *portsc &= ~(PORTSC_CONNECT|PORTSC_PED);
841 *portsc |= PORTSC_CSC;
842
843 ehci_set_interrupt(s, USBSTS_PCD);
844 }
845
846 static void ehci_child_detach(USBPort *port, USBDevice *child)
847 {
848 EHCIState *s = port->opaque;
849 uint32_t portsc = s->portsc[port->index];
850
851 if (portsc & PORTSC_POWNER) {
852 USBPort *companion = s->companion_ports[port->index];
853 companion->ops->child_detach(companion, child);
854 return;
855 }
856
857 ehci_queues_rip_device(s, child, 0);
858 ehci_queues_rip_device(s, child, 1);
859 }
860
861 static void ehci_wakeup(USBPort *port)
862 {
863 EHCIState *s = port->opaque;
864 uint32_t portsc = s->portsc[port->index];
865
866 if (portsc & PORTSC_POWNER) {
867 USBPort *companion = s->companion_ports[port->index];
868 if (companion->ops->wakeup) {
869 companion->ops->wakeup(companion);
870 } else {
871 qemu_bh_schedule(s->async_bh);
872 }
873 }
874 }
875
876 static int ehci_register_companion(USBBus *bus, USBPort *ports[],
877 uint32_t portcount, uint32_t firstport)
878 {
879 EHCIState *s = container_of(bus, EHCIState, bus);
880 uint32_t i;
881
882 if (firstport + portcount > NB_PORTS) {
883 qerror_report(QERR_INVALID_PARAMETER_VALUE, "firstport",
884 "firstport on masterbus");
885 error_printf_unless_qmp(
886 "firstport value of %u makes companion take ports %u - %u, which "
887 "is outside of the valid range of 0 - %u\n", firstport, firstport,
888 firstport + portcount - 1, NB_PORTS - 1);
889 return -1;
890 }
891
892 for (i = 0; i < portcount; i++) {
893 if (s->companion_ports[firstport + i]) {
894 qerror_report(QERR_INVALID_PARAMETER_VALUE, "masterbus",
895 "an USB masterbus");
896 error_printf_unless_qmp(
897 "port %u on masterbus %s already has a companion assigned\n",
898 firstport + i, bus->qbus.name);
899 return -1;
900 }
901 }
902
903 for (i = 0; i < portcount; i++) {
904 s->companion_ports[firstport + i] = ports[i];
905 s->ports[firstport + i].speedmask |=
906 USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL;
907 /* Ensure devs attached before the initial reset go to the companion */
908 s->portsc[firstport + i] = PORTSC_POWNER;
909 }
910
911 s->companion_count++;
912 s->mmio[0x05] = (s->companion_count << 4) | portcount;
913
914 return 0;
915 }
916
917 static USBDevice *ehci_find_device(EHCIState *ehci, uint8_t addr)
918 {
919 USBDevice *dev;
920 USBPort *port;
921 int i;
922
923 for (i = 0; i < NB_PORTS; i++) {
924 port = &ehci->ports[i];
925 if (!(ehci->portsc[i] & PORTSC_PED)) {
926 DPRINTF("Port %d not enabled\n", i);
927 continue;
928 }
929 dev = usb_find_device(port, addr);
930 if (dev != NULL) {
931 return dev;
932 }
933 }
934 return NULL;
935 }
936
937 /* 4.1 host controller initialization */
938 static void ehci_reset(void *opaque)
939 {
940 EHCIState *s = opaque;
941 int i;
942 USBDevice *devs[NB_PORTS];
943
944 trace_usb_ehci_reset();
945
946 /*
947 * Do the detach before touching portsc, so that it correctly gets send to
948 * us or to our companion based on PORTSC_POWNER before the reset.
949 */
950 for(i = 0; i < NB_PORTS; i++) {
951 devs[i] = s->ports[i].dev;
952 if (devs[i] && devs[i]->attached) {
953 usb_detach(&s->ports[i]);
954 }
955 }
956
957 memset(&s->mmio[OPREGBASE], 0x00, MMIO_SIZE - OPREGBASE);
958
959 s->usbcmd = NB_MAXINTRATE << USBCMD_ITC_SH;
960 s->usbsts = USBSTS_HALT;
961
962 s->astate = EST_INACTIVE;
963 s->pstate = EST_INACTIVE;
964 s->attach_poll_counter = 0;
965
966 for(i = 0; i < NB_PORTS; i++) {
967 if (s->companion_ports[i]) {
968 s->portsc[i] = PORTSC_POWNER | PORTSC_PPOWER;
969 } else {
970 s->portsc[i] = PORTSC_PPOWER;
971 }
972 if (devs[i] && devs[i]->attached) {
973 usb_attach(&s->ports[i]);
974 usb_device_reset(devs[i]);
975 }
976 }
977 ehci_queues_rip_all(s, 0);
978 ehci_queues_rip_all(s, 1);
979 qemu_del_timer(s->frame_timer);
980 qemu_bh_cancel(s->async_bh);
981 }
982
983 static uint32_t ehci_mem_readb(void *ptr, target_phys_addr_t addr)
984 {
985 EHCIState *s = ptr;
986 uint32_t val;
987
988 val = s->mmio[addr];
989
990 return val;
991 }
992
993 static uint32_t ehci_mem_readw(void *ptr, target_phys_addr_t addr)
994 {
995 EHCIState *s = ptr;
996 uint32_t val;
997
998 val = s->mmio[addr] | (s->mmio[addr+1] << 8);
999
1000 return val;
1001 }
1002
1003 static uint32_t ehci_mem_readl(void *ptr, target_phys_addr_t addr)
1004 {
1005 EHCIState *s = ptr;
1006 uint32_t val;
1007
1008 val = s->mmio[addr] | (s->mmio[addr+1] << 8) |
1009 (s->mmio[addr+2] << 16) | (s->mmio[addr+3] << 24);
1010
1011 trace_usb_ehci_mmio_readl(addr, addr2str(addr), val);
1012 return val;
1013 }
1014
1015 static void ehci_mem_writeb(void *ptr, target_phys_addr_t addr, uint32_t val)
1016 {
1017 fprintf(stderr, "EHCI doesn't handle byte writes to MMIO\n");
1018 exit(1);
1019 }
1020
1021 static void ehci_mem_writew(void *ptr, target_phys_addr_t addr, uint32_t val)
1022 {
1023 fprintf(stderr, "EHCI doesn't handle 16-bit writes to MMIO\n");
1024 exit(1);
1025 }
1026
1027 static void handle_port_owner_write(EHCIState *s, int port, uint32_t owner)
1028 {
1029 USBDevice *dev = s->ports[port].dev;
1030 uint32_t *portsc = &s->portsc[port];
1031 uint32_t orig;
1032
1033 if (s->companion_ports[port] == NULL)
1034 return;
1035
1036 owner = owner & PORTSC_POWNER;
1037 orig = *portsc & PORTSC_POWNER;
1038
1039 if (!(owner ^ orig)) {
1040 return;
1041 }
1042
1043 if (dev && dev->attached) {
1044 usb_detach(&s->ports[port]);
1045 }
1046
1047 *portsc &= ~PORTSC_POWNER;
1048 *portsc |= owner;
1049
1050 if (dev && dev->attached) {
1051 usb_attach(&s->ports[port]);
1052 }
1053 }
1054
1055 static void handle_port_status_write(EHCIState *s, int port, uint32_t val)
1056 {
1057 uint32_t *portsc = &s->portsc[port];
1058 USBDevice *dev = s->ports[port].dev;
1059
1060 /* Clear rwc bits */
1061 *portsc &= ~(val & PORTSC_RWC_MASK);
1062 /* The guest may clear, but not set the PED bit */
1063 *portsc &= val | ~PORTSC_PED;
1064 /* POWNER is masked out by RO_MASK as it is RO when we've no companion */
1065 handle_port_owner_write(s, port, val);
1066 /* And finally apply RO_MASK */
1067 val &= PORTSC_RO_MASK;
1068
1069 if ((val & PORTSC_PRESET) && !(*portsc & PORTSC_PRESET)) {
1070 trace_usb_ehci_port_reset(port, 1);
1071 }
1072
1073 if (!(val & PORTSC_PRESET) &&(*portsc & PORTSC_PRESET)) {
1074 trace_usb_ehci_port_reset(port, 0);
1075 if (dev && dev->attached) {
1076 usb_port_reset(&s->ports[port]);
1077 *portsc &= ~PORTSC_CSC;
1078 }
1079
1080 /*
1081 * Table 2.16 Set the enable bit(and enable bit change) to indicate
1082 * to SW that this port has a high speed device attached
1083 */
1084 if (dev && dev->attached && (dev->speedmask & USB_SPEED_MASK_HIGH)) {
1085 val |= PORTSC_PED;
1086 }
1087 }
1088
1089 *portsc &= ~PORTSC_RO_MASK;
1090 *portsc |= val;
1091 }
1092
1093 static void ehci_mem_writel(void *ptr, target_phys_addr_t addr, uint32_t val)
1094 {
1095 EHCIState *s = ptr;
1096 uint32_t *mmio = (uint32_t *)(&s->mmio[addr]);
1097 uint32_t old = *mmio;
1098 int i;
1099
1100 trace_usb_ehci_mmio_writel(addr, addr2str(addr), val);
1101
1102 /* Only aligned reads are allowed on OHCI */
1103 if (addr & 3) {
1104 fprintf(stderr, "usb-ehci: Mis-aligned write to addr 0x"
1105 TARGET_FMT_plx "\n", addr);
1106 return;
1107 }
1108
1109 if (addr >= PORTSC && addr < PORTSC + 4 * NB_PORTS) {
1110 handle_port_status_write(s, (addr-PORTSC)/4, val);
1111 trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
1112 return;
1113 }
1114
1115 if (addr < OPREGBASE) {
1116 fprintf(stderr, "usb-ehci: write attempt to read-only register"
1117 TARGET_FMT_plx "\n", addr);
1118 return;
1119 }
1120
1121
1122 /* Do any register specific pre-write processing here. */
1123 switch(addr) {
1124 case USBCMD:
1125 if (val & USBCMD_HCRESET) {
1126 ehci_reset(s);
1127 val = s->usbcmd;
1128 break;
1129 }
1130
1131 if ((val & USBCMD_RUNSTOP) && !(s->usbcmd & USBCMD_RUNSTOP)) {
1132 qemu_mod_timer(s->frame_timer, qemu_get_clock_ns(vm_clock));
1133 SET_LAST_RUN_CLOCK(s);
1134 ehci_clear_usbsts(s, USBSTS_HALT);
1135 }
1136
1137 if (!(val & USBCMD_RUNSTOP) && (s->usbcmd & USBCMD_RUNSTOP)) {
1138 qemu_del_timer(s->frame_timer);
1139 qemu_bh_cancel(s->async_bh);
1140 ehci_queues_rip_all(s, 0);
1141 ehci_queues_rip_all(s, 1);
1142 ehci_set_usbsts(s, USBSTS_HALT);
1143 }
1144
1145
1146 /* not supporting dynamic frame list size at the moment */
1147 if ((val & USBCMD_FLS) && !(s->usbcmd & USBCMD_FLS)) {
1148 fprintf(stderr, "attempt to set frame list size -- value %d\n",
1149 val & USBCMD_FLS);
1150 val &= ~USBCMD_FLS;
1151 }
1152 break;
1153
1154 case USBSTS:
1155 val &= USBSTS_RO_MASK; // bits 6 through 31 are RO
1156 ehci_clear_usbsts(s, val); // bits 0 through 5 are R/WC
1157 val = s->usbsts;
1158 ehci_set_interrupt(s, 0);
1159 break;
1160
1161 case USBINTR:
1162 val &= USBINTR_MASK;
1163 break;
1164
1165 case FRINDEX:
1166 val &= 0x00003ff8; /* frindex is 14bits and always a multiple of 8 */
1167 break;
1168
1169 case CONFIGFLAG:
1170 val &= 0x1;
1171 if (val) {
1172 for(i = 0; i < NB_PORTS; i++)
1173 handle_port_owner_write(s, i, 0);
1174 }
1175 break;
1176
1177 case PERIODICLISTBASE:
1178 if (ehci_periodic_enabled(s)) {
1179 fprintf(stderr,
1180 "ehci: PERIODIC list base register set while periodic schedule\n"
1181 " is enabled and HC is enabled\n");
1182 }
1183 break;
1184
1185 case ASYNCLISTADDR:
1186 if (ehci_async_enabled(s)) {
1187 fprintf(stderr,
1188 "ehci: ASYNC list address register set while async schedule\n"
1189 " is enabled and HC is enabled\n");
1190 }
1191 break;
1192 }
1193
1194 *mmio = val;
1195 trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
1196 }
1197
1198
1199 // TODO : Put in common header file, duplication from usb-ohci.c
1200
1201 /* Get an array of dwords from main memory */
1202 static inline int get_dwords(EHCIState *ehci, uint32_t addr,
1203 uint32_t *buf, int num)
1204 {
1205 int i;
1206
1207 for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1208 pci_dma_read(&ehci->dev, addr, buf, sizeof(*buf));
1209 *buf = le32_to_cpu(*buf);
1210 }
1211
1212 return 1;
1213 }
1214
1215 /* Put an array of dwords in to main memory */
1216 static inline int put_dwords(EHCIState *ehci, uint32_t addr,
1217 uint32_t *buf, int num)
1218 {
1219 int i;
1220
1221 for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1222 uint32_t tmp = cpu_to_le32(*buf);
1223 pci_dma_write(&ehci->dev, addr, &tmp, sizeof(tmp));
1224 }
1225
1226 return 1;
1227 }
1228
1229 // 4.10.2
1230
1231 static int ehci_qh_do_overlay(EHCIQueue *q)
1232 {
1233 EHCIPacket *p = QTAILQ_FIRST(&q->packets);
1234 int i;
1235 int dtoggle;
1236 int ping;
1237 int eps;
1238 int reload;
1239
1240 assert(p != NULL);
1241 assert(p->qtdaddr == q->qtdaddr);
1242
1243 // remember values in fields to preserve in qh after overlay
1244
1245 dtoggle = q->qh.token & QTD_TOKEN_DTOGGLE;
1246 ping = q->qh.token & QTD_TOKEN_PING;
1247
1248 q->qh.current_qtd = p->qtdaddr;
1249 q->qh.next_qtd = p->qtd.next;
1250 q->qh.altnext_qtd = p->qtd.altnext;
1251 q->qh.token = p->qtd.token;
1252
1253
1254 eps = get_field(q->qh.epchar, QH_EPCHAR_EPS);
1255 if (eps == EHCI_QH_EPS_HIGH) {
1256 q->qh.token &= ~QTD_TOKEN_PING;
1257 q->qh.token |= ping;
1258 }
1259
1260 reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1261 set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1262
1263 for (i = 0; i < 5; i++) {
1264 q->qh.bufptr[i] = p->qtd.bufptr[i];
1265 }
1266
1267 if (!(q->qh.epchar & QH_EPCHAR_DTC)) {
1268 // preserve QH DT bit
1269 q->qh.token &= ~QTD_TOKEN_DTOGGLE;
1270 q->qh.token |= dtoggle;
1271 }
1272
1273 q->qh.bufptr[1] &= ~BUFPTR_CPROGMASK_MASK;
1274 q->qh.bufptr[2] &= ~BUFPTR_FRAMETAG_MASK;
1275
1276 put_dwords(q->ehci, NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh,
1277 sizeof(EHCIqh) >> 2);
1278
1279 return 0;
1280 }
1281
1282 static int ehci_init_transfer(EHCIPacket *p)
1283 {
1284 uint32_t cpage, offset, bytes, plen;
1285 dma_addr_t page;
1286
1287 cpage = get_field(p->qtd.token, QTD_TOKEN_CPAGE);
1288 bytes = get_field(p->qtd.token, QTD_TOKEN_TBYTES);
1289 offset = p->qtd.bufptr[0] & ~QTD_BUFPTR_MASK;
1290 pci_dma_sglist_init(&p->sgl, &p->queue->ehci->dev, 5);
1291
1292 while (bytes > 0) {
1293 if (cpage > 4) {
1294 fprintf(stderr, "cpage out of range (%d)\n", cpage);
1295 return USB_RET_PROCERR;
1296 }
1297
1298 page = p->qtd.bufptr[cpage] & QTD_BUFPTR_MASK;
1299 page += offset;
1300 plen = bytes;
1301 if (plen > 4096 - offset) {
1302 plen = 4096 - offset;
1303 offset = 0;
1304 cpage++;
1305 }
1306
1307 qemu_sglist_add(&p->sgl, page, plen);
1308 bytes -= plen;
1309 }
1310 return 0;
1311 }
1312
1313 static void ehci_finish_transfer(EHCIQueue *q, int status)
1314 {
1315 uint32_t cpage, offset;
1316
1317 if (status > 0) {
1318 /* update cpage & offset */
1319 cpage = get_field(q->qh.token, QTD_TOKEN_CPAGE);
1320 offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
1321
1322 offset += status;
1323 cpage += offset >> QTD_BUFPTR_SH;
1324 offset &= ~QTD_BUFPTR_MASK;
1325
1326 set_field(&q->qh.token, cpage, QTD_TOKEN_CPAGE);
1327 q->qh.bufptr[0] &= QTD_BUFPTR_MASK;
1328 q->qh.bufptr[0] |= offset;
1329 }
1330 }
1331
1332 static void ehci_async_complete_packet(USBPort *port, USBPacket *packet)
1333 {
1334 EHCIPacket *p;
1335 EHCIState *s = port->opaque;
1336 uint32_t portsc = s->portsc[port->index];
1337
1338 if (portsc & PORTSC_POWNER) {
1339 USBPort *companion = s->companion_ports[port->index];
1340 companion->ops->complete(companion, packet);
1341 return;
1342 }
1343
1344 p = container_of(packet, EHCIPacket, packet);
1345 trace_usb_ehci_packet_action(p->queue, p, "wakeup");
1346 assert(p->async == EHCI_ASYNC_INFLIGHT);
1347 p->async = EHCI_ASYNC_FINISHED;
1348 p->usb_status = packet->result;
1349
1350 if (p->queue->async) {
1351 qemu_bh_schedule(p->queue->ehci->async_bh);
1352 }
1353 }
1354
1355 static void ehci_execute_complete(EHCIQueue *q)
1356 {
1357 EHCIPacket *p = QTAILQ_FIRST(&q->packets);
1358
1359 assert(p != NULL);
1360 assert(p->qtdaddr == q->qtdaddr);
1361 assert(p->async != EHCI_ASYNC_INFLIGHT);
1362 p->async = EHCI_ASYNC_NONE;
1363
1364 DPRINTF("execute_complete: qhaddr 0x%x, next %x, qtdaddr 0x%x, status %d\n",
1365 q->qhaddr, q->qh.next, q->qtdaddr, q->usb_status);
1366
1367 if (p->usb_status < 0) {
1368 switch (p->usb_status) {
1369 case USB_RET_IOERROR:
1370 case USB_RET_NODEV:
1371 q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_XACTERR);
1372 set_field(&q->qh.token, 0, QTD_TOKEN_CERR);
1373 ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1374 break;
1375 case USB_RET_STALL:
1376 q->qh.token |= QTD_TOKEN_HALT;
1377 ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1378 break;
1379 case USB_RET_NAK:
1380 set_field(&q->qh.altnext_qtd, 0, QH_ALTNEXT_NAKCNT);
1381 return; /* We're not done yet with this transaction */
1382 case USB_RET_BABBLE:
1383 q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
1384 ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1385 break;
1386 default:
1387 /* should not be triggerable */
1388 fprintf(stderr, "USB invalid response %d\n", p->usb_status);
1389 assert(0);
1390 break;
1391 }
1392 } else if ((p->usb_status > p->tbytes) && (p->pid == USB_TOKEN_IN)) {
1393 p->usb_status = USB_RET_BABBLE;
1394 q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
1395 ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1396 } else {
1397 // TODO check 4.12 for splits
1398
1399 if (p->tbytes && p->pid == USB_TOKEN_IN) {
1400 p->tbytes -= p->usb_status;
1401 } else {
1402 p->tbytes = 0;
1403 }
1404
1405 DPRINTF("updating tbytes to %d\n", p->tbytes);
1406 set_field(&q->qh.token, p->tbytes, QTD_TOKEN_TBYTES);
1407 }
1408 ehci_finish_transfer(q, p->usb_status);
1409 qemu_sglist_destroy(&p->sgl);
1410 usb_packet_unmap(&p->packet);
1411
1412 q->qh.token ^= QTD_TOKEN_DTOGGLE;
1413 q->qh.token &= ~QTD_TOKEN_ACTIVE;
1414
1415 if (q->qh.token & QTD_TOKEN_IOC) {
1416 ehci_record_interrupt(q->ehci, USBSTS_INT);
1417 }
1418 }
1419
1420 // 4.10.3
1421
1422 static int ehci_execute(EHCIPacket *p, const char *action)
1423 {
1424 USBEndpoint *ep;
1425 int ret;
1426 int endp;
1427
1428 if (!(p->qtd.token & QTD_TOKEN_ACTIVE)) {
1429 fprintf(stderr, "Attempting to execute inactive qtd\n");
1430 return USB_RET_PROCERR;
1431 }
1432
1433 p->tbytes = (p->qtd.token & QTD_TOKEN_TBYTES_MASK) >> QTD_TOKEN_TBYTES_SH;
1434 if (p->tbytes > BUFF_SIZE) {
1435 fprintf(stderr, "Request for more bytes than allowed\n");
1436 return USB_RET_PROCERR;
1437 }
1438
1439 p->pid = (p->qtd.token & QTD_TOKEN_PID_MASK) >> QTD_TOKEN_PID_SH;
1440 switch (p->pid) {
1441 case 0:
1442 p->pid = USB_TOKEN_OUT;
1443 break;
1444 case 1:
1445 p->pid = USB_TOKEN_IN;
1446 break;
1447 case 2:
1448 p->pid = USB_TOKEN_SETUP;
1449 break;
1450 default:
1451 fprintf(stderr, "bad token\n");
1452 break;
1453 }
1454
1455 if (ehci_init_transfer(p) != 0) {
1456 return USB_RET_PROCERR;
1457 }
1458
1459 endp = get_field(p->queue->qh.epchar, QH_EPCHAR_EP);
1460 ep = usb_ep_get(p->queue->dev, p->pid, endp);
1461
1462 usb_packet_setup(&p->packet, p->pid, ep);
1463 usb_packet_map(&p->packet, &p->sgl);
1464
1465 trace_usb_ehci_packet_action(p->queue, p, action);
1466 ret = usb_handle_packet(p->queue->dev, &p->packet);
1467 DPRINTF("submit: qh %x next %x qtd %x pid %x len %zd "
1468 "(total %d) endp %x ret %d\n",
1469 q->qhaddr, q->qh.next, q->qtdaddr, q->pid,
1470 q->packet.iov.size, q->tbytes, endp, ret);
1471
1472 if (ret > BUFF_SIZE) {
1473 fprintf(stderr, "ret from usb_handle_packet > BUFF_SIZE\n");
1474 return USB_RET_PROCERR;
1475 }
1476
1477 return ret;
1478 }
1479
1480 /* 4.7.2
1481 */
1482
1483 static int ehci_process_itd(EHCIState *ehci,
1484 EHCIitd *itd)
1485 {
1486 USBDevice *dev;
1487 USBEndpoint *ep;
1488 int ret;
1489 uint32_t i, len, pid, dir, devaddr, endp;
1490 uint32_t pg, off, ptr1, ptr2, max, mult;
1491
1492 dir =(itd->bufptr[1] & ITD_BUFPTR_DIRECTION);
1493 devaddr = get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR);
1494 endp = get_field(itd->bufptr[0], ITD_BUFPTR_EP);
1495 max = get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT);
1496 mult = get_field(itd->bufptr[2], ITD_BUFPTR_MULT);
1497
1498 for(i = 0; i < 8; i++) {
1499 if (itd->transact[i] & ITD_XACT_ACTIVE) {
1500 pg = get_field(itd->transact[i], ITD_XACT_PGSEL);
1501 off = itd->transact[i] & ITD_XACT_OFFSET_MASK;
1502 ptr1 = (itd->bufptr[pg] & ITD_BUFPTR_MASK);
1503 ptr2 = (itd->bufptr[pg+1] & ITD_BUFPTR_MASK);
1504 len = get_field(itd->transact[i], ITD_XACT_LENGTH);
1505
1506 if (len > max * mult) {
1507 len = max * mult;
1508 }
1509
1510 if (len > BUFF_SIZE) {
1511 return USB_RET_PROCERR;
1512 }
1513
1514 pci_dma_sglist_init(&ehci->isgl, &ehci->dev, 2);
1515 if (off + len > 4096) {
1516 /* transfer crosses page border */
1517 uint32_t len2 = off + len - 4096;
1518 uint32_t len1 = len - len2;
1519 qemu_sglist_add(&ehci->isgl, ptr1 + off, len1);
1520 qemu_sglist_add(&ehci->isgl, ptr2, len2);
1521 } else {
1522 qemu_sglist_add(&ehci->isgl, ptr1 + off, len);
1523 }
1524
1525 pid = dir ? USB_TOKEN_IN : USB_TOKEN_OUT;
1526
1527 dev = ehci_find_device(ehci, devaddr);
1528 ep = usb_ep_get(dev, pid, endp);
1529 if (ep->type == USB_ENDPOINT_XFER_ISOC) {
1530 usb_packet_setup(&ehci->ipacket, pid, ep);
1531 usb_packet_map(&ehci->ipacket, &ehci->isgl);
1532 ret = usb_handle_packet(dev, &ehci->ipacket);
1533 assert(ret != USB_RET_ASYNC);
1534 usb_packet_unmap(&ehci->ipacket);
1535 } else {
1536 DPRINTF("ISOCH: attempt to addess non-iso endpoint\n");
1537 ret = USB_RET_NAK;
1538 }
1539 qemu_sglist_destroy(&ehci->isgl);
1540
1541 if (ret < 0) {
1542 switch (ret) {
1543 default:
1544 fprintf(stderr, "Unexpected iso usb result: %d\n", ret);
1545 /* Fall through */
1546 case USB_RET_IOERROR:
1547 case USB_RET_NODEV:
1548 /* 3.3.2: XACTERR is only allowed on IN transactions */
1549 if (dir) {
1550 itd->transact[i] |= ITD_XACT_XACTERR;
1551 ehci_record_interrupt(ehci, USBSTS_ERRINT);
1552 }
1553 break;
1554 case USB_RET_BABBLE:
1555 itd->transact[i] |= ITD_XACT_BABBLE;
1556 ehci_record_interrupt(ehci, USBSTS_ERRINT);
1557 break;
1558 case USB_RET_NAK:
1559 /* no data for us, so do a zero-length transfer */
1560 ret = 0;
1561 break;
1562 }
1563 }
1564 if (ret >= 0) {
1565 if (!dir) {
1566 /* OUT */
1567 set_field(&itd->transact[i], len - ret, ITD_XACT_LENGTH);
1568 } else {
1569 /* IN */
1570 set_field(&itd->transact[i], ret, ITD_XACT_LENGTH);
1571 }
1572 }
1573 if (itd->transact[i] & ITD_XACT_IOC) {
1574 ehci_record_interrupt(ehci, USBSTS_INT);
1575 }
1576 itd->transact[i] &= ~ITD_XACT_ACTIVE;
1577 }
1578 }
1579 return 0;
1580 }
1581
1582
1583 /*
1584 * Write the qh back to guest physical memory. This step isn't
1585 * in the EHCI spec but we need to do it since we don't share
1586 * physical memory with our guest VM.
1587 *
1588 * The first three dwords are read-only for the EHCI, so skip them
1589 * when writing back the qh.
1590 */
1591 static void ehci_flush_qh(EHCIQueue *q)
1592 {
1593 uint32_t *qh = (uint32_t *) &q->qh;
1594 uint32_t dwords = sizeof(EHCIqh) >> 2;
1595 uint32_t addr = NLPTR_GET(q->qhaddr);
1596
1597 put_dwords(q->ehci, addr + 3 * sizeof(uint32_t), qh + 3, dwords - 3);
1598 }
1599
1600 /* This state is the entry point for asynchronous schedule
1601 * processing. Entry here consitutes a EHCI start event state (4.8.5)
1602 */
1603 static int ehci_state_waitlisthead(EHCIState *ehci, int async)
1604 {
1605 EHCIqh qh;
1606 int i = 0;
1607 int again = 0;
1608 uint32_t entry = ehci->asynclistaddr;
1609
1610 /* set reclamation flag at start event (4.8.6) */
1611 if (async) {
1612 ehci_set_usbsts(ehci, USBSTS_REC);
1613 }
1614
1615 ehci_queues_rip_unused(ehci, async, 0);
1616
1617 /* Find the head of the list (4.9.1.1) */
1618 for(i = 0; i < MAX_QH; i++) {
1619 get_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &qh,
1620 sizeof(EHCIqh) >> 2);
1621 ehci_trace_qh(NULL, NLPTR_GET(entry), &qh);
1622
1623 if (qh.epchar & QH_EPCHAR_H) {
1624 if (async) {
1625 entry |= (NLPTR_TYPE_QH << 1);
1626 }
1627
1628 ehci_set_fetch_addr(ehci, async, entry);
1629 ehci_set_state(ehci, async, EST_FETCHENTRY);
1630 again = 1;
1631 goto out;
1632 }
1633
1634 entry = qh.next;
1635 if (entry == ehci->asynclistaddr) {
1636 break;
1637 }
1638 }
1639
1640 /* no head found for list. */
1641
1642 ehci_set_state(ehci, async, EST_ACTIVE);
1643
1644 out:
1645 return again;
1646 }
1647
1648
1649 /* This state is the entry point for periodic schedule processing as
1650 * well as being a continuation state for async processing.
1651 */
1652 static int ehci_state_fetchentry(EHCIState *ehci, int async)
1653 {
1654 int again = 0;
1655 uint32_t entry = ehci_get_fetch_addr(ehci, async);
1656
1657 if (NLPTR_TBIT(entry)) {
1658 ehci_set_state(ehci, async, EST_ACTIVE);
1659 goto out;
1660 }
1661
1662 /* section 4.8, only QH in async schedule */
1663 if (async && (NLPTR_TYPE_GET(entry) != NLPTR_TYPE_QH)) {
1664 fprintf(stderr, "non queue head request in async schedule\n");
1665 return -1;
1666 }
1667
1668 switch (NLPTR_TYPE_GET(entry)) {
1669 case NLPTR_TYPE_QH:
1670 ehci_set_state(ehci, async, EST_FETCHQH);
1671 again = 1;
1672 break;
1673
1674 case NLPTR_TYPE_ITD:
1675 ehci_set_state(ehci, async, EST_FETCHITD);
1676 again = 1;
1677 break;
1678
1679 case NLPTR_TYPE_STITD:
1680 ehci_set_state(ehci, async, EST_FETCHSITD);
1681 again = 1;
1682 break;
1683
1684 default:
1685 /* TODO: handle FSTN type */
1686 fprintf(stderr, "FETCHENTRY: entry at %X is of type %d "
1687 "which is not supported yet\n", entry, NLPTR_TYPE_GET(entry));
1688 return -1;
1689 }
1690
1691 out:
1692 return again;
1693 }
1694
1695 static EHCIQueue *ehci_state_fetchqh(EHCIState *ehci, int async)
1696 {
1697 EHCIPacket *p;
1698 uint32_t entry, devaddr;
1699 EHCIQueue *q;
1700
1701 entry = ehci_get_fetch_addr(ehci, async);
1702 q = ehci_find_queue_by_qh(ehci, entry, async);
1703 if (NULL == q) {
1704 q = ehci_alloc_queue(ehci, entry, async);
1705 }
1706 p = QTAILQ_FIRST(&q->packets);
1707
1708 q->seen++;
1709 if (q->seen > 1) {
1710 /* we are going in circles -- stop processing */
1711 ehci_set_state(ehci, async, EST_ACTIVE);
1712 q = NULL;
1713 goto out;
1714 }
1715
1716 get_dwords(ehci, NLPTR_GET(q->qhaddr),
1717 (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1718 ehci_trace_qh(q, NLPTR_GET(q->qhaddr), &q->qh);
1719
1720 devaddr = get_field(q->qh.epchar, QH_EPCHAR_DEVADDR);
1721 if (q->dev != NULL && q->dev->addr != devaddr) {
1722 if (!QTAILQ_EMPTY(&q->packets)) {
1723 /* should not happen (guest bug) */
1724 while ((p = QTAILQ_FIRST(&q->packets)) != NULL) {
1725 ehci_free_packet(p);
1726 }
1727 }
1728 q->dev = NULL;
1729 }
1730 if (q->dev == NULL) {
1731 q->dev = ehci_find_device(q->ehci, devaddr);
1732 }
1733
1734 if (p && p->async == EHCI_ASYNC_INFLIGHT) {
1735 /* I/O still in progress -- skip queue */
1736 ehci_set_state(ehci, async, EST_HORIZONTALQH);
1737 goto out;
1738 }
1739 if (p && p->async == EHCI_ASYNC_FINISHED) {
1740 /* I/O finished -- continue processing queue */
1741 trace_usb_ehci_packet_action(p->queue, p, "complete");
1742 ehci_set_state(ehci, async, EST_EXECUTING);
1743 goto out;
1744 }
1745
1746 if (async && (q->qh.epchar & QH_EPCHAR_H)) {
1747
1748 /* EHCI spec version 1.0 Section 4.8.3 & 4.10.1 */
1749 if (ehci->usbsts & USBSTS_REC) {
1750 ehci_clear_usbsts(ehci, USBSTS_REC);
1751 } else {
1752 DPRINTF("FETCHQH: QH 0x%08x. H-bit set, reclamation status reset"
1753 " - done processing\n", q->qhaddr);
1754 ehci_set_state(ehci, async, EST_ACTIVE);
1755 q = NULL;
1756 goto out;
1757 }
1758 }
1759
1760 #if EHCI_DEBUG
1761 if (q->qhaddr != q->qh.next) {
1762 DPRINTF("FETCHQH: QH 0x%08x (h %x halt %x active %x) next 0x%08x\n",
1763 q->qhaddr,
1764 q->qh.epchar & QH_EPCHAR_H,
1765 q->qh.token & QTD_TOKEN_HALT,
1766 q->qh.token & QTD_TOKEN_ACTIVE,
1767 q->qh.next);
1768 }
1769 #endif
1770
1771 if (q->qh.token & QTD_TOKEN_HALT) {
1772 ehci_set_state(ehci, async, EST_HORIZONTALQH);
1773
1774 } else if ((q->qh.token & QTD_TOKEN_ACTIVE) &&
1775 (NLPTR_TBIT(q->qh.current_qtd) == 0)) {
1776 q->qtdaddr = q->qh.current_qtd;
1777 ehci_set_state(ehci, async, EST_FETCHQTD);
1778
1779 } else {
1780 /* EHCI spec version 1.0 Section 4.10.2 */
1781 ehci_set_state(ehci, async, EST_ADVANCEQUEUE);
1782 }
1783
1784 out:
1785 return q;
1786 }
1787
1788 static int ehci_state_fetchitd(EHCIState *ehci, int async)
1789 {
1790 uint32_t entry;
1791 EHCIitd itd;
1792
1793 assert(!async);
1794 entry = ehci_get_fetch_addr(ehci, async);
1795
1796 get_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &itd,
1797 sizeof(EHCIitd) >> 2);
1798 ehci_trace_itd(ehci, entry, &itd);
1799
1800 if (ehci_process_itd(ehci, &itd) != 0) {
1801 return -1;
1802 }
1803
1804 put_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &itd,
1805 sizeof(EHCIitd) >> 2);
1806 ehci_set_fetch_addr(ehci, async, itd.next);
1807 ehci_set_state(ehci, async, EST_FETCHENTRY);
1808
1809 return 1;
1810 }
1811
1812 static int ehci_state_fetchsitd(EHCIState *ehci, int async)
1813 {
1814 uint32_t entry;
1815 EHCIsitd sitd;
1816
1817 assert(!async);
1818 entry = ehci_get_fetch_addr(ehci, async);
1819
1820 get_dwords(ehci, NLPTR_GET(entry), (uint32_t *)&sitd,
1821 sizeof(EHCIsitd) >> 2);
1822 ehci_trace_sitd(ehci, entry, &sitd);
1823
1824 if (!(sitd.results & SITD_RESULTS_ACTIVE)) {
1825 /* siTD is not active, nothing to do */;
1826 } else {
1827 /* TODO: split transfers are not implemented */
1828 fprintf(stderr, "WARNING: Skipping active siTD\n");
1829 }
1830
1831 ehci_set_fetch_addr(ehci, async, sitd.next);
1832 ehci_set_state(ehci, async, EST_FETCHENTRY);
1833 return 1;
1834 }
1835
1836 /* Section 4.10.2 - paragraph 3 */
1837 static int ehci_state_advqueue(EHCIQueue *q)
1838 {
1839 #if 0
1840 /* TO-DO: 4.10.2 - paragraph 2
1841 * if I-bit is set to 1 and QH is not active
1842 * go to horizontal QH
1843 */
1844 if (I-bit set) {
1845 ehci_set_state(ehci, async, EST_HORIZONTALQH);
1846 goto out;
1847 }
1848 #endif
1849
1850 /*
1851 * want data and alt-next qTD is valid
1852 */
1853 if (((q->qh.token & QTD_TOKEN_TBYTES_MASK) != 0) &&
1854 (NLPTR_TBIT(q->qh.altnext_qtd) == 0)) {
1855 q->qtdaddr = q->qh.altnext_qtd;
1856 ehci_set_state(q->ehci, q->async, EST_FETCHQTD);
1857
1858 /*
1859 * next qTD is valid
1860 */
1861 } else if (NLPTR_TBIT(q->qh.next_qtd) == 0) {
1862 q->qtdaddr = q->qh.next_qtd;
1863 ehci_set_state(q->ehci, q->async, EST_FETCHQTD);
1864
1865 /*
1866 * no valid qTD, try next QH
1867 */
1868 } else {
1869 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
1870 }
1871
1872 return 1;
1873 }
1874
1875 /* Section 4.10.2 - paragraph 4 */
1876 static int ehci_state_fetchqtd(EHCIQueue *q)
1877 {
1878 EHCIqtd qtd;
1879 EHCIPacket *p;
1880 int again = 0;
1881
1882 get_dwords(q->ehci, NLPTR_GET(q->qtdaddr), (uint32_t *) &qtd,
1883 sizeof(EHCIqtd) >> 2);
1884 ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), &qtd);
1885
1886 p = QTAILQ_FIRST(&q->packets);
1887 while (p != NULL && p->qtdaddr != q->qtdaddr) {
1888 /* should not happen (guest bug) */
1889 ehci_free_packet(p);
1890 p = QTAILQ_FIRST(&q->packets);
1891 }
1892 if (p != NULL) {
1893 ehci_qh_do_overlay(q);
1894 ehci_flush_qh(q);
1895 if (p->async == EHCI_ASYNC_INFLIGHT) {
1896 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
1897 } else {
1898 ehci_set_state(q->ehci, q->async, EST_EXECUTING);
1899 }
1900 again = 1;
1901 } else if (qtd.token & QTD_TOKEN_ACTIVE) {
1902 p = ehci_alloc_packet(q);
1903 p->qtdaddr = q->qtdaddr;
1904 p->qtd = qtd;
1905 ehci_set_state(q->ehci, q->async, EST_EXECUTE);
1906 again = 1;
1907 } else {
1908 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
1909 again = 1;
1910 }
1911
1912 return again;
1913 }
1914
1915 static int ehci_state_horizqh(EHCIQueue *q)
1916 {
1917 int again = 0;
1918
1919 if (ehci_get_fetch_addr(q->ehci, q->async) != q->qh.next) {
1920 ehci_set_fetch_addr(q->ehci, q->async, q->qh.next);
1921 ehci_set_state(q->ehci, q->async, EST_FETCHENTRY);
1922 again = 1;
1923 } else {
1924 ehci_set_state(q->ehci, q->async, EST_ACTIVE);
1925 }
1926
1927 return again;
1928 }
1929
1930 static void ehci_fill_queue(EHCIPacket *p)
1931 {
1932 EHCIQueue *q = p->queue;
1933 EHCIqtd qtd = p->qtd;
1934 uint32_t qtdaddr;
1935
1936 for (;;) {
1937 if (NLPTR_TBIT(qtd.altnext) == 0) {
1938 break;
1939 }
1940 if (NLPTR_TBIT(qtd.next) != 0) {
1941 break;
1942 }
1943 qtdaddr = qtd.next;
1944 get_dwords(q->ehci, NLPTR_GET(qtdaddr),
1945 (uint32_t *) &qtd, sizeof(EHCIqtd) >> 2);
1946 ehci_trace_qtd(q, NLPTR_GET(qtdaddr), &qtd);
1947 if (!(qtd.token & QTD_TOKEN_ACTIVE)) {
1948 break;
1949 }
1950 p = ehci_alloc_packet(q);
1951 p->qtdaddr = qtdaddr;
1952 p->qtd = qtd;
1953 p->usb_status = ehci_execute(p, "queue");
1954 assert(p->usb_status = USB_RET_ASYNC);
1955 p->async = EHCI_ASYNC_INFLIGHT;
1956 }
1957 }
1958
1959 static int ehci_state_execute(EHCIQueue *q)
1960 {
1961 EHCIPacket *p = QTAILQ_FIRST(&q->packets);
1962 int again = 0;
1963
1964 assert(p != NULL);
1965 assert(p->qtdaddr == q->qtdaddr);
1966
1967 if (ehci_qh_do_overlay(q) != 0) {
1968 return -1;
1969 }
1970
1971 // TODO verify enough time remains in the uframe as in 4.4.1.1
1972 // TODO write back ptr to async list when done or out of time
1973 // TODO Windows does not seem to ever set the MULT field
1974
1975 if (!q->async) {
1976 int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1977 if (!transactCtr) {
1978 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
1979 again = 1;
1980 goto out;
1981 }
1982 }
1983
1984 if (q->async) {
1985 ehci_set_usbsts(q->ehci, USBSTS_REC);
1986 }
1987
1988 p->usb_status = ehci_execute(p, "process");
1989 if (p->usb_status == USB_RET_PROCERR) {
1990 again = -1;
1991 goto out;
1992 }
1993 if (p->usb_status == USB_RET_ASYNC) {
1994 ehci_flush_qh(q);
1995 trace_usb_ehci_packet_action(p->queue, p, "async");
1996 p->async = EHCI_ASYNC_INFLIGHT;
1997 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
1998 again = 1;
1999 ehci_fill_queue(p);
2000 goto out;
2001 }
2002
2003 ehci_set_state(q->ehci, q->async, EST_EXECUTING);
2004 again = 1;
2005
2006 out:
2007 return again;
2008 }
2009
2010 static int ehci_state_executing(EHCIQueue *q)
2011 {
2012 EHCIPacket *p = QTAILQ_FIRST(&q->packets);
2013 int again = 0;
2014
2015 assert(p != NULL);
2016 assert(p->qtdaddr == q->qtdaddr);
2017
2018 ehci_execute_complete(q);
2019 if (p->usb_status == USB_RET_ASYNC) {
2020 goto out;
2021 }
2022 if (p->usb_status == USB_RET_PROCERR) {
2023 again = -1;
2024 goto out;
2025 }
2026
2027 // 4.10.3
2028 if (!q->async) {
2029 int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
2030 transactCtr--;
2031 set_field(&q->qh.epcap, transactCtr, QH_EPCAP_MULT);
2032 // 4.10.3, bottom of page 82, should exit this state when transaction
2033 // counter decrements to 0
2034 }
2035
2036 /* 4.10.5 */
2037 if (p->usb_status == USB_RET_NAK) {
2038 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
2039 } else {
2040 ehci_set_state(q->ehci, q->async, EST_WRITEBACK);
2041 }
2042
2043 again = 1;
2044
2045 out:
2046 ehci_flush_qh(q);
2047 return again;
2048 }
2049
2050
2051 static int ehci_state_writeback(EHCIQueue *q)
2052 {
2053 EHCIPacket *p = QTAILQ_FIRST(&q->packets);
2054 int again = 0;
2055
2056 /* Write back the QTD from the QH area */
2057 assert(p != NULL);
2058 assert(p->qtdaddr == q->qtdaddr);
2059
2060 ehci_trace_qtd(q, NLPTR_GET(p->qtdaddr), (EHCIqtd *) &q->qh.next_qtd);
2061 put_dwords(q->ehci, NLPTR_GET(p->qtdaddr), (uint32_t *) &q->qh.next_qtd,
2062 sizeof(EHCIqtd) >> 2);
2063 ehci_free_packet(p);
2064
2065 /*
2066 * EHCI specs say go horizontal here.
2067 *
2068 * We can also advance the queue here for performance reasons. We
2069 * need to take care to only take that shortcut in case we've
2070 * processed the qtd just written back without errors, i.e. halt
2071 * bit is clear.
2072 */
2073 if (q->qh.token & QTD_TOKEN_HALT) {
2074 ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH);
2075 again = 1;
2076 } else {
2077 ehci_set_state(q->ehci, q->async, EST_ADVANCEQUEUE);
2078 again = 1;
2079 }
2080 return again;
2081 }
2082
2083 /*
2084 * This is the state machine that is common to both async and periodic
2085 */
2086
2087 static void ehci_advance_state(EHCIState *ehci, int async)
2088 {
2089 EHCIQueue *q = NULL;
2090 int again;
2091
2092 do {
2093 switch(ehci_get_state(ehci, async)) {
2094 case EST_WAITLISTHEAD:
2095 again = ehci_state_waitlisthead(ehci, async);
2096 break;
2097
2098 case EST_FETCHENTRY:
2099 again = ehci_state_fetchentry(ehci, async);
2100 break;
2101
2102 case EST_FETCHQH:
2103 q = ehci_state_fetchqh(ehci, async);
2104 if (q != NULL) {
2105 assert(q->async == async);
2106 again = 1;
2107 } else {
2108 again = 0;
2109 }
2110 break;
2111
2112 case EST_FETCHITD:
2113 again = ehci_state_fetchitd(ehci, async);
2114 break;
2115
2116 case EST_FETCHSITD:
2117 again = ehci_state_fetchsitd(ehci, async);
2118 break;
2119
2120 case EST_ADVANCEQUEUE:
2121 again = ehci_state_advqueue(q);
2122 break;
2123
2124 case EST_FETCHQTD:
2125 again = ehci_state_fetchqtd(q);
2126 break;
2127
2128 case EST_HORIZONTALQH:
2129 again = ehci_state_horizqh(q);
2130 break;
2131
2132 case EST_EXECUTE:
2133 again = ehci_state_execute(q);
2134 break;
2135
2136 case EST_EXECUTING:
2137 assert(q != NULL);
2138 again = ehci_state_executing(q);
2139 break;
2140
2141 case EST_WRITEBACK:
2142 assert(q != NULL);
2143 again = ehci_state_writeback(q);
2144 break;
2145
2146 default:
2147 fprintf(stderr, "Bad state!\n");
2148 again = -1;
2149 assert(0);
2150 break;
2151 }
2152
2153 if (again < 0) {
2154 fprintf(stderr, "processing error - resetting ehci HC\n");
2155 ehci_reset(ehci);
2156 again = 0;
2157 }
2158 }
2159 while (again);
2160
2161 ehci_commit_interrupt(ehci);
2162 }
2163
2164 static void ehci_advance_async_state(EHCIState *ehci)
2165 {
2166 const int async = 1;
2167
2168 switch(ehci_get_state(ehci, async)) {
2169 case EST_INACTIVE:
2170 if (!ehci_async_enabled(ehci)) {
2171 break;
2172 }
2173 ehci_set_usbsts(ehci, USBSTS_ASS);
2174 ehci_set_state(ehci, async, EST_ACTIVE);
2175 // No break, fall through to ACTIVE
2176
2177 case EST_ACTIVE:
2178 if (!ehci_async_enabled(ehci)) {
2179 ehci_queues_rip_all(ehci, async);
2180 ehci_clear_usbsts(ehci, USBSTS_ASS);
2181 ehci_set_state(ehci, async, EST_INACTIVE);
2182 break;
2183 }
2184
2185 /* make sure guest has acknowledged the doorbell interrupt */
2186 /* TO-DO: is this really needed? */
2187 if (ehci->usbsts & USBSTS_IAA) {
2188 DPRINTF("IAA status bit still set.\n");
2189 break;
2190 }
2191
2192 /* check that address register has been set */
2193 if (ehci->asynclistaddr == 0) {
2194 break;
2195 }
2196
2197 ehci_set_state(ehci, async, EST_WAITLISTHEAD);
2198 ehci_advance_state(ehci, async);
2199
2200 /* If the doorbell is set, the guest wants to make a change to the
2201 * schedule. The host controller needs to release cached data.
2202 * (section 4.8.2)
2203 */
2204 if (ehci->usbcmd & USBCMD_IAAD) {
2205 /* Remove all unseen qhs from the async qhs queue */
2206 ehci_queues_rip_unused(ehci, async, 1);
2207 DPRINTF("ASYNC: doorbell request acknowledged\n");
2208 ehci->usbcmd &= ~USBCMD_IAAD;
2209 ehci_set_interrupt(ehci, USBSTS_IAA);
2210 }
2211 break;
2212
2213 default:
2214 /* this should only be due to a developer mistake */
2215 fprintf(stderr, "ehci: Bad asynchronous state %d. "
2216 "Resetting to active\n", ehci->astate);
2217 assert(0);
2218 }
2219 }
2220
2221 static void ehci_advance_periodic_state(EHCIState *ehci)
2222 {
2223 uint32_t entry;
2224 uint32_t list;
2225 const int async = 0;
2226
2227 // 4.6
2228
2229 switch(ehci_get_state(ehci, async)) {
2230 case EST_INACTIVE:
2231 if (!(ehci->frindex & 7) && ehci_periodic_enabled(ehci)) {
2232 ehci_set_usbsts(ehci, USBSTS_PSS);
2233 ehci_set_state(ehci, async, EST_ACTIVE);
2234 // No break, fall through to ACTIVE
2235 } else
2236 break;
2237
2238 case EST_ACTIVE:
2239 if (!(ehci->frindex & 7) && !ehci_periodic_enabled(ehci)) {
2240 ehci_queues_rip_all(ehci, async);
2241 ehci_clear_usbsts(ehci, USBSTS_PSS);
2242 ehci_set_state(ehci, async, EST_INACTIVE);
2243 break;
2244 }
2245
2246 list = ehci->periodiclistbase & 0xfffff000;
2247 /* check that register has been set */
2248 if (list == 0) {
2249 break;
2250 }
2251 list |= ((ehci->frindex & 0x1ff8) >> 1);
2252
2253 pci_dma_read(&ehci->dev, list, &entry, sizeof entry);
2254 entry = le32_to_cpu(entry);
2255
2256 DPRINTF("PERIODIC state adv fr=%d. [%08X] -> %08X\n",
2257 ehci->frindex / 8, list, entry);
2258 ehci_set_fetch_addr(ehci, async,entry);
2259 ehci_set_state(ehci, async, EST_FETCHENTRY);
2260 ehci_advance_state(ehci, async);
2261 ehci_queues_rip_unused(ehci, async, 0);
2262 break;
2263
2264 default:
2265 /* this should only be due to a developer mistake */
2266 fprintf(stderr, "ehci: Bad periodic state %d. "
2267 "Resetting to active\n", ehci->pstate);
2268 assert(0);
2269 }
2270 }
2271
2272 static void ehci_frame_timer(void *opaque)
2273 {
2274 EHCIState *ehci = opaque;
2275 int64_t expire_time, t_now;
2276 uint64_t ns_elapsed;
2277 int frames;
2278 int i;
2279 int skipped_frames = 0;
2280
2281 t_now = qemu_get_clock_ns(vm_clock);
2282 expire_time = t_now + (get_ticks_per_sec() / ehci->freq);
2283
2284 ns_elapsed = t_now - ehci->last_run_ns;
2285 frames = ns_elapsed / FRAME_TIMER_NS;
2286
2287 for (i = 0; i < frames; i++) {
2288 if ( !(ehci->usbsts & USBSTS_HALT)) {
2289 ehci->frindex += 8;
2290
2291 if (ehci->frindex == 0x00002000) {
2292 ehci_set_interrupt(ehci, USBSTS_FLR);
2293 }
2294
2295 if (ehci->frindex == 0x00004000) {
2296 ehci_set_interrupt(ehci, USBSTS_FLR);
2297 ehci->frindex = 0;
2298 }
2299 }
2300
2301 if (frames - i > ehci->maxframes) {
2302 skipped_frames++;
2303 } else {
2304 ehci_advance_periodic_state(ehci);
2305 }
2306
2307 ehci->last_run_ns += FRAME_TIMER_NS;
2308 }
2309
2310 #if 0
2311 if (skipped_frames) {
2312 DPRINTF("WARNING - EHCI skipped %d frames\n", skipped_frames);
2313 }
2314 #endif
2315
2316 /* Async is not inside loop since it executes everything it can once
2317 * called
2318 */
2319 qemu_bh_schedule(ehci->async_bh);
2320
2321 qemu_mod_timer(ehci->frame_timer, expire_time);
2322 }
2323
2324 static void ehci_async_bh(void *opaque)
2325 {
2326 EHCIState *ehci = opaque;
2327 ehci_advance_async_state(ehci);
2328 }
2329
2330 static const MemoryRegionOps ehci_mem_ops = {
2331 .old_mmio = {
2332 .read = { ehci_mem_readb, ehci_mem_readw, ehci_mem_readl },
2333 .write = { ehci_mem_writeb, ehci_mem_writew, ehci_mem_writel },
2334 },
2335 .endianness = DEVICE_LITTLE_ENDIAN,
2336 };
2337
2338 static int usb_ehci_initfn(PCIDevice *dev);
2339
2340 static USBPortOps ehci_port_ops = {
2341 .attach = ehci_attach,
2342 .detach = ehci_detach,
2343 .child_detach = ehci_child_detach,
2344 .wakeup = ehci_wakeup,
2345 .complete = ehci_async_complete_packet,
2346 };
2347
2348 static USBBusOps ehci_bus_ops = {
2349 .register_companion = ehci_register_companion,
2350 };
2351
2352 static const VMStateDescription vmstate_ehci = {
2353 .name = "ehci",
2354 .unmigratable = 1,
2355 };
2356
2357 static Property ehci_properties[] = {
2358 DEFINE_PROP_UINT32("freq", EHCIState, freq, FRAME_TIMER_FREQ),
2359 DEFINE_PROP_UINT32("maxframes", EHCIState, maxframes, 128),
2360 DEFINE_PROP_END_OF_LIST(),
2361 };
2362
2363 static void ehci_class_init(ObjectClass *klass, void *data)
2364 {
2365 DeviceClass *dc = DEVICE_CLASS(klass);
2366 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
2367
2368 k->init = usb_ehci_initfn;
2369 k->vendor_id = PCI_VENDOR_ID_INTEL;
2370 k->device_id = PCI_DEVICE_ID_INTEL_82801D; /* ich4 */
2371 k->revision = 0x10;
2372 k->class_id = PCI_CLASS_SERIAL_USB;
2373 dc->vmsd = &vmstate_ehci;
2374 dc->props = ehci_properties;
2375 }
2376
2377 static TypeInfo ehci_info = {
2378 .name = "usb-ehci",
2379 .parent = TYPE_PCI_DEVICE,
2380 .instance_size = sizeof(EHCIState),
2381 .class_init = ehci_class_init,
2382 };
2383
2384 static void ich9_ehci_class_init(ObjectClass *klass, void *data)
2385 {
2386 DeviceClass *dc = DEVICE_CLASS(klass);
2387 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
2388
2389 k->init = usb_ehci_initfn;
2390 k->vendor_id = PCI_VENDOR_ID_INTEL;
2391 k->device_id = PCI_DEVICE_ID_INTEL_82801I_EHCI1;
2392 k->revision = 0x03;
2393 k->class_id = PCI_CLASS_SERIAL_USB;
2394 dc->vmsd = &vmstate_ehci;
2395 dc->props = ehci_properties;
2396 }
2397
2398 static TypeInfo ich9_ehci_info = {
2399 .name = "ich9-usb-ehci1",
2400 .parent = TYPE_PCI_DEVICE,
2401 .instance_size = sizeof(EHCIState),
2402 .class_init = ich9_ehci_class_init,
2403 };
2404
2405 static int usb_ehci_initfn(PCIDevice *dev)
2406 {
2407 EHCIState *s = DO_UPCAST(EHCIState, dev, dev);
2408 uint8_t *pci_conf = s->dev.config;
2409 int i;
2410
2411 pci_set_byte(&pci_conf[PCI_CLASS_PROG], 0x20);
2412
2413 /* capabilities pointer */
2414 pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x00);
2415 //pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x50);
2416
2417 pci_set_byte(&pci_conf[PCI_INTERRUPT_PIN], 4); /* interrupt pin D */
2418 pci_set_byte(&pci_conf[PCI_MIN_GNT], 0);
2419 pci_set_byte(&pci_conf[PCI_MAX_LAT], 0);
2420
2421 // pci_conf[0x50] = 0x01; // power management caps
2422
2423 pci_set_byte(&pci_conf[USB_SBRN], USB_RELEASE_2); // release number (2.1.4)
2424 pci_set_byte(&pci_conf[0x61], 0x20); // frame length adjustment (2.1.5)
2425 pci_set_word(&pci_conf[0x62], 0x00); // port wake up capability (2.1.6)
2426
2427 pci_conf[0x64] = 0x00;
2428 pci_conf[0x65] = 0x00;
2429 pci_conf[0x66] = 0x00;
2430 pci_conf[0x67] = 0x00;
2431 pci_conf[0x68] = 0x01;
2432 pci_conf[0x69] = 0x00;
2433 pci_conf[0x6a] = 0x00;
2434 pci_conf[0x6b] = 0x00; // USBLEGSUP
2435 pci_conf[0x6c] = 0x00;
2436 pci_conf[0x6d] = 0x00;
2437 pci_conf[0x6e] = 0x00;
2438 pci_conf[0x6f] = 0xc0; // USBLEFCTLSTS
2439
2440 // 2.2 host controller interface version
2441 s->mmio[0x00] = (uint8_t) OPREGBASE;
2442 s->mmio[0x01] = 0x00;
2443 s->mmio[0x02] = 0x00;
2444 s->mmio[0x03] = 0x01; // HC version
2445 s->mmio[0x04] = NB_PORTS; // Number of downstream ports
2446 s->mmio[0x05] = 0x00; // No companion ports at present
2447 s->mmio[0x06] = 0x00;
2448 s->mmio[0x07] = 0x00;
2449 s->mmio[0x08] = 0x80; // We can cache whole frame, not 64-bit capable
2450 s->mmio[0x09] = 0x68; // EECP
2451 s->mmio[0x0a] = 0x00;
2452 s->mmio[0x0b] = 0x00;
2453
2454 s->irq = s->dev.irq[3];
2455
2456 usb_bus_new(&s->bus, &ehci_bus_ops, &s->dev.qdev);
2457 for(i = 0; i < NB_PORTS; i++) {
2458 usb_register_port(&s->bus, &s->ports[i], s, i, &ehci_port_ops,
2459 USB_SPEED_MASK_HIGH);
2460 s->ports[i].dev = 0;
2461 }
2462
2463 s->frame_timer = qemu_new_timer_ns(vm_clock, ehci_frame_timer, s);
2464 s->async_bh = qemu_bh_new(ehci_async_bh, s);
2465 QTAILQ_INIT(&s->aqueues);
2466 QTAILQ_INIT(&s->pqueues);
2467
2468 qemu_register_reset(ehci_reset, s);
2469
2470 memory_region_init_io(&s->mem, &ehci_mem_ops, s, "ehci", MMIO_SIZE);
2471 pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->mem);
2472
2473 return 0;
2474 }
2475
2476 static void ehci_register_types(void)
2477 {
2478 type_register_static(&ehci_info);
2479 type_register_static(&ich9_ehci_info);
2480 }
2481
2482 type_init(ehci_register_types)
2483
2484 /*
2485 * vim: expandtab ts=4
2486 */