]> git.proxmox.com Git - qemu.git/blob - hw/usb/hcd-musb.c
bswap.h: Remove le32_to_cpupu()
[qemu.git] / hw / usb / hcd-musb.c
1 /*
2 * "Inventra" High-speed Dual-Role Controller (MUSB-HDRC), Mentor Graphics,
3 * USB2.0 OTG compliant core used in various chips.
4 *
5 * Copyright (C) 2008 Nokia Corporation
6 * Written by Andrzej Zaborowski <andrew@openedhand.com>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 or
11 * (at your option) version 3 of the License.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 *
21 * Only host-mode and non-DMA accesses are currently supported.
22 */
23 #include "qemu-common.h"
24 #include "qemu/timer.h"
25 #include "hw/usb.h"
26 #include "hw/irq.h"
27 #include "hw/hw.h"
28
29 /* Common USB registers */
30 #define MUSB_HDRC_FADDR 0x00 /* 8-bit */
31 #define MUSB_HDRC_POWER 0x01 /* 8-bit */
32
33 #define MUSB_HDRC_INTRTX 0x02 /* 16-bit */
34 #define MUSB_HDRC_INTRRX 0x04
35 #define MUSB_HDRC_INTRTXE 0x06
36 #define MUSB_HDRC_INTRRXE 0x08
37 #define MUSB_HDRC_INTRUSB 0x0a /* 8 bit */
38 #define MUSB_HDRC_INTRUSBE 0x0b /* 8 bit */
39 #define MUSB_HDRC_FRAME 0x0c /* 16-bit */
40 #define MUSB_HDRC_INDEX 0x0e /* 8 bit */
41 #define MUSB_HDRC_TESTMODE 0x0f /* 8 bit */
42
43 /* Per-EP registers in indexed mode */
44 #define MUSB_HDRC_EP_IDX 0x10 /* 8-bit */
45
46 /* EP FIFOs */
47 #define MUSB_HDRC_FIFO 0x20
48
49 /* Additional Control Registers */
50 #define MUSB_HDRC_DEVCTL 0x60 /* 8 bit */
51
52 /* These are indexed */
53 #define MUSB_HDRC_TXFIFOSZ 0x62 /* 8 bit (see masks) */
54 #define MUSB_HDRC_RXFIFOSZ 0x63 /* 8 bit (see masks) */
55 #define MUSB_HDRC_TXFIFOADDR 0x64 /* 16 bit offset shifted right 3 */
56 #define MUSB_HDRC_RXFIFOADDR 0x66 /* 16 bit offset shifted right 3 */
57
58 /* Some more registers */
59 #define MUSB_HDRC_VCTRL 0x68 /* 8 bit */
60 #define MUSB_HDRC_HWVERS 0x6c /* 8 bit */
61
62 /* Added in HDRC 1.9(?) & MHDRC 1.4 */
63 /* ULPI pass-through */
64 #define MUSB_HDRC_ULPI_VBUSCTL 0x70
65 #define MUSB_HDRC_ULPI_REGDATA 0x74
66 #define MUSB_HDRC_ULPI_REGADDR 0x75
67 #define MUSB_HDRC_ULPI_REGCTL 0x76
68
69 /* Extended config & PHY control */
70 #define MUSB_HDRC_ENDCOUNT 0x78 /* 8 bit */
71 #define MUSB_HDRC_DMARAMCFG 0x79 /* 8 bit */
72 #define MUSB_HDRC_PHYWAIT 0x7a /* 8 bit */
73 #define MUSB_HDRC_PHYVPLEN 0x7b /* 8 bit */
74 #define MUSB_HDRC_HS_EOF1 0x7c /* 8 bit, units of 546.1 us */
75 #define MUSB_HDRC_FS_EOF1 0x7d /* 8 bit, units of 533.3 ns */
76 #define MUSB_HDRC_LS_EOF1 0x7e /* 8 bit, units of 1.067 us */
77
78 /* Per-EP BUSCTL registers */
79 #define MUSB_HDRC_BUSCTL 0x80
80
81 /* Per-EP registers in flat mode */
82 #define MUSB_HDRC_EP 0x100
83
84 /* offsets to registers in flat model */
85 #define MUSB_HDRC_TXMAXP 0x00 /* 16 bit apparently */
86 #define MUSB_HDRC_TXCSR 0x02 /* 16 bit apparently */
87 #define MUSB_HDRC_CSR0 MUSB_HDRC_TXCSR /* re-used for EP0 */
88 #define MUSB_HDRC_RXMAXP 0x04 /* 16 bit apparently */
89 #define MUSB_HDRC_RXCSR 0x06 /* 16 bit apparently */
90 #define MUSB_HDRC_RXCOUNT 0x08 /* 16 bit apparently */
91 #define MUSB_HDRC_COUNT0 MUSB_HDRC_RXCOUNT /* re-used for EP0 */
92 #define MUSB_HDRC_TXTYPE 0x0a /* 8 bit apparently */
93 #define MUSB_HDRC_TYPE0 MUSB_HDRC_TXTYPE /* re-used for EP0 */
94 #define MUSB_HDRC_TXINTERVAL 0x0b /* 8 bit apparently */
95 #define MUSB_HDRC_NAKLIMIT0 MUSB_HDRC_TXINTERVAL /* re-used for EP0 */
96 #define MUSB_HDRC_RXTYPE 0x0c /* 8 bit apparently */
97 #define MUSB_HDRC_RXINTERVAL 0x0d /* 8 bit apparently */
98 #define MUSB_HDRC_FIFOSIZE 0x0f /* 8 bit apparently */
99 #define MUSB_HDRC_CONFIGDATA MGC_O_HDRC_FIFOSIZE /* re-used for EP0 */
100
101 /* "Bus control" registers */
102 #define MUSB_HDRC_TXFUNCADDR 0x00
103 #define MUSB_HDRC_TXHUBADDR 0x02
104 #define MUSB_HDRC_TXHUBPORT 0x03
105
106 #define MUSB_HDRC_RXFUNCADDR 0x04
107 #define MUSB_HDRC_RXHUBADDR 0x06
108 #define MUSB_HDRC_RXHUBPORT 0x07
109
110 /*
111 * MUSBHDRC Register bit masks
112 */
113
114 /* POWER */
115 #define MGC_M_POWER_ISOUPDATE 0x80
116 #define MGC_M_POWER_SOFTCONN 0x40
117 #define MGC_M_POWER_HSENAB 0x20
118 #define MGC_M_POWER_HSMODE 0x10
119 #define MGC_M_POWER_RESET 0x08
120 #define MGC_M_POWER_RESUME 0x04
121 #define MGC_M_POWER_SUSPENDM 0x02
122 #define MGC_M_POWER_ENSUSPEND 0x01
123
124 /* INTRUSB */
125 #define MGC_M_INTR_SUSPEND 0x01
126 #define MGC_M_INTR_RESUME 0x02
127 #define MGC_M_INTR_RESET 0x04
128 #define MGC_M_INTR_BABBLE 0x04
129 #define MGC_M_INTR_SOF 0x08
130 #define MGC_M_INTR_CONNECT 0x10
131 #define MGC_M_INTR_DISCONNECT 0x20
132 #define MGC_M_INTR_SESSREQ 0x40
133 #define MGC_M_INTR_VBUSERROR 0x80 /* FOR SESSION END */
134 #define MGC_M_INTR_EP0 0x01 /* FOR EP0 INTERRUPT */
135
136 /* DEVCTL */
137 #define MGC_M_DEVCTL_BDEVICE 0x80
138 #define MGC_M_DEVCTL_FSDEV 0x40
139 #define MGC_M_DEVCTL_LSDEV 0x20
140 #define MGC_M_DEVCTL_VBUS 0x18
141 #define MGC_S_DEVCTL_VBUS 3
142 #define MGC_M_DEVCTL_HM 0x04
143 #define MGC_M_DEVCTL_HR 0x02
144 #define MGC_M_DEVCTL_SESSION 0x01
145
146 /* TESTMODE */
147 #define MGC_M_TEST_FORCE_HOST 0x80
148 #define MGC_M_TEST_FIFO_ACCESS 0x40
149 #define MGC_M_TEST_FORCE_FS 0x20
150 #define MGC_M_TEST_FORCE_HS 0x10
151 #define MGC_M_TEST_PACKET 0x08
152 #define MGC_M_TEST_K 0x04
153 #define MGC_M_TEST_J 0x02
154 #define MGC_M_TEST_SE0_NAK 0x01
155
156 /* CSR0 */
157 #define MGC_M_CSR0_FLUSHFIFO 0x0100
158 #define MGC_M_CSR0_TXPKTRDY 0x0002
159 #define MGC_M_CSR0_RXPKTRDY 0x0001
160
161 /* CSR0 in Peripheral mode */
162 #define MGC_M_CSR0_P_SVDSETUPEND 0x0080
163 #define MGC_M_CSR0_P_SVDRXPKTRDY 0x0040
164 #define MGC_M_CSR0_P_SENDSTALL 0x0020
165 #define MGC_M_CSR0_P_SETUPEND 0x0010
166 #define MGC_M_CSR0_P_DATAEND 0x0008
167 #define MGC_M_CSR0_P_SENTSTALL 0x0004
168
169 /* CSR0 in Host mode */
170 #define MGC_M_CSR0_H_NO_PING 0x0800
171 #define MGC_M_CSR0_H_WR_DATATOGGLE 0x0400 /* set to allow setting: */
172 #define MGC_M_CSR0_H_DATATOGGLE 0x0200 /* data toggle control */
173 #define MGC_M_CSR0_H_NAKTIMEOUT 0x0080
174 #define MGC_M_CSR0_H_STATUSPKT 0x0040
175 #define MGC_M_CSR0_H_REQPKT 0x0020
176 #define MGC_M_CSR0_H_ERROR 0x0010
177 #define MGC_M_CSR0_H_SETUPPKT 0x0008
178 #define MGC_M_CSR0_H_RXSTALL 0x0004
179
180 /* CONFIGDATA */
181 #define MGC_M_CONFIGDATA_MPRXE 0x80 /* auto bulk pkt combining */
182 #define MGC_M_CONFIGDATA_MPTXE 0x40 /* auto bulk pkt splitting */
183 #define MGC_M_CONFIGDATA_BIGENDIAN 0x20
184 #define MGC_M_CONFIGDATA_HBRXE 0x10 /* HB-ISO for RX */
185 #define MGC_M_CONFIGDATA_HBTXE 0x08 /* HB-ISO for TX */
186 #define MGC_M_CONFIGDATA_DYNFIFO 0x04 /* dynamic FIFO sizing */
187 #define MGC_M_CONFIGDATA_SOFTCONE 0x02 /* SoftConnect */
188 #define MGC_M_CONFIGDATA_UTMIDW 0x01 /* Width, 0 => 8b, 1 => 16b */
189
190 /* TXCSR in Peripheral and Host mode */
191 #define MGC_M_TXCSR_AUTOSET 0x8000
192 #define MGC_M_TXCSR_ISO 0x4000
193 #define MGC_M_TXCSR_MODE 0x2000
194 #define MGC_M_TXCSR_DMAENAB 0x1000
195 #define MGC_M_TXCSR_FRCDATATOG 0x0800
196 #define MGC_M_TXCSR_DMAMODE 0x0400
197 #define MGC_M_TXCSR_CLRDATATOG 0x0040
198 #define MGC_M_TXCSR_FLUSHFIFO 0x0008
199 #define MGC_M_TXCSR_FIFONOTEMPTY 0x0002
200 #define MGC_M_TXCSR_TXPKTRDY 0x0001
201
202 /* TXCSR in Peripheral mode */
203 #define MGC_M_TXCSR_P_INCOMPTX 0x0080
204 #define MGC_M_TXCSR_P_SENTSTALL 0x0020
205 #define MGC_M_TXCSR_P_SENDSTALL 0x0010
206 #define MGC_M_TXCSR_P_UNDERRUN 0x0004
207
208 /* TXCSR in Host mode */
209 #define MGC_M_TXCSR_H_WR_DATATOGGLE 0x0200
210 #define MGC_M_TXCSR_H_DATATOGGLE 0x0100
211 #define MGC_M_TXCSR_H_NAKTIMEOUT 0x0080
212 #define MGC_M_TXCSR_H_RXSTALL 0x0020
213 #define MGC_M_TXCSR_H_ERROR 0x0004
214
215 /* RXCSR in Peripheral and Host mode */
216 #define MGC_M_RXCSR_AUTOCLEAR 0x8000
217 #define MGC_M_RXCSR_DMAENAB 0x2000
218 #define MGC_M_RXCSR_DISNYET 0x1000
219 #define MGC_M_RXCSR_DMAMODE 0x0800
220 #define MGC_M_RXCSR_INCOMPRX 0x0100
221 #define MGC_M_RXCSR_CLRDATATOG 0x0080
222 #define MGC_M_RXCSR_FLUSHFIFO 0x0010
223 #define MGC_M_RXCSR_DATAERROR 0x0008
224 #define MGC_M_RXCSR_FIFOFULL 0x0002
225 #define MGC_M_RXCSR_RXPKTRDY 0x0001
226
227 /* RXCSR in Peripheral mode */
228 #define MGC_M_RXCSR_P_ISO 0x4000
229 #define MGC_M_RXCSR_P_SENTSTALL 0x0040
230 #define MGC_M_RXCSR_P_SENDSTALL 0x0020
231 #define MGC_M_RXCSR_P_OVERRUN 0x0004
232
233 /* RXCSR in Host mode */
234 #define MGC_M_RXCSR_H_AUTOREQ 0x4000
235 #define MGC_M_RXCSR_H_WR_DATATOGGLE 0x0400
236 #define MGC_M_RXCSR_H_DATATOGGLE 0x0200
237 #define MGC_M_RXCSR_H_RXSTALL 0x0040
238 #define MGC_M_RXCSR_H_REQPKT 0x0020
239 #define MGC_M_RXCSR_H_ERROR 0x0004
240
241 /* HUBADDR */
242 #define MGC_M_HUBADDR_MULTI_TT 0x80
243
244 /* ULPI: Added in HDRC 1.9(?) & MHDRC 1.4 */
245 #define MGC_M_ULPI_VBCTL_USEEXTVBUSIND 0x02
246 #define MGC_M_ULPI_VBCTL_USEEXTVBUS 0x01
247 #define MGC_M_ULPI_REGCTL_INT_ENABLE 0x08
248 #define MGC_M_ULPI_REGCTL_READNOTWRITE 0x04
249 #define MGC_M_ULPI_REGCTL_COMPLETE 0x02
250 #define MGC_M_ULPI_REGCTL_REG 0x01
251
252 /* #define MUSB_DEBUG */
253
254 #ifdef MUSB_DEBUG
255 #define TRACE(fmt,...) fprintf(stderr, "%s@%d: " fmt "\n", __FUNCTION__, \
256 __LINE__, ##__VA_ARGS__)
257 #else
258 #define TRACE(...)
259 #endif
260
261
262 static void musb_attach(USBPort *port);
263 static void musb_detach(USBPort *port);
264 static void musb_child_detach(USBPort *port, USBDevice *child);
265 static void musb_schedule_cb(USBPort *port, USBPacket *p);
266 static void musb_async_cancel_device(MUSBState *s, USBDevice *dev);
267
268 static USBPortOps musb_port_ops = {
269 .attach = musb_attach,
270 .detach = musb_detach,
271 .child_detach = musb_child_detach,
272 .complete = musb_schedule_cb,
273 };
274
275 static USBBusOps musb_bus_ops = {
276 };
277
278 typedef struct MUSBPacket MUSBPacket;
279 typedef struct MUSBEndPoint MUSBEndPoint;
280
281 struct MUSBPacket {
282 USBPacket p;
283 MUSBEndPoint *ep;
284 int dir;
285 };
286
287 struct MUSBEndPoint {
288 uint16_t faddr[2];
289 uint8_t haddr[2];
290 uint8_t hport[2];
291 uint16_t csr[2];
292 uint16_t maxp[2];
293 uint16_t rxcount;
294 uint8_t type[2];
295 uint8_t interval[2];
296 uint8_t config;
297 uint8_t fifosize;
298 int timeout[2]; /* Always in microframes */
299
300 uint8_t *buf[2];
301 int fifolen[2];
302 int fifostart[2];
303 int fifoaddr[2];
304 MUSBPacket packey[2];
305 int status[2];
306 int ext_size[2];
307
308 /* For callbacks' use */
309 int epnum;
310 int interrupt[2];
311 MUSBState *musb;
312 USBCallback *delayed_cb[2];
313 QEMUTimer *intv_timer[2];
314 };
315
316 struct MUSBState {
317 qemu_irq irqs[musb_irq_max];
318 USBBus bus;
319 USBPort port;
320
321 int idx;
322 uint8_t devctl;
323 uint8_t power;
324 uint8_t faddr;
325
326 uint8_t intr;
327 uint8_t mask;
328 uint16_t tx_intr;
329 uint16_t tx_mask;
330 uint16_t rx_intr;
331 uint16_t rx_mask;
332
333 int setup_len;
334 int session;
335
336 uint8_t buf[0x8000];
337
338 /* Duplicating the world since 2008!... probably we should have 32
339 * logical, single endpoints instead. */
340 MUSBEndPoint ep[16];
341 };
342
343 void musb_reset(MUSBState *s)
344 {
345 int i;
346
347 s->faddr = 0x00;
348 s->devctl = 0;
349 s->power = MGC_M_POWER_HSENAB;
350 s->tx_intr = 0x0000;
351 s->rx_intr = 0x0000;
352 s->tx_mask = 0xffff;
353 s->rx_mask = 0xffff;
354 s->intr = 0x00;
355 s->mask = 0x06;
356 s->idx = 0;
357
358 s->setup_len = 0;
359 s->session = 0;
360 memset(s->buf, 0, sizeof(s->buf));
361
362 /* TODO: _DW */
363 s->ep[0].config = MGC_M_CONFIGDATA_SOFTCONE | MGC_M_CONFIGDATA_DYNFIFO;
364 for (i = 0; i < 16; i ++) {
365 s->ep[i].fifosize = 64;
366 s->ep[i].maxp[0] = 0x40;
367 s->ep[i].maxp[1] = 0x40;
368 s->ep[i].musb = s;
369 s->ep[i].epnum = i;
370 usb_packet_init(&s->ep[i].packey[0].p);
371 usb_packet_init(&s->ep[i].packey[1].p);
372 }
373 }
374
375 struct MUSBState *musb_init(DeviceState *parent_device, int gpio_base)
376 {
377 MUSBState *s = g_malloc0(sizeof(*s));
378 int i;
379
380 for (i = 0; i < musb_irq_max; i++) {
381 s->irqs[i] = qdev_get_gpio_in(parent_device, gpio_base + i);
382 }
383
384 musb_reset(s);
385
386 usb_bus_new(&s->bus, sizeof(s->bus), &musb_bus_ops, parent_device);
387 usb_register_port(&s->bus, &s->port, s, 0, &musb_port_ops,
388 USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL);
389
390 return s;
391 }
392
393 static void musb_vbus_set(MUSBState *s, int level)
394 {
395 if (level)
396 s->devctl |= 3 << MGC_S_DEVCTL_VBUS;
397 else
398 s->devctl &= ~MGC_M_DEVCTL_VBUS;
399
400 qemu_set_irq(s->irqs[musb_set_vbus], level);
401 }
402
403 static void musb_intr_set(MUSBState *s, int line, int level)
404 {
405 if (!level) {
406 s->intr &= ~(1 << line);
407 qemu_irq_lower(s->irqs[line]);
408 } else if (s->mask & (1 << line)) {
409 s->intr |= 1 << line;
410 qemu_irq_raise(s->irqs[line]);
411 }
412 }
413
414 static void musb_tx_intr_set(MUSBState *s, int line, int level)
415 {
416 if (!level) {
417 s->tx_intr &= ~(1 << line);
418 if (!s->tx_intr)
419 qemu_irq_lower(s->irqs[musb_irq_tx]);
420 } else if (s->tx_mask & (1 << line)) {
421 s->tx_intr |= 1 << line;
422 qemu_irq_raise(s->irqs[musb_irq_tx]);
423 }
424 }
425
426 static void musb_rx_intr_set(MUSBState *s, int line, int level)
427 {
428 if (line) {
429 if (!level) {
430 s->rx_intr &= ~(1 << line);
431 if (!s->rx_intr)
432 qemu_irq_lower(s->irqs[musb_irq_rx]);
433 } else if (s->rx_mask & (1 << line)) {
434 s->rx_intr |= 1 << line;
435 qemu_irq_raise(s->irqs[musb_irq_rx]);
436 }
437 } else
438 musb_tx_intr_set(s, line, level);
439 }
440
441 uint32_t musb_core_intr_get(MUSBState *s)
442 {
443 return (s->rx_intr << 15) | s->tx_intr;
444 }
445
446 void musb_core_intr_clear(MUSBState *s, uint32_t mask)
447 {
448 if (s->rx_intr) {
449 s->rx_intr &= mask >> 15;
450 if (!s->rx_intr)
451 qemu_irq_lower(s->irqs[musb_irq_rx]);
452 }
453
454 if (s->tx_intr) {
455 s->tx_intr &= mask & 0xffff;
456 if (!s->tx_intr)
457 qemu_irq_lower(s->irqs[musb_irq_tx]);
458 }
459 }
460
461 void musb_set_size(MUSBState *s, int epnum, int size, int is_tx)
462 {
463 s->ep[epnum].ext_size[!is_tx] = size;
464 s->ep[epnum].fifostart[0] = 0;
465 s->ep[epnum].fifostart[1] = 0;
466 s->ep[epnum].fifolen[0] = 0;
467 s->ep[epnum].fifolen[1] = 0;
468 }
469
470 static void musb_session_update(MUSBState *s, int prev_dev, int prev_sess)
471 {
472 int detect_prev = prev_dev && prev_sess;
473 int detect = !!s->port.dev && s->session;
474
475 if (detect && !detect_prev) {
476 /* Let's skip the ID pin sense and VBUS sense formalities and
477 * and signal a successful SRP directly. This should work at least
478 * for the Linux driver stack. */
479 musb_intr_set(s, musb_irq_connect, 1);
480
481 if (s->port.dev->speed == USB_SPEED_LOW) {
482 s->devctl &= ~MGC_M_DEVCTL_FSDEV;
483 s->devctl |= MGC_M_DEVCTL_LSDEV;
484 } else {
485 s->devctl |= MGC_M_DEVCTL_FSDEV;
486 s->devctl &= ~MGC_M_DEVCTL_LSDEV;
487 }
488
489 /* A-mode? */
490 s->devctl &= ~MGC_M_DEVCTL_BDEVICE;
491
492 /* Host-mode bit? */
493 s->devctl |= MGC_M_DEVCTL_HM;
494 #if 1
495 musb_vbus_set(s, 1);
496 #endif
497 } else if (!detect && detect_prev) {
498 #if 1
499 musb_vbus_set(s, 0);
500 #endif
501 }
502 }
503
504 /* Attach or detach a device on our only port. */
505 static void musb_attach(USBPort *port)
506 {
507 MUSBState *s = (MUSBState *) port->opaque;
508
509 musb_intr_set(s, musb_irq_vbus_request, 1);
510 musb_session_update(s, 0, s->session);
511 }
512
513 static void musb_detach(USBPort *port)
514 {
515 MUSBState *s = (MUSBState *) port->opaque;
516
517 musb_async_cancel_device(s, port->dev);
518
519 musb_intr_set(s, musb_irq_disconnect, 1);
520 musb_session_update(s, 1, s->session);
521 }
522
523 static void musb_child_detach(USBPort *port, USBDevice *child)
524 {
525 MUSBState *s = (MUSBState *) port->opaque;
526
527 musb_async_cancel_device(s, child);
528 }
529
530 static void musb_cb_tick0(void *opaque)
531 {
532 MUSBEndPoint *ep = (MUSBEndPoint *) opaque;
533
534 ep->delayed_cb[0](&ep->packey[0].p, opaque);
535 }
536
537 static void musb_cb_tick1(void *opaque)
538 {
539 MUSBEndPoint *ep = (MUSBEndPoint *) opaque;
540
541 ep->delayed_cb[1](&ep->packey[1].p, opaque);
542 }
543
544 #define musb_cb_tick (dir ? musb_cb_tick1 : musb_cb_tick0)
545
546 static void musb_schedule_cb(USBPort *port, USBPacket *packey)
547 {
548 MUSBPacket *p = container_of(packey, MUSBPacket, p);
549 MUSBEndPoint *ep = p->ep;
550 int dir = p->dir;
551 int timeout = 0;
552
553 if (ep->status[dir] == USB_RET_NAK)
554 timeout = ep->timeout[dir];
555 else if (ep->interrupt[dir])
556 timeout = 8;
557 else
558 return musb_cb_tick(ep);
559
560 if (!ep->intv_timer[dir])
561 ep->intv_timer[dir] = timer_new_ns(QEMU_CLOCK_VIRTUAL, musb_cb_tick, ep);
562
563 timer_mod(ep->intv_timer[dir], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
564 muldiv64(timeout, get_ticks_per_sec(), 8000));
565 }
566
567 static int musb_timeout(int ttype, int speed, int val)
568 {
569 #if 1
570 return val << 3;
571 #endif
572
573 switch (ttype) {
574 case USB_ENDPOINT_XFER_CONTROL:
575 if (val < 2)
576 return 0;
577 else if (speed == USB_SPEED_HIGH)
578 return 1 << (val - 1);
579 else
580 return 8 << (val - 1);
581
582 case USB_ENDPOINT_XFER_INT:
583 if (speed == USB_SPEED_HIGH)
584 if (val < 2)
585 return 0;
586 else
587 return 1 << (val - 1);
588 else
589 return val << 3;
590
591 case USB_ENDPOINT_XFER_BULK:
592 case USB_ENDPOINT_XFER_ISOC:
593 if (val < 2)
594 return 0;
595 else if (speed == USB_SPEED_HIGH)
596 return 1 << (val - 1);
597 else
598 return 8 << (val - 1);
599 /* TODO: what with low-speed Bulk and Isochronous? */
600 }
601
602 hw_error("bad interval\n");
603 }
604
605 static void musb_packet(MUSBState *s, MUSBEndPoint *ep,
606 int epnum, int pid, int len, USBCallback cb, int dir)
607 {
608 USBDevice *dev;
609 USBEndpoint *uep;
610 int idx = epnum && dir;
611 int ttype;
612
613 /* ep->type[0,1] contains:
614 * in bits 7:6 the speed (0 - invalid, 1 - high, 2 - full, 3 - slow)
615 * in bits 5:4 the transfer type (BULK / INT)
616 * in bits 3:0 the EP num
617 */
618 ttype = epnum ? (ep->type[idx] >> 4) & 3 : 0;
619
620 ep->timeout[dir] = musb_timeout(ttype,
621 ep->type[idx] >> 6, ep->interval[idx]);
622 ep->interrupt[dir] = ttype == USB_ENDPOINT_XFER_INT;
623 ep->delayed_cb[dir] = cb;
624
625 /* A wild guess on the FADDR semantics... */
626 dev = usb_find_device(&s->port, ep->faddr[idx]);
627 uep = usb_ep_get(dev, pid, ep->type[idx] & 0xf);
628 usb_packet_setup(&ep->packey[dir].p, pid, uep, 0,
629 (dev->addr << 16) | (uep->nr << 8) | pid, false, true);
630 usb_packet_addbuf(&ep->packey[dir].p, ep->buf[idx], len);
631 ep->packey[dir].ep = ep;
632 ep->packey[dir].dir = dir;
633
634 usb_handle_packet(dev, &ep->packey[dir].p);
635
636 if (ep->packey[dir].p.status == USB_RET_ASYNC) {
637 usb_device_flush_ep_queue(dev, uep);
638 ep->status[dir] = len;
639 return;
640 }
641
642 if (ep->packey[dir].p.status == USB_RET_SUCCESS) {
643 ep->status[dir] = ep->packey[dir].p.actual_length;
644 } else {
645 ep->status[dir] = ep->packey[dir].p.status;
646 }
647 musb_schedule_cb(&s->port, &ep->packey[dir].p);
648 }
649
650 static void musb_tx_packet_complete(USBPacket *packey, void *opaque)
651 {
652 /* Unfortunately we can't use packey->devep because that's the remote
653 * endpoint number and may be different than our local. */
654 MUSBEndPoint *ep = (MUSBEndPoint *) opaque;
655 int epnum = ep->epnum;
656 MUSBState *s = ep->musb;
657
658 ep->fifostart[0] = 0;
659 ep->fifolen[0] = 0;
660 #ifdef CLEAR_NAK
661 if (ep->status[0] != USB_RET_NAK) {
662 #endif
663 if (epnum)
664 ep->csr[0] &= ~(MGC_M_TXCSR_FIFONOTEMPTY | MGC_M_TXCSR_TXPKTRDY);
665 else
666 ep->csr[0] &= ~MGC_M_CSR0_TXPKTRDY;
667 #ifdef CLEAR_NAK
668 }
669 #endif
670
671 /* Clear all of the error bits first */
672 if (epnum)
673 ep->csr[0] &= ~(MGC_M_TXCSR_H_ERROR | MGC_M_TXCSR_H_RXSTALL |
674 MGC_M_TXCSR_H_NAKTIMEOUT);
675 else
676 ep->csr[0] &= ~(MGC_M_CSR0_H_ERROR | MGC_M_CSR0_H_RXSTALL |
677 MGC_M_CSR0_H_NAKTIMEOUT | MGC_M_CSR0_H_NO_PING);
678
679 if (ep->status[0] == USB_RET_STALL) {
680 /* Command not supported by target! */
681 ep->status[0] = 0;
682
683 if (epnum)
684 ep->csr[0] |= MGC_M_TXCSR_H_RXSTALL;
685 else
686 ep->csr[0] |= MGC_M_CSR0_H_RXSTALL;
687 }
688
689 if (ep->status[0] == USB_RET_NAK) {
690 ep->status[0] = 0;
691
692 /* NAK timeouts are only generated in Bulk transfers and
693 * Data-errors in Isochronous. */
694 if (ep->interrupt[0]) {
695 return;
696 }
697
698 if (epnum)
699 ep->csr[0] |= MGC_M_TXCSR_H_NAKTIMEOUT;
700 else
701 ep->csr[0] |= MGC_M_CSR0_H_NAKTIMEOUT;
702 }
703
704 if (ep->status[0] < 0) {
705 if (ep->status[0] == USB_RET_BABBLE)
706 musb_intr_set(s, musb_irq_rst_babble, 1);
707
708 /* Pretend we've tried three times already and failed (in
709 * case of USB_TOKEN_SETUP). */
710 if (epnum)
711 ep->csr[0] |= MGC_M_TXCSR_H_ERROR;
712 else
713 ep->csr[0] |= MGC_M_CSR0_H_ERROR;
714
715 musb_tx_intr_set(s, epnum, 1);
716 return;
717 }
718 /* TODO: check len for over/underruns of an OUT packet? */
719
720 #ifdef SETUPLEN_HACK
721 if (!epnum && ep->packey[0].pid == USB_TOKEN_SETUP)
722 s->setup_len = ep->packey[0].data[6];
723 #endif
724
725 /* In DMA mode: if no error, assert DMA request for this EP,
726 * and skip the interrupt. */
727 musb_tx_intr_set(s, epnum, 1);
728 }
729
730 static void musb_rx_packet_complete(USBPacket *packey, void *opaque)
731 {
732 /* Unfortunately we can't use packey->devep because that's the remote
733 * endpoint number and may be different than our local. */
734 MUSBEndPoint *ep = (MUSBEndPoint *) opaque;
735 int epnum = ep->epnum;
736 MUSBState *s = ep->musb;
737
738 ep->fifostart[1] = 0;
739 ep->fifolen[1] = 0;
740
741 #ifdef CLEAR_NAK
742 if (ep->status[1] != USB_RET_NAK) {
743 #endif
744 ep->csr[1] &= ~MGC_M_RXCSR_H_REQPKT;
745 if (!epnum)
746 ep->csr[0] &= ~MGC_M_CSR0_H_REQPKT;
747 #ifdef CLEAR_NAK
748 }
749 #endif
750
751 /* Clear all of the imaginable error bits first */
752 ep->csr[1] &= ~(MGC_M_RXCSR_H_ERROR | MGC_M_RXCSR_H_RXSTALL |
753 MGC_M_RXCSR_DATAERROR);
754 if (!epnum)
755 ep->csr[0] &= ~(MGC_M_CSR0_H_ERROR | MGC_M_CSR0_H_RXSTALL |
756 MGC_M_CSR0_H_NAKTIMEOUT | MGC_M_CSR0_H_NO_PING);
757
758 if (ep->status[1] == USB_RET_STALL) {
759 ep->status[1] = 0;
760
761 ep->csr[1] |= MGC_M_RXCSR_H_RXSTALL;
762 if (!epnum)
763 ep->csr[0] |= MGC_M_CSR0_H_RXSTALL;
764 }
765
766 if (ep->status[1] == USB_RET_NAK) {
767 ep->status[1] = 0;
768
769 /* NAK timeouts are only generated in Bulk transfers and
770 * Data-errors in Isochronous. */
771 if (ep->interrupt[1])
772 return musb_packet(s, ep, epnum, USB_TOKEN_IN,
773 packey->iov.size, musb_rx_packet_complete, 1);
774
775 ep->csr[1] |= MGC_M_RXCSR_DATAERROR;
776 if (!epnum)
777 ep->csr[0] |= MGC_M_CSR0_H_NAKTIMEOUT;
778 }
779
780 if (ep->status[1] < 0) {
781 if (ep->status[1] == USB_RET_BABBLE) {
782 musb_intr_set(s, musb_irq_rst_babble, 1);
783 return;
784 }
785
786 /* Pretend we've tried three times already and failed (in
787 * case of a control transfer). */
788 ep->csr[1] |= MGC_M_RXCSR_H_ERROR;
789 if (!epnum)
790 ep->csr[0] |= MGC_M_CSR0_H_ERROR;
791
792 musb_rx_intr_set(s, epnum, 1);
793 return;
794 }
795 /* TODO: check len for over/underruns of an OUT packet? */
796 /* TODO: perhaps make use of e->ext_size[1] here. */
797
798 if (!(ep->csr[1] & (MGC_M_RXCSR_H_RXSTALL | MGC_M_RXCSR_DATAERROR))) {
799 ep->csr[1] |= MGC_M_RXCSR_FIFOFULL | MGC_M_RXCSR_RXPKTRDY;
800 if (!epnum)
801 ep->csr[0] |= MGC_M_CSR0_RXPKTRDY;
802
803 ep->rxcount = ep->status[1]; /* XXX: MIN(packey->len, ep->maxp[1]); */
804 /* In DMA mode: assert DMA request for this EP */
805 }
806
807 /* Only if DMA has not been asserted */
808 musb_rx_intr_set(s, epnum, 1);
809 }
810
811 static void musb_async_cancel_device(MUSBState *s, USBDevice *dev)
812 {
813 int ep, dir;
814
815 for (ep = 0; ep < 16; ep++) {
816 for (dir = 0; dir < 2; dir++) {
817 if (!usb_packet_is_inflight(&s->ep[ep].packey[dir].p) ||
818 s->ep[ep].packey[dir].p.ep->dev != dev) {
819 continue;
820 }
821 usb_cancel_packet(&s->ep[ep].packey[dir].p);
822 /* status updates needed here? */
823 }
824 }
825 }
826
827 static void musb_tx_rdy(MUSBState *s, int epnum)
828 {
829 MUSBEndPoint *ep = s->ep + epnum;
830 int pid;
831 int total, valid = 0;
832 TRACE("start %d, len %d", ep->fifostart[0], ep->fifolen[0] );
833 ep->fifostart[0] += ep->fifolen[0];
834 ep->fifolen[0] = 0;
835
836 /* XXX: how's the total size of the packet retrieved exactly in
837 * the generic case? */
838 total = ep->maxp[0] & 0x3ff;
839
840 if (ep->ext_size[0]) {
841 total = ep->ext_size[0];
842 ep->ext_size[0] = 0;
843 valid = 1;
844 }
845
846 /* If the packet is not fully ready yet, wait for a next segment. */
847 if (epnum && (ep->fifostart[0]) < total)
848 return;
849
850 if (!valid)
851 total = ep->fifostart[0];
852
853 pid = USB_TOKEN_OUT;
854 if (!epnum && (ep->csr[0] & MGC_M_CSR0_H_SETUPPKT)) {
855 pid = USB_TOKEN_SETUP;
856 if (total != 8) {
857 TRACE("illegal SETUPPKT length of %i bytes", total);
858 }
859 /* Controller should retry SETUP packets three times on errors
860 * but it doesn't make sense for us to do that. */
861 }
862
863 return musb_packet(s, ep, epnum, pid,
864 total, musb_tx_packet_complete, 0);
865 }
866
867 static void musb_rx_req(MUSBState *s, int epnum)
868 {
869 MUSBEndPoint *ep = s->ep + epnum;
870 int total;
871
872 /* If we already have a packet, which didn't fit into the
873 * 64 bytes of the FIFO, only move the FIFO start and return. (Obsolete) */
874 if (ep->packey[1].p.pid == USB_TOKEN_IN && ep->status[1] >= 0 &&
875 (ep->fifostart[1]) + ep->rxcount <
876 ep->packey[1].p.iov.size) {
877 TRACE("0x%08x, %d", ep->fifostart[1], ep->rxcount );
878 ep->fifostart[1] += ep->rxcount;
879 ep->fifolen[1] = 0;
880
881 ep->rxcount = MIN(ep->packey[0].p.iov.size - (ep->fifostart[1]),
882 ep->maxp[1]);
883
884 ep->csr[1] &= ~MGC_M_RXCSR_H_REQPKT;
885 if (!epnum)
886 ep->csr[0] &= ~MGC_M_CSR0_H_REQPKT;
887
888 /* Clear all of the error bits first */
889 ep->csr[1] &= ~(MGC_M_RXCSR_H_ERROR | MGC_M_RXCSR_H_RXSTALL |
890 MGC_M_RXCSR_DATAERROR);
891 if (!epnum)
892 ep->csr[0] &= ~(MGC_M_CSR0_H_ERROR | MGC_M_CSR0_H_RXSTALL |
893 MGC_M_CSR0_H_NAKTIMEOUT | MGC_M_CSR0_H_NO_PING);
894
895 ep->csr[1] |= MGC_M_RXCSR_FIFOFULL | MGC_M_RXCSR_RXPKTRDY;
896 if (!epnum)
897 ep->csr[0] |= MGC_M_CSR0_RXPKTRDY;
898 musb_rx_intr_set(s, epnum, 1);
899 return;
900 }
901
902 /* The driver sets maxp[1] to 64 or less because it knows the hardware
903 * FIFO is this deep. Bigger packets get split in
904 * usb_generic_handle_packet but we can also do the splitting locally
905 * for performance. It turns out we can also have a bigger FIFO and
906 * ignore the limit set in ep->maxp[1]. The Linux MUSB driver deals
907 * OK with single packets of even 32KB and we avoid splitting, however
908 * usb_msd.c sometimes sends a packet bigger than what Linux expects
909 * (e.g. 8192 bytes instead of 4096) and we get an OVERRUN. Splitting
910 * hides this overrun from Linux. Up to 4096 everything is fine
911 * though. Currently this is disabled.
912 *
913 * XXX: mind ep->fifosize. */
914 total = MIN(ep->maxp[1] & 0x3ff, sizeof(s->buf));
915
916 #ifdef SETUPLEN_HACK
917 /* Why should *we* do that instead of Linux? */
918 if (!epnum) {
919 if (ep->packey[0].p.devaddr == 2) {
920 total = MIN(s->setup_len, 8);
921 } else {
922 total = MIN(s->setup_len, 64);
923 }
924 s->setup_len -= total;
925 }
926 #endif
927
928 return musb_packet(s, ep, epnum, USB_TOKEN_IN,
929 total, musb_rx_packet_complete, 1);
930 }
931
932 static uint8_t musb_read_fifo(MUSBEndPoint *ep)
933 {
934 uint8_t value;
935 if (ep->fifolen[1] >= 64) {
936 /* We have a FIFO underrun */
937 TRACE("EP%d FIFO is now empty, stop reading", ep->epnum);
938 return 0x00000000;
939 }
940 /* In DMA mode clear RXPKTRDY and set REQPKT automatically
941 * (if AUTOREQ is set) */
942
943 ep->csr[1] &= ~MGC_M_RXCSR_FIFOFULL;
944 value=ep->buf[1][ep->fifostart[1] + ep->fifolen[1] ++];
945 TRACE("EP%d 0x%02x, %d", ep->epnum, value, ep->fifolen[1] );
946 return value;
947 }
948
949 static void musb_write_fifo(MUSBEndPoint *ep, uint8_t value)
950 {
951 TRACE("EP%d = %02x", ep->epnum, value);
952 if (ep->fifolen[0] >= 64) {
953 /* We have a FIFO overrun */
954 TRACE("EP%d FIFO exceeded 64 bytes, stop feeding data", ep->epnum);
955 return;
956 }
957
958 ep->buf[0][ep->fifostart[0] + ep->fifolen[0] ++] = value;
959 ep->csr[0] |= MGC_M_TXCSR_FIFONOTEMPTY;
960 }
961
962 static void musb_ep_frame_cancel(MUSBEndPoint *ep, int dir)
963 {
964 if (ep->intv_timer[dir])
965 timer_del(ep->intv_timer[dir]);
966 }
967
968 /* Bus control */
969 static uint8_t musb_busctl_readb(void *opaque, int ep, int addr)
970 {
971 MUSBState *s = (MUSBState *) opaque;
972
973 switch (addr) {
974 /* For USB2.0 HS hubs only */
975 case MUSB_HDRC_TXHUBADDR:
976 return s->ep[ep].haddr[0];
977 case MUSB_HDRC_TXHUBPORT:
978 return s->ep[ep].hport[0];
979 case MUSB_HDRC_RXHUBADDR:
980 return s->ep[ep].haddr[1];
981 case MUSB_HDRC_RXHUBPORT:
982 return s->ep[ep].hport[1];
983
984 default:
985 TRACE("unknown register 0x%02x", addr);
986 return 0x00;
987 };
988 }
989
990 static void musb_busctl_writeb(void *opaque, int ep, int addr, uint8_t value)
991 {
992 MUSBState *s = (MUSBState *) opaque;
993
994 switch (addr) {
995 case MUSB_HDRC_TXFUNCADDR:
996 s->ep[ep].faddr[0] = value;
997 break;
998 case MUSB_HDRC_RXFUNCADDR:
999 s->ep[ep].faddr[1] = value;
1000 break;
1001 case MUSB_HDRC_TXHUBADDR:
1002 s->ep[ep].haddr[0] = value;
1003 break;
1004 case MUSB_HDRC_TXHUBPORT:
1005 s->ep[ep].hport[0] = value;
1006 break;
1007 case MUSB_HDRC_RXHUBADDR:
1008 s->ep[ep].haddr[1] = value;
1009 break;
1010 case MUSB_HDRC_RXHUBPORT:
1011 s->ep[ep].hport[1] = value;
1012 break;
1013
1014 default:
1015 TRACE("unknown register 0x%02x", addr);
1016 break;
1017 };
1018 }
1019
1020 static uint16_t musb_busctl_readh(void *opaque, int ep, int addr)
1021 {
1022 MUSBState *s = (MUSBState *) opaque;
1023
1024 switch (addr) {
1025 case MUSB_HDRC_TXFUNCADDR:
1026 return s->ep[ep].faddr[0];
1027 case MUSB_HDRC_RXFUNCADDR:
1028 return s->ep[ep].faddr[1];
1029
1030 default:
1031 return musb_busctl_readb(s, ep, addr) |
1032 (musb_busctl_readb(s, ep, addr | 1) << 8);
1033 };
1034 }
1035
1036 static void musb_busctl_writeh(void *opaque, int ep, int addr, uint16_t value)
1037 {
1038 MUSBState *s = (MUSBState *) opaque;
1039
1040 switch (addr) {
1041 case MUSB_HDRC_TXFUNCADDR:
1042 s->ep[ep].faddr[0] = value;
1043 break;
1044 case MUSB_HDRC_RXFUNCADDR:
1045 s->ep[ep].faddr[1] = value;
1046 break;
1047
1048 default:
1049 musb_busctl_writeb(s, ep, addr, value & 0xff);
1050 musb_busctl_writeb(s, ep, addr | 1, value >> 8);
1051 };
1052 }
1053
1054 /* Endpoint control */
1055 static uint8_t musb_ep_readb(void *opaque, int ep, int addr)
1056 {
1057 MUSBState *s = (MUSBState *) opaque;
1058
1059 switch (addr) {
1060 case MUSB_HDRC_TXTYPE:
1061 return s->ep[ep].type[0];
1062 case MUSB_HDRC_TXINTERVAL:
1063 return s->ep[ep].interval[0];
1064 case MUSB_HDRC_RXTYPE:
1065 return s->ep[ep].type[1];
1066 case MUSB_HDRC_RXINTERVAL:
1067 return s->ep[ep].interval[1];
1068 case (MUSB_HDRC_FIFOSIZE & ~1):
1069 return 0x00;
1070 case MUSB_HDRC_FIFOSIZE:
1071 return ep ? s->ep[ep].fifosize : s->ep[ep].config;
1072 case MUSB_HDRC_RXCOUNT:
1073 return s->ep[ep].rxcount;
1074
1075 default:
1076 TRACE("unknown register 0x%02x", addr);
1077 return 0x00;
1078 };
1079 }
1080
1081 static void musb_ep_writeb(void *opaque, int ep, int addr, uint8_t value)
1082 {
1083 MUSBState *s = (MUSBState *) opaque;
1084
1085 switch (addr) {
1086 case MUSB_HDRC_TXTYPE:
1087 s->ep[ep].type[0] = value;
1088 break;
1089 case MUSB_HDRC_TXINTERVAL:
1090 s->ep[ep].interval[0] = value;
1091 musb_ep_frame_cancel(&s->ep[ep], 0);
1092 break;
1093 case MUSB_HDRC_RXTYPE:
1094 s->ep[ep].type[1] = value;
1095 break;
1096 case MUSB_HDRC_RXINTERVAL:
1097 s->ep[ep].interval[1] = value;
1098 musb_ep_frame_cancel(&s->ep[ep], 1);
1099 break;
1100 case (MUSB_HDRC_FIFOSIZE & ~1):
1101 break;
1102 case MUSB_HDRC_FIFOSIZE:
1103 TRACE("somebody messes with fifosize (now %i bytes)", value);
1104 s->ep[ep].fifosize = value;
1105 break;
1106 default:
1107 TRACE("unknown register 0x%02x", addr);
1108 break;
1109 };
1110 }
1111
1112 static uint16_t musb_ep_readh(void *opaque, int ep, int addr)
1113 {
1114 MUSBState *s = (MUSBState *) opaque;
1115 uint16_t ret;
1116
1117 switch (addr) {
1118 case MUSB_HDRC_TXMAXP:
1119 return s->ep[ep].maxp[0];
1120 case MUSB_HDRC_TXCSR:
1121 return s->ep[ep].csr[0];
1122 case MUSB_HDRC_RXMAXP:
1123 return s->ep[ep].maxp[1];
1124 case MUSB_HDRC_RXCSR:
1125 ret = s->ep[ep].csr[1];
1126
1127 /* TODO: This and other bits probably depend on
1128 * ep->csr[1] & MGC_M_RXCSR_AUTOCLEAR. */
1129 if (s->ep[ep].csr[1] & MGC_M_RXCSR_AUTOCLEAR)
1130 s->ep[ep].csr[1] &= ~MGC_M_RXCSR_RXPKTRDY;
1131
1132 return ret;
1133 case MUSB_HDRC_RXCOUNT:
1134 return s->ep[ep].rxcount;
1135
1136 default:
1137 return musb_ep_readb(s, ep, addr) |
1138 (musb_ep_readb(s, ep, addr | 1) << 8);
1139 };
1140 }
1141
1142 static void musb_ep_writeh(void *opaque, int ep, int addr, uint16_t value)
1143 {
1144 MUSBState *s = (MUSBState *) opaque;
1145
1146 switch (addr) {
1147 case MUSB_HDRC_TXMAXP:
1148 s->ep[ep].maxp[0] = value;
1149 break;
1150 case MUSB_HDRC_TXCSR:
1151 if (ep) {
1152 s->ep[ep].csr[0] &= value & 0xa6;
1153 s->ep[ep].csr[0] |= value & 0xff59;
1154 } else {
1155 s->ep[ep].csr[0] &= value & 0x85;
1156 s->ep[ep].csr[0] |= value & 0xf7a;
1157 }
1158
1159 musb_ep_frame_cancel(&s->ep[ep], 0);
1160
1161 if ((ep && (value & MGC_M_TXCSR_FLUSHFIFO)) ||
1162 (!ep && (value & MGC_M_CSR0_FLUSHFIFO))) {
1163 s->ep[ep].fifolen[0] = 0;
1164 s->ep[ep].fifostart[0] = 0;
1165 if (ep)
1166 s->ep[ep].csr[0] &=
1167 ~(MGC_M_TXCSR_FIFONOTEMPTY | MGC_M_TXCSR_TXPKTRDY);
1168 else
1169 s->ep[ep].csr[0] &=
1170 ~(MGC_M_CSR0_TXPKTRDY | MGC_M_CSR0_RXPKTRDY);
1171 }
1172 if (
1173 (ep &&
1174 #ifdef CLEAR_NAK
1175 (value & MGC_M_TXCSR_TXPKTRDY) &&
1176 !(value & MGC_M_TXCSR_H_NAKTIMEOUT)) ||
1177 #else
1178 (value & MGC_M_TXCSR_TXPKTRDY)) ||
1179 #endif
1180 (!ep &&
1181 #ifdef CLEAR_NAK
1182 (value & MGC_M_CSR0_TXPKTRDY) &&
1183 !(value & MGC_M_CSR0_H_NAKTIMEOUT)))
1184 #else
1185 (value & MGC_M_CSR0_TXPKTRDY)))
1186 #endif
1187 musb_tx_rdy(s, ep);
1188 if (!ep &&
1189 (value & MGC_M_CSR0_H_REQPKT) &&
1190 #ifdef CLEAR_NAK
1191 !(value & (MGC_M_CSR0_H_NAKTIMEOUT |
1192 MGC_M_CSR0_RXPKTRDY)))
1193 #else
1194 !(value & MGC_M_CSR0_RXPKTRDY))
1195 #endif
1196 musb_rx_req(s, ep);
1197 break;
1198
1199 case MUSB_HDRC_RXMAXP:
1200 s->ep[ep].maxp[1] = value;
1201 break;
1202 case MUSB_HDRC_RXCSR:
1203 /* (DMA mode only) */
1204 if (
1205 (value & MGC_M_RXCSR_H_AUTOREQ) &&
1206 !(value & MGC_M_RXCSR_RXPKTRDY) &&
1207 (s->ep[ep].csr[1] & MGC_M_RXCSR_RXPKTRDY))
1208 value |= MGC_M_RXCSR_H_REQPKT;
1209
1210 s->ep[ep].csr[1] &= 0x102 | (value & 0x4d);
1211 s->ep[ep].csr[1] |= value & 0xfeb0;
1212
1213 musb_ep_frame_cancel(&s->ep[ep], 1);
1214
1215 if (value & MGC_M_RXCSR_FLUSHFIFO) {
1216 s->ep[ep].fifolen[1] = 0;
1217 s->ep[ep].fifostart[1] = 0;
1218 s->ep[ep].csr[1] &= ~(MGC_M_RXCSR_FIFOFULL | MGC_M_RXCSR_RXPKTRDY);
1219 /* If double buffering and we have two packets ready, flush
1220 * only the first one and set up the fifo at the second packet. */
1221 }
1222 #ifdef CLEAR_NAK
1223 if ((value & MGC_M_RXCSR_H_REQPKT) && !(value & MGC_M_RXCSR_DATAERROR))
1224 #else
1225 if (value & MGC_M_RXCSR_H_REQPKT)
1226 #endif
1227 musb_rx_req(s, ep);
1228 break;
1229 case MUSB_HDRC_RXCOUNT:
1230 s->ep[ep].rxcount = value;
1231 break;
1232
1233 default:
1234 musb_ep_writeb(s, ep, addr, value & 0xff);
1235 musb_ep_writeb(s, ep, addr | 1, value >> 8);
1236 };
1237 }
1238
1239 /* Generic control */
1240 static uint32_t musb_readb(void *opaque, hwaddr addr)
1241 {
1242 MUSBState *s = (MUSBState *) opaque;
1243 int ep, i;
1244 uint8_t ret;
1245
1246 switch (addr) {
1247 case MUSB_HDRC_FADDR:
1248 return s->faddr;
1249 case MUSB_HDRC_POWER:
1250 return s->power;
1251 case MUSB_HDRC_INTRUSB:
1252 ret = s->intr;
1253 for (i = 0; i < sizeof(ret) * 8; i ++)
1254 if (ret & (1 << i))
1255 musb_intr_set(s, i, 0);
1256 return ret;
1257 case MUSB_HDRC_INTRUSBE:
1258 return s->mask;
1259 case MUSB_HDRC_INDEX:
1260 return s->idx;
1261 case MUSB_HDRC_TESTMODE:
1262 return 0x00;
1263
1264 case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf):
1265 return musb_ep_readb(s, s->idx, addr & 0xf);
1266
1267 case MUSB_HDRC_DEVCTL:
1268 return s->devctl;
1269
1270 case MUSB_HDRC_TXFIFOSZ:
1271 case MUSB_HDRC_RXFIFOSZ:
1272 case MUSB_HDRC_VCTRL:
1273 /* TODO */
1274 return 0x00;
1275
1276 case MUSB_HDRC_HWVERS:
1277 return (1 << 10) | 400;
1278
1279 case (MUSB_HDRC_VCTRL | 1):
1280 case (MUSB_HDRC_HWVERS | 1):
1281 case (MUSB_HDRC_DEVCTL | 1):
1282 return 0x00;
1283
1284 case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f):
1285 ep = (addr >> 3) & 0xf;
1286 return musb_busctl_readb(s, ep, addr & 0x7);
1287
1288 case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff):
1289 ep = (addr >> 4) & 0xf;
1290 return musb_ep_readb(s, ep, addr & 0xf);
1291
1292 case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f):
1293 ep = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf;
1294 return musb_read_fifo(s->ep + ep);
1295
1296 default:
1297 TRACE("unknown register 0x%02x", (int) addr);
1298 return 0x00;
1299 };
1300 }
1301
1302 static void musb_writeb(void *opaque, hwaddr addr, uint32_t value)
1303 {
1304 MUSBState *s = (MUSBState *) opaque;
1305 int ep;
1306
1307 switch (addr) {
1308 case MUSB_HDRC_FADDR:
1309 s->faddr = value & 0x7f;
1310 break;
1311 case MUSB_HDRC_POWER:
1312 s->power = (value & 0xef) | (s->power & 0x10);
1313 /* MGC_M_POWER_RESET is also read-only in Peripheral Mode */
1314 if ((value & MGC_M_POWER_RESET) && s->port.dev) {
1315 usb_device_reset(s->port.dev);
1316 /* Negotiate high-speed operation if MGC_M_POWER_HSENAB is set. */
1317 if ((value & MGC_M_POWER_HSENAB) &&
1318 s->port.dev->speed == USB_SPEED_HIGH)
1319 s->power |= MGC_M_POWER_HSMODE; /* Success */
1320 /* Restart frame counting. */
1321 }
1322 if (value & MGC_M_POWER_SUSPENDM) {
1323 /* When all transfers finish, suspend and if MGC_M_POWER_ENSUSPEND
1324 * is set, also go into low power mode. Frame counting stops. */
1325 /* XXX: Cleared when the interrupt register is read */
1326 }
1327 if (value & MGC_M_POWER_RESUME) {
1328 /* Wait 20ms and signal resuming on the bus. Frame counting
1329 * restarts. */
1330 }
1331 break;
1332 case MUSB_HDRC_INTRUSB:
1333 break;
1334 case MUSB_HDRC_INTRUSBE:
1335 s->mask = value & 0xff;
1336 break;
1337 case MUSB_HDRC_INDEX:
1338 s->idx = value & 0xf;
1339 break;
1340 case MUSB_HDRC_TESTMODE:
1341 break;
1342
1343 case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf):
1344 musb_ep_writeb(s, s->idx, addr & 0xf, value);
1345 break;
1346
1347 case MUSB_HDRC_DEVCTL:
1348 s->session = !!(value & MGC_M_DEVCTL_SESSION);
1349 musb_session_update(s,
1350 !!s->port.dev,
1351 !!(s->devctl & MGC_M_DEVCTL_SESSION));
1352
1353 /* It seems this is the only R/W bit in this register? */
1354 s->devctl &= ~MGC_M_DEVCTL_SESSION;
1355 s->devctl |= value & MGC_M_DEVCTL_SESSION;
1356 break;
1357
1358 case MUSB_HDRC_TXFIFOSZ:
1359 case MUSB_HDRC_RXFIFOSZ:
1360 case MUSB_HDRC_VCTRL:
1361 /* TODO */
1362 break;
1363
1364 case (MUSB_HDRC_VCTRL | 1):
1365 case (MUSB_HDRC_DEVCTL | 1):
1366 break;
1367
1368 case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f):
1369 ep = (addr >> 3) & 0xf;
1370 musb_busctl_writeb(s, ep, addr & 0x7, value);
1371 break;
1372
1373 case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff):
1374 ep = (addr >> 4) & 0xf;
1375 musb_ep_writeb(s, ep, addr & 0xf, value);
1376 break;
1377
1378 case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f):
1379 ep = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf;
1380 musb_write_fifo(s->ep + ep, value & 0xff);
1381 break;
1382
1383 default:
1384 TRACE("unknown register 0x%02x", (int) addr);
1385 break;
1386 };
1387 }
1388
1389 static uint32_t musb_readh(void *opaque, hwaddr addr)
1390 {
1391 MUSBState *s = (MUSBState *) opaque;
1392 int ep, i;
1393 uint16_t ret;
1394
1395 switch (addr) {
1396 case MUSB_HDRC_INTRTX:
1397 ret = s->tx_intr;
1398 /* Auto clear */
1399 for (i = 0; i < sizeof(ret) * 8; i ++)
1400 if (ret & (1 << i))
1401 musb_tx_intr_set(s, i, 0);
1402 return ret;
1403 case MUSB_HDRC_INTRRX:
1404 ret = s->rx_intr;
1405 /* Auto clear */
1406 for (i = 0; i < sizeof(ret) * 8; i ++)
1407 if (ret & (1 << i))
1408 musb_rx_intr_set(s, i, 0);
1409 return ret;
1410 case MUSB_HDRC_INTRTXE:
1411 return s->tx_mask;
1412 case MUSB_HDRC_INTRRXE:
1413 return s->rx_mask;
1414
1415 case MUSB_HDRC_FRAME:
1416 /* TODO */
1417 return 0x0000;
1418 case MUSB_HDRC_TXFIFOADDR:
1419 return s->ep[s->idx].fifoaddr[0];
1420 case MUSB_HDRC_RXFIFOADDR:
1421 return s->ep[s->idx].fifoaddr[1];
1422
1423 case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf):
1424 return musb_ep_readh(s, s->idx, addr & 0xf);
1425
1426 case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f):
1427 ep = (addr >> 3) & 0xf;
1428 return musb_busctl_readh(s, ep, addr & 0x7);
1429
1430 case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff):
1431 ep = (addr >> 4) & 0xf;
1432 return musb_ep_readh(s, ep, addr & 0xf);
1433
1434 case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f):
1435 ep = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf;
1436 return (musb_read_fifo(s->ep + ep) | musb_read_fifo(s->ep + ep) << 8);
1437
1438 default:
1439 return musb_readb(s, addr) | (musb_readb(s, addr | 1) << 8);
1440 };
1441 }
1442
1443 static void musb_writeh(void *opaque, hwaddr addr, uint32_t value)
1444 {
1445 MUSBState *s = (MUSBState *) opaque;
1446 int ep;
1447
1448 switch (addr) {
1449 case MUSB_HDRC_INTRTXE:
1450 s->tx_mask = value;
1451 /* XXX: the masks seem to apply on the raising edge like with
1452 * edge-triggered interrupts, thus no need to update. I may be
1453 * wrong though. */
1454 break;
1455 case MUSB_HDRC_INTRRXE:
1456 s->rx_mask = value;
1457 break;
1458
1459 case MUSB_HDRC_FRAME:
1460 /* TODO */
1461 break;
1462 case MUSB_HDRC_TXFIFOADDR:
1463 s->ep[s->idx].fifoaddr[0] = value;
1464 s->ep[s->idx].buf[0] =
1465 s->buf + ((value << 3) & 0x7ff );
1466 break;
1467 case MUSB_HDRC_RXFIFOADDR:
1468 s->ep[s->idx].fifoaddr[1] = value;
1469 s->ep[s->idx].buf[1] =
1470 s->buf + ((value << 3) & 0x7ff);
1471 break;
1472
1473 case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf):
1474 musb_ep_writeh(s, s->idx, addr & 0xf, value);
1475 break;
1476
1477 case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f):
1478 ep = (addr >> 3) & 0xf;
1479 musb_busctl_writeh(s, ep, addr & 0x7, value);
1480 break;
1481
1482 case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff):
1483 ep = (addr >> 4) & 0xf;
1484 musb_ep_writeh(s, ep, addr & 0xf, value);
1485 break;
1486
1487 case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f):
1488 ep = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf;
1489 musb_write_fifo(s->ep + ep, value & 0xff);
1490 musb_write_fifo(s->ep + ep, (value >> 8) & 0xff);
1491 break;
1492
1493 default:
1494 musb_writeb(s, addr, value & 0xff);
1495 musb_writeb(s, addr | 1, value >> 8);
1496 };
1497 }
1498
1499 static uint32_t musb_readw(void *opaque, hwaddr addr)
1500 {
1501 MUSBState *s = (MUSBState *) opaque;
1502 int ep;
1503
1504 switch (addr) {
1505 case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f):
1506 ep = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf;
1507 return ( musb_read_fifo(s->ep + ep) |
1508 musb_read_fifo(s->ep + ep) << 8 |
1509 musb_read_fifo(s->ep + ep) << 16 |
1510 musb_read_fifo(s->ep + ep) << 24 );
1511 default:
1512 TRACE("unknown register 0x%02x", (int) addr);
1513 return 0x00000000;
1514 };
1515 }
1516
1517 static void musb_writew(void *opaque, hwaddr addr, uint32_t value)
1518 {
1519 MUSBState *s = (MUSBState *) opaque;
1520 int ep;
1521
1522 switch (addr) {
1523 case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f):
1524 ep = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf;
1525 musb_write_fifo(s->ep + ep, value & 0xff);
1526 musb_write_fifo(s->ep + ep, (value >> 8 ) & 0xff);
1527 musb_write_fifo(s->ep + ep, (value >> 16) & 0xff);
1528 musb_write_fifo(s->ep + ep, (value >> 24) & 0xff);
1529 break;
1530 default:
1531 TRACE("unknown register 0x%02x", (int) addr);
1532 break;
1533 };
1534 }
1535
1536 CPUReadMemoryFunc * const musb_read[] = {
1537 musb_readb,
1538 musb_readh,
1539 musb_readw,
1540 };
1541
1542 CPUWriteMemoryFunc * const musb_write[] = {
1543 musb_writeb,
1544 musb_writeh,
1545 musb_writew,
1546 };