]> git.proxmox.com Git - qemu.git/blob - hw/usb-ehci.c
qdev: register all types natively through QEMU Object Model
[qemu.git] / hw / usb-ehci.c
1 /*
2 * QEMU USB EHCI Emulation
3 *
4 * Copyright(c) 2008 Emutex Ltd. (address@hidden)
5 *
6 * EHCI project was started by Mark Burkley, with contributions by
7 * Niels de Vos. David S. Ahern continued working on it. Kevin Wolf,
8 * Jan Kiszka and Vincent Palatin contributed bugfixes.
9 *
10 *
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2 of the License, or(at your option) any later version.
15 *
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, see <http://www.gnu.org/licenses/>.
23 */
24
25 #include "hw.h"
26 #include "qemu-timer.h"
27 #include "usb.h"
28 #include "pci.h"
29 #include "monitor.h"
30 #include "trace.h"
31 #include "dma.h"
32
33 #define EHCI_DEBUG 0
34
35 #if EHCI_DEBUG
36 #define DPRINTF printf
37 #else
38 #define DPRINTF(...)
39 #endif
40
41 /* internal processing - reset HC to try and recover */
42 #define USB_RET_PROCERR (-99)
43
44 #define MMIO_SIZE 0x1000
45
46 /* Capability Registers Base Address - section 2.2 */
47 #define CAPREGBASE 0x0000
48 #define CAPLENGTH CAPREGBASE + 0x0000 // 1-byte, 0x0001 reserved
49 #define HCIVERSION CAPREGBASE + 0x0002 // 2-bytes, i/f version #
50 #define HCSPARAMS CAPREGBASE + 0x0004 // 4-bytes, structural params
51 #define HCCPARAMS CAPREGBASE + 0x0008 // 4-bytes, capability params
52 #define EECP HCCPARAMS + 1
53 #define HCSPPORTROUTE1 CAPREGBASE + 0x000c
54 #define HCSPPORTROUTE2 CAPREGBASE + 0x0010
55
56 #define OPREGBASE 0x0020 // Operational Registers Base Address
57
58 #define USBCMD OPREGBASE + 0x0000
59 #define USBCMD_RUNSTOP (1 << 0) // run / Stop
60 #define USBCMD_HCRESET (1 << 1) // HC Reset
61 #define USBCMD_FLS (3 << 2) // Frame List Size
62 #define USBCMD_FLS_SH 2 // Frame List Size Shift
63 #define USBCMD_PSE (1 << 4) // Periodic Schedule Enable
64 #define USBCMD_ASE (1 << 5) // Asynch Schedule Enable
65 #define USBCMD_IAAD (1 << 6) // Int Asynch Advance Doorbell
66 #define USBCMD_LHCR (1 << 7) // Light Host Controller Reset
67 #define USBCMD_ASPMC (3 << 8) // Async Sched Park Mode Count
68 #define USBCMD_ASPME (1 << 11) // Async Sched Park Mode Enable
69 #define USBCMD_ITC (0x7f << 16) // Int Threshold Control
70 #define USBCMD_ITC_SH 16 // Int Threshold Control Shift
71
72 #define USBSTS OPREGBASE + 0x0004
73 #define USBSTS_RO_MASK 0x0000003f
74 #define USBSTS_INT (1 << 0) // USB Interrupt
75 #define USBSTS_ERRINT (1 << 1) // Error Interrupt
76 #define USBSTS_PCD (1 << 2) // Port Change Detect
77 #define USBSTS_FLR (1 << 3) // Frame List Rollover
78 #define USBSTS_HSE (1 << 4) // Host System Error
79 #define USBSTS_IAA (1 << 5) // Interrupt on Async Advance
80 #define USBSTS_HALT (1 << 12) // HC Halted
81 #define USBSTS_REC (1 << 13) // Reclamation
82 #define USBSTS_PSS (1 << 14) // Periodic Schedule Status
83 #define USBSTS_ASS (1 << 15) // Asynchronous Schedule Status
84
85 /*
86 * Interrupt enable bits correspond to the interrupt active bits in USBSTS
87 * so no need to redefine here.
88 */
89 #define USBINTR OPREGBASE + 0x0008
90 #define USBINTR_MASK 0x0000003f
91
92 #define FRINDEX OPREGBASE + 0x000c
93 #define CTRLDSSEGMENT OPREGBASE + 0x0010
94 #define PERIODICLISTBASE OPREGBASE + 0x0014
95 #define ASYNCLISTADDR OPREGBASE + 0x0018
96 #define ASYNCLISTADDR_MASK 0xffffffe0
97
98 #define CONFIGFLAG OPREGBASE + 0x0040
99
100 #define PORTSC (OPREGBASE + 0x0044)
101 #define PORTSC_BEGIN PORTSC
102 #define PORTSC_END (PORTSC + 4 * NB_PORTS)
103 /*
104 * Bits that are reserved or are read-only are masked out of values
105 * written to us by software
106 */
107 #define PORTSC_RO_MASK 0x007001c0
108 #define PORTSC_RWC_MASK 0x0000002a
109 #define PORTSC_WKOC_E (1 << 22) // Wake on Over Current Enable
110 #define PORTSC_WKDS_E (1 << 21) // Wake on Disconnect Enable
111 #define PORTSC_WKCN_E (1 << 20) // Wake on Connect Enable
112 #define PORTSC_PTC (15 << 16) // Port Test Control
113 #define PORTSC_PTC_SH 16 // Port Test Control shift
114 #define PORTSC_PIC (3 << 14) // Port Indicator Control
115 #define PORTSC_PIC_SH 14 // Port Indicator Control Shift
116 #define PORTSC_POWNER (1 << 13) // Port Owner
117 #define PORTSC_PPOWER (1 << 12) // Port Power
118 #define PORTSC_LINESTAT (3 << 10) // Port Line Status
119 #define PORTSC_LINESTAT_SH 10 // Port Line Status Shift
120 #define PORTSC_PRESET (1 << 8) // Port Reset
121 #define PORTSC_SUSPEND (1 << 7) // Port Suspend
122 #define PORTSC_FPRES (1 << 6) // Force Port Resume
123 #define PORTSC_OCC (1 << 5) // Over Current Change
124 #define PORTSC_OCA (1 << 4) // Over Current Active
125 #define PORTSC_PEDC (1 << 3) // Port Enable/Disable Change
126 #define PORTSC_PED (1 << 2) // Port Enable/Disable
127 #define PORTSC_CSC (1 << 1) // Connect Status Change
128 #define PORTSC_CONNECT (1 << 0) // Current Connect Status
129
130 #define FRAME_TIMER_FREQ 1000
131 #define FRAME_TIMER_NS (1000000000 / FRAME_TIMER_FREQ)
132
133 #define NB_MAXINTRATE 8 // Max rate at which controller issues ints
134 #define NB_PORTS 6 // Number of downstream ports
135 #define BUFF_SIZE 5*4096 // Max bytes to transfer per transaction
136 #define MAX_ITERATIONS 20 // Max number of QH before we break the loop
137 #define MAX_QH 100 // Max allowable queue heads in a chain
138
139 /* Internal periodic / asynchronous schedule state machine states
140 */
141 typedef enum {
142 EST_INACTIVE = 1000,
143 EST_ACTIVE,
144 EST_EXECUTING,
145 EST_SLEEPING,
146 /* The following states are internal to the state machine function
147 */
148 EST_WAITLISTHEAD,
149 EST_FETCHENTRY,
150 EST_FETCHQH,
151 EST_FETCHITD,
152 EST_FETCHSITD,
153 EST_ADVANCEQUEUE,
154 EST_FETCHQTD,
155 EST_EXECUTE,
156 EST_WRITEBACK,
157 EST_HORIZONTALQH
158 } EHCI_STATES;
159
160 /* macros for accessing fields within next link pointer entry */
161 #define NLPTR_GET(x) ((x) & 0xffffffe0)
162 #define NLPTR_TYPE_GET(x) (((x) >> 1) & 3)
163 #define NLPTR_TBIT(x) ((x) & 1) // 1=invalid, 0=valid
164
165 /* link pointer types */
166 #define NLPTR_TYPE_ITD 0 // isoc xfer descriptor
167 #define NLPTR_TYPE_QH 1 // queue head
168 #define NLPTR_TYPE_STITD 2 // split xaction, isoc xfer descriptor
169 #define NLPTR_TYPE_FSTN 3 // frame span traversal node
170
171
172 /* EHCI spec version 1.0 Section 3.3
173 */
174 typedef struct EHCIitd {
175 uint32_t next;
176
177 uint32_t transact[8];
178 #define ITD_XACT_ACTIVE (1 << 31)
179 #define ITD_XACT_DBERROR (1 << 30)
180 #define ITD_XACT_BABBLE (1 << 29)
181 #define ITD_XACT_XACTERR (1 << 28)
182 #define ITD_XACT_LENGTH_MASK 0x0fff0000
183 #define ITD_XACT_LENGTH_SH 16
184 #define ITD_XACT_IOC (1 << 15)
185 #define ITD_XACT_PGSEL_MASK 0x00007000
186 #define ITD_XACT_PGSEL_SH 12
187 #define ITD_XACT_OFFSET_MASK 0x00000fff
188
189 uint32_t bufptr[7];
190 #define ITD_BUFPTR_MASK 0xfffff000
191 #define ITD_BUFPTR_SH 12
192 #define ITD_BUFPTR_EP_MASK 0x00000f00
193 #define ITD_BUFPTR_EP_SH 8
194 #define ITD_BUFPTR_DEVADDR_MASK 0x0000007f
195 #define ITD_BUFPTR_DEVADDR_SH 0
196 #define ITD_BUFPTR_DIRECTION (1 << 11)
197 #define ITD_BUFPTR_MAXPKT_MASK 0x000007ff
198 #define ITD_BUFPTR_MAXPKT_SH 0
199 #define ITD_BUFPTR_MULT_MASK 0x00000003
200 #define ITD_BUFPTR_MULT_SH 0
201 } EHCIitd;
202
203 /* EHCI spec version 1.0 Section 3.4
204 */
205 typedef struct EHCIsitd {
206 uint32_t next; // Standard next link pointer
207 uint32_t epchar;
208 #define SITD_EPCHAR_IO (1 << 31)
209 #define SITD_EPCHAR_PORTNUM_MASK 0x7f000000
210 #define SITD_EPCHAR_PORTNUM_SH 24
211 #define SITD_EPCHAR_HUBADD_MASK 0x007f0000
212 #define SITD_EPCHAR_HUBADDR_SH 16
213 #define SITD_EPCHAR_EPNUM_MASK 0x00000f00
214 #define SITD_EPCHAR_EPNUM_SH 8
215 #define SITD_EPCHAR_DEVADDR_MASK 0x0000007f
216
217 uint32_t uframe;
218 #define SITD_UFRAME_CMASK_MASK 0x0000ff00
219 #define SITD_UFRAME_CMASK_SH 8
220 #define SITD_UFRAME_SMASK_MASK 0x000000ff
221
222 uint32_t results;
223 #define SITD_RESULTS_IOC (1 << 31)
224 #define SITD_RESULTS_PGSEL (1 << 30)
225 #define SITD_RESULTS_TBYTES_MASK 0x03ff0000
226 #define SITD_RESULTS_TYBYTES_SH 16
227 #define SITD_RESULTS_CPROGMASK_MASK 0x0000ff00
228 #define SITD_RESULTS_CPROGMASK_SH 8
229 #define SITD_RESULTS_ACTIVE (1 << 7)
230 #define SITD_RESULTS_ERR (1 << 6)
231 #define SITD_RESULTS_DBERR (1 << 5)
232 #define SITD_RESULTS_BABBLE (1 << 4)
233 #define SITD_RESULTS_XACTERR (1 << 3)
234 #define SITD_RESULTS_MISSEDUF (1 << 2)
235 #define SITD_RESULTS_SPLITXSTATE (1 << 1)
236
237 uint32_t bufptr[2];
238 #define SITD_BUFPTR_MASK 0xfffff000
239 #define SITD_BUFPTR_CURROFF_MASK 0x00000fff
240 #define SITD_BUFPTR_TPOS_MASK 0x00000018
241 #define SITD_BUFPTR_TPOS_SH 3
242 #define SITD_BUFPTR_TCNT_MASK 0x00000007
243
244 uint32_t backptr; // Standard next link pointer
245 } EHCIsitd;
246
247 /* EHCI spec version 1.0 Section 3.5
248 */
249 typedef struct EHCIqtd {
250 uint32_t next; // Standard next link pointer
251 uint32_t altnext; // Standard next link pointer
252 uint32_t token;
253 #define QTD_TOKEN_DTOGGLE (1 << 31)
254 #define QTD_TOKEN_TBYTES_MASK 0x7fff0000
255 #define QTD_TOKEN_TBYTES_SH 16
256 #define QTD_TOKEN_IOC (1 << 15)
257 #define QTD_TOKEN_CPAGE_MASK 0x00007000
258 #define QTD_TOKEN_CPAGE_SH 12
259 #define QTD_TOKEN_CERR_MASK 0x00000c00
260 #define QTD_TOKEN_CERR_SH 10
261 #define QTD_TOKEN_PID_MASK 0x00000300
262 #define QTD_TOKEN_PID_SH 8
263 #define QTD_TOKEN_ACTIVE (1 << 7)
264 #define QTD_TOKEN_HALT (1 << 6)
265 #define QTD_TOKEN_DBERR (1 << 5)
266 #define QTD_TOKEN_BABBLE (1 << 4)
267 #define QTD_TOKEN_XACTERR (1 << 3)
268 #define QTD_TOKEN_MISSEDUF (1 << 2)
269 #define QTD_TOKEN_SPLITXSTATE (1 << 1)
270 #define QTD_TOKEN_PING (1 << 0)
271
272 uint32_t bufptr[5]; // Standard buffer pointer
273 #define QTD_BUFPTR_MASK 0xfffff000
274 #define QTD_BUFPTR_SH 12
275 } EHCIqtd;
276
277 /* EHCI spec version 1.0 Section 3.6
278 */
279 typedef struct EHCIqh {
280 uint32_t next; // Standard next link pointer
281
282 /* endpoint characteristics */
283 uint32_t epchar;
284 #define QH_EPCHAR_RL_MASK 0xf0000000
285 #define QH_EPCHAR_RL_SH 28
286 #define QH_EPCHAR_C (1 << 27)
287 #define QH_EPCHAR_MPLEN_MASK 0x07FF0000
288 #define QH_EPCHAR_MPLEN_SH 16
289 #define QH_EPCHAR_H (1 << 15)
290 #define QH_EPCHAR_DTC (1 << 14)
291 #define QH_EPCHAR_EPS_MASK 0x00003000
292 #define QH_EPCHAR_EPS_SH 12
293 #define EHCI_QH_EPS_FULL 0
294 #define EHCI_QH_EPS_LOW 1
295 #define EHCI_QH_EPS_HIGH 2
296 #define EHCI_QH_EPS_RESERVED 3
297
298 #define QH_EPCHAR_EP_MASK 0x00000f00
299 #define QH_EPCHAR_EP_SH 8
300 #define QH_EPCHAR_I (1 << 7)
301 #define QH_EPCHAR_DEVADDR_MASK 0x0000007f
302 #define QH_EPCHAR_DEVADDR_SH 0
303
304 /* endpoint capabilities */
305 uint32_t epcap;
306 #define QH_EPCAP_MULT_MASK 0xc0000000
307 #define QH_EPCAP_MULT_SH 30
308 #define QH_EPCAP_PORTNUM_MASK 0x3f800000
309 #define QH_EPCAP_PORTNUM_SH 23
310 #define QH_EPCAP_HUBADDR_MASK 0x007f0000
311 #define QH_EPCAP_HUBADDR_SH 16
312 #define QH_EPCAP_CMASK_MASK 0x0000ff00
313 #define QH_EPCAP_CMASK_SH 8
314 #define QH_EPCAP_SMASK_MASK 0x000000ff
315 #define QH_EPCAP_SMASK_SH 0
316
317 uint32_t current_qtd; // Standard next link pointer
318 uint32_t next_qtd; // Standard next link pointer
319 uint32_t altnext_qtd;
320 #define QH_ALTNEXT_NAKCNT_MASK 0x0000001e
321 #define QH_ALTNEXT_NAKCNT_SH 1
322
323 uint32_t token; // Same as QTD token
324 uint32_t bufptr[5]; // Standard buffer pointer
325 #define BUFPTR_CPROGMASK_MASK 0x000000ff
326 #define BUFPTR_FRAMETAG_MASK 0x0000001f
327 #define BUFPTR_SBYTES_MASK 0x00000fe0
328 #define BUFPTR_SBYTES_SH 5
329 } EHCIqh;
330
331 /* EHCI spec version 1.0 Section 3.7
332 */
333 typedef struct EHCIfstn {
334 uint32_t next; // Standard next link pointer
335 uint32_t backptr; // Standard next link pointer
336 } EHCIfstn;
337
338 typedef struct EHCIQueue EHCIQueue;
339 typedef struct EHCIState EHCIState;
340
341 enum async_state {
342 EHCI_ASYNC_NONE = 0,
343 EHCI_ASYNC_INFLIGHT,
344 EHCI_ASYNC_FINISHED,
345 };
346
347 struct EHCIQueue {
348 EHCIState *ehci;
349 QTAILQ_ENTRY(EHCIQueue) next;
350 bool async_schedule;
351 uint32_t seen;
352 uint64_t ts;
353
354 /* cached data from guest - needs to be flushed
355 * when guest removes an entry (doorbell, handshake sequence)
356 */
357 EHCIqh qh; // copy of current QH (being worked on)
358 uint32_t qhaddr; // address QH read from
359 EHCIqtd qtd; // copy of current QTD (being worked on)
360 uint32_t qtdaddr; // address QTD read from
361
362 USBPacket packet;
363 QEMUSGList sgl;
364 int pid;
365 uint32_t tbytes;
366 enum async_state async;
367 int usb_status;
368 };
369
370 struct EHCIState {
371 PCIDevice dev;
372 USBBus bus;
373 qemu_irq irq;
374 MemoryRegion mem;
375 int companion_count;
376
377 /* properties */
378 uint32_t freq;
379 uint32_t maxframes;
380
381 /*
382 * EHCI spec version 1.0 Section 2.3
383 * Host Controller Operational Registers
384 */
385 union {
386 uint8_t mmio[MMIO_SIZE];
387 struct {
388 uint8_t cap[OPREGBASE];
389 uint32_t usbcmd;
390 uint32_t usbsts;
391 uint32_t usbintr;
392 uint32_t frindex;
393 uint32_t ctrldssegment;
394 uint32_t periodiclistbase;
395 uint32_t asynclistaddr;
396 uint32_t notused[9];
397 uint32_t configflag;
398 uint32_t portsc[NB_PORTS];
399 };
400 };
401
402 /*
403 * Internal states, shadow registers, etc
404 */
405 uint32_t sofv;
406 QEMUTimer *frame_timer;
407 int attach_poll_counter;
408 int astate; // Current state in asynchronous schedule
409 int pstate; // Current state in periodic schedule
410 USBPort ports[NB_PORTS];
411 USBPort *companion_ports[NB_PORTS];
412 uint32_t usbsts_pending;
413 QTAILQ_HEAD(, EHCIQueue) queues;
414
415 uint32_t a_fetch_addr; // which address to look at next
416 uint32_t p_fetch_addr; // which address to look at next
417
418 USBPacket ipacket;
419 QEMUSGList isgl;
420 int isoch_pause;
421
422 uint64_t last_run_ns;
423 };
424
425 #define SET_LAST_RUN_CLOCK(s) \
426 (s)->last_run_ns = qemu_get_clock_ns(vm_clock);
427
428 /* nifty macros from Arnon's EHCI version */
429 #define get_field(data, field) \
430 (((data) & field##_MASK) >> field##_SH)
431
432 #define set_field(data, newval, field) do { \
433 uint32_t val = *data; \
434 val &= ~ field##_MASK; \
435 val |= ((newval) << field##_SH) & field##_MASK; \
436 *data = val; \
437 } while(0)
438
439 static const char *ehci_state_names[] = {
440 [EST_INACTIVE] = "INACTIVE",
441 [EST_ACTIVE] = "ACTIVE",
442 [EST_EXECUTING] = "EXECUTING",
443 [EST_SLEEPING] = "SLEEPING",
444 [EST_WAITLISTHEAD] = "WAITLISTHEAD",
445 [EST_FETCHENTRY] = "FETCH ENTRY",
446 [EST_FETCHQH] = "FETCH QH",
447 [EST_FETCHITD] = "FETCH ITD",
448 [EST_ADVANCEQUEUE] = "ADVANCEQUEUE",
449 [EST_FETCHQTD] = "FETCH QTD",
450 [EST_EXECUTE] = "EXECUTE",
451 [EST_WRITEBACK] = "WRITEBACK",
452 [EST_HORIZONTALQH] = "HORIZONTALQH",
453 };
454
455 static const char *ehci_mmio_names[] = {
456 [CAPLENGTH] = "CAPLENGTH",
457 [HCIVERSION] = "HCIVERSION",
458 [HCSPARAMS] = "HCSPARAMS",
459 [HCCPARAMS] = "HCCPARAMS",
460 [USBCMD] = "USBCMD",
461 [USBSTS] = "USBSTS",
462 [USBINTR] = "USBINTR",
463 [FRINDEX] = "FRINDEX",
464 [PERIODICLISTBASE] = "P-LIST BASE",
465 [ASYNCLISTADDR] = "A-LIST ADDR",
466 [PORTSC_BEGIN] = "PORTSC #0",
467 [PORTSC_BEGIN + 4] = "PORTSC #1",
468 [PORTSC_BEGIN + 8] = "PORTSC #2",
469 [PORTSC_BEGIN + 12] = "PORTSC #3",
470 [PORTSC_BEGIN + 16] = "PORTSC #4",
471 [PORTSC_BEGIN + 20] = "PORTSC #5",
472 [CONFIGFLAG] = "CONFIGFLAG",
473 };
474
475 static const char *nr2str(const char **n, size_t len, uint32_t nr)
476 {
477 if (nr < len && n[nr] != NULL) {
478 return n[nr];
479 } else {
480 return "unknown";
481 }
482 }
483
484 static const char *state2str(uint32_t state)
485 {
486 return nr2str(ehci_state_names, ARRAY_SIZE(ehci_state_names), state);
487 }
488
489 static const char *addr2str(target_phys_addr_t addr)
490 {
491 return nr2str(ehci_mmio_names, ARRAY_SIZE(ehci_mmio_names), addr);
492 }
493
494 static void ehci_trace_usbsts(uint32_t mask, int state)
495 {
496 /* interrupts */
497 if (mask & USBSTS_INT) {
498 trace_usb_ehci_usbsts("INT", state);
499 }
500 if (mask & USBSTS_ERRINT) {
501 trace_usb_ehci_usbsts("ERRINT", state);
502 }
503 if (mask & USBSTS_PCD) {
504 trace_usb_ehci_usbsts("PCD", state);
505 }
506 if (mask & USBSTS_FLR) {
507 trace_usb_ehci_usbsts("FLR", state);
508 }
509 if (mask & USBSTS_HSE) {
510 trace_usb_ehci_usbsts("HSE", state);
511 }
512 if (mask & USBSTS_IAA) {
513 trace_usb_ehci_usbsts("IAA", state);
514 }
515
516 /* status */
517 if (mask & USBSTS_HALT) {
518 trace_usb_ehci_usbsts("HALT", state);
519 }
520 if (mask & USBSTS_REC) {
521 trace_usb_ehci_usbsts("REC", state);
522 }
523 if (mask & USBSTS_PSS) {
524 trace_usb_ehci_usbsts("PSS", state);
525 }
526 if (mask & USBSTS_ASS) {
527 trace_usb_ehci_usbsts("ASS", state);
528 }
529 }
530
531 static inline void ehci_set_usbsts(EHCIState *s, int mask)
532 {
533 if ((s->usbsts & mask) == mask) {
534 return;
535 }
536 ehci_trace_usbsts(mask, 1);
537 s->usbsts |= mask;
538 }
539
540 static inline void ehci_clear_usbsts(EHCIState *s, int mask)
541 {
542 if ((s->usbsts & mask) == 0) {
543 return;
544 }
545 ehci_trace_usbsts(mask, 0);
546 s->usbsts &= ~mask;
547 }
548
549 static inline void ehci_set_interrupt(EHCIState *s, int intr)
550 {
551 int level = 0;
552
553 // TODO honour interrupt threshold requests
554
555 ehci_set_usbsts(s, intr);
556
557 if ((s->usbsts & USBINTR_MASK) & s->usbintr) {
558 level = 1;
559 }
560
561 qemu_set_irq(s->irq, level);
562 }
563
564 static inline void ehci_record_interrupt(EHCIState *s, int intr)
565 {
566 s->usbsts_pending |= intr;
567 }
568
569 static inline void ehci_commit_interrupt(EHCIState *s)
570 {
571 if (!s->usbsts_pending) {
572 return;
573 }
574 ehci_set_interrupt(s, s->usbsts_pending);
575 s->usbsts_pending = 0;
576 }
577
578 static void ehci_set_state(EHCIState *s, int async, int state)
579 {
580 if (async) {
581 trace_usb_ehci_state("async", state2str(state));
582 s->astate = state;
583 } else {
584 trace_usb_ehci_state("periodic", state2str(state));
585 s->pstate = state;
586 }
587 }
588
589 static int ehci_get_state(EHCIState *s, int async)
590 {
591 return async ? s->astate : s->pstate;
592 }
593
594 static void ehci_set_fetch_addr(EHCIState *s, int async, uint32_t addr)
595 {
596 if (async) {
597 s->a_fetch_addr = addr;
598 } else {
599 s->p_fetch_addr = addr;
600 }
601 }
602
603 static int ehci_get_fetch_addr(EHCIState *s, int async)
604 {
605 return async ? s->a_fetch_addr : s->p_fetch_addr;
606 }
607
608 static void ehci_trace_qh(EHCIQueue *q, target_phys_addr_t addr, EHCIqh *qh)
609 {
610 /* need three here due to argument count limits */
611 trace_usb_ehci_qh_ptrs(q, addr, qh->next,
612 qh->current_qtd, qh->next_qtd, qh->altnext_qtd);
613 trace_usb_ehci_qh_fields(addr,
614 get_field(qh->epchar, QH_EPCHAR_RL),
615 get_field(qh->epchar, QH_EPCHAR_MPLEN),
616 get_field(qh->epchar, QH_EPCHAR_EPS),
617 get_field(qh->epchar, QH_EPCHAR_EP),
618 get_field(qh->epchar, QH_EPCHAR_DEVADDR));
619 trace_usb_ehci_qh_bits(addr,
620 (bool)(qh->epchar & QH_EPCHAR_C),
621 (bool)(qh->epchar & QH_EPCHAR_H),
622 (bool)(qh->epchar & QH_EPCHAR_DTC),
623 (bool)(qh->epchar & QH_EPCHAR_I));
624 }
625
626 static void ehci_trace_qtd(EHCIQueue *q, target_phys_addr_t addr, EHCIqtd *qtd)
627 {
628 /* need three here due to argument count limits */
629 trace_usb_ehci_qtd_ptrs(q, addr, qtd->next, qtd->altnext);
630 trace_usb_ehci_qtd_fields(addr,
631 get_field(qtd->token, QTD_TOKEN_TBYTES),
632 get_field(qtd->token, QTD_TOKEN_CPAGE),
633 get_field(qtd->token, QTD_TOKEN_CERR),
634 get_field(qtd->token, QTD_TOKEN_PID));
635 trace_usb_ehci_qtd_bits(addr,
636 (bool)(qtd->token & QTD_TOKEN_IOC),
637 (bool)(qtd->token & QTD_TOKEN_ACTIVE),
638 (bool)(qtd->token & QTD_TOKEN_HALT),
639 (bool)(qtd->token & QTD_TOKEN_BABBLE),
640 (bool)(qtd->token & QTD_TOKEN_XACTERR));
641 }
642
643 static void ehci_trace_itd(EHCIState *s, target_phys_addr_t addr, EHCIitd *itd)
644 {
645 trace_usb_ehci_itd(addr, itd->next,
646 get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT),
647 get_field(itd->bufptr[2], ITD_BUFPTR_MULT),
648 get_field(itd->bufptr[0], ITD_BUFPTR_EP),
649 get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR));
650 }
651
652 static void ehci_trace_sitd(EHCIState *s, target_phys_addr_t addr,
653 EHCIsitd *sitd)
654 {
655 trace_usb_ehci_sitd(addr, sitd->next,
656 (bool)(sitd->results & SITD_RESULTS_ACTIVE));
657 }
658
659 /* queue management */
660
661 static EHCIQueue *ehci_alloc_queue(EHCIState *ehci, int async)
662 {
663 EHCIQueue *q;
664
665 q = g_malloc0(sizeof(*q));
666 q->ehci = ehci;
667 q->async_schedule = async;
668 QTAILQ_INSERT_HEAD(&ehci->queues, q, next);
669 trace_usb_ehci_queue_action(q, "alloc");
670 return q;
671 }
672
673 static void ehci_free_queue(EHCIQueue *q)
674 {
675 trace_usb_ehci_queue_action(q, "free");
676 if (q->async == EHCI_ASYNC_INFLIGHT) {
677 usb_cancel_packet(&q->packet);
678 }
679 QTAILQ_REMOVE(&q->ehci->queues, q, next);
680 g_free(q);
681 }
682
683 static EHCIQueue *ehci_find_queue_by_qh(EHCIState *ehci, uint32_t addr)
684 {
685 EHCIQueue *q;
686
687 QTAILQ_FOREACH(q, &ehci->queues, next) {
688 if (addr == q->qhaddr) {
689 return q;
690 }
691 }
692 return NULL;
693 }
694
695 static void ehci_queues_rip_unused(EHCIState *ehci)
696 {
697 EHCIQueue *q, *tmp;
698
699 QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
700 if (q->seen) {
701 q->seen = 0;
702 q->ts = ehci->last_run_ns;
703 continue;
704 }
705 if (ehci->last_run_ns < q->ts + 250000000) {
706 /* allow 0.25 sec idle */
707 continue;
708 }
709 ehci_free_queue(q);
710 }
711 }
712
713 static void ehci_queues_rip_device(EHCIState *ehci, USBDevice *dev)
714 {
715 EHCIQueue *q, *tmp;
716
717 QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
718 if (q->packet.owner == NULL ||
719 q->packet.owner->dev != dev) {
720 continue;
721 }
722 ehci_free_queue(q);
723 }
724 }
725
726 static void ehci_queues_rip_all(EHCIState *ehci)
727 {
728 EHCIQueue *q, *tmp;
729
730 QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
731 ehci_free_queue(q);
732 }
733 }
734
735 /* Attach or detach a device on root hub */
736
737 static void ehci_attach(USBPort *port)
738 {
739 EHCIState *s = port->opaque;
740 uint32_t *portsc = &s->portsc[port->index];
741
742 trace_usb_ehci_port_attach(port->index, port->dev->product_desc);
743
744 if (*portsc & PORTSC_POWNER) {
745 USBPort *companion = s->companion_ports[port->index];
746 companion->dev = port->dev;
747 companion->ops->attach(companion);
748 return;
749 }
750
751 *portsc |= PORTSC_CONNECT;
752 *portsc |= PORTSC_CSC;
753
754 ehci_set_interrupt(s, USBSTS_PCD);
755 }
756
757 static void ehci_detach(USBPort *port)
758 {
759 EHCIState *s = port->opaque;
760 uint32_t *portsc = &s->portsc[port->index];
761
762 trace_usb_ehci_port_detach(port->index);
763
764 if (*portsc & PORTSC_POWNER) {
765 USBPort *companion = s->companion_ports[port->index];
766 companion->ops->detach(companion);
767 companion->dev = NULL;
768 return;
769 }
770
771 ehci_queues_rip_device(s, port->dev);
772
773 *portsc &= ~(PORTSC_CONNECT|PORTSC_PED);
774 *portsc |= PORTSC_CSC;
775
776 ehci_set_interrupt(s, USBSTS_PCD);
777 }
778
779 static void ehci_child_detach(USBPort *port, USBDevice *child)
780 {
781 EHCIState *s = port->opaque;
782 uint32_t portsc = s->portsc[port->index];
783
784 if (portsc & PORTSC_POWNER) {
785 USBPort *companion = s->companion_ports[port->index];
786 companion->ops->child_detach(companion, child);
787 companion->dev = NULL;
788 return;
789 }
790
791 ehci_queues_rip_device(s, child);
792 }
793
794 static void ehci_wakeup(USBPort *port)
795 {
796 EHCIState *s = port->opaque;
797 uint32_t portsc = s->portsc[port->index];
798
799 if (portsc & PORTSC_POWNER) {
800 USBPort *companion = s->companion_ports[port->index];
801 if (companion->ops->wakeup) {
802 companion->ops->wakeup(companion);
803 }
804 }
805 }
806
807 static int ehci_register_companion(USBBus *bus, USBPort *ports[],
808 uint32_t portcount, uint32_t firstport)
809 {
810 EHCIState *s = container_of(bus, EHCIState, bus);
811 uint32_t i;
812
813 if (firstport + portcount > NB_PORTS) {
814 qerror_report(QERR_INVALID_PARAMETER_VALUE, "firstport",
815 "firstport on masterbus");
816 error_printf_unless_qmp(
817 "firstport value of %u makes companion take ports %u - %u, which "
818 "is outside of the valid range of 0 - %u\n", firstport, firstport,
819 firstport + portcount - 1, NB_PORTS - 1);
820 return -1;
821 }
822
823 for (i = 0; i < portcount; i++) {
824 if (s->companion_ports[firstport + i]) {
825 qerror_report(QERR_INVALID_PARAMETER_VALUE, "masterbus",
826 "an USB masterbus");
827 error_printf_unless_qmp(
828 "port %u on masterbus %s already has a companion assigned\n",
829 firstport + i, bus->qbus.name);
830 return -1;
831 }
832 }
833
834 for (i = 0; i < portcount; i++) {
835 s->companion_ports[firstport + i] = ports[i];
836 s->ports[firstport + i].speedmask |=
837 USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL;
838 /* Ensure devs attached before the initial reset go to the companion */
839 s->portsc[firstport + i] = PORTSC_POWNER;
840 }
841
842 s->companion_count++;
843 s->mmio[0x05] = (s->companion_count << 4) | portcount;
844
845 return 0;
846 }
847
848 /* 4.1 host controller initialization */
849 static void ehci_reset(void *opaque)
850 {
851 EHCIState *s = opaque;
852 int i;
853 USBDevice *devs[NB_PORTS];
854
855 trace_usb_ehci_reset();
856
857 /*
858 * Do the detach before touching portsc, so that it correctly gets send to
859 * us or to our companion based on PORTSC_POWNER before the reset.
860 */
861 for(i = 0; i < NB_PORTS; i++) {
862 devs[i] = s->ports[i].dev;
863 if (devs[i] && devs[i]->attached) {
864 usb_detach(&s->ports[i]);
865 }
866 }
867
868 memset(&s->mmio[OPREGBASE], 0x00, MMIO_SIZE - OPREGBASE);
869
870 s->usbcmd = NB_MAXINTRATE << USBCMD_ITC_SH;
871 s->usbsts = USBSTS_HALT;
872
873 s->astate = EST_INACTIVE;
874 s->pstate = EST_INACTIVE;
875 s->isoch_pause = -1;
876 s->attach_poll_counter = 0;
877
878 for(i = 0; i < NB_PORTS; i++) {
879 if (s->companion_ports[i]) {
880 s->portsc[i] = PORTSC_POWNER | PORTSC_PPOWER;
881 } else {
882 s->portsc[i] = PORTSC_PPOWER;
883 }
884 if (devs[i] && devs[i]->attached) {
885 usb_attach(&s->ports[i]);
886 usb_send_msg(devs[i], USB_MSG_RESET);
887 }
888 }
889 ehci_queues_rip_all(s);
890 }
891
892 static uint32_t ehci_mem_readb(void *ptr, target_phys_addr_t addr)
893 {
894 EHCIState *s = ptr;
895 uint32_t val;
896
897 val = s->mmio[addr];
898
899 return val;
900 }
901
902 static uint32_t ehci_mem_readw(void *ptr, target_phys_addr_t addr)
903 {
904 EHCIState *s = ptr;
905 uint32_t val;
906
907 val = s->mmio[addr] | (s->mmio[addr+1] << 8);
908
909 return val;
910 }
911
912 static uint32_t ehci_mem_readl(void *ptr, target_phys_addr_t addr)
913 {
914 EHCIState *s = ptr;
915 uint32_t val;
916
917 val = s->mmio[addr] | (s->mmio[addr+1] << 8) |
918 (s->mmio[addr+2] << 16) | (s->mmio[addr+3] << 24);
919
920 trace_usb_ehci_mmio_readl(addr, addr2str(addr), val);
921 return val;
922 }
923
924 static void ehci_mem_writeb(void *ptr, target_phys_addr_t addr, uint32_t val)
925 {
926 fprintf(stderr, "EHCI doesn't handle byte writes to MMIO\n");
927 exit(1);
928 }
929
930 static void ehci_mem_writew(void *ptr, target_phys_addr_t addr, uint32_t val)
931 {
932 fprintf(stderr, "EHCI doesn't handle 16-bit writes to MMIO\n");
933 exit(1);
934 }
935
936 static void handle_port_owner_write(EHCIState *s, int port, uint32_t owner)
937 {
938 USBDevice *dev = s->ports[port].dev;
939 uint32_t *portsc = &s->portsc[port];
940 uint32_t orig;
941
942 if (s->companion_ports[port] == NULL)
943 return;
944
945 owner = owner & PORTSC_POWNER;
946 orig = *portsc & PORTSC_POWNER;
947
948 if (!(owner ^ orig)) {
949 return;
950 }
951
952 if (dev && dev->attached) {
953 usb_detach(&s->ports[port]);
954 }
955
956 *portsc &= ~PORTSC_POWNER;
957 *portsc |= owner;
958
959 if (dev && dev->attached) {
960 usb_attach(&s->ports[port]);
961 }
962 }
963
964 static void handle_port_status_write(EHCIState *s, int port, uint32_t val)
965 {
966 uint32_t *portsc = &s->portsc[port];
967 USBDevice *dev = s->ports[port].dev;
968
969 /* Clear rwc bits */
970 *portsc &= ~(val & PORTSC_RWC_MASK);
971 /* The guest may clear, but not set the PED bit */
972 *portsc &= val | ~PORTSC_PED;
973 /* POWNER is masked out by RO_MASK as it is RO when we've no companion */
974 handle_port_owner_write(s, port, val);
975 /* And finally apply RO_MASK */
976 val &= PORTSC_RO_MASK;
977
978 if ((val & PORTSC_PRESET) && !(*portsc & PORTSC_PRESET)) {
979 trace_usb_ehci_port_reset(port, 1);
980 }
981
982 if (!(val & PORTSC_PRESET) &&(*portsc & PORTSC_PRESET)) {
983 trace_usb_ehci_port_reset(port, 0);
984 if (dev && dev->attached) {
985 usb_reset(&s->ports[port]);
986 *portsc &= ~PORTSC_CSC;
987 }
988
989 /*
990 * Table 2.16 Set the enable bit(and enable bit change) to indicate
991 * to SW that this port has a high speed device attached
992 */
993 if (dev && dev->attached && (dev->speedmask & USB_SPEED_MASK_HIGH)) {
994 val |= PORTSC_PED;
995 }
996 }
997
998 *portsc &= ~PORTSC_RO_MASK;
999 *portsc |= val;
1000 }
1001
1002 static void ehci_mem_writel(void *ptr, target_phys_addr_t addr, uint32_t val)
1003 {
1004 EHCIState *s = ptr;
1005 uint32_t *mmio = (uint32_t *)(&s->mmio[addr]);
1006 uint32_t old = *mmio;
1007 int i;
1008
1009 trace_usb_ehci_mmio_writel(addr, addr2str(addr), val);
1010
1011 /* Only aligned reads are allowed on OHCI */
1012 if (addr & 3) {
1013 fprintf(stderr, "usb-ehci: Mis-aligned write to addr 0x"
1014 TARGET_FMT_plx "\n", addr);
1015 return;
1016 }
1017
1018 if (addr >= PORTSC && addr < PORTSC + 4 * NB_PORTS) {
1019 handle_port_status_write(s, (addr-PORTSC)/4, val);
1020 trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
1021 return;
1022 }
1023
1024 if (addr < OPREGBASE) {
1025 fprintf(stderr, "usb-ehci: write attempt to read-only register"
1026 TARGET_FMT_plx "\n", addr);
1027 return;
1028 }
1029
1030
1031 /* Do any register specific pre-write processing here. */
1032 switch(addr) {
1033 case USBCMD:
1034 if ((val & USBCMD_RUNSTOP) && !(s->usbcmd & USBCMD_RUNSTOP)) {
1035 qemu_mod_timer(s->frame_timer, qemu_get_clock_ns(vm_clock));
1036 SET_LAST_RUN_CLOCK(s);
1037 ehci_clear_usbsts(s, USBSTS_HALT);
1038 }
1039
1040 if (!(val & USBCMD_RUNSTOP) && (s->usbcmd & USBCMD_RUNSTOP)) {
1041 qemu_del_timer(s->frame_timer);
1042 // TODO - should finish out some stuff before setting halt
1043 ehci_set_usbsts(s, USBSTS_HALT);
1044 }
1045
1046 if (val & USBCMD_HCRESET) {
1047 ehci_reset(s);
1048 val &= ~USBCMD_HCRESET;
1049 }
1050
1051 /* not supporting dynamic frame list size at the moment */
1052 if ((val & USBCMD_FLS) && !(s->usbcmd & USBCMD_FLS)) {
1053 fprintf(stderr, "attempt to set frame list size -- value %d\n",
1054 val & USBCMD_FLS);
1055 val &= ~USBCMD_FLS;
1056 }
1057 break;
1058
1059 case USBSTS:
1060 val &= USBSTS_RO_MASK; // bits 6 thru 31 are RO
1061 ehci_clear_usbsts(s, val); // bits 0 thru 5 are R/WC
1062 val = s->usbsts;
1063 ehci_set_interrupt(s, 0);
1064 break;
1065
1066 case USBINTR:
1067 val &= USBINTR_MASK;
1068 break;
1069
1070 case FRINDEX:
1071 s->sofv = val >> 3;
1072 break;
1073
1074 case CONFIGFLAG:
1075 val &= 0x1;
1076 if (val) {
1077 for(i = 0; i < NB_PORTS; i++)
1078 handle_port_owner_write(s, i, 0);
1079 }
1080 break;
1081
1082 case PERIODICLISTBASE:
1083 if ((s->usbcmd & USBCMD_PSE) && (s->usbcmd & USBCMD_RUNSTOP)) {
1084 fprintf(stderr,
1085 "ehci: PERIODIC list base register set while periodic schedule\n"
1086 " is enabled and HC is enabled\n");
1087 }
1088 break;
1089
1090 case ASYNCLISTADDR:
1091 if ((s->usbcmd & USBCMD_ASE) && (s->usbcmd & USBCMD_RUNSTOP)) {
1092 fprintf(stderr,
1093 "ehci: ASYNC list address register set while async schedule\n"
1094 " is enabled and HC is enabled\n");
1095 }
1096 break;
1097 }
1098
1099 *mmio = val;
1100 trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
1101 }
1102
1103
1104 // TODO : Put in common header file, duplication from usb-ohci.c
1105
1106 /* Get an array of dwords from main memory */
1107 static inline int get_dwords(EHCIState *ehci, uint32_t addr,
1108 uint32_t *buf, int num)
1109 {
1110 int i;
1111
1112 for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1113 pci_dma_read(&ehci->dev, addr, buf, sizeof(*buf));
1114 *buf = le32_to_cpu(*buf);
1115 }
1116
1117 return 1;
1118 }
1119
1120 /* Put an array of dwords in to main memory */
1121 static inline int put_dwords(EHCIState *ehci, uint32_t addr,
1122 uint32_t *buf, int num)
1123 {
1124 int i;
1125
1126 for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1127 uint32_t tmp = cpu_to_le32(*buf);
1128 pci_dma_write(&ehci->dev, addr, &tmp, sizeof(tmp));
1129 }
1130
1131 return 1;
1132 }
1133
1134 // 4.10.2
1135
1136 static int ehci_qh_do_overlay(EHCIQueue *q)
1137 {
1138 int i;
1139 int dtoggle;
1140 int ping;
1141 int eps;
1142 int reload;
1143
1144 // remember values in fields to preserve in qh after overlay
1145
1146 dtoggle = q->qh.token & QTD_TOKEN_DTOGGLE;
1147 ping = q->qh.token & QTD_TOKEN_PING;
1148
1149 q->qh.current_qtd = q->qtdaddr;
1150 q->qh.next_qtd = q->qtd.next;
1151 q->qh.altnext_qtd = q->qtd.altnext;
1152 q->qh.token = q->qtd.token;
1153
1154
1155 eps = get_field(q->qh.epchar, QH_EPCHAR_EPS);
1156 if (eps == EHCI_QH_EPS_HIGH) {
1157 q->qh.token &= ~QTD_TOKEN_PING;
1158 q->qh.token |= ping;
1159 }
1160
1161 reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1162 set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1163
1164 for (i = 0; i < 5; i++) {
1165 q->qh.bufptr[i] = q->qtd.bufptr[i];
1166 }
1167
1168 if (!(q->qh.epchar & QH_EPCHAR_DTC)) {
1169 // preserve QH DT bit
1170 q->qh.token &= ~QTD_TOKEN_DTOGGLE;
1171 q->qh.token |= dtoggle;
1172 }
1173
1174 q->qh.bufptr[1] &= ~BUFPTR_CPROGMASK_MASK;
1175 q->qh.bufptr[2] &= ~BUFPTR_FRAMETAG_MASK;
1176
1177 put_dwords(q->ehci, NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh,
1178 sizeof(EHCIqh) >> 2);
1179
1180 return 0;
1181 }
1182
1183 static int ehci_init_transfer(EHCIQueue *q)
1184 {
1185 uint32_t cpage, offset, bytes, plen;
1186 dma_addr_t page;
1187
1188 cpage = get_field(q->qh.token, QTD_TOKEN_CPAGE);
1189 bytes = get_field(q->qh.token, QTD_TOKEN_TBYTES);
1190 offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
1191 pci_dma_sglist_init(&q->sgl, &q->ehci->dev, 5);
1192
1193 while (bytes > 0) {
1194 if (cpage > 4) {
1195 fprintf(stderr, "cpage out of range (%d)\n", cpage);
1196 return USB_RET_PROCERR;
1197 }
1198
1199 page = q->qh.bufptr[cpage] & QTD_BUFPTR_MASK;
1200 page += offset;
1201 plen = bytes;
1202 if (plen > 4096 - offset) {
1203 plen = 4096 - offset;
1204 offset = 0;
1205 cpage++;
1206 }
1207
1208 qemu_sglist_add(&q->sgl, page, plen);
1209 bytes -= plen;
1210 }
1211 return 0;
1212 }
1213
1214 static void ehci_finish_transfer(EHCIQueue *q, int status)
1215 {
1216 uint32_t cpage, offset;
1217
1218 qemu_sglist_destroy(&q->sgl);
1219
1220 if (status > 0) {
1221 /* update cpage & offset */
1222 cpage = get_field(q->qh.token, QTD_TOKEN_CPAGE);
1223 offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
1224
1225 offset += status;
1226 cpage += offset >> QTD_BUFPTR_SH;
1227 offset &= ~QTD_BUFPTR_MASK;
1228
1229 set_field(&q->qh.token, cpage, QTD_TOKEN_CPAGE);
1230 q->qh.bufptr[0] &= QTD_BUFPTR_MASK;
1231 q->qh.bufptr[0] |= offset;
1232 }
1233 }
1234
1235 static void ehci_async_complete_packet(USBPort *port, USBPacket *packet)
1236 {
1237 EHCIQueue *q;
1238 EHCIState *s = port->opaque;
1239 uint32_t portsc = s->portsc[port->index];
1240
1241 if (portsc & PORTSC_POWNER) {
1242 USBPort *companion = s->companion_ports[port->index];
1243 companion->ops->complete(companion, packet);
1244 return;
1245 }
1246
1247 q = container_of(packet, EHCIQueue, packet);
1248 trace_usb_ehci_queue_action(q, "wakeup");
1249 assert(q->async == EHCI_ASYNC_INFLIGHT);
1250 q->async = EHCI_ASYNC_FINISHED;
1251 q->usb_status = packet->result;
1252 }
1253
1254 static void ehci_execute_complete(EHCIQueue *q)
1255 {
1256 int c_err, reload;
1257
1258 assert(q->async != EHCI_ASYNC_INFLIGHT);
1259 q->async = EHCI_ASYNC_NONE;
1260
1261 DPRINTF("execute_complete: qhaddr 0x%x, next %x, qtdaddr 0x%x, status %d\n",
1262 q->qhaddr, q->qh.next, q->qtdaddr, q->usb_status);
1263
1264 if (q->usb_status < 0) {
1265 err:
1266 /* TO-DO: put this is in a function that can be invoked below as well */
1267 c_err = get_field(q->qh.token, QTD_TOKEN_CERR);
1268 c_err--;
1269 set_field(&q->qh.token, c_err, QTD_TOKEN_CERR);
1270
1271 switch(q->usb_status) {
1272 case USB_RET_NODEV:
1273 q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_XACTERR);
1274 ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1275 break;
1276 case USB_RET_STALL:
1277 q->qh.token |= QTD_TOKEN_HALT;
1278 ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1279 break;
1280 case USB_RET_NAK:
1281 /* 4.10.3 */
1282 reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1283 if ((q->pid == USB_TOKEN_IN) && reload) {
1284 int nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1285 nakcnt--;
1286 set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
1287 } else if (!reload) {
1288 return;
1289 }
1290 break;
1291 case USB_RET_BABBLE:
1292 q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
1293 ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1294 break;
1295 default:
1296 /* should not be triggerable */
1297 fprintf(stderr, "USB invalid response %d to handle\n", q->usb_status);
1298 assert(0);
1299 break;
1300 }
1301 } else {
1302 // DPRINTF("Short packet condition\n");
1303 // TODO check 4.12 for splits
1304
1305 if ((q->usb_status > q->tbytes) && (q->pid == USB_TOKEN_IN)) {
1306 q->usb_status = USB_RET_BABBLE;
1307 goto err;
1308 }
1309
1310 if (q->tbytes && q->pid == USB_TOKEN_IN) {
1311 q->tbytes -= q->usb_status;
1312 } else {
1313 q->tbytes = 0;
1314 }
1315
1316 DPRINTF("updating tbytes to %d\n", q->tbytes);
1317 set_field(&q->qh.token, q->tbytes, QTD_TOKEN_TBYTES);
1318 }
1319 ehci_finish_transfer(q, q->usb_status);
1320 usb_packet_unmap(&q->packet);
1321
1322 q->qh.token ^= QTD_TOKEN_DTOGGLE;
1323 q->qh.token &= ~QTD_TOKEN_ACTIVE;
1324
1325 if ((q->usb_status >= 0) && (q->qh.token & QTD_TOKEN_IOC)) {
1326 ehci_record_interrupt(q->ehci, USBSTS_INT);
1327 }
1328 }
1329
1330 // 4.10.3
1331
1332 static int ehci_execute(EHCIQueue *q)
1333 {
1334 USBPort *port;
1335 USBDevice *dev;
1336 int ret;
1337 int i;
1338 int endp;
1339 int devadr;
1340
1341 if ( !(q->qh.token & QTD_TOKEN_ACTIVE)) {
1342 fprintf(stderr, "Attempting to execute inactive QH\n");
1343 return USB_RET_PROCERR;
1344 }
1345
1346 q->tbytes = (q->qh.token & QTD_TOKEN_TBYTES_MASK) >> QTD_TOKEN_TBYTES_SH;
1347 if (q->tbytes > BUFF_SIZE) {
1348 fprintf(stderr, "Request for more bytes than allowed\n");
1349 return USB_RET_PROCERR;
1350 }
1351
1352 q->pid = (q->qh.token & QTD_TOKEN_PID_MASK) >> QTD_TOKEN_PID_SH;
1353 switch(q->pid) {
1354 case 0: q->pid = USB_TOKEN_OUT; break;
1355 case 1: q->pid = USB_TOKEN_IN; break;
1356 case 2: q->pid = USB_TOKEN_SETUP; break;
1357 default: fprintf(stderr, "bad token\n"); break;
1358 }
1359
1360 if (ehci_init_transfer(q) != 0) {
1361 return USB_RET_PROCERR;
1362 }
1363
1364 endp = get_field(q->qh.epchar, QH_EPCHAR_EP);
1365 devadr = get_field(q->qh.epchar, QH_EPCHAR_DEVADDR);
1366
1367 ret = USB_RET_NODEV;
1368
1369 usb_packet_setup(&q->packet, q->pid, devadr, endp);
1370 usb_packet_map(&q->packet, &q->sgl);
1371
1372 // TO-DO: associating device with ehci port
1373 for(i = 0; i < NB_PORTS; i++) {
1374 port = &q->ehci->ports[i];
1375 dev = port->dev;
1376
1377 if (!(q->ehci->portsc[i] &(PORTSC_CONNECT))) {
1378 DPRINTF("Port %d, no exec, not connected(%08X)\n",
1379 i, q->ehci->portsc[i]);
1380 continue;
1381 }
1382
1383 ret = usb_handle_packet(dev, &q->packet);
1384
1385 DPRINTF("submit: qh %x next %x qtd %x pid %x len %zd "
1386 "(total %d) endp %x ret %d\n",
1387 q->qhaddr, q->qh.next, q->qtdaddr, q->pid,
1388 q->packet.iov.size, q->tbytes, endp, ret);
1389
1390 if (ret != USB_RET_NODEV) {
1391 break;
1392 }
1393 }
1394
1395 if (ret > BUFF_SIZE) {
1396 fprintf(stderr, "ret from usb_handle_packet > BUFF_SIZE\n");
1397 return USB_RET_PROCERR;
1398 }
1399
1400 return ret;
1401 }
1402
1403 /* 4.7.2
1404 */
1405
1406 static int ehci_process_itd(EHCIState *ehci,
1407 EHCIitd *itd)
1408 {
1409 USBPort *port;
1410 USBDevice *dev;
1411 int ret;
1412 uint32_t i, j, len, pid, dir, devaddr, endp;
1413 uint32_t pg, off, ptr1, ptr2, max, mult;
1414
1415 dir =(itd->bufptr[1] & ITD_BUFPTR_DIRECTION);
1416 devaddr = get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR);
1417 endp = get_field(itd->bufptr[0], ITD_BUFPTR_EP);
1418 max = get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT);
1419 mult = get_field(itd->bufptr[2], ITD_BUFPTR_MULT);
1420
1421 for(i = 0; i < 8; i++) {
1422 if (itd->transact[i] & ITD_XACT_ACTIVE) {
1423 pg = get_field(itd->transact[i], ITD_XACT_PGSEL);
1424 off = itd->transact[i] & ITD_XACT_OFFSET_MASK;
1425 ptr1 = (itd->bufptr[pg] & ITD_BUFPTR_MASK);
1426 ptr2 = (itd->bufptr[pg+1] & ITD_BUFPTR_MASK);
1427 len = get_field(itd->transact[i], ITD_XACT_LENGTH);
1428
1429 if (len > max * mult) {
1430 len = max * mult;
1431 }
1432
1433 if (len > BUFF_SIZE) {
1434 return USB_RET_PROCERR;
1435 }
1436
1437 pci_dma_sglist_init(&ehci->isgl, &ehci->dev, 2);
1438 if (off + len > 4096) {
1439 /* transfer crosses page border */
1440 uint32_t len2 = off + len - 4096;
1441 uint32_t len1 = len - len2;
1442 qemu_sglist_add(&ehci->isgl, ptr1 + off, len1);
1443 qemu_sglist_add(&ehci->isgl, ptr2, len2);
1444 } else {
1445 qemu_sglist_add(&ehci->isgl, ptr1 + off, len);
1446 }
1447
1448 pid = dir ? USB_TOKEN_IN : USB_TOKEN_OUT;
1449
1450 usb_packet_setup(&ehci->ipacket, pid, devaddr, endp);
1451 usb_packet_map(&ehci->ipacket, &ehci->isgl);
1452
1453 ret = USB_RET_NODEV;
1454 for (j = 0; j < NB_PORTS; j++) {
1455 port = &ehci->ports[j];
1456 dev = port->dev;
1457
1458 if (!(ehci->portsc[j] &(PORTSC_CONNECT))) {
1459 continue;
1460 }
1461
1462 ret = usb_handle_packet(dev, &ehci->ipacket);
1463
1464 if (ret != USB_RET_NODEV) {
1465 break;
1466 }
1467 }
1468
1469 usb_packet_unmap(&ehci->ipacket);
1470 qemu_sglist_destroy(&ehci->isgl);
1471
1472 #if 0
1473 /* In isoch, there is no facility to indicate a NAK so let's
1474 * instead just complete a zero-byte transaction. Setting
1475 * DBERR seems too draconian.
1476 */
1477
1478 if (ret == USB_RET_NAK) {
1479 if (ehci->isoch_pause > 0) {
1480 DPRINTF("ISOCH: received a NAK but paused so returning\n");
1481 ehci->isoch_pause--;
1482 return 0;
1483 } else if (ehci->isoch_pause == -1) {
1484 DPRINTF("ISOCH: recv NAK & isoch pause inactive, setting\n");
1485 // Pause frindex for up to 50 msec waiting for data from
1486 // remote
1487 ehci->isoch_pause = 50;
1488 return 0;
1489 } else {
1490 DPRINTF("ISOCH: isoch pause timeout! return 0\n");
1491 ret = 0;
1492 }
1493 } else {
1494 DPRINTF("ISOCH: received ACK, clearing pause\n");
1495 ehci->isoch_pause = -1;
1496 }
1497 #else
1498 if (ret == USB_RET_NAK) {
1499 ret = 0;
1500 }
1501 #endif
1502
1503 if (ret >= 0) {
1504 if (!dir) {
1505 /* OUT */
1506 set_field(&itd->transact[i], len - ret, ITD_XACT_LENGTH);
1507 } else {
1508 /* IN */
1509 set_field(&itd->transact[i], ret, ITD_XACT_LENGTH);
1510 }
1511
1512 if (itd->transact[i] & ITD_XACT_IOC) {
1513 ehci_record_interrupt(ehci, USBSTS_INT);
1514 }
1515 }
1516 itd->transact[i] &= ~ITD_XACT_ACTIVE;
1517 }
1518 }
1519 return 0;
1520 }
1521
1522 /* This state is the entry point for asynchronous schedule
1523 * processing. Entry here consitutes a EHCI start event state (4.8.5)
1524 */
1525 static int ehci_state_waitlisthead(EHCIState *ehci, int async)
1526 {
1527 EHCIqh qh;
1528 int i = 0;
1529 int again = 0;
1530 uint32_t entry = ehci->asynclistaddr;
1531
1532 /* set reclamation flag at start event (4.8.6) */
1533 if (async) {
1534 ehci_set_usbsts(ehci, USBSTS_REC);
1535 }
1536
1537 ehci_queues_rip_unused(ehci);
1538
1539 /* Find the head of the list (4.9.1.1) */
1540 for(i = 0; i < MAX_QH; i++) {
1541 get_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &qh,
1542 sizeof(EHCIqh) >> 2);
1543 ehci_trace_qh(NULL, NLPTR_GET(entry), &qh);
1544
1545 if (qh.epchar & QH_EPCHAR_H) {
1546 if (async) {
1547 entry |= (NLPTR_TYPE_QH << 1);
1548 }
1549
1550 ehci_set_fetch_addr(ehci, async, entry);
1551 ehci_set_state(ehci, async, EST_FETCHENTRY);
1552 again = 1;
1553 goto out;
1554 }
1555
1556 entry = qh.next;
1557 if (entry == ehci->asynclistaddr) {
1558 break;
1559 }
1560 }
1561
1562 /* no head found for list. */
1563
1564 ehci_set_state(ehci, async, EST_ACTIVE);
1565
1566 out:
1567 return again;
1568 }
1569
1570
1571 /* This state is the entry point for periodic schedule processing as
1572 * well as being a continuation state for async processing.
1573 */
1574 static int ehci_state_fetchentry(EHCIState *ehci, int async)
1575 {
1576 int again = 0;
1577 uint32_t entry = ehci_get_fetch_addr(ehci, async);
1578
1579 if (entry < 0x1000) {
1580 DPRINTF("fetchentry: entry invalid (0x%08x)\n", entry);
1581 ehci_set_state(ehci, async, EST_ACTIVE);
1582 goto out;
1583 }
1584
1585 /* section 4.8, only QH in async schedule */
1586 if (async && (NLPTR_TYPE_GET(entry) != NLPTR_TYPE_QH)) {
1587 fprintf(stderr, "non queue head request in async schedule\n");
1588 return -1;
1589 }
1590
1591 switch (NLPTR_TYPE_GET(entry)) {
1592 case NLPTR_TYPE_QH:
1593 ehci_set_state(ehci, async, EST_FETCHQH);
1594 again = 1;
1595 break;
1596
1597 case NLPTR_TYPE_ITD:
1598 ehci_set_state(ehci, async, EST_FETCHITD);
1599 again = 1;
1600 break;
1601
1602 case NLPTR_TYPE_STITD:
1603 ehci_set_state(ehci, async, EST_FETCHSITD);
1604 again = 1;
1605 break;
1606
1607 default:
1608 /* TODO: handle FSTN type */
1609 fprintf(stderr, "FETCHENTRY: entry at %X is of type %d "
1610 "which is not supported yet\n", entry, NLPTR_TYPE_GET(entry));
1611 return -1;
1612 }
1613
1614 out:
1615 return again;
1616 }
1617
1618 static EHCIQueue *ehci_state_fetchqh(EHCIState *ehci, int async)
1619 {
1620 uint32_t entry;
1621 EHCIQueue *q;
1622 int reload;
1623
1624 entry = ehci_get_fetch_addr(ehci, async);
1625 q = ehci_find_queue_by_qh(ehci, entry);
1626 if (NULL == q) {
1627 q = ehci_alloc_queue(ehci, async);
1628 }
1629 q->qhaddr = entry;
1630 q->seen++;
1631
1632 if (q->seen > 1) {
1633 /* we are going in circles -- stop processing */
1634 ehci_set_state(ehci, async, EST_ACTIVE);
1635 q = NULL;
1636 goto out;
1637 }
1638
1639 get_dwords(ehci, NLPTR_GET(q->qhaddr),
1640 (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1641 ehci_trace_qh(q, NLPTR_GET(q->qhaddr), &q->qh);
1642
1643 if (q->async == EHCI_ASYNC_INFLIGHT) {
1644 /* I/O still in progress -- skip queue */
1645 ehci_set_state(ehci, async, EST_HORIZONTALQH);
1646 goto out;
1647 }
1648 if (q->async == EHCI_ASYNC_FINISHED) {
1649 /* I/O finished -- continue processing queue */
1650 trace_usb_ehci_queue_action(q, "resume");
1651 ehci_set_state(ehci, async, EST_EXECUTING);
1652 goto out;
1653 }
1654
1655 if (async && (q->qh.epchar & QH_EPCHAR_H)) {
1656
1657 /* EHCI spec version 1.0 Section 4.8.3 & 4.10.1 */
1658 if (ehci->usbsts & USBSTS_REC) {
1659 ehci_clear_usbsts(ehci, USBSTS_REC);
1660 } else {
1661 DPRINTF("FETCHQH: QH 0x%08x. H-bit set, reclamation status reset"
1662 " - done processing\n", q->qhaddr);
1663 ehci_set_state(ehci, async, EST_ACTIVE);
1664 q = NULL;
1665 goto out;
1666 }
1667 }
1668
1669 #if EHCI_DEBUG
1670 if (q->qhaddr != q->qh.next) {
1671 DPRINTF("FETCHQH: QH 0x%08x (h %x halt %x active %x) next 0x%08x\n",
1672 q->qhaddr,
1673 q->qh.epchar & QH_EPCHAR_H,
1674 q->qh.token & QTD_TOKEN_HALT,
1675 q->qh.token & QTD_TOKEN_ACTIVE,
1676 q->qh.next);
1677 }
1678 #endif
1679
1680 reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1681 if (reload) {
1682 set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1683 }
1684
1685 if (q->qh.token & QTD_TOKEN_HALT) {
1686 ehci_set_state(ehci, async, EST_HORIZONTALQH);
1687
1688 } else if ((q->qh.token & QTD_TOKEN_ACTIVE) && (q->qh.current_qtd > 0x1000)) {
1689 q->qtdaddr = q->qh.current_qtd;
1690 ehci_set_state(ehci, async, EST_FETCHQTD);
1691
1692 } else {
1693 /* EHCI spec version 1.0 Section 4.10.2 */
1694 ehci_set_state(ehci, async, EST_ADVANCEQUEUE);
1695 }
1696
1697 out:
1698 return q;
1699 }
1700
1701 static int ehci_state_fetchitd(EHCIState *ehci, int async)
1702 {
1703 uint32_t entry;
1704 EHCIitd itd;
1705
1706 assert(!async);
1707 entry = ehci_get_fetch_addr(ehci, async);
1708
1709 get_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &itd,
1710 sizeof(EHCIitd) >> 2);
1711 ehci_trace_itd(ehci, entry, &itd);
1712
1713 if (ehci_process_itd(ehci, &itd) != 0) {
1714 return -1;
1715 }
1716
1717 put_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &itd,
1718 sizeof(EHCIitd) >> 2);
1719 ehci_set_fetch_addr(ehci, async, itd.next);
1720 ehci_set_state(ehci, async, EST_FETCHENTRY);
1721
1722 return 1;
1723 }
1724
1725 static int ehci_state_fetchsitd(EHCIState *ehci, int async)
1726 {
1727 uint32_t entry;
1728 EHCIsitd sitd;
1729
1730 assert(!async);
1731 entry = ehci_get_fetch_addr(ehci, async);
1732
1733 get_dwords(ehci, NLPTR_GET(entry), (uint32_t *)&sitd,
1734 sizeof(EHCIsitd) >> 2);
1735 ehci_trace_sitd(ehci, entry, &sitd);
1736
1737 if (!(sitd.results & SITD_RESULTS_ACTIVE)) {
1738 /* siTD is not active, nothing to do */;
1739 } else {
1740 /* TODO: split transfers are not implemented */
1741 fprintf(stderr, "WARNING: Skipping active siTD\n");
1742 }
1743
1744 ehci_set_fetch_addr(ehci, async, sitd.next);
1745 ehci_set_state(ehci, async, EST_FETCHENTRY);
1746 return 1;
1747 }
1748
1749 /* Section 4.10.2 - paragraph 3 */
1750 static int ehci_state_advqueue(EHCIQueue *q, int async)
1751 {
1752 #if 0
1753 /* TO-DO: 4.10.2 - paragraph 2
1754 * if I-bit is set to 1 and QH is not active
1755 * go to horizontal QH
1756 */
1757 if (I-bit set) {
1758 ehci_set_state(ehci, async, EST_HORIZONTALQH);
1759 goto out;
1760 }
1761 #endif
1762
1763 /*
1764 * want data and alt-next qTD is valid
1765 */
1766 if (((q->qh.token & QTD_TOKEN_TBYTES_MASK) != 0) &&
1767 (q->qh.altnext_qtd > 0x1000) &&
1768 (NLPTR_TBIT(q->qh.altnext_qtd) == 0)) {
1769 q->qtdaddr = q->qh.altnext_qtd;
1770 ehci_set_state(q->ehci, async, EST_FETCHQTD);
1771
1772 /*
1773 * next qTD is valid
1774 */
1775 } else if ((q->qh.next_qtd > 0x1000) &&
1776 (NLPTR_TBIT(q->qh.next_qtd) == 0)) {
1777 q->qtdaddr = q->qh.next_qtd;
1778 ehci_set_state(q->ehci, async, EST_FETCHQTD);
1779
1780 /*
1781 * no valid qTD, try next QH
1782 */
1783 } else {
1784 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1785 }
1786
1787 return 1;
1788 }
1789
1790 /* Section 4.10.2 - paragraph 4 */
1791 static int ehci_state_fetchqtd(EHCIQueue *q, int async)
1792 {
1793 int again = 0;
1794
1795 get_dwords(q->ehci, NLPTR_GET(q->qtdaddr), (uint32_t *) &q->qtd,
1796 sizeof(EHCIqtd) >> 2);
1797 ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), &q->qtd);
1798
1799 if (q->qtd.token & QTD_TOKEN_ACTIVE) {
1800 ehci_set_state(q->ehci, async, EST_EXECUTE);
1801 again = 1;
1802 } else {
1803 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1804 again = 1;
1805 }
1806
1807 return again;
1808 }
1809
1810 static int ehci_state_horizqh(EHCIQueue *q, int async)
1811 {
1812 int again = 0;
1813
1814 if (ehci_get_fetch_addr(q->ehci, async) != q->qh.next) {
1815 ehci_set_fetch_addr(q->ehci, async, q->qh.next);
1816 ehci_set_state(q->ehci, async, EST_FETCHENTRY);
1817 again = 1;
1818 } else {
1819 ehci_set_state(q->ehci, async, EST_ACTIVE);
1820 }
1821
1822 return again;
1823 }
1824
1825 /*
1826 * Write the qh back to guest physical memory. This step isn't
1827 * in the EHCI spec but we need to do it since we don't share
1828 * physical memory with our guest VM.
1829 *
1830 * The first three dwords are read-only for the EHCI, so skip them
1831 * when writing back the qh.
1832 */
1833 static void ehci_flush_qh(EHCIQueue *q)
1834 {
1835 uint32_t *qh = (uint32_t *) &q->qh;
1836 uint32_t dwords = sizeof(EHCIqh) >> 2;
1837 uint32_t addr = NLPTR_GET(q->qhaddr);
1838
1839 put_dwords(q->ehci, addr + 3 * sizeof(uint32_t), qh + 3, dwords - 3);
1840 }
1841
1842 static int ehci_state_execute(EHCIQueue *q, int async)
1843 {
1844 int again = 0;
1845 int reload, nakcnt;
1846 int smask;
1847
1848 if (ehci_qh_do_overlay(q) != 0) {
1849 return -1;
1850 }
1851
1852 smask = get_field(q->qh.epcap, QH_EPCAP_SMASK);
1853
1854 if (!smask) {
1855 reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1856 nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1857 if (reload && !nakcnt) {
1858 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1859 again = 1;
1860 goto out;
1861 }
1862 }
1863
1864 // TODO verify enough time remains in the uframe as in 4.4.1.1
1865 // TODO write back ptr to async list when done or out of time
1866 // TODO Windows does not seem to ever set the MULT field
1867
1868 if (!async) {
1869 int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1870 if (!transactCtr) {
1871 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1872 again = 1;
1873 goto out;
1874 }
1875 }
1876
1877 if (async) {
1878 ehci_set_usbsts(q->ehci, USBSTS_REC);
1879 }
1880
1881 q->usb_status = ehci_execute(q);
1882 if (q->usb_status == USB_RET_PROCERR) {
1883 again = -1;
1884 goto out;
1885 }
1886 if (q->usb_status == USB_RET_ASYNC) {
1887 ehci_flush_qh(q);
1888 trace_usb_ehci_queue_action(q, "suspend");
1889 q->async = EHCI_ASYNC_INFLIGHT;
1890 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1891 again = 1;
1892 goto out;
1893 }
1894
1895 ehci_set_state(q->ehci, async, EST_EXECUTING);
1896 again = 1;
1897
1898 out:
1899 return again;
1900 }
1901
1902 static int ehci_state_executing(EHCIQueue *q, int async)
1903 {
1904 int again = 0;
1905 int reload, nakcnt;
1906
1907 ehci_execute_complete(q);
1908 if (q->usb_status == USB_RET_ASYNC) {
1909 goto out;
1910 }
1911 if (q->usb_status == USB_RET_PROCERR) {
1912 again = -1;
1913 goto out;
1914 }
1915
1916 // 4.10.3
1917 if (!async) {
1918 int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1919 transactCtr--;
1920 set_field(&q->qh.epcap, transactCtr, QH_EPCAP_MULT);
1921 // 4.10.3, bottom of page 82, should exit this state when transaction
1922 // counter decrements to 0
1923 }
1924
1925 reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1926 if (reload) {
1927 nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1928 if (q->usb_status == USB_RET_NAK) {
1929 if (nakcnt) {
1930 nakcnt--;
1931 }
1932 } else {
1933 nakcnt = reload;
1934 }
1935 set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
1936 }
1937
1938 /* 4.10.5 */
1939 if ((q->usb_status == USB_RET_NAK) || (q->qh.token & QTD_TOKEN_ACTIVE)) {
1940 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1941 } else {
1942 ehci_set_state(q->ehci, async, EST_WRITEBACK);
1943 }
1944
1945 again = 1;
1946
1947 out:
1948 ehci_flush_qh(q);
1949 return again;
1950 }
1951
1952
1953 static int ehci_state_writeback(EHCIQueue *q, int async)
1954 {
1955 int again = 0;
1956
1957 /* Write back the QTD from the QH area */
1958 ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), (EHCIqtd*) &q->qh.next_qtd);
1959 put_dwords(q->ehci, NLPTR_GET(q->qtdaddr), (uint32_t *) &q->qh.next_qtd,
1960 sizeof(EHCIqtd) >> 2);
1961
1962 /*
1963 * EHCI specs say go horizontal here.
1964 *
1965 * We can also advance the queue here for performance reasons. We
1966 * need to take care to only take that shortcut in case we've
1967 * processed the qtd just written back without errors, i.e. halt
1968 * bit is clear.
1969 */
1970 if (q->qh.token & QTD_TOKEN_HALT) {
1971 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1972 again = 1;
1973 } else {
1974 ehci_set_state(q->ehci, async, EST_ADVANCEQUEUE);
1975 again = 1;
1976 }
1977 return again;
1978 }
1979
1980 /*
1981 * This is the state machine that is common to both async and periodic
1982 */
1983
1984 static void ehci_advance_state(EHCIState *ehci,
1985 int async)
1986 {
1987 EHCIQueue *q = NULL;
1988 int again;
1989 int iter = 0;
1990
1991 do {
1992 if (ehci_get_state(ehci, async) == EST_FETCHQH) {
1993 iter++;
1994 /* if we are roaming a lot of QH without executing a qTD
1995 * something is wrong with the linked list. TO-DO: why is
1996 * this hack needed?
1997 */
1998 assert(iter < MAX_ITERATIONS);
1999 #if 0
2000 if (iter > MAX_ITERATIONS) {
2001 DPRINTF("\n*** advance_state: bailing on MAX ITERATIONS***\n");
2002 ehci_set_state(ehci, async, EST_ACTIVE);
2003 break;
2004 }
2005 #endif
2006 }
2007 switch(ehci_get_state(ehci, async)) {
2008 case EST_WAITLISTHEAD:
2009 again = ehci_state_waitlisthead(ehci, async);
2010 break;
2011
2012 case EST_FETCHENTRY:
2013 again = ehci_state_fetchentry(ehci, async);
2014 break;
2015
2016 case EST_FETCHQH:
2017 q = ehci_state_fetchqh(ehci, async);
2018 again = q ? 1 : 0;
2019 break;
2020
2021 case EST_FETCHITD:
2022 again = ehci_state_fetchitd(ehci, async);
2023 break;
2024
2025 case EST_FETCHSITD:
2026 again = ehci_state_fetchsitd(ehci, async);
2027 break;
2028
2029 case EST_ADVANCEQUEUE:
2030 again = ehci_state_advqueue(q, async);
2031 break;
2032
2033 case EST_FETCHQTD:
2034 again = ehci_state_fetchqtd(q, async);
2035 break;
2036
2037 case EST_HORIZONTALQH:
2038 again = ehci_state_horizqh(q, async);
2039 break;
2040
2041 case EST_EXECUTE:
2042 iter = 0;
2043 again = ehci_state_execute(q, async);
2044 break;
2045
2046 case EST_EXECUTING:
2047 assert(q != NULL);
2048 again = ehci_state_executing(q, async);
2049 break;
2050
2051 case EST_WRITEBACK:
2052 assert(q != NULL);
2053 again = ehci_state_writeback(q, async);
2054 break;
2055
2056 default:
2057 fprintf(stderr, "Bad state!\n");
2058 again = -1;
2059 assert(0);
2060 break;
2061 }
2062
2063 if (again < 0) {
2064 fprintf(stderr, "processing error - resetting ehci HC\n");
2065 ehci_reset(ehci);
2066 again = 0;
2067 assert(0);
2068 }
2069 }
2070 while (again);
2071
2072 ehci_commit_interrupt(ehci);
2073 }
2074
2075 static void ehci_advance_async_state(EHCIState *ehci)
2076 {
2077 int async = 1;
2078
2079 switch(ehci_get_state(ehci, async)) {
2080 case EST_INACTIVE:
2081 if (!(ehci->usbcmd & USBCMD_ASE)) {
2082 break;
2083 }
2084 ehci_set_usbsts(ehci, USBSTS_ASS);
2085 ehci_set_state(ehci, async, EST_ACTIVE);
2086 // No break, fall through to ACTIVE
2087
2088 case EST_ACTIVE:
2089 if ( !(ehci->usbcmd & USBCMD_ASE)) {
2090 ehci_clear_usbsts(ehci, USBSTS_ASS);
2091 ehci_set_state(ehci, async, EST_INACTIVE);
2092 break;
2093 }
2094
2095 /* If the doorbell is set, the guest wants to make a change to the
2096 * schedule. The host controller needs to release cached data.
2097 * (section 4.8.2)
2098 */
2099 if (ehci->usbcmd & USBCMD_IAAD) {
2100 DPRINTF("ASYNC: doorbell request acknowledged\n");
2101 ehci->usbcmd &= ~USBCMD_IAAD;
2102 ehci_set_interrupt(ehci, USBSTS_IAA);
2103 break;
2104 }
2105
2106 /* make sure guest has acknowledged */
2107 /* TO-DO: is this really needed? */
2108 if (ehci->usbsts & USBSTS_IAA) {
2109 DPRINTF("IAA status bit still set.\n");
2110 break;
2111 }
2112
2113 /* check that address register has been set */
2114 if (ehci->asynclistaddr == 0) {
2115 break;
2116 }
2117
2118 ehci_set_state(ehci, async, EST_WAITLISTHEAD);
2119 ehci_advance_state(ehci, async);
2120 break;
2121
2122 default:
2123 /* this should only be due to a developer mistake */
2124 fprintf(stderr, "ehci: Bad asynchronous state %d. "
2125 "Resetting to active\n", ehci->astate);
2126 assert(0);
2127 }
2128 }
2129
2130 static void ehci_advance_periodic_state(EHCIState *ehci)
2131 {
2132 uint32_t entry;
2133 uint32_t list;
2134 int async = 0;
2135
2136 // 4.6
2137
2138 switch(ehci_get_state(ehci, async)) {
2139 case EST_INACTIVE:
2140 if ( !(ehci->frindex & 7) && (ehci->usbcmd & USBCMD_PSE)) {
2141 ehci_set_usbsts(ehci, USBSTS_PSS);
2142 ehci_set_state(ehci, async, EST_ACTIVE);
2143 // No break, fall through to ACTIVE
2144 } else
2145 break;
2146
2147 case EST_ACTIVE:
2148 if ( !(ehci->frindex & 7) && !(ehci->usbcmd & USBCMD_PSE)) {
2149 ehci_clear_usbsts(ehci, USBSTS_PSS);
2150 ehci_set_state(ehci, async, EST_INACTIVE);
2151 break;
2152 }
2153
2154 list = ehci->periodiclistbase & 0xfffff000;
2155 /* check that register has been set */
2156 if (list == 0) {
2157 break;
2158 }
2159 list |= ((ehci->frindex & 0x1ff8) >> 1);
2160
2161 pci_dma_read(&ehci->dev, list, &entry, sizeof entry);
2162 entry = le32_to_cpu(entry);
2163
2164 DPRINTF("PERIODIC state adv fr=%d. [%08X] -> %08X\n",
2165 ehci->frindex / 8, list, entry);
2166 ehci_set_fetch_addr(ehci, async,entry);
2167 ehci_set_state(ehci, async, EST_FETCHENTRY);
2168 ehci_advance_state(ehci, async);
2169 break;
2170
2171 default:
2172 /* this should only be due to a developer mistake */
2173 fprintf(stderr, "ehci: Bad periodic state %d. "
2174 "Resetting to active\n", ehci->pstate);
2175 assert(0);
2176 }
2177 }
2178
2179 static void ehci_frame_timer(void *opaque)
2180 {
2181 EHCIState *ehci = opaque;
2182 int64_t expire_time, t_now;
2183 uint64_t ns_elapsed;
2184 int frames;
2185 int i;
2186 int skipped_frames = 0;
2187
2188 t_now = qemu_get_clock_ns(vm_clock);
2189 expire_time = t_now + (get_ticks_per_sec() / ehci->freq);
2190
2191 ns_elapsed = t_now - ehci->last_run_ns;
2192 frames = ns_elapsed / FRAME_TIMER_NS;
2193
2194 for (i = 0; i < frames; i++) {
2195 if ( !(ehci->usbsts & USBSTS_HALT)) {
2196 if (ehci->isoch_pause <= 0) {
2197 ehci->frindex += 8;
2198 }
2199
2200 if (ehci->frindex > 0x00001fff) {
2201 ehci->frindex = 0;
2202 ehci_set_interrupt(ehci, USBSTS_FLR);
2203 }
2204
2205 ehci->sofv = (ehci->frindex - 1) >> 3;
2206 ehci->sofv &= 0x000003ff;
2207 }
2208
2209 if (frames - i > ehci->maxframes) {
2210 skipped_frames++;
2211 } else {
2212 ehci_advance_periodic_state(ehci);
2213 }
2214
2215 ehci->last_run_ns += FRAME_TIMER_NS;
2216 }
2217
2218 #if 0
2219 if (skipped_frames) {
2220 DPRINTF("WARNING - EHCI skipped %d frames\n", skipped_frames);
2221 }
2222 #endif
2223
2224 /* Async is not inside loop since it executes everything it can once
2225 * called
2226 */
2227 ehci_advance_async_state(ehci);
2228
2229 qemu_mod_timer(ehci->frame_timer, expire_time);
2230 }
2231
2232
2233 static const MemoryRegionOps ehci_mem_ops = {
2234 .old_mmio = {
2235 .read = { ehci_mem_readb, ehci_mem_readw, ehci_mem_readl },
2236 .write = { ehci_mem_writeb, ehci_mem_writew, ehci_mem_writel },
2237 },
2238 .endianness = DEVICE_LITTLE_ENDIAN,
2239 };
2240
2241 static int usb_ehci_initfn(PCIDevice *dev);
2242
2243 static USBPortOps ehci_port_ops = {
2244 .attach = ehci_attach,
2245 .detach = ehci_detach,
2246 .child_detach = ehci_child_detach,
2247 .wakeup = ehci_wakeup,
2248 .complete = ehci_async_complete_packet,
2249 };
2250
2251 static USBBusOps ehci_bus_ops = {
2252 .register_companion = ehci_register_companion,
2253 };
2254
2255 static const VMStateDescription vmstate_ehci = {
2256 .name = "ehci",
2257 .unmigratable = 1,
2258 };
2259
2260 static Property ehci_properties[] = {
2261 DEFINE_PROP_UINT32("freq", EHCIState, freq, FRAME_TIMER_FREQ),
2262 DEFINE_PROP_UINT32("maxframes", EHCIState, maxframes, 128),
2263 DEFINE_PROP_END_OF_LIST(),
2264 };
2265
2266 static void ehci_class_init(ObjectClass *klass, void *data)
2267 {
2268 DeviceClass *dc = DEVICE_CLASS(klass);
2269 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
2270
2271 k->init = usb_ehci_initfn;
2272 k->vendor_id = PCI_VENDOR_ID_INTEL;
2273 k->device_id = PCI_DEVICE_ID_INTEL_82801D; /* ich4 */
2274 k->revision = 0x10;
2275 k->class_id = PCI_CLASS_SERIAL_USB;
2276 dc->vmsd = &vmstate_ehci;
2277 dc->props = ehci_properties;
2278 }
2279
2280 static TypeInfo ehci_info = {
2281 .name = "usb-ehci",
2282 .parent = TYPE_PCI_DEVICE,
2283 .instance_size = sizeof(EHCIState),
2284 .class_init = ehci_class_init,
2285 };
2286
2287 static void ich9_ehci_class_init(ObjectClass *klass, void *data)
2288 {
2289 DeviceClass *dc = DEVICE_CLASS(klass);
2290 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
2291
2292 k->init = usb_ehci_initfn;
2293 k->vendor_id = PCI_VENDOR_ID_INTEL;
2294 k->device_id = PCI_DEVICE_ID_INTEL_82801I_EHCI1;
2295 k->revision = 0x03;
2296 k->class_id = PCI_CLASS_SERIAL_USB;
2297 dc->vmsd = &vmstate_ehci;
2298 dc->props = ehci_properties;
2299 }
2300
2301 static TypeInfo ich9_ehci_info = {
2302 .name = "ich9-usb-ehci1",
2303 .parent = TYPE_PCI_DEVICE,
2304 .instance_size = sizeof(EHCIState),
2305 .class_init = ich9_ehci_class_init,
2306 };
2307
2308 static int usb_ehci_initfn(PCIDevice *dev)
2309 {
2310 EHCIState *s = DO_UPCAST(EHCIState, dev, dev);
2311 uint8_t *pci_conf = s->dev.config;
2312 int i;
2313
2314 pci_set_byte(&pci_conf[PCI_CLASS_PROG], 0x20);
2315
2316 /* capabilities pointer */
2317 pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x00);
2318 //pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x50);
2319
2320 pci_set_byte(&pci_conf[PCI_INTERRUPT_PIN], 4); /* interrupt pin D */
2321 pci_set_byte(&pci_conf[PCI_MIN_GNT], 0);
2322 pci_set_byte(&pci_conf[PCI_MAX_LAT], 0);
2323
2324 // pci_conf[0x50] = 0x01; // power management caps
2325
2326 pci_set_byte(&pci_conf[USB_SBRN], USB_RELEASE_2); // release number (2.1.4)
2327 pci_set_byte(&pci_conf[0x61], 0x20); // frame length adjustment (2.1.5)
2328 pci_set_word(&pci_conf[0x62], 0x00); // port wake up capability (2.1.6)
2329
2330 pci_conf[0x64] = 0x00;
2331 pci_conf[0x65] = 0x00;
2332 pci_conf[0x66] = 0x00;
2333 pci_conf[0x67] = 0x00;
2334 pci_conf[0x68] = 0x01;
2335 pci_conf[0x69] = 0x00;
2336 pci_conf[0x6a] = 0x00;
2337 pci_conf[0x6b] = 0x00; // USBLEGSUP
2338 pci_conf[0x6c] = 0x00;
2339 pci_conf[0x6d] = 0x00;
2340 pci_conf[0x6e] = 0x00;
2341 pci_conf[0x6f] = 0xc0; // USBLEFCTLSTS
2342
2343 // 2.2 host controller interface version
2344 s->mmio[0x00] = (uint8_t) OPREGBASE;
2345 s->mmio[0x01] = 0x00;
2346 s->mmio[0x02] = 0x00;
2347 s->mmio[0x03] = 0x01; // HC version
2348 s->mmio[0x04] = NB_PORTS; // Number of downstream ports
2349 s->mmio[0x05] = 0x00; // No companion ports at present
2350 s->mmio[0x06] = 0x00;
2351 s->mmio[0x07] = 0x00;
2352 s->mmio[0x08] = 0x80; // We can cache whole frame, not 64-bit capable
2353 s->mmio[0x09] = 0x68; // EECP
2354 s->mmio[0x0a] = 0x00;
2355 s->mmio[0x0b] = 0x00;
2356
2357 s->irq = s->dev.irq[3];
2358
2359 usb_bus_new(&s->bus, &ehci_bus_ops, &s->dev.qdev);
2360 for(i = 0; i < NB_PORTS; i++) {
2361 usb_register_port(&s->bus, &s->ports[i], s, i, &ehci_port_ops,
2362 USB_SPEED_MASK_HIGH);
2363 s->ports[i].dev = 0;
2364 }
2365
2366 s->frame_timer = qemu_new_timer_ns(vm_clock, ehci_frame_timer, s);
2367 QTAILQ_INIT(&s->queues);
2368
2369 qemu_register_reset(ehci_reset, s);
2370
2371 memory_region_init_io(&s->mem, &ehci_mem_ops, s, "ehci", MMIO_SIZE);
2372 pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->mem);
2373
2374 fprintf(stderr, "*** EHCI support is under development ***\n");
2375
2376 return 0;
2377 }
2378
2379 static void ehci_register(void)
2380 {
2381 type_register_static(&ehci_info);
2382 type_register_static(&ich9_ehci_info);
2383 }
2384 device_init(ehci_register);
2385
2386 /*
2387 * vim: expandtab ts=4
2388 */