]> git.proxmox.com Git - qemu.git/blob - hw/usb-ehci.c
Merge remote-tracking branch 'riku/linux-user-for-upstream' into staging
[qemu.git] / hw / usb-ehci.c
1 /*
2 * QEMU USB EHCI Emulation
3 *
4 * Copyright(c) 2008 Emutex Ltd. (address@hidden)
5 *
6 * EHCI project was started by Mark Burkley, with contributions by
7 * Niels de Vos. David S. Ahern continued working on it. Kevin Wolf,
8 * Jan Kiszka and Vincent Palatin contributed bugfixes.
9 *
10 *
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2 of the License, or(at your option) any later version.
15 *
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, see <http://www.gnu.org/licenses/>.
23 *
24 * TODO:
25 * o Downstream port handoff
26 */
27
28 #include "hw.h"
29 #include "qemu-timer.h"
30 #include "usb.h"
31 #include "pci.h"
32 #include "monitor.h"
33 #include "trace.h"
34
35 #define EHCI_DEBUG 0
36
37 #if EHCI_DEBUG
38 #define DPRINTF printf
39 #else
40 #define DPRINTF(...)
41 #endif
42
43 /* internal processing - reset HC to try and recover */
44 #define USB_RET_PROCERR (-99)
45
46 #define MMIO_SIZE 0x1000
47
48 /* Capability Registers Base Address - section 2.2 */
49 #define CAPREGBASE 0x0000
50 #define CAPLENGTH CAPREGBASE + 0x0000 // 1-byte, 0x0001 reserved
51 #define HCIVERSION CAPREGBASE + 0x0002 // 2-bytes, i/f version #
52 #define HCSPARAMS CAPREGBASE + 0x0004 // 4-bytes, structural params
53 #define HCCPARAMS CAPREGBASE + 0x0008 // 4-bytes, capability params
54 #define EECP HCCPARAMS + 1
55 #define HCSPPORTROUTE1 CAPREGBASE + 0x000c
56 #define HCSPPORTROUTE2 CAPREGBASE + 0x0010
57
58 #define OPREGBASE 0x0020 // Operational Registers Base Address
59
60 #define USBCMD OPREGBASE + 0x0000
61 #define USBCMD_RUNSTOP (1 << 0) // run / Stop
62 #define USBCMD_HCRESET (1 << 1) // HC Reset
63 #define USBCMD_FLS (3 << 2) // Frame List Size
64 #define USBCMD_FLS_SH 2 // Frame List Size Shift
65 #define USBCMD_PSE (1 << 4) // Periodic Schedule Enable
66 #define USBCMD_ASE (1 << 5) // Asynch Schedule Enable
67 #define USBCMD_IAAD (1 << 6) // Int Asynch Advance Doorbell
68 #define USBCMD_LHCR (1 << 7) // Light Host Controller Reset
69 #define USBCMD_ASPMC (3 << 8) // Async Sched Park Mode Count
70 #define USBCMD_ASPME (1 << 11) // Async Sched Park Mode Enable
71 #define USBCMD_ITC (0x7f << 16) // Int Threshold Control
72 #define USBCMD_ITC_SH 16 // Int Threshold Control Shift
73
74 #define USBSTS OPREGBASE + 0x0004
75 #define USBSTS_RO_MASK 0x0000003f
76 #define USBSTS_INT (1 << 0) // USB Interrupt
77 #define USBSTS_ERRINT (1 << 1) // Error Interrupt
78 #define USBSTS_PCD (1 << 2) // Port Change Detect
79 #define USBSTS_FLR (1 << 3) // Frame List Rollover
80 #define USBSTS_HSE (1 << 4) // Host System Error
81 #define USBSTS_IAA (1 << 5) // Interrupt on Async Advance
82 #define USBSTS_HALT (1 << 12) // HC Halted
83 #define USBSTS_REC (1 << 13) // Reclamation
84 #define USBSTS_PSS (1 << 14) // Periodic Schedule Status
85 #define USBSTS_ASS (1 << 15) // Asynchronous Schedule Status
86
87 /*
88 * Interrupt enable bits correspond to the interrupt active bits in USBSTS
89 * so no need to redefine here.
90 */
91 #define USBINTR OPREGBASE + 0x0008
92 #define USBINTR_MASK 0x0000003f
93
94 #define FRINDEX OPREGBASE + 0x000c
95 #define CTRLDSSEGMENT OPREGBASE + 0x0010
96 #define PERIODICLISTBASE OPREGBASE + 0x0014
97 #define ASYNCLISTADDR OPREGBASE + 0x0018
98 #define ASYNCLISTADDR_MASK 0xffffffe0
99
100 #define CONFIGFLAG OPREGBASE + 0x0040
101
102 #define PORTSC (OPREGBASE + 0x0044)
103 #define PORTSC_BEGIN PORTSC
104 #define PORTSC_END (PORTSC + 4 * NB_PORTS)
105 /*
106 * Bits that are reserverd or are read-only are masked out of values
107 * written to us by software
108 */
109 #define PORTSC_RO_MASK 0x007021c5
110 #define PORTSC_RWC_MASK 0x0000002a
111 #define PORTSC_WKOC_E (1 << 22) // Wake on Over Current Enable
112 #define PORTSC_WKDS_E (1 << 21) // Wake on Disconnect Enable
113 #define PORTSC_WKCN_E (1 << 20) // Wake on Connect Enable
114 #define PORTSC_PTC (15 << 16) // Port Test Control
115 #define PORTSC_PTC_SH 16 // Port Test Control shift
116 #define PORTSC_PIC (3 << 14) // Port Indicator Control
117 #define PORTSC_PIC_SH 14 // Port Indicator Control Shift
118 #define PORTSC_POWNER (1 << 13) // Port Owner
119 #define PORTSC_PPOWER (1 << 12) // Port Power
120 #define PORTSC_LINESTAT (3 << 10) // Port Line Status
121 #define PORTSC_LINESTAT_SH 10 // Port Line Status Shift
122 #define PORTSC_PRESET (1 << 8) // Port Reset
123 #define PORTSC_SUSPEND (1 << 7) // Port Suspend
124 #define PORTSC_FPRES (1 << 6) // Force Port Resume
125 #define PORTSC_OCC (1 << 5) // Over Current Change
126 #define PORTSC_OCA (1 << 4) // Over Current Active
127 #define PORTSC_PEDC (1 << 3) // Port Enable/Disable Change
128 #define PORTSC_PED (1 << 2) // Port Enable/Disable
129 #define PORTSC_CSC (1 << 1) // Connect Status Change
130 #define PORTSC_CONNECT (1 << 0) // Current Connect Status
131
132 #define FRAME_TIMER_FREQ 1000
133 #define FRAME_TIMER_NS (1000000000 / FRAME_TIMER_FREQ)
134
135 #define NB_MAXINTRATE 8 // Max rate at which controller issues ints
136 #define NB_PORTS 4 // Number of downstream ports
137 #define BUFF_SIZE 5*4096 // Max bytes to transfer per transaction
138 #define MAX_ITERATIONS 20 // Max number of QH before we break the loop
139 #define MAX_QH 100 // Max allowable queue heads in a chain
140
141 /* Internal periodic / asynchronous schedule state machine states
142 */
143 typedef enum {
144 EST_INACTIVE = 1000,
145 EST_ACTIVE,
146 EST_EXECUTING,
147 EST_SLEEPING,
148 /* The following states are internal to the state machine function
149 */
150 EST_WAITLISTHEAD,
151 EST_FETCHENTRY,
152 EST_FETCHQH,
153 EST_FETCHITD,
154 EST_ADVANCEQUEUE,
155 EST_FETCHQTD,
156 EST_EXECUTE,
157 EST_WRITEBACK,
158 EST_HORIZONTALQH
159 } EHCI_STATES;
160
161 /* macros for accessing fields within next link pointer entry */
162 #define NLPTR_GET(x) ((x) & 0xffffffe0)
163 #define NLPTR_TYPE_GET(x) (((x) >> 1) & 3)
164 #define NLPTR_TBIT(x) ((x) & 1) // 1=invalid, 0=valid
165
166 /* link pointer types */
167 #define NLPTR_TYPE_ITD 0 // isoc xfer descriptor
168 #define NLPTR_TYPE_QH 1 // queue head
169 #define NLPTR_TYPE_STITD 2 // split xaction, isoc xfer descriptor
170 #define NLPTR_TYPE_FSTN 3 // frame span traversal node
171
172
173 /* EHCI spec version 1.0 Section 3.3
174 */
175 typedef struct EHCIitd {
176 uint32_t next;
177
178 uint32_t transact[8];
179 #define ITD_XACT_ACTIVE (1 << 31)
180 #define ITD_XACT_DBERROR (1 << 30)
181 #define ITD_XACT_BABBLE (1 << 29)
182 #define ITD_XACT_XACTERR (1 << 28)
183 #define ITD_XACT_LENGTH_MASK 0x0fff0000
184 #define ITD_XACT_LENGTH_SH 16
185 #define ITD_XACT_IOC (1 << 15)
186 #define ITD_XACT_PGSEL_MASK 0x00007000
187 #define ITD_XACT_PGSEL_SH 12
188 #define ITD_XACT_OFFSET_MASK 0x00000fff
189
190 uint32_t bufptr[7];
191 #define ITD_BUFPTR_MASK 0xfffff000
192 #define ITD_BUFPTR_SH 12
193 #define ITD_BUFPTR_EP_MASK 0x00000f00
194 #define ITD_BUFPTR_EP_SH 8
195 #define ITD_BUFPTR_DEVADDR_MASK 0x0000007f
196 #define ITD_BUFPTR_DEVADDR_SH 0
197 #define ITD_BUFPTR_DIRECTION (1 << 11)
198 #define ITD_BUFPTR_MAXPKT_MASK 0x000007ff
199 #define ITD_BUFPTR_MAXPKT_SH 0
200 #define ITD_BUFPTR_MULT_MASK 0x00000003
201 #define ITD_BUFPTR_MULT_SH 0
202 } EHCIitd;
203
204 /* EHCI spec version 1.0 Section 3.4
205 */
206 typedef struct EHCIsitd {
207 uint32_t next; // Standard next link pointer
208 uint32_t epchar;
209 #define SITD_EPCHAR_IO (1 << 31)
210 #define SITD_EPCHAR_PORTNUM_MASK 0x7f000000
211 #define SITD_EPCHAR_PORTNUM_SH 24
212 #define SITD_EPCHAR_HUBADD_MASK 0x007f0000
213 #define SITD_EPCHAR_HUBADDR_SH 16
214 #define SITD_EPCHAR_EPNUM_MASK 0x00000f00
215 #define SITD_EPCHAR_EPNUM_SH 8
216 #define SITD_EPCHAR_DEVADDR_MASK 0x0000007f
217
218 uint32_t uframe;
219 #define SITD_UFRAME_CMASK_MASK 0x0000ff00
220 #define SITD_UFRAME_CMASK_SH 8
221 #define SITD_UFRAME_SMASK_MASK 0x000000ff
222
223 uint32_t results;
224 #define SITD_RESULTS_IOC (1 << 31)
225 #define SITD_RESULTS_PGSEL (1 << 30)
226 #define SITD_RESULTS_TBYTES_MASK 0x03ff0000
227 #define SITD_RESULTS_TYBYTES_SH 16
228 #define SITD_RESULTS_CPROGMASK_MASK 0x0000ff00
229 #define SITD_RESULTS_CPROGMASK_SH 8
230 #define SITD_RESULTS_ACTIVE (1 << 7)
231 #define SITD_RESULTS_ERR (1 << 6)
232 #define SITD_RESULTS_DBERR (1 << 5)
233 #define SITD_RESULTS_BABBLE (1 << 4)
234 #define SITD_RESULTS_XACTERR (1 << 3)
235 #define SITD_RESULTS_MISSEDUF (1 << 2)
236 #define SITD_RESULTS_SPLITXSTATE (1 << 1)
237
238 uint32_t bufptr[2];
239 #define SITD_BUFPTR_MASK 0xfffff000
240 #define SITD_BUFPTR_CURROFF_MASK 0x00000fff
241 #define SITD_BUFPTR_TPOS_MASK 0x00000018
242 #define SITD_BUFPTR_TPOS_SH 3
243 #define SITD_BUFPTR_TCNT_MASK 0x00000007
244
245 uint32_t backptr; // Standard next link pointer
246 } EHCIsitd;
247
248 /* EHCI spec version 1.0 Section 3.5
249 */
250 typedef struct EHCIqtd {
251 uint32_t next; // Standard next link pointer
252 uint32_t altnext; // Standard next link pointer
253 uint32_t token;
254 #define QTD_TOKEN_DTOGGLE (1 << 31)
255 #define QTD_TOKEN_TBYTES_MASK 0x7fff0000
256 #define QTD_TOKEN_TBYTES_SH 16
257 #define QTD_TOKEN_IOC (1 << 15)
258 #define QTD_TOKEN_CPAGE_MASK 0x00007000
259 #define QTD_TOKEN_CPAGE_SH 12
260 #define QTD_TOKEN_CERR_MASK 0x00000c00
261 #define QTD_TOKEN_CERR_SH 10
262 #define QTD_TOKEN_PID_MASK 0x00000300
263 #define QTD_TOKEN_PID_SH 8
264 #define QTD_TOKEN_ACTIVE (1 << 7)
265 #define QTD_TOKEN_HALT (1 << 6)
266 #define QTD_TOKEN_DBERR (1 << 5)
267 #define QTD_TOKEN_BABBLE (1 << 4)
268 #define QTD_TOKEN_XACTERR (1 << 3)
269 #define QTD_TOKEN_MISSEDUF (1 << 2)
270 #define QTD_TOKEN_SPLITXSTATE (1 << 1)
271 #define QTD_TOKEN_PING (1 << 0)
272
273 uint32_t bufptr[5]; // Standard buffer pointer
274 #define QTD_BUFPTR_MASK 0xfffff000
275 } EHCIqtd;
276
277 /* EHCI spec version 1.0 Section 3.6
278 */
279 typedef struct EHCIqh {
280 uint32_t next; // Standard next link pointer
281
282 /* endpoint characteristics */
283 uint32_t epchar;
284 #define QH_EPCHAR_RL_MASK 0xf0000000
285 #define QH_EPCHAR_RL_SH 28
286 #define QH_EPCHAR_C (1 << 27)
287 #define QH_EPCHAR_MPLEN_MASK 0x07FF0000
288 #define QH_EPCHAR_MPLEN_SH 16
289 #define QH_EPCHAR_H (1 << 15)
290 #define QH_EPCHAR_DTC (1 << 14)
291 #define QH_EPCHAR_EPS_MASK 0x00003000
292 #define QH_EPCHAR_EPS_SH 12
293 #define EHCI_QH_EPS_FULL 0
294 #define EHCI_QH_EPS_LOW 1
295 #define EHCI_QH_EPS_HIGH 2
296 #define EHCI_QH_EPS_RESERVED 3
297
298 #define QH_EPCHAR_EP_MASK 0x00000f00
299 #define QH_EPCHAR_EP_SH 8
300 #define QH_EPCHAR_I (1 << 7)
301 #define QH_EPCHAR_DEVADDR_MASK 0x0000007f
302 #define QH_EPCHAR_DEVADDR_SH 0
303
304 /* endpoint capabilities */
305 uint32_t epcap;
306 #define QH_EPCAP_MULT_MASK 0xc0000000
307 #define QH_EPCAP_MULT_SH 30
308 #define QH_EPCAP_PORTNUM_MASK 0x3f800000
309 #define QH_EPCAP_PORTNUM_SH 23
310 #define QH_EPCAP_HUBADDR_MASK 0x007f0000
311 #define QH_EPCAP_HUBADDR_SH 16
312 #define QH_EPCAP_CMASK_MASK 0x0000ff00
313 #define QH_EPCAP_CMASK_SH 8
314 #define QH_EPCAP_SMASK_MASK 0x000000ff
315 #define QH_EPCAP_SMASK_SH 0
316
317 uint32_t current_qtd; // Standard next link pointer
318 uint32_t next_qtd; // Standard next link pointer
319 uint32_t altnext_qtd;
320 #define QH_ALTNEXT_NAKCNT_MASK 0x0000001e
321 #define QH_ALTNEXT_NAKCNT_SH 1
322
323 uint32_t token; // Same as QTD token
324 uint32_t bufptr[5]; // Standard buffer pointer
325 #define BUFPTR_CPROGMASK_MASK 0x000000ff
326 #define BUFPTR_FRAMETAG_MASK 0x0000001f
327 #define BUFPTR_SBYTES_MASK 0x00000fe0
328 #define BUFPTR_SBYTES_SH 5
329 } EHCIqh;
330
331 /* EHCI spec version 1.0 Section 3.7
332 */
333 typedef struct EHCIfstn {
334 uint32_t next; // Standard next link pointer
335 uint32_t backptr; // Standard next link pointer
336 } EHCIfstn;
337
338 typedef struct EHCIQueue EHCIQueue;
339 typedef struct EHCIState EHCIState;
340
341 enum async_state {
342 EHCI_ASYNC_NONE = 0,
343 EHCI_ASYNC_INFLIGHT,
344 EHCI_ASYNC_FINISHED,
345 };
346
347 struct EHCIQueue {
348 EHCIState *ehci;
349 QTAILQ_ENTRY(EHCIQueue) next;
350 bool async_schedule;
351 uint32_t seen;
352 uint64_t ts;
353
354 /* cached data from guest - needs to be flushed
355 * when guest removes an entry (doorbell, handshake sequence)
356 */
357 EHCIqh qh; // copy of current QH (being worked on)
358 uint32_t qhaddr; // address QH read from
359 EHCIqtd qtd; // copy of current QTD (being worked on)
360 uint32_t qtdaddr; // address QTD read from
361
362 USBPacket packet;
363 uint8_t buffer[BUFF_SIZE];
364 int pid;
365 uint32_t tbytes;
366 enum async_state async;
367 int usb_status;
368 };
369
370 struct EHCIState {
371 PCIDevice dev;
372 USBBus bus;
373 qemu_irq irq;
374 target_phys_addr_t mem_base;
375 int mem;
376 int num_ports;
377
378 /* properties */
379 uint32_t freq;
380 uint32_t maxframes;
381
382 /*
383 * EHCI spec version 1.0 Section 2.3
384 * Host Controller Operational Registers
385 */
386 union {
387 uint8_t mmio[MMIO_SIZE];
388 struct {
389 uint8_t cap[OPREGBASE];
390 uint32_t usbcmd;
391 uint32_t usbsts;
392 uint32_t usbintr;
393 uint32_t frindex;
394 uint32_t ctrldssegment;
395 uint32_t periodiclistbase;
396 uint32_t asynclistaddr;
397 uint32_t notused[9];
398 uint32_t configflag;
399 uint32_t portsc[NB_PORTS];
400 };
401 };
402
403 /*
404 * Internal states, shadow registers, etc
405 */
406 uint32_t sofv;
407 QEMUTimer *frame_timer;
408 int attach_poll_counter;
409 int astate; // Current state in asynchronous schedule
410 int pstate; // Current state in periodic schedule
411 USBPort ports[NB_PORTS];
412 uint32_t usbsts_pending;
413 QTAILQ_HEAD(, EHCIQueue) queues;
414
415 uint32_t a_fetch_addr; // which address to look at next
416 uint32_t p_fetch_addr; // which address to look at next
417
418 USBPacket ipacket;
419 uint8_t ibuffer[BUFF_SIZE];
420 int isoch_pause;
421
422 uint64_t last_run_ns;
423 };
424
425 #define SET_LAST_RUN_CLOCK(s) \
426 (s)->last_run_ns = qemu_get_clock_ns(vm_clock);
427
428 /* nifty macros from Arnon's EHCI version */
429 #define get_field(data, field) \
430 (((data) & field##_MASK) >> field##_SH)
431
432 #define set_field(data, newval, field) do { \
433 uint32_t val = *data; \
434 val &= ~ field##_MASK; \
435 val |= ((newval) << field##_SH) & field##_MASK; \
436 *data = val; \
437 } while(0)
438
439 static const char *ehci_state_names[] = {
440 [ EST_INACTIVE ] = "INACTIVE",
441 [ EST_ACTIVE ] = "ACTIVE",
442 [ EST_EXECUTING ] = "EXECUTING",
443 [ EST_SLEEPING ] = "SLEEPING",
444 [ EST_WAITLISTHEAD ] = "WAITLISTHEAD",
445 [ EST_FETCHENTRY ] = "FETCH ENTRY",
446 [ EST_FETCHQH ] = "FETCH QH",
447 [ EST_FETCHITD ] = "FETCH ITD",
448 [ EST_ADVANCEQUEUE ] = "ADVANCEQUEUE",
449 [ EST_FETCHQTD ] = "FETCH QTD",
450 [ EST_EXECUTE ] = "EXECUTE",
451 [ EST_WRITEBACK ] = "WRITEBACK",
452 [ EST_HORIZONTALQH ] = "HORIZONTALQH",
453 };
454
455 static const char *ehci_mmio_names[] = {
456 [ CAPLENGTH ] = "CAPLENGTH",
457 [ HCIVERSION ] = "HCIVERSION",
458 [ HCSPARAMS ] = "HCSPARAMS",
459 [ HCCPARAMS ] = "HCCPARAMS",
460 [ USBCMD ] = "USBCMD",
461 [ USBSTS ] = "USBSTS",
462 [ USBINTR ] = "USBINTR",
463 [ FRINDEX ] = "FRINDEX",
464 [ PERIODICLISTBASE ] = "P-LIST BASE",
465 [ ASYNCLISTADDR ] = "A-LIST ADDR",
466 [ PORTSC_BEGIN ] = "PORTSC #0",
467 [ PORTSC_BEGIN + 4] = "PORTSC #1",
468 [ PORTSC_BEGIN + 8] = "PORTSC #2",
469 [ PORTSC_BEGIN + 12] = "PORTSC #3",
470 [ CONFIGFLAG ] = "CONFIGFLAG",
471 };
472
473 static const char *nr2str(const char **n, size_t len, uint32_t nr)
474 {
475 if (nr < len && n[nr] != NULL) {
476 return n[nr];
477 } else {
478 return "unknown";
479 }
480 }
481
482 static const char *state2str(uint32_t state)
483 {
484 return nr2str(ehci_state_names, ARRAY_SIZE(ehci_state_names), state);
485 }
486
487 static const char *addr2str(target_phys_addr_t addr)
488 {
489 return nr2str(ehci_mmio_names, ARRAY_SIZE(ehci_mmio_names), addr);
490 }
491
492 static void ehci_trace_usbsts(uint32_t mask, int state)
493 {
494 /* interrupts */
495 if (mask & USBSTS_INT) {
496 trace_usb_ehci_usbsts("INT", state);
497 }
498 if (mask & USBSTS_ERRINT) {
499 trace_usb_ehci_usbsts("ERRINT", state);
500 }
501 if (mask & USBSTS_PCD) {
502 trace_usb_ehci_usbsts("PCD", state);
503 }
504 if (mask & USBSTS_FLR) {
505 trace_usb_ehci_usbsts("FLR", state);
506 }
507 if (mask & USBSTS_HSE) {
508 trace_usb_ehci_usbsts("HSE", state);
509 }
510 if (mask & USBSTS_IAA) {
511 trace_usb_ehci_usbsts("IAA", state);
512 }
513
514 /* status */
515 if (mask & USBSTS_HALT) {
516 trace_usb_ehci_usbsts("HALT", state);
517 }
518 if (mask & USBSTS_REC) {
519 trace_usb_ehci_usbsts("REC", state);
520 }
521 if (mask & USBSTS_PSS) {
522 trace_usb_ehci_usbsts("PSS", state);
523 }
524 if (mask & USBSTS_ASS) {
525 trace_usb_ehci_usbsts("ASS", state);
526 }
527 }
528
529 static inline void ehci_set_usbsts(EHCIState *s, int mask)
530 {
531 if ((s->usbsts & mask) == mask) {
532 return;
533 }
534 ehci_trace_usbsts(mask, 1);
535 s->usbsts |= mask;
536 }
537
538 static inline void ehci_clear_usbsts(EHCIState *s, int mask)
539 {
540 if ((s->usbsts & mask) == 0) {
541 return;
542 }
543 ehci_trace_usbsts(mask, 0);
544 s->usbsts &= ~mask;
545 }
546
547 static inline void ehci_set_interrupt(EHCIState *s, int intr)
548 {
549 int level = 0;
550
551 // TODO honour interrupt threshold requests
552
553 ehci_set_usbsts(s, intr);
554
555 if ((s->usbsts & USBINTR_MASK) & s->usbintr) {
556 level = 1;
557 }
558
559 qemu_set_irq(s->irq, level);
560 }
561
562 static inline void ehci_record_interrupt(EHCIState *s, int intr)
563 {
564 s->usbsts_pending |= intr;
565 }
566
567 static inline void ehci_commit_interrupt(EHCIState *s)
568 {
569 if (!s->usbsts_pending) {
570 return;
571 }
572 ehci_set_interrupt(s, s->usbsts_pending);
573 s->usbsts_pending = 0;
574 }
575
576 static void ehci_set_state(EHCIState *s, int async, int state)
577 {
578 if (async) {
579 trace_usb_ehci_state("async", state2str(state));
580 s->astate = state;
581 } else {
582 trace_usb_ehci_state("periodic", state2str(state));
583 s->pstate = state;
584 }
585 }
586
587 static int ehci_get_state(EHCIState *s, int async)
588 {
589 return async ? s->astate : s->pstate;
590 }
591
592 static void ehci_set_fetch_addr(EHCIState *s, int async, uint32_t addr)
593 {
594 if (async) {
595 s->a_fetch_addr = addr;
596 } else {
597 s->p_fetch_addr = addr;
598 }
599 }
600
601 static int ehci_get_fetch_addr(EHCIState *s, int async)
602 {
603 return async ? s->a_fetch_addr : s->p_fetch_addr;
604 }
605
606 static void ehci_trace_qh(EHCIQueue *q, target_phys_addr_t addr, EHCIqh *qh)
607 {
608 /* need three here due to argument count limits */
609 trace_usb_ehci_qh_ptrs(q, addr, qh->next,
610 qh->current_qtd, qh->next_qtd, qh->altnext_qtd);
611 trace_usb_ehci_qh_fields(addr,
612 get_field(qh->epchar, QH_EPCHAR_RL),
613 get_field(qh->epchar, QH_EPCHAR_MPLEN),
614 get_field(qh->epchar, QH_EPCHAR_EPS),
615 get_field(qh->epchar, QH_EPCHAR_EP),
616 get_field(qh->epchar, QH_EPCHAR_DEVADDR));
617 trace_usb_ehci_qh_bits(addr,
618 (bool)(qh->epchar & QH_EPCHAR_C),
619 (bool)(qh->epchar & QH_EPCHAR_H),
620 (bool)(qh->epchar & QH_EPCHAR_DTC),
621 (bool)(qh->epchar & QH_EPCHAR_I));
622 }
623
624 static void ehci_trace_qtd(EHCIQueue *q, target_phys_addr_t addr, EHCIqtd *qtd)
625 {
626 /* need three here due to argument count limits */
627 trace_usb_ehci_qtd_ptrs(q, addr, qtd->next, qtd->altnext);
628 trace_usb_ehci_qtd_fields(addr,
629 get_field(qtd->token, QTD_TOKEN_TBYTES),
630 get_field(qtd->token, QTD_TOKEN_CPAGE),
631 get_field(qtd->token, QTD_TOKEN_CERR),
632 get_field(qtd->token, QTD_TOKEN_PID));
633 trace_usb_ehci_qtd_bits(addr,
634 (bool)(qtd->token & QTD_TOKEN_IOC),
635 (bool)(qtd->token & QTD_TOKEN_ACTIVE),
636 (bool)(qtd->token & QTD_TOKEN_HALT),
637 (bool)(qtd->token & QTD_TOKEN_BABBLE),
638 (bool)(qtd->token & QTD_TOKEN_XACTERR));
639 }
640
641 static void ehci_trace_itd(EHCIState *s, target_phys_addr_t addr, EHCIitd *itd)
642 {
643 trace_usb_ehci_itd(addr, itd->next,
644 get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT),
645 get_field(itd->bufptr[2], ITD_BUFPTR_MULT),
646 get_field(itd->bufptr[0], ITD_BUFPTR_EP),
647 get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR));
648 }
649
650 /* queue management */
651
652 static EHCIQueue *ehci_alloc_queue(EHCIState *ehci, int async)
653 {
654 EHCIQueue *q;
655
656 q = qemu_mallocz(sizeof(*q));
657 q->ehci = ehci;
658 q->async_schedule = async;
659 QTAILQ_INSERT_HEAD(&ehci->queues, q, next);
660 trace_usb_ehci_queue_action(q, "alloc");
661 return q;
662 }
663
664 static void ehci_free_queue(EHCIQueue *q)
665 {
666 trace_usb_ehci_queue_action(q, "free");
667 if (q->async == EHCI_ASYNC_INFLIGHT) {
668 usb_cancel_packet(&q->packet);
669 }
670 QTAILQ_REMOVE(&q->ehci->queues, q, next);
671 qemu_free(q);
672 }
673
674 static EHCIQueue *ehci_find_queue_by_qh(EHCIState *ehci, uint32_t addr)
675 {
676 EHCIQueue *q;
677
678 QTAILQ_FOREACH(q, &ehci->queues, next) {
679 if (addr == q->qhaddr) {
680 return q;
681 }
682 }
683 return NULL;
684 }
685
686 static void ehci_queues_rip_unused(EHCIState *ehci)
687 {
688 EHCIQueue *q, *tmp;
689
690 QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
691 if (q->seen) {
692 q->seen = 0;
693 q->ts = ehci->last_run_ns;
694 continue;
695 }
696 if (ehci->last_run_ns < q->ts + 250000000) {
697 /* allow 0.25 sec idle */
698 continue;
699 }
700 ehci_free_queue(q);
701 }
702 }
703
704 static void ehci_queues_rip_device(EHCIState *ehci, USBDevice *dev)
705 {
706 EHCIQueue *q, *tmp;
707
708 QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
709 if (q->packet.owner != dev) {
710 continue;
711 }
712 ehci_free_queue(q);
713 }
714 }
715
716 static void ehci_queues_rip_all(EHCIState *ehci)
717 {
718 EHCIQueue *q, *tmp;
719
720 QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
721 ehci_free_queue(q);
722 }
723 }
724
725 /* Attach or detach a device on root hub */
726
727 static void ehci_attach(USBPort *port)
728 {
729 EHCIState *s = port->opaque;
730 uint32_t *portsc = &s->portsc[port->index];
731
732 trace_usb_ehci_port_attach(port->index, port->dev->product_desc);
733
734 *portsc |= PORTSC_CONNECT;
735 *portsc |= PORTSC_CSC;
736
737 /*
738 * If a high speed device is attached then we own this port(indicated
739 * by zero in the PORTSC_POWNER bit field) so set the status bit
740 * and set an interrupt if enabled.
741 */
742 if ( !(*portsc & PORTSC_POWNER)) {
743 ehci_set_interrupt(s, USBSTS_PCD);
744 }
745 }
746
747 static void ehci_detach(USBPort *port)
748 {
749 EHCIState *s = port->opaque;
750 uint32_t *portsc = &s->portsc[port->index];
751
752 trace_usb_ehci_port_detach(port->index);
753
754 *portsc &= ~PORTSC_CONNECT;
755 *portsc |= PORTSC_CSC;
756
757 /*
758 * If a high speed device is attached then we own this port(indicated
759 * by zero in the PORTSC_POWNER bit field) so set the status bit
760 * and set an interrupt if enabled.
761 */
762 if ( !(*portsc & PORTSC_POWNER)) {
763 ehci_set_interrupt(s, USBSTS_PCD);
764 }
765 }
766
767 /* 4.1 host controller initialization */
768 static void ehci_reset(void *opaque)
769 {
770 EHCIState *s = opaque;
771 int i;
772
773 trace_usb_ehci_reset();
774
775 memset(&s->mmio[OPREGBASE], 0x00, MMIO_SIZE - OPREGBASE);
776
777 s->usbcmd = NB_MAXINTRATE << USBCMD_ITC_SH;
778 s->usbsts = USBSTS_HALT;
779
780 s->astate = EST_INACTIVE;
781 s->pstate = EST_INACTIVE;
782 s->isoch_pause = -1;
783 s->attach_poll_counter = 0;
784
785 for(i = 0; i < NB_PORTS; i++) {
786 s->portsc[i] = PORTSC_POWNER | PORTSC_PPOWER;
787
788 if (s->ports[i].dev) {
789 usb_attach(&s->ports[i], s->ports[i].dev);
790 }
791 }
792 ehci_queues_rip_all(s);
793 }
794
795 static uint32_t ehci_mem_readb(void *ptr, target_phys_addr_t addr)
796 {
797 EHCIState *s = ptr;
798 uint32_t val;
799
800 val = s->mmio[addr];
801
802 return val;
803 }
804
805 static uint32_t ehci_mem_readw(void *ptr, target_phys_addr_t addr)
806 {
807 EHCIState *s = ptr;
808 uint32_t val;
809
810 val = s->mmio[addr] | (s->mmio[addr+1] << 8);
811
812 return val;
813 }
814
815 static uint32_t ehci_mem_readl(void *ptr, target_phys_addr_t addr)
816 {
817 EHCIState *s = ptr;
818 uint32_t val;
819
820 val = s->mmio[addr] | (s->mmio[addr+1] << 8) |
821 (s->mmio[addr+2] << 16) | (s->mmio[addr+3] << 24);
822
823 trace_usb_ehci_mmio_readl(addr, addr2str(addr), val);
824 return val;
825 }
826
827 static void ehci_mem_writeb(void *ptr, target_phys_addr_t addr, uint32_t val)
828 {
829 fprintf(stderr, "EHCI doesn't handle byte writes to MMIO\n");
830 exit(1);
831 }
832
833 static void ehci_mem_writew(void *ptr, target_phys_addr_t addr, uint32_t val)
834 {
835 fprintf(stderr, "EHCI doesn't handle 16-bit writes to MMIO\n");
836 exit(1);
837 }
838
839 static void handle_port_status_write(EHCIState *s, int port, uint32_t val)
840 {
841 uint32_t *portsc = &s->portsc[port];
842 int rwc;
843 USBDevice *dev = s->ports[port].dev;
844
845 rwc = val & PORTSC_RWC_MASK;
846 val &= PORTSC_RO_MASK;
847
848 // handle_read_write_clear(&val, portsc, PORTSC_PEDC | PORTSC_CSC);
849
850 *portsc &= ~rwc;
851
852 if ((val & PORTSC_PRESET) && !(*portsc & PORTSC_PRESET)) {
853 trace_usb_ehci_port_reset(port, 1);
854 }
855
856 if (!(val & PORTSC_PRESET) &&(*portsc & PORTSC_PRESET)) {
857 trace_usb_ehci_port_reset(port, 0);
858 usb_attach(&s->ports[port], dev);
859
860 // TODO how to handle reset of ports with no device
861 if (dev) {
862 usb_send_msg(dev, USB_MSG_RESET);
863 }
864
865 if (s->ports[port].dev) {
866 *portsc &= ~PORTSC_CSC;
867 }
868
869 /* Table 2.16 Set the enable bit(and enable bit change) to indicate
870 * to SW that this port has a high speed device attached
871 *
872 * TODO - when to disable?
873 */
874 val |= PORTSC_PED;
875 val |= PORTSC_PEDC;
876 }
877
878 *portsc &= ~PORTSC_RO_MASK;
879 *portsc |= val;
880 }
881
882 static void ehci_mem_writel(void *ptr, target_phys_addr_t addr, uint32_t val)
883 {
884 EHCIState *s = ptr;
885 uint32_t *mmio = (uint32_t *)(&s->mmio[addr]);
886 uint32_t old = *mmio;
887 int i;
888
889 trace_usb_ehci_mmio_writel(addr, addr2str(addr), val);
890
891 /* Only aligned reads are allowed on OHCI */
892 if (addr & 3) {
893 fprintf(stderr, "usb-ehci: Mis-aligned write to addr 0x"
894 TARGET_FMT_plx "\n", addr);
895 return;
896 }
897
898 if (addr >= PORTSC && addr < PORTSC + 4 * NB_PORTS) {
899 handle_port_status_write(s, (addr-PORTSC)/4, val);
900 trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
901 return;
902 }
903
904 if (addr < OPREGBASE) {
905 fprintf(stderr, "usb-ehci: write attempt to read-only register"
906 TARGET_FMT_plx "\n", addr);
907 return;
908 }
909
910
911 /* Do any register specific pre-write processing here. */
912 switch(addr) {
913 case USBCMD:
914 if ((val & USBCMD_RUNSTOP) && !(s->usbcmd & USBCMD_RUNSTOP)) {
915 qemu_mod_timer(s->frame_timer, qemu_get_clock_ns(vm_clock));
916 SET_LAST_RUN_CLOCK(s);
917 ehci_clear_usbsts(s, USBSTS_HALT);
918 }
919
920 if (!(val & USBCMD_RUNSTOP) && (s->usbcmd & USBCMD_RUNSTOP)) {
921 qemu_del_timer(s->frame_timer);
922 // TODO - should finish out some stuff before setting halt
923 ehci_set_usbsts(s, USBSTS_HALT);
924 }
925
926 if (val & USBCMD_HCRESET) {
927 ehci_reset(s);
928 val &= ~USBCMD_HCRESET;
929 }
930
931 /* not supporting dynamic frame list size at the moment */
932 if ((val & USBCMD_FLS) && !(s->usbcmd & USBCMD_FLS)) {
933 fprintf(stderr, "attempt to set frame list size -- value %d\n",
934 val & USBCMD_FLS);
935 val &= ~USBCMD_FLS;
936 }
937 break;
938
939 case USBSTS:
940 val &= USBSTS_RO_MASK; // bits 6 thru 31 are RO
941 ehci_clear_usbsts(s, val); // bits 0 thru 5 are R/WC
942 val = s->usbsts;
943 ehci_set_interrupt(s, 0);
944 break;
945
946 case USBINTR:
947 val &= USBINTR_MASK;
948 break;
949
950 case FRINDEX:
951 s->sofv = val >> 3;
952 break;
953
954 case CONFIGFLAG:
955 val &= 0x1;
956 if (val) {
957 for(i = 0; i < NB_PORTS; i++)
958 s->portsc[i] &= ~PORTSC_POWNER;
959 }
960 break;
961
962 case PERIODICLISTBASE:
963 if ((s->usbcmd & USBCMD_PSE) && (s->usbcmd & USBCMD_RUNSTOP)) {
964 fprintf(stderr,
965 "ehci: PERIODIC list base register set while periodic schedule\n"
966 " is enabled and HC is enabled\n");
967 }
968 break;
969
970 case ASYNCLISTADDR:
971 if ((s->usbcmd & USBCMD_ASE) && (s->usbcmd & USBCMD_RUNSTOP)) {
972 fprintf(stderr,
973 "ehci: ASYNC list address register set while async schedule\n"
974 " is enabled and HC is enabled\n");
975 }
976 break;
977 }
978
979 *mmio = val;
980 trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
981 }
982
983
984 // TODO : Put in common header file, duplication from usb-ohci.c
985
986 /* Get an array of dwords from main memory */
987 static inline int get_dwords(uint32_t addr, uint32_t *buf, int num)
988 {
989 int i;
990
991 for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
992 cpu_physical_memory_rw(addr,(uint8_t *)buf, sizeof(*buf), 0);
993 *buf = le32_to_cpu(*buf);
994 }
995
996 return 1;
997 }
998
999 /* Put an array of dwords in to main memory */
1000 static inline int put_dwords(uint32_t addr, uint32_t *buf, int num)
1001 {
1002 int i;
1003
1004 for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1005 uint32_t tmp = cpu_to_le32(*buf);
1006 cpu_physical_memory_rw(addr,(uint8_t *)&tmp, sizeof(tmp), 1);
1007 }
1008
1009 return 1;
1010 }
1011
1012 // 4.10.2
1013
1014 static int ehci_qh_do_overlay(EHCIQueue *q)
1015 {
1016 int i;
1017 int dtoggle;
1018 int ping;
1019 int eps;
1020 int reload;
1021
1022 // remember values in fields to preserve in qh after overlay
1023
1024 dtoggle = q->qh.token & QTD_TOKEN_DTOGGLE;
1025 ping = q->qh.token & QTD_TOKEN_PING;
1026
1027 q->qh.current_qtd = q->qtdaddr;
1028 q->qh.next_qtd = q->qtd.next;
1029 q->qh.altnext_qtd = q->qtd.altnext;
1030 q->qh.token = q->qtd.token;
1031
1032
1033 eps = get_field(q->qh.epchar, QH_EPCHAR_EPS);
1034 if (eps == EHCI_QH_EPS_HIGH) {
1035 q->qh.token &= ~QTD_TOKEN_PING;
1036 q->qh.token |= ping;
1037 }
1038
1039 reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1040 set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1041
1042 for (i = 0; i < 5; i++) {
1043 q->qh.bufptr[i] = q->qtd.bufptr[i];
1044 }
1045
1046 if (!(q->qh.epchar & QH_EPCHAR_DTC)) {
1047 // preserve QH DT bit
1048 q->qh.token &= ~QTD_TOKEN_DTOGGLE;
1049 q->qh.token |= dtoggle;
1050 }
1051
1052 q->qh.bufptr[1] &= ~BUFPTR_CPROGMASK_MASK;
1053 q->qh.bufptr[2] &= ~BUFPTR_FRAMETAG_MASK;
1054
1055 put_dwords(NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1056
1057 return 0;
1058 }
1059
1060 static int ehci_buffer_rw(EHCIQueue *q, int bytes, int rw)
1061 {
1062 int bufpos = 0;
1063 int cpage, offset;
1064 uint32_t head;
1065 uint32_t tail;
1066
1067
1068 if (!bytes) {
1069 return 0;
1070 }
1071
1072 cpage = get_field(q->qh.token, QTD_TOKEN_CPAGE);
1073 if (cpage > 4) {
1074 fprintf(stderr, "cpage out of range (%d)\n", cpage);
1075 return USB_RET_PROCERR;
1076 }
1077
1078 offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
1079
1080 do {
1081 /* start and end of this page */
1082 head = q->qh.bufptr[cpage] & QTD_BUFPTR_MASK;
1083 tail = head + ~QTD_BUFPTR_MASK + 1;
1084 /* add offset into page */
1085 head |= offset;
1086
1087 if (bytes <= (tail - head)) {
1088 tail = head + bytes;
1089 }
1090
1091 trace_usb_ehci_data(rw, cpage, offset, head, tail-head, bufpos);
1092 cpu_physical_memory_rw(head, q->buffer + bufpos, tail - head, rw);
1093
1094 bufpos += (tail - head);
1095 offset += (tail - head);
1096 bytes -= (tail - head);
1097
1098 if (bytes > 0) {
1099 cpage++;
1100 offset = 0;
1101 }
1102 } while (bytes > 0);
1103
1104 /* save cpage */
1105 set_field(&q->qh.token, cpage, QTD_TOKEN_CPAGE);
1106
1107 /* save offset into cpage */
1108 q->qh.bufptr[0] &= QTD_BUFPTR_MASK;
1109 q->qh.bufptr[0] |= offset;
1110
1111 return 0;
1112 }
1113
1114 static void ehci_async_complete_packet(USBDevice *dev, USBPacket *packet)
1115 {
1116 EHCIQueue *q = container_of(packet, EHCIQueue, packet);
1117
1118 trace_usb_ehci_queue_action(q, "wakeup");
1119 assert(q->async == EHCI_ASYNC_INFLIGHT);
1120 q->async = EHCI_ASYNC_FINISHED;
1121 q->usb_status = packet->len;
1122 }
1123
1124 static void ehci_execute_complete(EHCIQueue *q)
1125 {
1126 int c_err, reload;
1127
1128 assert(q->async != EHCI_ASYNC_INFLIGHT);
1129 q->async = EHCI_ASYNC_NONE;
1130
1131 DPRINTF("execute_complete: qhaddr 0x%x, next %x, qtdaddr 0x%x, status %d\n",
1132 q->qhaddr, q->qh.next, q->qtdaddr, q->usb_status);
1133
1134 if (q->usb_status < 0) {
1135 err:
1136 /* TO-DO: put this is in a function that can be invoked below as well */
1137 c_err = get_field(q->qh.token, QTD_TOKEN_CERR);
1138 c_err--;
1139 set_field(&q->qh.token, c_err, QTD_TOKEN_CERR);
1140
1141 switch(q->usb_status) {
1142 case USB_RET_NODEV:
1143 q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_XACTERR);
1144 ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1145 break;
1146 case USB_RET_STALL:
1147 q->qh.token |= QTD_TOKEN_HALT;
1148 ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1149 break;
1150 case USB_RET_NAK:
1151 /* 4.10.3 */
1152 reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1153 if ((q->pid == USB_TOKEN_IN) && reload) {
1154 int nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1155 nakcnt--;
1156 set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
1157 } else if (!reload) {
1158 return;
1159 }
1160 break;
1161 case USB_RET_BABBLE:
1162 q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
1163 ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1164 break;
1165 default:
1166 /* should not be triggerable */
1167 fprintf(stderr, "USB invalid response %d to handle\n", q->usb_status);
1168 assert(0);
1169 break;
1170 }
1171 } else {
1172 // DPRINTF("Short packet condition\n");
1173 // TODO check 4.12 for splits
1174
1175 if ((q->usb_status > q->tbytes) && (q->pid == USB_TOKEN_IN)) {
1176 q->usb_status = USB_RET_BABBLE;
1177 goto err;
1178 }
1179
1180 if (q->tbytes && q->pid == USB_TOKEN_IN) {
1181 if (ehci_buffer_rw(q, q->usb_status, 1) != 0) {
1182 q->usb_status = USB_RET_PROCERR;
1183 return;
1184 }
1185 q->tbytes -= q->usb_status;
1186 } else {
1187 q->tbytes = 0;
1188 }
1189
1190 DPRINTF("updating tbytes to %d\n", q->tbytes);
1191 set_field(&q->qh.token, q->tbytes, QTD_TOKEN_TBYTES);
1192 }
1193
1194 q->qh.token ^= QTD_TOKEN_DTOGGLE;
1195 q->qh.token &= ~QTD_TOKEN_ACTIVE;
1196
1197 if ((q->usb_status >= 0) && (q->qh.token & QTD_TOKEN_IOC)) {
1198 ehci_record_interrupt(q->ehci, USBSTS_INT);
1199 }
1200 }
1201
1202 // 4.10.3
1203
1204 static int ehci_execute(EHCIQueue *q)
1205 {
1206 USBPort *port;
1207 USBDevice *dev;
1208 int ret;
1209 int i;
1210 int endp;
1211 int devadr;
1212
1213 if ( !(q->qh.token & QTD_TOKEN_ACTIVE)) {
1214 fprintf(stderr, "Attempting to execute inactive QH\n");
1215 return USB_RET_PROCERR;
1216 }
1217
1218 q->tbytes = (q->qh.token & QTD_TOKEN_TBYTES_MASK) >> QTD_TOKEN_TBYTES_SH;
1219 if (q->tbytes > BUFF_SIZE) {
1220 fprintf(stderr, "Request for more bytes than allowed\n");
1221 return USB_RET_PROCERR;
1222 }
1223
1224 q->pid = (q->qh.token & QTD_TOKEN_PID_MASK) >> QTD_TOKEN_PID_SH;
1225 switch(q->pid) {
1226 case 0: q->pid = USB_TOKEN_OUT; break;
1227 case 1: q->pid = USB_TOKEN_IN; break;
1228 case 2: q->pid = USB_TOKEN_SETUP; break;
1229 default: fprintf(stderr, "bad token\n"); break;
1230 }
1231
1232 if ((q->tbytes && q->pid != USB_TOKEN_IN) &&
1233 (ehci_buffer_rw(q, q->tbytes, 0) != 0)) {
1234 return USB_RET_PROCERR;
1235 }
1236
1237 endp = get_field(q->qh.epchar, QH_EPCHAR_EP);
1238 devadr = get_field(q->qh.epchar, QH_EPCHAR_DEVADDR);
1239
1240 ret = USB_RET_NODEV;
1241
1242 // TO-DO: associating device with ehci port
1243 for(i = 0; i < NB_PORTS; i++) {
1244 port = &q->ehci->ports[i];
1245 dev = port->dev;
1246
1247 // TODO sometime we will also need to check if we are the port owner
1248
1249 if (!(q->ehci->portsc[i] &(PORTSC_CONNECT))) {
1250 DPRINTF("Port %d, no exec, not connected(%08X)\n",
1251 i, q->ehci->portsc[i]);
1252 continue;
1253 }
1254
1255 q->packet.pid = q->pid;
1256 q->packet.devaddr = devadr;
1257 q->packet.devep = endp;
1258 q->packet.data = q->buffer;
1259 q->packet.len = q->tbytes;
1260
1261 ret = usb_handle_packet(dev, &q->packet);
1262
1263 DPRINTF("submit: qh %x next %x qtd %x pid %x len %d (total %d) endp %x ret %d\n",
1264 q->qhaddr, q->qh.next, q->qtdaddr, q->pid,
1265 q->packet.len, q->tbytes, endp, ret);
1266
1267 if (ret != USB_RET_NODEV) {
1268 break;
1269 }
1270 }
1271
1272 if (ret > BUFF_SIZE) {
1273 fprintf(stderr, "ret from usb_handle_packet > BUFF_SIZE\n");
1274 return USB_RET_PROCERR;
1275 }
1276
1277 return ret;
1278 }
1279
1280 /* 4.7.2
1281 */
1282
1283 static int ehci_process_itd(EHCIState *ehci,
1284 EHCIitd *itd)
1285 {
1286 USBPort *port;
1287 USBDevice *dev;
1288 int ret;
1289 uint32_t i, j, len, len1, len2, pid, dir, devaddr, endp;
1290 uint32_t pg, off, ptr1, ptr2, max, mult;
1291
1292 dir =(itd->bufptr[1] & ITD_BUFPTR_DIRECTION);
1293 devaddr = get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR);
1294 endp = get_field(itd->bufptr[0], ITD_BUFPTR_EP);
1295 max = get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT);
1296 mult = get_field(itd->bufptr[2], ITD_BUFPTR_MULT);
1297
1298 for(i = 0; i < 8; i++) {
1299 if (itd->transact[i] & ITD_XACT_ACTIVE) {
1300 pg = get_field(itd->transact[i], ITD_XACT_PGSEL);
1301 off = itd->transact[i] & ITD_XACT_OFFSET_MASK;
1302 ptr1 = (itd->bufptr[pg] & ITD_BUFPTR_MASK);
1303 ptr2 = (itd->bufptr[pg+1] & ITD_BUFPTR_MASK);
1304 len = get_field(itd->transact[i], ITD_XACT_LENGTH);
1305
1306 if (len > max * mult) {
1307 len = max * mult;
1308 }
1309
1310 if (len > BUFF_SIZE) {
1311 return USB_RET_PROCERR;
1312 }
1313
1314 if (off + len > 4096) {
1315 /* transfer crosses page border */
1316 len2 = off + len - 4096;
1317 len1 = len - len2;
1318 } else {
1319 len1 = len;
1320 len2 = 0;
1321 }
1322
1323 if (!dir) {
1324 pid = USB_TOKEN_OUT;
1325 trace_usb_ehci_data(0, pg, off, ptr1 + off, len1, 0);
1326 cpu_physical_memory_rw(ptr1 + off, &ehci->ibuffer[0], len1, 0);
1327 if (len2) {
1328 trace_usb_ehci_data(0, pg+1, 0, ptr2, len2, len1);
1329 cpu_physical_memory_rw(ptr2, &ehci->ibuffer[len1], len2, 0);
1330 }
1331 } else {
1332 pid = USB_TOKEN_IN;
1333 }
1334
1335 ret = USB_RET_NODEV;
1336
1337 for (j = 0; j < NB_PORTS; j++) {
1338 port = &ehci->ports[j];
1339 dev = port->dev;
1340
1341 // TODO sometime we will also need to check if we are the port owner
1342
1343 if (!(ehci->portsc[j] &(PORTSC_CONNECT))) {
1344 continue;
1345 }
1346
1347 ehci->ipacket.pid = pid;
1348 ehci->ipacket.devaddr = devaddr;
1349 ehci->ipacket.devep = endp;
1350 ehci->ipacket.data = ehci->ibuffer;
1351 ehci->ipacket.len = len;
1352
1353 ret = usb_handle_packet(dev, &ehci->ipacket);
1354
1355 if (ret != USB_RET_NODEV) {
1356 break;
1357 }
1358 }
1359
1360 #if 0
1361 /* In isoch, there is no facility to indicate a NAK so let's
1362 * instead just complete a zero-byte transaction. Setting
1363 * DBERR seems too draconian.
1364 */
1365
1366 if (ret == USB_RET_NAK) {
1367 if (ehci->isoch_pause > 0) {
1368 DPRINTF("ISOCH: received a NAK but paused so returning\n");
1369 ehci->isoch_pause--;
1370 return 0;
1371 } else if (ehci->isoch_pause == -1) {
1372 DPRINTF("ISOCH: recv NAK & isoch pause inactive, setting\n");
1373 // Pause frindex for up to 50 msec waiting for data from
1374 // remote
1375 ehci->isoch_pause = 50;
1376 return 0;
1377 } else {
1378 DPRINTF("ISOCH: isoch pause timeout! return 0\n");
1379 ret = 0;
1380 }
1381 } else {
1382 DPRINTF("ISOCH: received ACK, clearing pause\n");
1383 ehci->isoch_pause = -1;
1384 }
1385 #else
1386 if (ret == USB_RET_NAK) {
1387 ret = 0;
1388 }
1389 #endif
1390
1391 if (ret >= 0) {
1392 if (!dir) {
1393 /* OUT */
1394 set_field(&itd->transact[i], len - ret, ITD_XACT_LENGTH);
1395 } else {
1396 /* IN */
1397 if (len1 > ret) {
1398 len1 = ret;
1399 }
1400 if (len2 > ret - len1) {
1401 len2 = ret - len1;
1402 }
1403 if (len1) {
1404 trace_usb_ehci_data(1, pg, off, ptr1 + off, len1, 0);
1405 cpu_physical_memory_rw(ptr1 + off, &ehci->ibuffer[0], len1, 1);
1406 }
1407 if (len2) {
1408 trace_usb_ehci_data(1, pg+1, 0, ptr2, len2, len1);
1409 cpu_physical_memory_rw(ptr2, &ehci->ibuffer[len1], len2, 1);
1410 }
1411 set_field(&itd->transact[i], ret, ITD_XACT_LENGTH);
1412 }
1413
1414 if (itd->transact[i] & ITD_XACT_IOC) {
1415 ehci_record_interrupt(ehci, USBSTS_INT);
1416 }
1417 }
1418 itd->transact[i] &= ~ITD_XACT_ACTIVE;
1419 }
1420 }
1421 return 0;
1422 }
1423
1424 /* This state is the entry point for asynchronous schedule
1425 * processing. Entry here consitutes a EHCI start event state (4.8.5)
1426 */
1427 static int ehci_state_waitlisthead(EHCIState *ehci, int async)
1428 {
1429 EHCIqh qh;
1430 int i = 0;
1431 int again = 0;
1432 uint32_t entry = ehci->asynclistaddr;
1433
1434 /* set reclamation flag at start event (4.8.6) */
1435 if (async) {
1436 ehci_set_usbsts(ehci, USBSTS_REC);
1437 }
1438
1439 ehci_queues_rip_unused(ehci);
1440
1441 /* Find the head of the list (4.9.1.1) */
1442 for(i = 0; i < MAX_QH; i++) {
1443 get_dwords(NLPTR_GET(entry), (uint32_t *) &qh, sizeof(EHCIqh) >> 2);
1444 ehci_trace_qh(NULL, NLPTR_GET(entry), &qh);
1445
1446 if (qh.epchar & QH_EPCHAR_H) {
1447 if (async) {
1448 entry |= (NLPTR_TYPE_QH << 1);
1449 }
1450
1451 ehci_set_fetch_addr(ehci, async, entry);
1452 ehci_set_state(ehci, async, EST_FETCHENTRY);
1453 again = 1;
1454 goto out;
1455 }
1456
1457 entry = qh.next;
1458 if (entry == ehci->asynclistaddr) {
1459 break;
1460 }
1461 }
1462
1463 /* no head found for list. */
1464
1465 ehci_set_state(ehci, async, EST_ACTIVE);
1466
1467 out:
1468 return again;
1469 }
1470
1471
1472 /* This state is the entry point for periodic schedule processing as
1473 * well as being a continuation state for async processing.
1474 */
1475 static int ehci_state_fetchentry(EHCIState *ehci, int async)
1476 {
1477 int again = 0;
1478 uint32_t entry = ehci_get_fetch_addr(ehci, async);
1479
1480 if (entry < 0x1000) {
1481 DPRINTF("fetchentry: entry invalid (0x%08x)\n", entry);
1482 ehci_set_state(ehci, async, EST_ACTIVE);
1483 goto out;
1484 }
1485
1486 /* section 4.8, only QH in async schedule */
1487 if (async && (NLPTR_TYPE_GET(entry) != NLPTR_TYPE_QH)) {
1488 fprintf(stderr, "non queue head request in async schedule\n");
1489 return -1;
1490 }
1491
1492 switch (NLPTR_TYPE_GET(entry)) {
1493 case NLPTR_TYPE_QH:
1494 ehci_set_state(ehci, async, EST_FETCHQH);
1495 again = 1;
1496 break;
1497
1498 case NLPTR_TYPE_ITD:
1499 ehci_set_state(ehci, async, EST_FETCHITD);
1500 again = 1;
1501 break;
1502
1503 default:
1504 // TODO: handle siTD and FSTN types
1505 fprintf(stderr, "FETCHENTRY: entry at %X is of type %d "
1506 "which is not supported yet\n", entry, NLPTR_TYPE_GET(entry));
1507 return -1;
1508 }
1509
1510 out:
1511 return again;
1512 }
1513
1514 static EHCIQueue *ehci_state_fetchqh(EHCIState *ehci, int async)
1515 {
1516 uint32_t entry;
1517 EHCIQueue *q;
1518 int reload;
1519
1520 entry = ehci_get_fetch_addr(ehci, async);
1521 q = ehci_find_queue_by_qh(ehci, entry);
1522 if (NULL == q) {
1523 q = ehci_alloc_queue(ehci, async);
1524 }
1525 q->qhaddr = entry;
1526 q->seen++;
1527
1528 if (q->seen > 1) {
1529 /* we are going in circles -- stop processing */
1530 ehci_set_state(ehci, async, EST_ACTIVE);
1531 q = NULL;
1532 goto out;
1533 }
1534
1535 get_dwords(NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1536 ehci_trace_qh(q, NLPTR_GET(q->qhaddr), &q->qh);
1537
1538 if (q->async == EHCI_ASYNC_INFLIGHT) {
1539 /* I/O still in progress -- skip queue */
1540 ehci_set_state(ehci, async, EST_HORIZONTALQH);
1541 goto out;
1542 }
1543 if (q->async == EHCI_ASYNC_FINISHED) {
1544 /* I/O finished -- continue processing queue */
1545 trace_usb_ehci_queue_action(q, "resume");
1546 ehci_set_state(ehci, async, EST_EXECUTING);
1547 goto out;
1548 }
1549
1550 if (async && (q->qh.epchar & QH_EPCHAR_H)) {
1551
1552 /* EHCI spec version 1.0 Section 4.8.3 & 4.10.1 */
1553 if (ehci->usbsts & USBSTS_REC) {
1554 ehci_clear_usbsts(ehci, USBSTS_REC);
1555 } else {
1556 DPRINTF("FETCHQH: QH 0x%08x. H-bit set, reclamation status reset"
1557 " - done processing\n", q->qhaddr);
1558 ehci_set_state(ehci, async, EST_ACTIVE);
1559 q = NULL;
1560 goto out;
1561 }
1562 }
1563
1564 #if EHCI_DEBUG
1565 if (q->qhaddr != q->qh.next) {
1566 DPRINTF("FETCHQH: QH 0x%08x (h %x halt %x active %x) next 0x%08x\n",
1567 q->qhaddr,
1568 q->qh.epchar & QH_EPCHAR_H,
1569 q->qh.token & QTD_TOKEN_HALT,
1570 q->qh.token & QTD_TOKEN_ACTIVE,
1571 q->qh.next);
1572 }
1573 #endif
1574
1575 reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1576 if (reload) {
1577 set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1578 }
1579
1580 if (q->qh.token & QTD_TOKEN_HALT) {
1581 ehci_set_state(ehci, async, EST_HORIZONTALQH);
1582
1583 } else if ((q->qh.token & QTD_TOKEN_ACTIVE) && (q->qh.current_qtd > 0x1000)) {
1584 q->qtdaddr = q->qh.current_qtd;
1585 ehci_set_state(ehci, async, EST_FETCHQTD);
1586
1587 } else {
1588 /* EHCI spec version 1.0 Section 4.10.2 */
1589 ehci_set_state(ehci, async, EST_ADVANCEQUEUE);
1590 }
1591
1592 out:
1593 return q;
1594 }
1595
1596 static int ehci_state_fetchitd(EHCIState *ehci, int async)
1597 {
1598 uint32_t entry;
1599 EHCIitd itd;
1600
1601 assert(!async);
1602 entry = ehci_get_fetch_addr(ehci, async);
1603
1604 get_dwords(NLPTR_GET(entry),(uint32_t *) &itd,
1605 sizeof(EHCIitd) >> 2);
1606 ehci_trace_itd(ehci, entry, &itd);
1607
1608 if (ehci_process_itd(ehci, &itd) != 0) {
1609 return -1;
1610 }
1611
1612 put_dwords(NLPTR_GET(entry), (uint32_t *) &itd,
1613 sizeof(EHCIitd) >> 2);
1614 ehci_set_fetch_addr(ehci, async, itd.next);
1615 ehci_set_state(ehci, async, EST_FETCHENTRY);
1616
1617 return 1;
1618 }
1619
1620 /* Section 4.10.2 - paragraph 3 */
1621 static int ehci_state_advqueue(EHCIQueue *q, int async)
1622 {
1623 #if 0
1624 /* TO-DO: 4.10.2 - paragraph 2
1625 * if I-bit is set to 1 and QH is not active
1626 * go to horizontal QH
1627 */
1628 if (I-bit set) {
1629 ehci_set_state(ehci, async, EST_HORIZONTALQH);
1630 goto out;
1631 }
1632 #endif
1633
1634 /*
1635 * want data and alt-next qTD is valid
1636 */
1637 if (((q->qh.token & QTD_TOKEN_TBYTES_MASK) != 0) &&
1638 (q->qh.altnext_qtd > 0x1000) &&
1639 (NLPTR_TBIT(q->qh.altnext_qtd) == 0)) {
1640 q->qtdaddr = q->qh.altnext_qtd;
1641 ehci_set_state(q->ehci, async, EST_FETCHQTD);
1642
1643 /*
1644 * next qTD is valid
1645 */
1646 } else if ((q->qh.next_qtd > 0x1000) &&
1647 (NLPTR_TBIT(q->qh.next_qtd) == 0)) {
1648 q->qtdaddr = q->qh.next_qtd;
1649 ehci_set_state(q->ehci, async, EST_FETCHQTD);
1650
1651 /*
1652 * no valid qTD, try next QH
1653 */
1654 } else {
1655 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1656 }
1657
1658 return 1;
1659 }
1660
1661 /* Section 4.10.2 - paragraph 4 */
1662 static int ehci_state_fetchqtd(EHCIQueue *q, int async)
1663 {
1664 int again = 0;
1665
1666 get_dwords(NLPTR_GET(q->qtdaddr),(uint32_t *) &q->qtd, sizeof(EHCIqtd) >> 2);
1667 ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), &q->qtd);
1668
1669 if (q->qtd.token & QTD_TOKEN_ACTIVE) {
1670 ehci_set_state(q->ehci, async, EST_EXECUTE);
1671 again = 1;
1672 } else {
1673 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1674 again = 1;
1675 }
1676
1677 return again;
1678 }
1679
1680 static int ehci_state_horizqh(EHCIQueue *q, int async)
1681 {
1682 int again = 0;
1683
1684 if (ehci_get_fetch_addr(q->ehci, async) != q->qh.next) {
1685 ehci_set_fetch_addr(q->ehci, async, q->qh.next);
1686 ehci_set_state(q->ehci, async, EST_FETCHENTRY);
1687 again = 1;
1688 } else {
1689 ehci_set_state(q->ehci, async, EST_ACTIVE);
1690 }
1691
1692 return again;
1693 }
1694
1695 /*
1696 * Write the qh back to guest physical memory. This step isn't
1697 * in the EHCI spec but we need to do it since we don't share
1698 * physical memory with our guest VM.
1699 *
1700 * The first three dwords are read-only for the EHCI, so skip them
1701 * when writing back the qh.
1702 */
1703 static void ehci_flush_qh(EHCIQueue *q)
1704 {
1705 uint32_t *qh = (uint32_t *) &q->qh;
1706 uint32_t dwords = sizeof(EHCIqh) >> 2;
1707 uint32_t addr = NLPTR_GET(q->qhaddr);
1708
1709 put_dwords(addr + 3 * sizeof(uint32_t), qh + 3, dwords - 3);
1710 }
1711
1712 static int ehci_state_execute(EHCIQueue *q, int async)
1713 {
1714 int again = 0;
1715 int reload, nakcnt;
1716 int smask;
1717
1718 if (ehci_qh_do_overlay(q) != 0) {
1719 return -1;
1720 }
1721
1722 smask = get_field(q->qh.epcap, QH_EPCAP_SMASK);
1723
1724 if (!smask) {
1725 reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1726 nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1727 if (reload && !nakcnt) {
1728 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1729 again = 1;
1730 goto out;
1731 }
1732 }
1733
1734 // TODO verify enough time remains in the uframe as in 4.4.1.1
1735 // TODO write back ptr to async list when done or out of time
1736 // TODO Windows does not seem to ever set the MULT field
1737
1738 if (!async) {
1739 int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1740 if (!transactCtr) {
1741 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1742 again = 1;
1743 goto out;
1744 }
1745 }
1746
1747 if (async) {
1748 ehci_set_usbsts(q->ehci, USBSTS_REC);
1749 }
1750
1751 q->usb_status = ehci_execute(q);
1752 if (q->usb_status == USB_RET_PROCERR) {
1753 again = -1;
1754 goto out;
1755 }
1756 if (q->usb_status == USB_RET_ASYNC) {
1757 ehci_flush_qh(q);
1758 trace_usb_ehci_queue_action(q, "suspend");
1759 q->async = EHCI_ASYNC_INFLIGHT;
1760 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1761 again = 1;
1762 goto out;
1763 }
1764
1765 ehci_set_state(q->ehci, async, EST_EXECUTING);
1766 again = 1;
1767
1768 out:
1769 return again;
1770 }
1771
1772 static int ehci_state_executing(EHCIQueue *q, int async)
1773 {
1774 int again = 0;
1775 int reload, nakcnt;
1776
1777 ehci_execute_complete(q);
1778 if (q->usb_status == USB_RET_ASYNC) {
1779 goto out;
1780 }
1781 if (q->usb_status == USB_RET_PROCERR) {
1782 again = -1;
1783 goto out;
1784 }
1785
1786 // 4.10.3
1787 if (!async) {
1788 int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1789 transactCtr--;
1790 set_field(&q->qh.epcap, transactCtr, QH_EPCAP_MULT);
1791 // 4.10.3, bottom of page 82, should exit this state when transaction
1792 // counter decrements to 0
1793 }
1794
1795 reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1796 if (reload) {
1797 nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1798 if (q->usb_status == USB_RET_NAK) {
1799 if (nakcnt) {
1800 nakcnt--;
1801 }
1802 } else {
1803 nakcnt = reload;
1804 }
1805 set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
1806 }
1807
1808 /* 4.10.5 */
1809 if ((q->usb_status == USB_RET_NAK) || (q->qh.token & QTD_TOKEN_ACTIVE)) {
1810 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1811 } else {
1812 ehci_set_state(q->ehci, async, EST_WRITEBACK);
1813 }
1814
1815 again = 1;
1816
1817 out:
1818 ehci_flush_qh(q);
1819 return again;
1820 }
1821
1822
1823 static int ehci_state_writeback(EHCIQueue *q, int async)
1824 {
1825 int again = 0;
1826
1827 /* Write back the QTD from the QH area */
1828 ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), (EHCIqtd*) &q->qh.next_qtd);
1829 put_dwords(NLPTR_GET(q->qtdaddr),(uint32_t *) &q->qh.next_qtd,
1830 sizeof(EHCIqtd) >> 2);
1831
1832 /*
1833 * EHCI specs say go horizontal here.
1834 *
1835 * We can also advance the queue here for performance reasons. We
1836 * need to take care to only take that shortcut in case we've
1837 * processed the qtd just written back without errors, i.e. halt
1838 * bit is clear.
1839 */
1840 if (q->qh.token & QTD_TOKEN_HALT) {
1841 ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1842 again = 1;
1843 } else {
1844 ehci_set_state(q->ehci, async, EST_ADVANCEQUEUE);
1845 again = 1;
1846 }
1847 return again;
1848 }
1849
1850 /*
1851 * This is the state machine that is common to both async and periodic
1852 */
1853
1854 static void ehci_advance_state(EHCIState *ehci,
1855 int async)
1856 {
1857 EHCIQueue *q = NULL;
1858 int again;
1859 int iter = 0;
1860
1861 do {
1862 if (ehci_get_state(ehci, async) == EST_FETCHQH) {
1863 iter++;
1864 /* if we are roaming a lot of QH without executing a qTD
1865 * something is wrong with the linked list. TO-DO: why is
1866 * this hack needed?
1867 */
1868 assert(iter < MAX_ITERATIONS);
1869 #if 0
1870 if (iter > MAX_ITERATIONS) {
1871 DPRINTF("\n*** advance_state: bailing on MAX ITERATIONS***\n");
1872 ehci_set_state(ehci, async, EST_ACTIVE);
1873 break;
1874 }
1875 #endif
1876 }
1877 switch(ehci_get_state(ehci, async)) {
1878 case EST_WAITLISTHEAD:
1879 again = ehci_state_waitlisthead(ehci, async);
1880 break;
1881
1882 case EST_FETCHENTRY:
1883 again = ehci_state_fetchentry(ehci, async);
1884 break;
1885
1886 case EST_FETCHQH:
1887 q = ehci_state_fetchqh(ehci, async);
1888 again = q ? 1 : 0;
1889 break;
1890
1891 case EST_FETCHITD:
1892 again = ehci_state_fetchitd(ehci, async);
1893 break;
1894
1895 case EST_ADVANCEQUEUE:
1896 again = ehci_state_advqueue(q, async);
1897 break;
1898
1899 case EST_FETCHQTD:
1900 again = ehci_state_fetchqtd(q, async);
1901 break;
1902
1903 case EST_HORIZONTALQH:
1904 again = ehci_state_horizqh(q, async);
1905 break;
1906
1907 case EST_EXECUTE:
1908 iter = 0;
1909 again = ehci_state_execute(q, async);
1910 break;
1911
1912 case EST_EXECUTING:
1913 assert(q != NULL);
1914 again = ehci_state_executing(q, async);
1915 break;
1916
1917 case EST_WRITEBACK:
1918 again = ehci_state_writeback(q, async);
1919 break;
1920
1921 default:
1922 fprintf(stderr, "Bad state!\n");
1923 again = -1;
1924 assert(0);
1925 break;
1926 }
1927
1928 if (again < 0) {
1929 fprintf(stderr, "processing error - resetting ehci HC\n");
1930 ehci_reset(ehci);
1931 again = 0;
1932 assert(0);
1933 }
1934 }
1935 while (again);
1936
1937 ehci_commit_interrupt(ehci);
1938 }
1939
1940 static void ehci_advance_async_state(EHCIState *ehci)
1941 {
1942 int async = 1;
1943
1944 switch(ehci_get_state(ehci, async)) {
1945 case EST_INACTIVE:
1946 if (!(ehci->usbcmd & USBCMD_ASE)) {
1947 break;
1948 }
1949 ehci_set_usbsts(ehci, USBSTS_ASS);
1950 ehci_set_state(ehci, async, EST_ACTIVE);
1951 // No break, fall through to ACTIVE
1952
1953 case EST_ACTIVE:
1954 if ( !(ehci->usbcmd & USBCMD_ASE)) {
1955 ehci_clear_usbsts(ehci, USBSTS_ASS);
1956 ehci_set_state(ehci, async, EST_INACTIVE);
1957 break;
1958 }
1959
1960 /* If the doorbell is set, the guest wants to make a change to the
1961 * schedule. The host controller needs to release cached data.
1962 * (section 4.8.2)
1963 */
1964 if (ehci->usbcmd & USBCMD_IAAD) {
1965 DPRINTF("ASYNC: doorbell request acknowledged\n");
1966 ehci->usbcmd &= ~USBCMD_IAAD;
1967 ehci_set_interrupt(ehci, USBSTS_IAA);
1968 break;
1969 }
1970
1971 /* make sure guest has acknowledged */
1972 /* TO-DO: is this really needed? */
1973 if (ehci->usbsts & USBSTS_IAA) {
1974 DPRINTF("IAA status bit still set.\n");
1975 break;
1976 }
1977
1978 /* check that address register has been set */
1979 if (ehci->asynclistaddr == 0) {
1980 break;
1981 }
1982
1983 ehci_set_state(ehci, async, EST_WAITLISTHEAD);
1984 ehci_advance_state(ehci, async);
1985 break;
1986
1987 default:
1988 /* this should only be due to a developer mistake */
1989 fprintf(stderr, "ehci: Bad asynchronous state %d. "
1990 "Resetting to active\n", ehci->astate);
1991 assert(0);
1992 }
1993 }
1994
1995 static void ehci_advance_periodic_state(EHCIState *ehci)
1996 {
1997 uint32_t entry;
1998 uint32_t list;
1999 int async = 0;
2000
2001 // 4.6
2002
2003 switch(ehci_get_state(ehci, async)) {
2004 case EST_INACTIVE:
2005 if ( !(ehci->frindex & 7) && (ehci->usbcmd & USBCMD_PSE)) {
2006 ehci_set_usbsts(ehci, USBSTS_PSS);
2007 ehci_set_state(ehci, async, EST_ACTIVE);
2008 // No break, fall through to ACTIVE
2009 } else
2010 break;
2011
2012 case EST_ACTIVE:
2013 if ( !(ehci->frindex & 7) && !(ehci->usbcmd & USBCMD_PSE)) {
2014 ehci_clear_usbsts(ehci, USBSTS_PSS);
2015 ehci_set_state(ehci, async, EST_INACTIVE);
2016 break;
2017 }
2018
2019 list = ehci->periodiclistbase & 0xfffff000;
2020 /* check that register has been set */
2021 if (list == 0) {
2022 break;
2023 }
2024 list |= ((ehci->frindex & 0x1ff8) >> 1);
2025
2026 cpu_physical_memory_rw(list, (uint8_t *) &entry, sizeof entry, 0);
2027 entry = le32_to_cpu(entry);
2028
2029 DPRINTF("PERIODIC state adv fr=%d. [%08X] -> %08X\n",
2030 ehci->frindex / 8, list, entry);
2031 ehci_set_fetch_addr(ehci, async,entry);
2032 ehci_set_state(ehci, async, EST_FETCHENTRY);
2033 ehci_advance_state(ehci, async);
2034 break;
2035
2036 default:
2037 /* this should only be due to a developer mistake */
2038 fprintf(stderr, "ehci: Bad periodic state %d. "
2039 "Resetting to active\n", ehci->pstate);
2040 assert(0);
2041 }
2042 }
2043
2044 static void ehci_frame_timer(void *opaque)
2045 {
2046 EHCIState *ehci = opaque;
2047 int64_t expire_time, t_now;
2048 uint64_t ns_elapsed;
2049 int frames;
2050 int i;
2051 int skipped_frames = 0;
2052
2053 t_now = qemu_get_clock_ns(vm_clock);
2054 expire_time = t_now + (get_ticks_per_sec() / ehci->freq);
2055
2056 ns_elapsed = t_now - ehci->last_run_ns;
2057 frames = ns_elapsed / FRAME_TIMER_NS;
2058
2059 for (i = 0; i < frames; i++) {
2060 if ( !(ehci->usbsts & USBSTS_HALT)) {
2061 if (ehci->isoch_pause <= 0) {
2062 ehci->frindex += 8;
2063 }
2064
2065 if (ehci->frindex > 0x00001fff) {
2066 ehci->frindex = 0;
2067 ehci_set_interrupt(ehci, USBSTS_FLR);
2068 }
2069
2070 ehci->sofv = (ehci->frindex - 1) >> 3;
2071 ehci->sofv &= 0x000003ff;
2072 }
2073
2074 if (frames - i > ehci->maxframes) {
2075 skipped_frames++;
2076 } else {
2077 ehci_advance_periodic_state(ehci);
2078 }
2079
2080 ehci->last_run_ns += FRAME_TIMER_NS;
2081 }
2082
2083 #if 0
2084 if (skipped_frames) {
2085 DPRINTF("WARNING - EHCI skipped %d frames\n", skipped_frames);
2086 }
2087 #endif
2088
2089 /* Async is not inside loop since it executes everything it can once
2090 * called
2091 */
2092 ehci_advance_async_state(ehci);
2093
2094 qemu_mod_timer(ehci->frame_timer, expire_time);
2095 }
2096
2097 static CPUReadMemoryFunc *ehci_readfn[3]={
2098 ehci_mem_readb,
2099 ehci_mem_readw,
2100 ehci_mem_readl
2101 };
2102
2103 static CPUWriteMemoryFunc *ehci_writefn[3]={
2104 ehci_mem_writeb,
2105 ehci_mem_writew,
2106 ehci_mem_writel
2107 };
2108
2109 static void ehci_map(PCIDevice *pci_dev, int region_num,
2110 pcibus_t addr, pcibus_t size, int type)
2111 {
2112 EHCIState *s =(EHCIState *)pci_dev;
2113
2114 DPRINTF("ehci_map: region %d, addr %08" PRIx64 ", size %" PRId64 ", s->mem %08X\n",
2115 region_num, addr, size, s->mem);
2116 s->mem_base = addr;
2117 cpu_register_physical_memory(addr, size, s->mem);
2118 }
2119
2120 static void ehci_device_destroy(USBBus *bus, USBDevice *dev)
2121 {
2122 EHCIState *s = container_of(bus, EHCIState, bus);
2123
2124 ehci_queues_rip_device(s, dev);
2125 }
2126
2127 static int usb_ehci_initfn(PCIDevice *dev);
2128
2129 static USBPortOps ehci_port_ops = {
2130 .attach = ehci_attach,
2131 .detach = ehci_detach,
2132 .complete = ehci_async_complete_packet,
2133 };
2134
2135 static USBBusOps ehci_bus_ops = {
2136 .device_destroy = ehci_device_destroy,
2137 };
2138
2139 static PCIDeviceInfo ehci_info = {
2140 .qdev.name = "usb-ehci",
2141 .qdev.size = sizeof(EHCIState),
2142 .init = usb_ehci_initfn,
2143 .vendor_id = PCI_VENDOR_ID_INTEL,
2144 .device_id = PCI_DEVICE_ID_INTEL_82801D,
2145 .revision = 0x10,
2146 .class_id = PCI_CLASS_SERIAL_USB,
2147 .qdev.props = (Property[]) {
2148 DEFINE_PROP_UINT32("freq", EHCIState, freq, FRAME_TIMER_FREQ),
2149 DEFINE_PROP_UINT32("maxframes", EHCIState, maxframes, 128),
2150 DEFINE_PROP_END_OF_LIST(),
2151 },
2152 };
2153
2154 static int usb_ehci_initfn(PCIDevice *dev)
2155 {
2156 EHCIState *s = DO_UPCAST(EHCIState, dev, dev);
2157 uint8_t *pci_conf = s->dev.config;
2158 int i;
2159
2160 pci_set_byte(&pci_conf[PCI_CLASS_PROG], 0x20);
2161
2162 /* capabilities pointer */
2163 pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x00);
2164 //pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x50);
2165
2166 pci_set_byte(&pci_conf[PCI_INTERRUPT_PIN], 4); // interrupt pin 3
2167 pci_set_byte(&pci_conf[PCI_MIN_GNT], 0);
2168 pci_set_byte(&pci_conf[PCI_MAX_LAT], 0);
2169
2170 // pci_conf[0x50] = 0x01; // power management caps
2171
2172 pci_set_byte(&pci_conf[USB_SBRN], USB_RELEASE_2); // release number (2.1.4)
2173 pci_set_byte(&pci_conf[0x61], 0x20); // frame length adjustment (2.1.5)
2174 pci_set_word(&pci_conf[0x62], 0x00); // port wake up capability (2.1.6)
2175
2176 pci_conf[0x64] = 0x00;
2177 pci_conf[0x65] = 0x00;
2178 pci_conf[0x66] = 0x00;
2179 pci_conf[0x67] = 0x00;
2180 pci_conf[0x68] = 0x01;
2181 pci_conf[0x69] = 0x00;
2182 pci_conf[0x6a] = 0x00;
2183 pci_conf[0x6b] = 0x00; // USBLEGSUP
2184 pci_conf[0x6c] = 0x00;
2185 pci_conf[0x6d] = 0x00;
2186 pci_conf[0x6e] = 0x00;
2187 pci_conf[0x6f] = 0xc0; // USBLEFCTLSTS
2188
2189 // 2.2 host controller interface version
2190 s->mmio[0x00] = (uint8_t) OPREGBASE;
2191 s->mmio[0x01] = 0x00;
2192 s->mmio[0x02] = 0x00;
2193 s->mmio[0x03] = 0x01; // HC version
2194 s->mmio[0x04] = NB_PORTS; // Number of downstream ports
2195 s->mmio[0x05] = 0x00; // No companion ports at present
2196 s->mmio[0x06] = 0x00;
2197 s->mmio[0x07] = 0x00;
2198 s->mmio[0x08] = 0x80; // We can cache whole frame, not 64-bit capable
2199 s->mmio[0x09] = 0x68; // EECP
2200 s->mmio[0x0a] = 0x00;
2201 s->mmio[0x0b] = 0x00;
2202
2203 s->irq = s->dev.irq[3];
2204
2205 usb_bus_new(&s->bus, &ehci_bus_ops, &s->dev.qdev);
2206 for(i = 0; i < NB_PORTS; i++) {
2207 usb_register_port(&s->bus, &s->ports[i], s, i, &ehci_port_ops,
2208 USB_SPEED_MASK_HIGH);
2209 usb_port_location(&s->ports[i], NULL, i+1);
2210 s->ports[i].dev = 0;
2211 }
2212
2213 s->frame_timer = qemu_new_timer_ns(vm_clock, ehci_frame_timer, s);
2214 QTAILQ_INIT(&s->queues);
2215
2216 qemu_register_reset(ehci_reset, s);
2217
2218 s->mem = cpu_register_io_memory(ehci_readfn, ehci_writefn, s,
2219 DEVICE_LITTLE_ENDIAN);
2220
2221 pci_register_bar(&s->dev, 0, MMIO_SIZE, PCI_BASE_ADDRESS_SPACE_MEMORY,
2222 ehci_map);
2223
2224 fprintf(stderr, "*** EHCI support is under development ***\n");
2225
2226 return 0;
2227 }
2228
2229 static void ehci_register(void)
2230 {
2231 pci_qdev_register(&ehci_info);
2232 }
2233 device_init(ehci_register);
2234
2235 /*
2236 * vim: expandtab ts=4
2237 */