]> git.proxmox.com Git - qemu.git/blob - hw/wdt_i6300esb.c
wdt_i6300esb: remove useless casts from void *
[qemu.git] / hw / wdt_i6300esb.c
1 /*
2 * Virtual hardware watchdog.
3 *
4 * Copyright (C) 2009 Red Hat Inc.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 *
19 * By Richard W.M. Jones (rjones@redhat.com).
20 */
21
22 #include <inttypes.h>
23
24 #include "qemu-common.h"
25 #include "qemu-timer.h"
26 #include "watchdog.h"
27 #include "hw.h"
28 #include "pci.h"
29
30 /*#define I6300ESB_DEBUG 1*/
31
32 #ifdef I6300ESB_DEBUG
33 #define i6300esb_debug(fs,...) \
34 fprintf(stderr,"i6300esb: %s: "fs,__func__,##__VA_ARGS__)
35 #else
36 #define i6300esb_debug(fs,...)
37 #endif
38
39 #ifndef PCI_DEVICE_ID_INTEL_ESB_9
40 #define PCI_DEVICE_ID_INTEL_ESB_9 0x25ab
41 #endif
42
43 /* PCI configuration registers */
44 #define ESB_CONFIG_REG 0x60 /* Config register */
45 #define ESB_LOCK_REG 0x68 /* WDT lock register */
46
47 /* Memory mapped registers (offset from base address) */
48 #define ESB_TIMER1_REG 0x00 /* Timer1 value after each reset */
49 #define ESB_TIMER2_REG 0x04 /* Timer2 value after each reset */
50 #define ESB_GINTSR_REG 0x08 /* General Interrupt Status Register */
51 #define ESB_RELOAD_REG 0x0c /* Reload register */
52
53 /* Lock register bits */
54 #define ESB_WDT_FUNC (0x01 << 2) /* Watchdog functionality */
55 #define ESB_WDT_ENABLE (0x01 << 1) /* Enable WDT */
56 #define ESB_WDT_LOCK (0x01 << 0) /* Lock (nowayout) */
57
58 /* Config register bits */
59 #define ESB_WDT_REBOOT (0x01 << 5) /* Enable reboot on timeout */
60 #define ESB_WDT_FREQ (0x01 << 2) /* Decrement frequency */
61 #define ESB_WDT_INTTYPE (0x11 << 0) /* Interrupt type on timer1 timeout */
62
63 /* Reload register bits */
64 #define ESB_WDT_RELOAD (0x01 << 8) /* prevent timeout */
65
66 /* Magic constants */
67 #define ESB_UNLOCK1 0x80 /* Step 1 to unlock reset registers */
68 #define ESB_UNLOCK2 0x86 /* Step 2 to unlock reset registers */
69
70 /* Device state. */
71 struct I6300State {
72 PCIDevice dev;
73
74 int reboot_enabled; /* "Reboot" on timer expiry. The real action
75 * performed depends on the -watchdog-action
76 * param passed on QEMU command line.
77 */
78 int clock_scale; /* Clock scale. */
79 #define CLOCK_SCALE_1KHZ 0
80 #define CLOCK_SCALE_1MHZ 1
81
82 int int_type; /* Interrupt type generated. */
83 #define INT_TYPE_IRQ 0 /* APIC 1, INT 10 */
84 #define INT_TYPE_SMI 2
85 #define INT_TYPE_DISABLED 3
86
87 int free_run; /* If true, reload timer on expiry. */
88 int locked; /* If true, enabled field cannot be changed. */
89 int enabled; /* If true, watchdog is enabled. */
90
91 QEMUTimer *timer; /* The actual watchdog timer. */
92
93 uint32_t timer1_preload; /* Values preloaded into timer1, timer2. */
94 uint32_t timer2_preload;
95 int stage; /* Stage (1 or 2). */
96
97 int unlock_state; /* Guest writes 0x80, 0x86 to unlock the
98 * registers, and we transition through
99 * states 0 -> 1 -> 2 when this happens.
100 */
101
102 int previous_reboot_flag; /* If the watchdog caused the previous
103 * reboot, this flag will be set.
104 */
105 };
106
107 typedef struct I6300State I6300State;
108
109 /* This function is called when the watchdog has either been enabled
110 * (hence it starts counting down) or has been keep-alived.
111 */
112 static void i6300esb_restart_timer(I6300State *d, int stage)
113 {
114 int64_t timeout;
115
116 if (!d->enabled)
117 return;
118
119 d->stage = stage;
120
121 if (d->stage <= 1)
122 timeout = d->timer1_preload;
123 else
124 timeout = d->timer2_preload;
125
126 if (d->clock_scale == CLOCK_SCALE_1KHZ)
127 timeout <<= 15;
128 else
129 timeout <<= 5;
130
131 /* Get the timeout in units of ticks_per_sec. */
132 timeout = get_ticks_per_sec() * timeout / 33000000;
133
134 i6300esb_debug("stage %d, timeout %" PRIi64 "\n", d->stage, timeout);
135
136 qemu_mod_timer(d->timer, qemu_get_clock(vm_clock) + timeout);
137 }
138
139 /* This is called when the guest disables the watchdog. */
140 static void i6300esb_disable_timer(I6300State *d)
141 {
142 i6300esb_debug("timer disabled\n");
143
144 qemu_del_timer(d->timer);
145 }
146
147 static void i6300esb_reset(I6300State *d)
148 {
149 /* XXX We should probably reset other parts of the state here,
150 * but we should also reset our state on general machine reset
151 * too. For now just disable the timer so it doesn't fire
152 * again after the reboot.
153 */
154 i6300esb_disable_timer(d);
155 }
156
157 /* This function is called when the watchdog expires. Note that
158 * the hardware has two timers, and so expiry happens in two stages.
159 * If d->stage == 1 then we perform the first stage action (usually,
160 * sending an interrupt) and then restart the timer again for the
161 * second stage. If the second stage expires then the watchdog
162 * really has run out.
163 */
164 static void i6300esb_timer_expired(void *vp)
165 {
166 I6300State *d = vp;
167
168 i6300esb_debug("stage %d\n", d->stage);
169
170 if (d->stage == 1) {
171 /* What to do at the end of stage 1? */
172 switch (d->int_type) {
173 case INT_TYPE_IRQ:
174 fprintf(stderr, "i6300esb_timer_expired: I would send APIC 1 INT 10 here if I knew how (XXX)\n");
175 break;
176 case INT_TYPE_SMI:
177 fprintf(stderr, "i6300esb_timer_expired: I would send SMI here if I knew how (XXX)\n");
178 break;
179 }
180
181 /* Start the second stage. */
182 i6300esb_restart_timer(d, 2);
183 } else {
184 /* Second stage expired, reboot for real. */
185 if (d->reboot_enabled) {
186 d->previous_reboot_flag = 1;
187 watchdog_perform_action(); /* This reboots, exits, etc */
188 i6300esb_reset(d);
189 }
190
191 /* In "free running mode" we start stage 1 again. */
192 if (d->free_run)
193 i6300esb_restart_timer(d, 1);
194 }
195 }
196
197 static void i6300esb_config_write(PCIDevice *dev, uint32_t addr,
198 uint32_t data, int len)
199 {
200 I6300State *d = DO_UPCAST(I6300State, dev, dev);
201 int old;
202
203 i6300esb_debug("addr = %x, data = %x, len = %d\n", addr, data, len);
204
205 if (addr == ESB_CONFIG_REG && len == 2) {
206 d->reboot_enabled = (data & ESB_WDT_REBOOT) == 0;
207 d->clock_scale =
208 (data & ESB_WDT_FREQ) != 0 ? CLOCK_SCALE_1MHZ : CLOCK_SCALE_1KHZ;
209 d->int_type = (data & ESB_WDT_INTTYPE);
210 } else if (addr == ESB_LOCK_REG && len == 1) {
211 if (!d->locked) {
212 d->locked = (data & ESB_WDT_LOCK) != 0;
213 d->free_run = (data & ESB_WDT_FUNC) != 0;
214 old = d->enabled;
215 d->enabled = (data & ESB_WDT_ENABLE) != 0;
216 if (!old && d->enabled) /* Enabled transitioned from 0 -> 1 */
217 i6300esb_restart_timer(d, 1);
218 else if (!d->enabled)
219 i6300esb_disable_timer(d);
220 }
221 } else {
222 pci_default_write_config(dev, addr, data, len);
223 }
224 }
225
226 static uint32_t i6300esb_config_read(PCIDevice *dev, uint32_t addr, int len)
227 {
228 I6300State *d = DO_UPCAST(I6300State, dev, dev);
229 uint32_t data;
230
231 i6300esb_debug ("addr = %x, len = %d\n", addr, len);
232
233 if (addr == ESB_CONFIG_REG && len == 2) {
234 data =
235 (d->reboot_enabled ? 0 : ESB_WDT_REBOOT) |
236 (d->clock_scale == CLOCK_SCALE_1MHZ ? ESB_WDT_FREQ : 0) |
237 d->int_type;
238 return data;
239 } else if (addr == ESB_LOCK_REG && len == 1) {
240 data =
241 (d->free_run ? ESB_WDT_FUNC : 0) |
242 (d->locked ? ESB_WDT_LOCK : 0) |
243 (d->enabled ? ESB_WDT_ENABLE : 0);
244 return data;
245 } else {
246 return pci_default_read_config(dev, addr, len);
247 }
248 }
249
250 static uint32_t i6300esb_mem_readb(void *vp, target_phys_addr_t addr)
251 {
252 i6300esb_debug ("addr = %x\n", (int) addr);
253
254 return 0;
255 }
256
257 static uint32_t i6300esb_mem_readw(void *vp, target_phys_addr_t addr)
258 {
259 uint32_t data = 0;
260 I6300State *d = vp;
261
262 i6300esb_debug("addr = %x\n", (int) addr);
263
264 if (addr == 0xc) {
265 /* The previous reboot flag is really bit 9, but there is
266 * a bug in the Linux driver where it thinks it's bit 12.
267 * Set both.
268 */
269 data = d->previous_reboot_flag ? 0x1200 : 0;
270 }
271
272 return data;
273 }
274
275 static uint32_t i6300esb_mem_readl(void *vp, target_phys_addr_t addr)
276 {
277 i6300esb_debug("addr = %x\n", (int) addr);
278
279 return 0;
280 }
281
282 static void i6300esb_mem_writeb(void *vp, target_phys_addr_t addr, uint32_t val)
283 {
284 I6300State *d = vp;
285
286 i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
287
288 if (addr == 0xc && val == 0x80)
289 d->unlock_state = 1;
290 else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
291 d->unlock_state = 2;
292 }
293
294 static void i6300esb_mem_writew(void *vp, target_phys_addr_t addr, uint32_t val)
295 {
296 I6300State *d = vp;
297
298 i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
299
300 if (addr == 0xc && val == 0x80)
301 d->unlock_state = 1;
302 else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
303 d->unlock_state = 2;
304 else {
305 if (d->unlock_state == 2) {
306 if (addr == 0xc) {
307 if ((val & 0x100) != 0)
308 /* This is the "ping" from the userspace watchdog in
309 * the guest ...
310 */
311 i6300esb_restart_timer(d, 1);
312
313 /* Setting bit 9 resets the previous reboot flag.
314 * There's a bug in the Linux driver where it sets
315 * bit 12 instead.
316 */
317 if ((val & 0x200) != 0 || (val & 0x1000) != 0) {
318 d->previous_reboot_flag = 0;
319 }
320 }
321
322 d->unlock_state = 0;
323 }
324 }
325 }
326
327 static void i6300esb_mem_writel(void *vp, target_phys_addr_t addr, uint32_t val)
328 {
329 I6300State *d = vp;
330
331 i6300esb_debug ("addr = %x, val = %x\n", (int) addr, val);
332
333 if (addr == 0xc && val == 0x80)
334 d->unlock_state = 1;
335 else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
336 d->unlock_state = 2;
337 else {
338 if (d->unlock_state == 2) {
339 if (addr == 0)
340 d->timer1_preload = val & 0xfffff;
341 else if (addr == 4)
342 d->timer2_preload = val & 0xfffff;
343
344 d->unlock_state = 0;
345 }
346 }
347 }
348
349 static void i6300esb_map(PCIDevice *dev, int region_num,
350 uint32_t addr, uint32_t size, int type)
351 {
352 static CPUReadMemoryFunc * const mem_read[3] = {
353 i6300esb_mem_readb,
354 i6300esb_mem_readw,
355 i6300esb_mem_readl,
356 };
357 static CPUWriteMemoryFunc * const mem_write[3] = {
358 i6300esb_mem_writeb,
359 i6300esb_mem_writew,
360 i6300esb_mem_writel,
361 };
362 I6300State *d = DO_UPCAST(I6300State, dev, dev);
363 int io_mem;
364
365 i6300esb_debug("addr = %x, size = %x, type = %d\n", addr, size, type);
366
367 io_mem = cpu_register_io_memory(mem_read, mem_write, d);
368 cpu_register_physical_memory (addr, 0x10, io_mem);
369 /* qemu_register_coalesced_mmio (addr, 0x10); ? */
370 }
371
372 static const VMStateDescription vmstate_i6300esb = {
373 .name = "i6300esb_wdt",
374 .version_id = sizeof(I6300State),
375 .minimum_version_id = sizeof(I6300State),
376 .minimum_version_id_old = sizeof(I6300State),
377 .fields = (VMStateField []) {
378 VMSTATE_PCI_DEVICE(dev, I6300State),
379 VMSTATE_INT32(reboot_enabled, I6300State),
380 VMSTATE_INT32(clock_scale, I6300State),
381 VMSTATE_INT32(int_type, I6300State),
382 VMSTATE_INT32(free_run, I6300State),
383 VMSTATE_INT32(locked, I6300State),
384 VMSTATE_INT32(enabled, I6300State),
385 VMSTATE_TIMER(timer, I6300State),
386 VMSTATE_UINT32(timer1_preload, I6300State),
387 VMSTATE_UINT32(timer2_preload, I6300State),
388 VMSTATE_INT32(stage, I6300State),
389 VMSTATE_INT32(unlock_state, I6300State),
390 VMSTATE_INT32(previous_reboot_flag, I6300State),
391 VMSTATE_END_OF_LIST()
392 }
393 };
394
395 static int i6300esb_init(PCIDevice *dev)
396 {
397 I6300State *d = DO_UPCAST(I6300State, dev, dev);
398 uint8_t *pci_conf;
399
400 d->reboot_enabled = 1;
401 d->clock_scale = CLOCK_SCALE_1KHZ;
402 d->int_type = INT_TYPE_IRQ;
403 d->free_run = 0;
404 d->locked = 0;
405 d->enabled = 0;
406 d->timer = qemu_new_timer(vm_clock, i6300esb_timer_expired, d);
407 d->timer1_preload = 0xfffff;
408 d->timer2_preload = 0xfffff;
409 d->stage = 1;
410 d->unlock_state = 0;
411 d->previous_reboot_flag = 0;
412
413 pci_conf = d->dev.config;
414 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
415 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_ESB_9);
416 pci_config_set_class(pci_conf, PCI_CLASS_SYSTEM_OTHER);
417 pci_conf[0x0e] = 0x00;
418
419 pci_register_bar(&d->dev, 0, 0x10,
420 PCI_ADDRESS_SPACE_MEM, i6300esb_map);
421
422 vmstate_register(-1, &vmstate_i6300esb, d);
423
424 return 0;
425 }
426
427 static WatchdogTimerModel model = {
428 .wdt_name = "i6300esb",
429 .wdt_description = "Intel 6300ESB",
430 };
431
432 static PCIDeviceInfo i6300esb_info = {
433 .qdev.name = "i6300esb",
434 .qdev.size = sizeof(I6300State),
435 .config_read = i6300esb_config_read,
436 .config_write = i6300esb_config_write,
437 .init = i6300esb_init,
438 };
439
440 static void i6300esb_register_devices(void)
441 {
442 watchdog_add_model(&model);
443 pci_qdev_register(&i6300esb_info);
444 }
445
446 device_init(i6300esb_register_devices);