]> git.proxmox.com Git - qemu.git/blob - include/fpu/softfloat.h
fpu: move public header file to include/fpu
[qemu.git] / include / fpu / softfloat.h
1 /*
2 * QEMU float support
3 *
4 * Derived from SoftFloat.
5 */
6
7 /*============================================================================
8
9 This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
10 Package, Release 2b.
11
12 Written by John R. Hauser. This work was made possible in part by the
13 International Computer Science Institute, located at Suite 600, 1947 Center
14 Street, Berkeley, California 94704. Funding was partially provided by the
15 National Science Foundation under grant MIP-9311980. The original version
16 of this code was written as part of a project to build a fixed-point vector
17 processor in collaboration with the University of California at Berkeley,
18 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
19 is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
20 arithmetic/SoftFloat.html'.
21
22 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
23 been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
24 RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
25 AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
26 COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
27 EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
28 INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
29 OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
30
31 Derivative works are acceptable, even for commercial purposes, so long as
32 (1) the source code for the derivative work includes prominent notice that
33 the work is derivative, and (2) the source code includes prominent notice with
34 these four paragraphs for those parts of this code that are retained.
35
36 =============================================================================*/
37
38 #ifndef SOFTFLOAT_H
39 #define SOFTFLOAT_H
40
41 #if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
42 #include <sunmath.h>
43 #endif
44
45 #include <inttypes.h>
46 #include "config-host.h"
47 #include "qemu/osdep.h"
48
49 /*----------------------------------------------------------------------------
50 | Each of the following `typedef's defines the most convenient type that holds
51 | integers of at least as many bits as specified. For example, `uint8' should
52 | be the most convenient type that can hold unsigned integers of as many as
53 | 8 bits. The `flag' type must be able to hold either a 0 or 1. For most
54 | implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
55 | to the same as `int'.
56 *----------------------------------------------------------------------------*/
57 typedef uint8_t flag;
58 typedef uint8_t uint8;
59 typedef int8_t int8;
60 typedef unsigned int uint32;
61 typedef signed int int32;
62 typedef uint64_t uint64;
63 typedef int64_t int64;
64
65 #define LIT64( a ) a##LL
66 #define INLINE static inline
67
68 #define STATUS_PARAM , float_status *status
69 #define STATUS(field) status->field
70 #define STATUS_VAR , status
71
72 /*----------------------------------------------------------------------------
73 | Software IEC/IEEE floating-point ordering relations
74 *----------------------------------------------------------------------------*/
75 enum {
76 float_relation_less = -1,
77 float_relation_equal = 0,
78 float_relation_greater = 1,
79 float_relation_unordered = 2
80 };
81
82 /*----------------------------------------------------------------------------
83 | Software IEC/IEEE floating-point types.
84 *----------------------------------------------------------------------------*/
85 /* Use structures for soft-float types. This prevents accidentally mixing
86 them with native int/float types. A sufficiently clever compiler and
87 sane ABI should be able to see though these structs. However
88 x86/gcc 3.x seems to struggle a bit, so leave them disabled by default. */
89 //#define USE_SOFTFLOAT_STRUCT_TYPES
90 #ifdef USE_SOFTFLOAT_STRUCT_TYPES
91 typedef struct {
92 uint16_t v;
93 } float16;
94 #define float16_val(x) (((float16)(x)).v)
95 #define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
96 #define const_float16(x) { x }
97 typedef struct {
98 uint32_t v;
99 } float32;
100 /* The cast ensures an error if the wrong type is passed. */
101 #define float32_val(x) (((float32)(x)).v)
102 #define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
103 #define const_float32(x) { x }
104 typedef struct {
105 uint64_t v;
106 } float64;
107 #define float64_val(x) (((float64)(x)).v)
108 #define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
109 #define const_float64(x) { x }
110 #else
111 typedef uint16_t float16;
112 typedef uint32_t float32;
113 typedef uint64_t float64;
114 #define float16_val(x) (x)
115 #define float32_val(x) (x)
116 #define float64_val(x) (x)
117 #define make_float16(x) (x)
118 #define make_float32(x) (x)
119 #define make_float64(x) (x)
120 #define const_float16(x) (x)
121 #define const_float32(x) (x)
122 #define const_float64(x) (x)
123 #endif
124 typedef struct {
125 uint64_t low;
126 uint16_t high;
127 } floatx80;
128 #define make_floatx80(exp, mant) ((floatx80) { mant, exp })
129 #define make_floatx80_init(exp, mant) { .low = mant, .high = exp }
130 typedef struct {
131 #ifdef HOST_WORDS_BIGENDIAN
132 uint64_t high, low;
133 #else
134 uint64_t low, high;
135 #endif
136 } float128;
137 #define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ })
138 #define make_float128_init(high_, low_) { .high = high_, .low = low_ }
139
140 /*----------------------------------------------------------------------------
141 | Software IEC/IEEE floating-point underflow tininess-detection mode.
142 *----------------------------------------------------------------------------*/
143 enum {
144 float_tininess_after_rounding = 0,
145 float_tininess_before_rounding = 1
146 };
147
148 /*----------------------------------------------------------------------------
149 | Software IEC/IEEE floating-point rounding mode.
150 *----------------------------------------------------------------------------*/
151 enum {
152 float_round_nearest_even = 0,
153 float_round_down = 1,
154 float_round_up = 2,
155 float_round_to_zero = 3
156 };
157
158 /*----------------------------------------------------------------------------
159 | Software IEC/IEEE floating-point exception flags.
160 *----------------------------------------------------------------------------*/
161 enum {
162 float_flag_invalid = 1,
163 float_flag_divbyzero = 4,
164 float_flag_overflow = 8,
165 float_flag_underflow = 16,
166 float_flag_inexact = 32,
167 float_flag_input_denormal = 64,
168 float_flag_output_denormal = 128
169 };
170
171 typedef struct float_status {
172 signed char float_detect_tininess;
173 signed char float_rounding_mode;
174 signed char float_exception_flags;
175 signed char floatx80_rounding_precision;
176 /* should denormalised results go to zero and set the inexact flag? */
177 flag flush_to_zero;
178 /* should denormalised inputs go to zero and set the input_denormal flag? */
179 flag flush_inputs_to_zero;
180 flag default_nan_mode;
181 } float_status;
182
183 void set_float_rounding_mode(int val STATUS_PARAM);
184 void set_float_exception_flags(int val STATUS_PARAM);
185 INLINE void set_float_detect_tininess(int val STATUS_PARAM)
186 {
187 STATUS(float_detect_tininess) = val;
188 }
189 INLINE void set_flush_to_zero(flag val STATUS_PARAM)
190 {
191 STATUS(flush_to_zero) = val;
192 }
193 INLINE void set_flush_inputs_to_zero(flag val STATUS_PARAM)
194 {
195 STATUS(flush_inputs_to_zero) = val;
196 }
197 INLINE void set_default_nan_mode(flag val STATUS_PARAM)
198 {
199 STATUS(default_nan_mode) = val;
200 }
201 INLINE int get_float_exception_flags(float_status *status)
202 {
203 return STATUS(float_exception_flags);
204 }
205 void set_floatx80_rounding_precision(int val STATUS_PARAM);
206
207 /*----------------------------------------------------------------------------
208 | Routine to raise any or all of the software IEC/IEEE floating-point
209 | exception flags.
210 *----------------------------------------------------------------------------*/
211 void float_raise( int8 flags STATUS_PARAM);
212
213 /*----------------------------------------------------------------------------
214 | Options to indicate which negations to perform in float*_muladd()
215 | Using these differs from negating an input or output before calling
216 | the muladd function in that this means that a NaN doesn't have its
217 | sign bit inverted before it is propagated.
218 *----------------------------------------------------------------------------*/
219 enum {
220 float_muladd_negate_c = 1,
221 float_muladd_negate_product = 2,
222 float_muladd_negate_result = 4,
223 };
224
225 /*----------------------------------------------------------------------------
226 | Software IEC/IEEE integer-to-floating-point conversion routines.
227 *----------------------------------------------------------------------------*/
228 float32 int32_to_float32( int32 STATUS_PARAM );
229 float64 int32_to_float64( int32 STATUS_PARAM );
230 float32 uint32_to_float32( uint32 STATUS_PARAM );
231 float64 uint32_to_float64( uint32 STATUS_PARAM );
232 floatx80 int32_to_floatx80( int32 STATUS_PARAM );
233 float128 int32_to_float128( int32 STATUS_PARAM );
234 float32 int64_to_float32( int64 STATUS_PARAM );
235 float32 uint64_to_float32( uint64 STATUS_PARAM );
236 float64 int64_to_float64( int64 STATUS_PARAM );
237 float64 uint64_to_float64( uint64 STATUS_PARAM );
238 floatx80 int64_to_floatx80( int64 STATUS_PARAM );
239 float128 int64_to_float128( int64 STATUS_PARAM );
240
241 /*----------------------------------------------------------------------------
242 | Software half-precision conversion routines.
243 *----------------------------------------------------------------------------*/
244 float16 float32_to_float16( float32, flag STATUS_PARAM );
245 float32 float16_to_float32( float16, flag STATUS_PARAM );
246
247 /*----------------------------------------------------------------------------
248 | Software half-precision operations.
249 *----------------------------------------------------------------------------*/
250 int float16_is_quiet_nan( float16 );
251 int float16_is_signaling_nan( float16 );
252 float16 float16_maybe_silence_nan( float16 );
253
254 INLINE int float16_is_any_nan(float16 a)
255 {
256 return ((float16_val(a) & ~0x8000) > 0x7c00);
257 }
258
259 /*----------------------------------------------------------------------------
260 | The pattern for a default generated half-precision NaN.
261 *----------------------------------------------------------------------------*/
262 extern const float16 float16_default_nan;
263
264 /*----------------------------------------------------------------------------
265 | Software IEC/IEEE single-precision conversion routines.
266 *----------------------------------------------------------------------------*/
267 int_fast16_t float32_to_int16_round_to_zero(float32 STATUS_PARAM);
268 uint_fast16_t float32_to_uint16_round_to_zero(float32 STATUS_PARAM);
269 int32 float32_to_int32( float32 STATUS_PARAM );
270 int32 float32_to_int32_round_to_zero( float32 STATUS_PARAM );
271 uint32 float32_to_uint32( float32 STATUS_PARAM );
272 uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
273 int64 float32_to_int64( float32 STATUS_PARAM );
274 int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM );
275 float64 float32_to_float64( float32 STATUS_PARAM );
276 floatx80 float32_to_floatx80( float32 STATUS_PARAM );
277 float128 float32_to_float128( float32 STATUS_PARAM );
278
279 /*----------------------------------------------------------------------------
280 | Software IEC/IEEE single-precision operations.
281 *----------------------------------------------------------------------------*/
282 float32 float32_round_to_int( float32 STATUS_PARAM );
283 float32 float32_add( float32, float32 STATUS_PARAM );
284 float32 float32_sub( float32, float32 STATUS_PARAM );
285 float32 float32_mul( float32, float32 STATUS_PARAM );
286 float32 float32_div( float32, float32 STATUS_PARAM );
287 float32 float32_rem( float32, float32 STATUS_PARAM );
288 float32 float32_muladd(float32, float32, float32, int STATUS_PARAM);
289 float32 float32_sqrt( float32 STATUS_PARAM );
290 float32 float32_exp2( float32 STATUS_PARAM );
291 float32 float32_log2( float32 STATUS_PARAM );
292 int float32_eq( float32, float32 STATUS_PARAM );
293 int float32_le( float32, float32 STATUS_PARAM );
294 int float32_lt( float32, float32 STATUS_PARAM );
295 int float32_unordered( float32, float32 STATUS_PARAM );
296 int float32_eq_quiet( float32, float32 STATUS_PARAM );
297 int float32_le_quiet( float32, float32 STATUS_PARAM );
298 int float32_lt_quiet( float32, float32 STATUS_PARAM );
299 int float32_unordered_quiet( float32, float32 STATUS_PARAM );
300 int float32_compare( float32, float32 STATUS_PARAM );
301 int float32_compare_quiet( float32, float32 STATUS_PARAM );
302 float32 float32_min(float32, float32 STATUS_PARAM);
303 float32 float32_max(float32, float32 STATUS_PARAM);
304 int float32_is_quiet_nan( float32 );
305 int float32_is_signaling_nan( float32 );
306 float32 float32_maybe_silence_nan( float32 );
307 float32 float32_scalbn( float32, int STATUS_PARAM );
308
309 INLINE float32 float32_abs(float32 a)
310 {
311 /* Note that abs does *not* handle NaN specially, nor does
312 * it flush denormal inputs to zero.
313 */
314 return make_float32(float32_val(a) & 0x7fffffff);
315 }
316
317 INLINE float32 float32_chs(float32 a)
318 {
319 /* Note that chs does *not* handle NaN specially, nor does
320 * it flush denormal inputs to zero.
321 */
322 return make_float32(float32_val(a) ^ 0x80000000);
323 }
324
325 INLINE int float32_is_infinity(float32 a)
326 {
327 return (float32_val(a) & 0x7fffffff) == 0x7f800000;
328 }
329
330 INLINE int float32_is_neg(float32 a)
331 {
332 return float32_val(a) >> 31;
333 }
334
335 INLINE int float32_is_zero(float32 a)
336 {
337 return (float32_val(a) & 0x7fffffff) == 0;
338 }
339
340 INLINE int float32_is_any_nan(float32 a)
341 {
342 return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
343 }
344
345 INLINE int float32_is_zero_or_denormal(float32 a)
346 {
347 return (float32_val(a) & 0x7f800000) == 0;
348 }
349
350 INLINE float32 float32_set_sign(float32 a, int sign)
351 {
352 return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
353 }
354
355 #define float32_zero make_float32(0)
356 #define float32_one make_float32(0x3f800000)
357 #define float32_ln2 make_float32(0x3f317218)
358 #define float32_pi make_float32(0x40490fdb)
359 #define float32_half make_float32(0x3f000000)
360 #define float32_infinity make_float32(0x7f800000)
361
362
363 /*----------------------------------------------------------------------------
364 | The pattern for a default generated single-precision NaN.
365 *----------------------------------------------------------------------------*/
366 extern const float32 float32_default_nan;
367
368 /*----------------------------------------------------------------------------
369 | Software IEC/IEEE double-precision conversion routines.
370 *----------------------------------------------------------------------------*/
371 int_fast16_t float64_to_int16_round_to_zero(float64 STATUS_PARAM);
372 uint_fast16_t float64_to_uint16_round_to_zero(float64 STATUS_PARAM);
373 int32 float64_to_int32( float64 STATUS_PARAM );
374 int32 float64_to_int32_round_to_zero( float64 STATUS_PARAM );
375 uint32 float64_to_uint32( float64 STATUS_PARAM );
376 uint32 float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
377 int64 float64_to_int64( float64 STATUS_PARAM );
378 int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM );
379 uint64 float64_to_uint64 (float64 a STATUS_PARAM);
380 uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
381 float32 float64_to_float32( float64 STATUS_PARAM );
382 floatx80 float64_to_floatx80( float64 STATUS_PARAM );
383 float128 float64_to_float128( float64 STATUS_PARAM );
384
385 /*----------------------------------------------------------------------------
386 | Software IEC/IEEE double-precision operations.
387 *----------------------------------------------------------------------------*/
388 float64 float64_round_to_int( float64 STATUS_PARAM );
389 float64 float64_trunc_to_int( float64 STATUS_PARAM );
390 float64 float64_add( float64, float64 STATUS_PARAM );
391 float64 float64_sub( float64, float64 STATUS_PARAM );
392 float64 float64_mul( float64, float64 STATUS_PARAM );
393 float64 float64_div( float64, float64 STATUS_PARAM );
394 float64 float64_rem( float64, float64 STATUS_PARAM );
395 float64 float64_muladd(float64, float64, float64, int STATUS_PARAM);
396 float64 float64_sqrt( float64 STATUS_PARAM );
397 float64 float64_log2( float64 STATUS_PARAM );
398 int float64_eq( float64, float64 STATUS_PARAM );
399 int float64_le( float64, float64 STATUS_PARAM );
400 int float64_lt( float64, float64 STATUS_PARAM );
401 int float64_unordered( float64, float64 STATUS_PARAM );
402 int float64_eq_quiet( float64, float64 STATUS_PARAM );
403 int float64_le_quiet( float64, float64 STATUS_PARAM );
404 int float64_lt_quiet( float64, float64 STATUS_PARAM );
405 int float64_unordered_quiet( float64, float64 STATUS_PARAM );
406 int float64_compare( float64, float64 STATUS_PARAM );
407 int float64_compare_quiet( float64, float64 STATUS_PARAM );
408 float64 float64_min(float64, float64 STATUS_PARAM);
409 float64 float64_max(float64, float64 STATUS_PARAM);
410 int float64_is_quiet_nan( float64 a );
411 int float64_is_signaling_nan( float64 );
412 float64 float64_maybe_silence_nan( float64 );
413 float64 float64_scalbn( float64, int STATUS_PARAM );
414
415 INLINE float64 float64_abs(float64 a)
416 {
417 /* Note that abs does *not* handle NaN specially, nor does
418 * it flush denormal inputs to zero.
419 */
420 return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
421 }
422
423 INLINE float64 float64_chs(float64 a)
424 {
425 /* Note that chs does *not* handle NaN specially, nor does
426 * it flush denormal inputs to zero.
427 */
428 return make_float64(float64_val(a) ^ 0x8000000000000000LL);
429 }
430
431 INLINE int float64_is_infinity(float64 a)
432 {
433 return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
434 }
435
436 INLINE int float64_is_neg(float64 a)
437 {
438 return float64_val(a) >> 63;
439 }
440
441 INLINE int float64_is_zero(float64 a)
442 {
443 return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
444 }
445
446 INLINE int float64_is_any_nan(float64 a)
447 {
448 return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
449 }
450
451 INLINE int float64_is_zero_or_denormal(float64 a)
452 {
453 return (float64_val(a) & 0x7ff0000000000000LL) == 0;
454 }
455
456 INLINE float64 float64_set_sign(float64 a, int sign)
457 {
458 return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
459 | ((int64_t)sign << 63));
460 }
461
462 #define float64_zero make_float64(0)
463 #define float64_one make_float64(0x3ff0000000000000LL)
464 #define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
465 #define float64_pi make_float64(0x400921fb54442d18LL)
466 #define float64_half make_float64(0x3fe0000000000000LL)
467 #define float64_infinity make_float64(0x7ff0000000000000LL)
468
469 /*----------------------------------------------------------------------------
470 | The pattern for a default generated double-precision NaN.
471 *----------------------------------------------------------------------------*/
472 extern const float64 float64_default_nan;
473
474 /*----------------------------------------------------------------------------
475 | Software IEC/IEEE extended double-precision conversion routines.
476 *----------------------------------------------------------------------------*/
477 int32 floatx80_to_int32( floatx80 STATUS_PARAM );
478 int32 floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
479 int64 floatx80_to_int64( floatx80 STATUS_PARAM );
480 int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
481 float32 floatx80_to_float32( floatx80 STATUS_PARAM );
482 float64 floatx80_to_float64( floatx80 STATUS_PARAM );
483 float128 floatx80_to_float128( floatx80 STATUS_PARAM );
484
485 /*----------------------------------------------------------------------------
486 | Software IEC/IEEE extended double-precision operations.
487 *----------------------------------------------------------------------------*/
488 floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
489 floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
490 floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
491 floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
492 floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
493 floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
494 floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
495 int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
496 int floatx80_le( floatx80, floatx80 STATUS_PARAM );
497 int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
498 int floatx80_unordered( floatx80, floatx80 STATUS_PARAM );
499 int floatx80_eq_quiet( floatx80, floatx80 STATUS_PARAM );
500 int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
501 int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
502 int floatx80_unordered_quiet( floatx80, floatx80 STATUS_PARAM );
503 int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
504 int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
505 int floatx80_is_quiet_nan( floatx80 );
506 int floatx80_is_signaling_nan( floatx80 );
507 floatx80 floatx80_maybe_silence_nan( floatx80 );
508 floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
509
510 INLINE floatx80 floatx80_abs(floatx80 a)
511 {
512 a.high &= 0x7fff;
513 return a;
514 }
515
516 INLINE floatx80 floatx80_chs(floatx80 a)
517 {
518 a.high ^= 0x8000;
519 return a;
520 }
521
522 INLINE int floatx80_is_infinity(floatx80 a)
523 {
524 return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
525 }
526
527 INLINE int floatx80_is_neg(floatx80 a)
528 {
529 return a.high >> 15;
530 }
531
532 INLINE int floatx80_is_zero(floatx80 a)
533 {
534 return (a.high & 0x7fff) == 0 && a.low == 0;
535 }
536
537 INLINE int floatx80_is_zero_or_denormal(floatx80 a)
538 {
539 return (a.high & 0x7fff) == 0;
540 }
541
542 INLINE int floatx80_is_any_nan(floatx80 a)
543 {
544 return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
545 }
546
547 #define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
548 #define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
549 #define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
550 #define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
551 #define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
552 #define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
553
554 /*----------------------------------------------------------------------------
555 | The pattern for a default generated extended double-precision NaN.
556 *----------------------------------------------------------------------------*/
557 extern const floatx80 floatx80_default_nan;
558
559 /*----------------------------------------------------------------------------
560 | Software IEC/IEEE quadruple-precision conversion routines.
561 *----------------------------------------------------------------------------*/
562 int32 float128_to_int32( float128 STATUS_PARAM );
563 int32 float128_to_int32_round_to_zero( float128 STATUS_PARAM );
564 int64 float128_to_int64( float128 STATUS_PARAM );
565 int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM );
566 float32 float128_to_float32( float128 STATUS_PARAM );
567 float64 float128_to_float64( float128 STATUS_PARAM );
568 floatx80 float128_to_floatx80( float128 STATUS_PARAM );
569
570 /*----------------------------------------------------------------------------
571 | Software IEC/IEEE quadruple-precision operations.
572 *----------------------------------------------------------------------------*/
573 float128 float128_round_to_int( float128 STATUS_PARAM );
574 float128 float128_add( float128, float128 STATUS_PARAM );
575 float128 float128_sub( float128, float128 STATUS_PARAM );
576 float128 float128_mul( float128, float128 STATUS_PARAM );
577 float128 float128_div( float128, float128 STATUS_PARAM );
578 float128 float128_rem( float128, float128 STATUS_PARAM );
579 float128 float128_sqrt( float128 STATUS_PARAM );
580 int float128_eq( float128, float128 STATUS_PARAM );
581 int float128_le( float128, float128 STATUS_PARAM );
582 int float128_lt( float128, float128 STATUS_PARAM );
583 int float128_unordered( float128, float128 STATUS_PARAM );
584 int float128_eq_quiet( float128, float128 STATUS_PARAM );
585 int float128_le_quiet( float128, float128 STATUS_PARAM );
586 int float128_lt_quiet( float128, float128 STATUS_PARAM );
587 int float128_unordered_quiet( float128, float128 STATUS_PARAM );
588 int float128_compare( float128, float128 STATUS_PARAM );
589 int float128_compare_quiet( float128, float128 STATUS_PARAM );
590 int float128_is_quiet_nan( float128 );
591 int float128_is_signaling_nan( float128 );
592 float128 float128_maybe_silence_nan( float128 );
593 float128 float128_scalbn( float128, int STATUS_PARAM );
594
595 INLINE float128 float128_abs(float128 a)
596 {
597 a.high &= 0x7fffffffffffffffLL;
598 return a;
599 }
600
601 INLINE float128 float128_chs(float128 a)
602 {
603 a.high ^= 0x8000000000000000LL;
604 return a;
605 }
606
607 INLINE int float128_is_infinity(float128 a)
608 {
609 return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
610 }
611
612 INLINE int float128_is_neg(float128 a)
613 {
614 return a.high >> 63;
615 }
616
617 INLINE int float128_is_zero(float128 a)
618 {
619 return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
620 }
621
622 INLINE int float128_is_zero_or_denormal(float128 a)
623 {
624 return (a.high & 0x7fff000000000000LL) == 0;
625 }
626
627 INLINE int float128_is_any_nan(float128 a)
628 {
629 return ((a.high >> 48) & 0x7fff) == 0x7fff &&
630 ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
631 }
632
633 /*----------------------------------------------------------------------------
634 | The pattern for a default generated quadruple-precision NaN.
635 *----------------------------------------------------------------------------*/
636 extern const float128 float128_default_nan;
637
638 #endif /* !SOFTFLOAT_H */