]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/netdevice.h
regulator: ab8500: Remove SYSCLKREQ from enum ab8505_regulator_id
[mirror_ubuntu-bionic-kernel.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/workqueue.h>
39 #include <linux/dynamic_queue_limits.h>
40
41 #include <linux/ethtool.h>
42 #include <net/net_namespace.h>
43 #ifdef CONFIG_DCB
44 #include <net/dcbnl.h>
45 #endif
46 #include <net/netprio_cgroup.h>
47
48 #include <linux/netdev_features.h>
49 #include <linux/neighbour.h>
50 #include <uapi/linux/netdevice.h>
51 #include <uapi/linux/if_bonding.h>
52 #include <uapi/linux/pkt_cls.h>
53 #include <linux/hashtable.h>
54
55 struct netpoll_info;
56 struct device;
57 struct phy_device;
58 struct dsa_port;
59
60 /* 802.11 specific */
61 struct wireless_dev;
62 /* 802.15.4 specific */
63 struct wpan_dev;
64 struct mpls_dev;
65 /* UDP Tunnel offloads */
66 struct udp_tunnel_info;
67 struct bpf_prog;
68 struct xdp_buff;
69
70 void netdev_set_default_ethtool_ops(struct net_device *dev,
71 const struct ethtool_ops *ops);
72
73 /* Backlog congestion levels */
74 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
75 #define NET_RX_DROP 1 /* packet dropped */
76
77 /*
78 * Transmit return codes: transmit return codes originate from three different
79 * namespaces:
80 *
81 * - qdisc return codes
82 * - driver transmit return codes
83 * - errno values
84 *
85 * Drivers are allowed to return any one of those in their hard_start_xmit()
86 * function. Real network devices commonly used with qdiscs should only return
87 * the driver transmit return codes though - when qdiscs are used, the actual
88 * transmission happens asynchronously, so the value is not propagated to
89 * higher layers. Virtual network devices transmit synchronously; in this case
90 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
91 * others are propagated to higher layers.
92 */
93
94 /* qdisc ->enqueue() return codes. */
95 #define NET_XMIT_SUCCESS 0x00
96 #define NET_XMIT_DROP 0x01 /* skb dropped */
97 #define NET_XMIT_CN 0x02 /* congestion notification */
98 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
99
100 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
101 * indicates that the device will soon be dropping packets, or already drops
102 * some packets of the same priority; prompting us to send less aggressively. */
103 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
104 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
105
106 /* Driver transmit return codes */
107 #define NETDEV_TX_MASK 0xf0
108
109 enum netdev_tx {
110 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
111 NETDEV_TX_OK = 0x00, /* driver took care of packet */
112 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
113 };
114 typedef enum netdev_tx netdev_tx_t;
115
116 /*
117 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
118 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
119 */
120 static inline bool dev_xmit_complete(int rc)
121 {
122 /*
123 * Positive cases with an skb consumed by a driver:
124 * - successful transmission (rc == NETDEV_TX_OK)
125 * - error while transmitting (rc < 0)
126 * - error while queueing to a different device (rc & NET_XMIT_MASK)
127 */
128 if (likely(rc < NET_XMIT_MASK))
129 return true;
130
131 return false;
132 }
133
134 /*
135 * Compute the worst-case header length according to the protocols
136 * used.
137 */
138
139 #if defined(CONFIG_HYPERV_NET)
140 # define LL_MAX_HEADER 128
141 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
142 # if defined(CONFIG_MAC80211_MESH)
143 # define LL_MAX_HEADER 128
144 # else
145 # define LL_MAX_HEADER 96
146 # endif
147 #else
148 # define LL_MAX_HEADER 32
149 #endif
150
151 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
152 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
153 #define MAX_HEADER LL_MAX_HEADER
154 #else
155 #define MAX_HEADER (LL_MAX_HEADER + 48)
156 #endif
157
158 /*
159 * Old network device statistics. Fields are native words
160 * (unsigned long) so they can be read and written atomically.
161 */
162
163 struct net_device_stats {
164 unsigned long rx_packets;
165 unsigned long tx_packets;
166 unsigned long rx_bytes;
167 unsigned long tx_bytes;
168 unsigned long rx_errors;
169 unsigned long tx_errors;
170 unsigned long rx_dropped;
171 unsigned long tx_dropped;
172 unsigned long multicast;
173 unsigned long collisions;
174 unsigned long rx_length_errors;
175 unsigned long rx_over_errors;
176 unsigned long rx_crc_errors;
177 unsigned long rx_frame_errors;
178 unsigned long rx_fifo_errors;
179 unsigned long rx_missed_errors;
180 unsigned long tx_aborted_errors;
181 unsigned long tx_carrier_errors;
182 unsigned long tx_fifo_errors;
183 unsigned long tx_heartbeat_errors;
184 unsigned long tx_window_errors;
185 unsigned long rx_compressed;
186 unsigned long tx_compressed;
187 };
188
189
190 #include <linux/cache.h>
191 #include <linux/skbuff.h>
192
193 #ifdef CONFIG_RPS
194 #include <linux/static_key.h>
195 extern struct static_key rps_needed;
196 extern struct static_key rfs_needed;
197 #endif
198
199 struct neighbour;
200 struct neigh_parms;
201 struct sk_buff;
202
203 struct netdev_hw_addr {
204 struct list_head list;
205 unsigned char addr[MAX_ADDR_LEN];
206 unsigned char type;
207 #define NETDEV_HW_ADDR_T_LAN 1
208 #define NETDEV_HW_ADDR_T_SAN 2
209 #define NETDEV_HW_ADDR_T_SLAVE 3
210 #define NETDEV_HW_ADDR_T_UNICAST 4
211 #define NETDEV_HW_ADDR_T_MULTICAST 5
212 bool global_use;
213 int sync_cnt;
214 int refcount;
215 int synced;
216 struct rcu_head rcu_head;
217 };
218
219 struct netdev_hw_addr_list {
220 struct list_head list;
221 int count;
222 };
223
224 #define netdev_hw_addr_list_count(l) ((l)->count)
225 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
226 #define netdev_hw_addr_list_for_each(ha, l) \
227 list_for_each_entry(ha, &(l)->list, list)
228
229 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
230 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
231 #define netdev_for_each_uc_addr(ha, dev) \
232 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
233
234 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
235 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
236 #define netdev_for_each_mc_addr(ha, dev) \
237 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
238
239 struct hh_cache {
240 unsigned int hh_len;
241 seqlock_t hh_lock;
242
243 /* cached hardware header; allow for machine alignment needs. */
244 #define HH_DATA_MOD 16
245 #define HH_DATA_OFF(__len) \
246 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
247 #define HH_DATA_ALIGN(__len) \
248 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
249 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
250 };
251
252 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
253 * Alternative is:
254 * dev->hard_header_len ? (dev->hard_header_len +
255 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
256 *
257 * We could use other alignment values, but we must maintain the
258 * relationship HH alignment <= LL alignment.
259 */
260 #define LL_RESERVED_SPACE(dev) \
261 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
263 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264
265 struct header_ops {
266 int (*create) (struct sk_buff *skb, struct net_device *dev,
267 unsigned short type, const void *daddr,
268 const void *saddr, unsigned int len);
269 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
270 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
271 void (*cache_update)(struct hh_cache *hh,
272 const struct net_device *dev,
273 const unsigned char *haddr);
274 bool (*validate)(const char *ll_header, unsigned int len);
275 };
276
277 /* These flag bits are private to the generic network queueing
278 * layer; they may not be explicitly referenced by any other
279 * code.
280 */
281
282 enum netdev_state_t {
283 __LINK_STATE_START,
284 __LINK_STATE_PRESENT,
285 __LINK_STATE_NOCARRIER,
286 __LINK_STATE_LINKWATCH_PENDING,
287 __LINK_STATE_DORMANT,
288 };
289
290
291 /*
292 * This structure holds boot-time configured netdevice settings. They
293 * are then used in the device probing.
294 */
295 struct netdev_boot_setup {
296 char name[IFNAMSIZ];
297 struct ifmap map;
298 };
299 #define NETDEV_BOOT_SETUP_MAX 8
300
301 int __init netdev_boot_setup(char *str);
302
303 /*
304 * Structure for NAPI scheduling similar to tasklet but with weighting
305 */
306 struct napi_struct {
307 /* The poll_list must only be managed by the entity which
308 * changes the state of the NAPI_STATE_SCHED bit. This means
309 * whoever atomically sets that bit can add this napi_struct
310 * to the per-CPU poll_list, and whoever clears that bit
311 * can remove from the list right before clearing the bit.
312 */
313 struct list_head poll_list;
314
315 unsigned long state;
316 int weight;
317 unsigned int gro_count;
318 int (*poll)(struct napi_struct *, int);
319 #ifdef CONFIG_NETPOLL
320 int poll_owner;
321 #endif
322 struct net_device *dev;
323 struct sk_buff *gro_list;
324 struct sk_buff *skb;
325 struct hrtimer timer;
326 struct list_head dev_list;
327 struct hlist_node napi_hash_node;
328 unsigned int napi_id;
329 };
330
331 enum {
332 NAPI_STATE_SCHED, /* Poll is scheduled */
333 NAPI_STATE_MISSED, /* reschedule a napi */
334 NAPI_STATE_DISABLE, /* Disable pending */
335 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
336 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */
337 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
338 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
339 };
340
341 enum {
342 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED),
343 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED),
344 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE),
345 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC),
346 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED),
347 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
348 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
349 };
350
351 enum gro_result {
352 GRO_MERGED,
353 GRO_MERGED_FREE,
354 GRO_HELD,
355 GRO_NORMAL,
356 GRO_DROP,
357 GRO_CONSUMED,
358 };
359 typedef enum gro_result gro_result_t;
360
361 /*
362 * enum rx_handler_result - Possible return values for rx_handlers.
363 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
364 * further.
365 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
366 * case skb->dev was changed by rx_handler.
367 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
368 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
369 *
370 * rx_handlers are functions called from inside __netif_receive_skb(), to do
371 * special processing of the skb, prior to delivery to protocol handlers.
372 *
373 * Currently, a net_device can only have a single rx_handler registered. Trying
374 * to register a second rx_handler will return -EBUSY.
375 *
376 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
377 * To unregister a rx_handler on a net_device, use
378 * netdev_rx_handler_unregister().
379 *
380 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
381 * do with the skb.
382 *
383 * If the rx_handler consumed the skb in some way, it should return
384 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
385 * the skb to be delivered in some other way.
386 *
387 * If the rx_handler changed skb->dev, to divert the skb to another
388 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
389 * new device will be called if it exists.
390 *
391 * If the rx_handler decides the skb should be ignored, it should return
392 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
393 * are registered on exact device (ptype->dev == skb->dev).
394 *
395 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
396 * delivered, it should return RX_HANDLER_PASS.
397 *
398 * A device without a registered rx_handler will behave as if rx_handler
399 * returned RX_HANDLER_PASS.
400 */
401
402 enum rx_handler_result {
403 RX_HANDLER_CONSUMED,
404 RX_HANDLER_ANOTHER,
405 RX_HANDLER_EXACT,
406 RX_HANDLER_PASS,
407 };
408 typedef enum rx_handler_result rx_handler_result_t;
409 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
410
411 void __napi_schedule(struct napi_struct *n);
412 void __napi_schedule_irqoff(struct napi_struct *n);
413
414 static inline bool napi_disable_pending(struct napi_struct *n)
415 {
416 return test_bit(NAPI_STATE_DISABLE, &n->state);
417 }
418
419 bool napi_schedule_prep(struct napi_struct *n);
420
421 /**
422 * napi_schedule - schedule NAPI poll
423 * @n: NAPI context
424 *
425 * Schedule NAPI poll routine to be called if it is not already
426 * running.
427 */
428 static inline void napi_schedule(struct napi_struct *n)
429 {
430 if (napi_schedule_prep(n))
431 __napi_schedule(n);
432 }
433
434 /**
435 * napi_schedule_irqoff - schedule NAPI poll
436 * @n: NAPI context
437 *
438 * Variant of napi_schedule(), assuming hard irqs are masked.
439 */
440 static inline void napi_schedule_irqoff(struct napi_struct *n)
441 {
442 if (napi_schedule_prep(n))
443 __napi_schedule_irqoff(n);
444 }
445
446 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
447 static inline bool napi_reschedule(struct napi_struct *napi)
448 {
449 if (napi_schedule_prep(napi)) {
450 __napi_schedule(napi);
451 return true;
452 }
453 return false;
454 }
455
456 bool napi_complete_done(struct napi_struct *n, int work_done);
457 /**
458 * napi_complete - NAPI processing complete
459 * @n: NAPI context
460 *
461 * Mark NAPI processing as complete.
462 * Consider using napi_complete_done() instead.
463 * Return false if device should avoid rearming interrupts.
464 */
465 static inline bool napi_complete(struct napi_struct *n)
466 {
467 return napi_complete_done(n, 0);
468 }
469
470 /**
471 * napi_hash_del - remove a NAPI from global table
472 * @napi: NAPI context
473 *
474 * Warning: caller must observe RCU grace period
475 * before freeing memory containing @napi, if
476 * this function returns true.
477 * Note: core networking stack automatically calls it
478 * from netif_napi_del().
479 * Drivers might want to call this helper to combine all
480 * the needed RCU grace periods into a single one.
481 */
482 bool napi_hash_del(struct napi_struct *napi);
483
484 /**
485 * napi_disable - prevent NAPI from scheduling
486 * @n: NAPI context
487 *
488 * Stop NAPI from being scheduled on this context.
489 * Waits till any outstanding processing completes.
490 */
491 void napi_disable(struct napi_struct *n);
492
493 /**
494 * napi_enable - enable NAPI scheduling
495 * @n: NAPI context
496 *
497 * Resume NAPI from being scheduled on this context.
498 * Must be paired with napi_disable.
499 */
500 static inline void napi_enable(struct napi_struct *n)
501 {
502 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
503 smp_mb__before_atomic();
504 clear_bit(NAPI_STATE_SCHED, &n->state);
505 clear_bit(NAPI_STATE_NPSVC, &n->state);
506 }
507
508 /**
509 * napi_synchronize - wait until NAPI is not running
510 * @n: NAPI context
511 *
512 * Wait until NAPI is done being scheduled on this context.
513 * Waits till any outstanding processing completes but
514 * does not disable future activations.
515 */
516 static inline void napi_synchronize(const struct napi_struct *n)
517 {
518 if (IS_ENABLED(CONFIG_SMP))
519 while (test_bit(NAPI_STATE_SCHED, &n->state))
520 msleep(1);
521 else
522 barrier();
523 }
524
525 enum netdev_queue_state_t {
526 __QUEUE_STATE_DRV_XOFF,
527 __QUEUE_STATE_STACK_XOFF,
528 __QUEUE_STATE_FROZEN,
529 };
530
531 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
532 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
533 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
534
535 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
536 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
537 QUEUE_STATE_FROZEN)
538 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
539 QUEUE_STATE_FROZEN)
540
541 /*
542 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
543 * netif_tx_* functions below are used to manipulate this flag. The
544 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
545 * queue independently. The netif_xmit_*stopped functions below are called
546 * to check if the queue has been stopped by the driver or stack (either
547 * of the XOFF bits are set in the state). Drivers should not need to call
548 * netif_xmit*stopped functions, they should only be using netif_tx_*.
549 */
550
551 struct netdev_queue {
552 /*
553 * read-mostly part
554 */
555 struct net_device *dev;
556 struct Qdisc __rcu *qdisc;
557 struct Qdisc *qdisc_sleeping;
558 #ifdef CONFIG_SYSFS
559 struct kobject kobj;
560 #endif
561 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
562 int numa_node;
563 #endif
564 unsigned long tx_maxrate;
565 /*
566 * Number of TX timeouts for this queue
567 * (/sys/class/net/DEV/Q/trans_timeout)
568 */
569 unsigned long trans_timeout;
570 /*
571 * write-mostly part
572 */
573 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
574 int xmit_lock_owner;
575 /*
576 * Time (in jiffies) of last Tx
577 */
578 unsigned long trans_start;
579
580 unsigned long state;
581
582 #ifdef CONFIG_BQL
583 struct dql dql;
584 #endif
585 } ____cacheline_aligned_in_smp;
586
587 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
588 {
589 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
590 return q->numa_node;
591 #else
592 return NUMA_NO_NODE;
593 #endif
594 }
595
596 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
597 {
598 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
599 q->numa_node = node;
600 #endif
601 }
602
603 #ifdef CONFIG_RPS
604 /*
605 * This structure holds an RPS map which can be of variable length. The
606 * map is an array of CPUs.
607 */
608 struct rps_map {
609 unsigned int len;
610 struct rcu_head rcu;
611 u16 cpus[0];
612 };
613 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
614
615 /*
616 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
617 * tail pointer for that CPU's input queue at the time of last enqueue, and
618 * a hardware filter index.
619 */
620 struct rps_dev_flow {
621 u16 cpu;
622 u16 filter;
623 unsigned int last_qtail;
624 };
625 #define RPS_NO_FILTER 0xffff
626
627 /*
628 * The rps_dev_flow_table structure contains a table of flow mappings.
629 */
630 struct rps_dev_flow_table {
631 unsigned int mask;
632 struct rcu_head rcu;
633 struct rps_dev_flow flows[0];
634 };
635 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
636 ((_num) * sizeof(struct rps_dev_flow)))
637
638 /*
639 * The rps_sock_flow_table contains mappings of flows to the last CPU
640 * on which they were processed by the application (set in recvmsg).
641 * Each entry is a 32bit value. Upper part is the high-order bits
642 * of flow hash, lower part is CPU number.
643 * rps_cpu_mask is used to partition the space, depending on number of
644 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
645 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
646 * meaning we use 32-6=26 bits for the hash.
647 */
648 struct rps_sock_flow_table {
649 u32 mask;
650
651 u32 ents[0] ____cacheline_aligned_in_smp;
652 };
653 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
654
655 #define RPS_NO_CPU 0xffff
656
657 extern u32 rps_cpu_mask;
658 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
659
660 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
661 u32 hash)
662 {
663 if (table && hash) {
664 unsigned int index = hash & table->mask;
665 u32 val = hash & ~rps_cpu_mask;
666
667 /* We only give a hint, preemption can change CPU under us */
668 val |= raw_smp_processor_id();
669
670 if (table->ents[index] != val)
671 table->ents[index] = val;
672 }
673 }
674
675 #ifdef CONFIG_RFS_ACCEL
676 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
677 u16 filter_id);
678 #endif
679 #endif /* CONFIG_RPS */
680
681 /* This structure contains an instance of an RX queue. */
682 struct netdev_rx_queue {
683 #ifdef CONFIG_RPS
684 struct rps_map __rcu *rps_map;
685 struct rps_dev_flow_table __rcu *rps_flow_table;
686 #endif
687 struct kobject kobj;
688 struct net_device *dev;
689 } ____cacheline_aligned_in_smp;
690
691 /*
692 * RX queue sysfs structures and functions.
693 */
694 struct rx_queue_attribute {
695 struct attribute attr;
696 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
697 ssize_t (*store)(struct netdev_rx_queue *queue,
698 const char *buf, size_t len);
699 };
700
701 #ifdef CONFIG_XPS
702 /*
703 * This structure holds an XPS map which can be of variable length. The
704 * map is an array of queues.
705 */
706 struct xps_map {
707 unsigned int len;
708 unsigned int alloc_len;
709 struct rcu_head rcu;
710 u16 queues[0];
711 };
712 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
713 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
714 - sizeof(struct xps_map)) / sizeof(u16))
715
716 /*
717 * This structure holds all XPS maps for device. Maps are indexed by CPU.
718 */
719 struct xps_dev_maps {
720 struct rcu_head rcu;
721 struct xps_map __rcu *cpu_map[0];
722 };
723 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \
724 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
725 #endif /* CONFIG_XPS */
726
727 #define TC_MAX_QUEUE 16
728 #define TC_BITMASK 15
729 /* HW offloaded queuing disciplines txq count and offset maps */
730 struct netdev_tc_txq {
731 u16 count;
732 u16 offset;
733 };
734
735 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
736 /*
737 * This structure is to hold information about the device
738 * configured to run FCoE protocol stack.
739 */
740 struct netdev_fcoe_hbainfo {
741 char manufacturer[64];
742 char serial_number[64];
743 char hardware_version[64];
744 char driver_version[64];
745 char optionrom_version[64];
746 char firmware_version[64];
747 char model[256];
748 char model_description[256];
749 };
750 #endif
751
752 #define MAX_PHYS_ITEM_ID_LEN 32
753
754 /* This structure holds a unique identifier to identify some
755 * physical item (port for example) used by a netdevice.
756 */
757 struct netdev_phys_item_id {
758 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
759 unsigned char id_len;
760 };
761
762 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
763 struct netdev_phys_item_id *b)
764 {
765 return a->id_len == b->id_len &&
766 memcmp(a->id, b->id, a->id_len) == 0;
767 }
768
769 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
770 struct sk_buff *skb);
771
772 enum tc_setup_type {
773 TC_SETUP_QDISC_MQPRIO,
774 TC_SETUP_CLSU32,
775 TC_SETUP_CLSFLOWER,
776 TC_SETUP_CLSMATCHALL,
777 TC_SETUP_CLSBPF,
778 TC_SETUP_BLOCK,
779 TC_SETUP_QDISC_CBS,
780 TC_SETUP_QDISC_RED,
781 };
782
783 /* These structures hold the attributes of bpf state that are being passed
784 * to the netdevice through the bpf op.
785 */
786 enum bpf_netdev_command {
787 /* Set or clear a bpf program used in the earliest stages of packet
788 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
789 * is responsible for calling bpf_prog_put on any old progs that are
790 * stored. In case of error, the callee need not release the new prog
791 * reference, but on success it takes ownership and must bpf_prog_put
792 * when it is no longer used.
793 */
794 XDP_SETUP_PROG,
795 XDP_SETUP_PROG_HW,
796 /* Check if a bpf program is set on the device. The callee should
797 * set @prog_attached to one of XDP_ATTACHED_* values, note that "true"
798 * is equivalent to XDP_ATTACHED_DRV.
799 */
800 XDP_QUERY_PROG,
801 /* BPF program for offload callbacks, invoked at program load time. */
802 BPF_OFFLOAD_VERIFIER_PREP,
803 BPF_OFFLOAD_TRANSLATE,
804 BPF_OFFLOAD_DESTROY,
805 };
806
807 struct bpf_ext_analyzer_ops;
808 struct netlink_ext_ack;
809
810 struct netdev_bpf {
811 enum bpf_netdev_command command;
812 union {
813 /* XDP_SETUP_PROG */
814 struct {
815 u32 flags;
816 struct bpf_prog *prog;
817 struct netlink_ext_ack *extack;
818 };
819 /* XDP_QUERY_PROG */
820 struct {
821 u8 prog_attached;
822 u32 prog_id;
823 };
824 /* BPF_OFFLOAD_VERIFIER_PREP */
825 struct {
826 struct bpf_prog *prog;
827 const struct bpf_ext_analyzer_ops *ops; /* callee set */
828 } verifier;
829 /* BPF_OFFLOAD_TRANSLATE, BPF_OFFLOAD_DESTROY */
830 struct {
831 struct bpf_prog *prog;
832 } offload;
833 };
834 };
835
836 #ifdef CONFIG_XFRM_OFFLOAD
837 struct xfrmdev_ops {
838 int (*xdo_dev_state_add) (struct xfrm_state *x);
839 void (*xdo_dev_state_delete) (struct xfrm_state *x);
840 void (*xdo_dev_state_free) (struct xfrm_state *x);
841 bool (*xdo_dev_offload_ok) (struct sk_buff *skb,
842 struct xfrm_state *x);
843 };
844 #endif
845
846 struct dev_ifalias {
847 struct rcu_head rcuhead;
848 char ifalias[];
849 };
850
851 /*
852 * This structure defines the management hooks for network devices.
853 * The following hooks can be defined; unless noted otherwise, they are
854 * optional and can be filled with a null pointer.
855 *
856 * int (*ndo_init)(struct net_device *dev);
857 * This function is called once when a network device is registered.
858 * The network device can use this for any late stage initialization
859 * or semantic validation. It can fail with an error code which will
860 * be propagated back to register_netdev.
861 *
862 * void (*ndo_uninit)(struct net_device *dev);
863 * This function is called when device is unregistered or when registration
864 * fails. It is not called if init fails.
865 *
866 * int (*ndo_open)(struct net_device *dev);
867 * This function is called when a network device transitions to the up
868 * state.
869 *
870 * int (*ndo_stop)(struct net_device *dev);
871 * This function is called when a network device transitions to the down
872 * state.
873 *
874 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
875 * struct net_device *dev);
876 * Called when a packet needs to be transmitted.
877 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
878 * the queue before that can happen; it's for obsolete devices and weird
879 * corner cases, but the stack really does a non-trivial amount
880 * of useless work if you return NETDEV_TX_BUSY.
881 * Required; cannot be NULL.
882 *
883 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
884 * struct net_device *dev
885 * netdev_features_t features);
886 * Called by core transmit path to determine if device is capable of
887 * performing offload operations on a given packet. This is to give
888 * the device an opportunity to implement any restrictions that cannot
889 * be otherwise expressed by feature flags. The check is called with
890 * the set of features that the stack has calculated and it returns
891 * those the driver believes to be appropriate.
892 *
893 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
894 * void *accel_priv, select_queue_fallback_t fallback);
895 * Called to decide which queue to use when device supports multiple
896 * transmit queues.
897 *
898 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
899 * This function is called to allow device receiver to make
900 * changes to configuration when multicast or promiscuous is enabled.
901 *
902 * void (*ndo_set_rx_mode)(struct net_device *dev);
903 * This function is called device changes address list filtering.
904 * If driver handles unicast address filtering, it should set
905 * IFF_UNICAST_FLT in its priv_flags.
906 *
907 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
908 * This function is called when the Media Access Control address
909 * needs to be changed. If this interface is not defined, the
910 * MAC address can not be changed.
911 *
912 * int (*ndo_validate_addr)(struct net_device *dev);
913 * Test if Media Access Control address is valid for the device.
914 *
915 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
916 * Called when a user requests an ioctl which can't be handled by
917 * the generic interface code. If not defined ioctls return
918 * not supported error code.
919 *
920 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
921 * Used to set network devices bus interface parameters. This interface
922 * is retained for legacy reasons; new devices should use the bus
923 * interface (PCI) for low level management.
924 *
925 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
926 * Called when a user wants to change the Maximum Transfer Unit
927 * of a device.
928 *
929 * void (*ndo_tx_timeout)(struct net_device *dev);
930 * Callback used when the transmitter has not made any progress
931 * for dev->watchdog ticks.
932 *
933 * void (*ndo_get_stats64)(struct net_device *dev,
934 * struct rtnl_link_stats64 *storage);
935 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
936 * Called when a user wants to get the network device usage
937 * statistics. Drivers must do one of the following:
938 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
939 * rtnl_link_stats64 structure passed by the caller.
940 * 2. Define @ndo_get_stats to update a net_device_stats structure
941 * (which should normally be dev->stats) and return a pointer to
942 * it. The structure may be changed asynchronously only if each
943 * field is written atomically.
944 * 3. Update dev->stats asynchronously and atomically, and define
945 * neither operation.
946 *
947 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
948 * Return true if this device supports offload stats of this attr_id.
949 *
950 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
951 * void *attr_data)
952 * Get statistics for offload operations by attr_id. Write it into the
953 * attr_data pointer.
954 *
955 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
956 * If device supports VLAN filtering this function is called when a
957 * VLAN id is registered.
958 *
959 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
960 * If device supports VLAN filtering this function is called when a
961 * VLAN id is unregistered.
962 *
963 * void (*ndo_poll_controller)(struct net_device *dev);
964 *
965 * SR-IOV management functions.
966 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
967 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
968 * u8 qos, __be16 proto);
969 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
970 * int max_tx_rate);
971 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
972 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
973 * int (*ndo_get_vf_config)(struct net_device *dev,
974 * int vf, struct ifla_vf_info *ivf);
975 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
976 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
977 * struct nlattr *port[]);
978 *
979 * Enable or disable the VF ability to query its RSS Redirection Table and
980 * Hash Key. This is needed since on some devices VF share this information
981 * with PF and querying it may introduce a theoretical security risk.
982 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
983 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
984 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
985 * void *type_data);
986 * Called to setup any 'tc' scheduler, classifier or action on @dev.
987 * This is always called from the stack with the rtnl lock held and netif
988 * tx queues stopped. This allows the netdevice to perform queue
989 * management safely.
990 *
991 * Fiber Channel over Ethernet (FCoE) offload functions.
992 * int (*ndo_fcoe_enable)(struct net_device *dev);
993 * Called when the FCoE protocol stack wants to start using LLD for FCoE
994 * so the underlying device can perform whatever needed configuration or
995 * initialization to support acceleration of FCoE traffic.
996 *
997 * int (*ndo_fcoe_disable)(struct net_device *dev);
998 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
999 * so the underlying device can perform whatever needed clean-ups to
1000 * stop supporting acceleration of FCoE traffic.
1001 *
1002 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1003 * struct scatterlist *sgl, unsigned int sgc);
1004 * Called when the FCoE Initiator wants to initialize an I/O that
1005 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1006 * perform necessary setup and returns 1 to indicate the device is set up
1007 * successfully to perform DDP on this I/O, otherwise this returns 0.
1008 *
1009 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
1010 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
1011 * indicated by the FC exchange id 'xid', so the underlying device can
1012 * clean up and reuse resources for later DDP requests.
1013 *
1014 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1015 * struct scatterlist *sgl, unsigned int sgc);
1016 * Called when the FCoE Target wants to initialize an I/O that
1017 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1018 * perform necessary setup and returns 1 to indicate the device is set up
1019 * successfully to perform DDP on this I/O, otherwise this returns 0.
1020 *
1021 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1022 * struct netdev_fcoe_hbainfo *hbainfo);
1023 * Called when the FCoE Protocol stack wants information on the underlying
1024 * device. This information is utilized by the FCoE protocol stack to
1025 * register attributes with Fiber Channel management service as per the
1026 * FC-GS Fabric Device Management Information(FDMI) specification.
1027 *
1028 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1029 * Called when the underlying device wants to override default World Wide
1030 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1031 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1032 * protocol stack to use.
1033 *
1034 * RFS acceleration.
1035 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1036 * u16 rxq_index, u32 flow_id);
1037 * Set hardware filter for RFS. rxq_index is the target queue index;
1038 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1039 * Return the filter ID on success, or a negative error code.
1040 *
1041 * Slave management functions (for bridge, bonding, etc).
1042 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1043 * Called to make another netdev an underling.
1044 *
1045 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1046 * Called to release previously enslaved netdev.
1047 *
1048 * Feature/offload setting functions.
1049 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1050 * netdev_features_t features);
1051 * Adjusts the requested feature flags according to device-specific
1052 * constraints, and returns the resulting flags. Must not modify
1053 * the device state.
1054 *
1055 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1056 * Called to update device configuration to new features. Passed
1057 * feature set might be less than what was returned by ndo_fix_features()).
1058 * Must return >0 or -errno if it changed dev->features itself.
1059 *
1060 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1061 * struct net_device *dev,
1062 * const unsigned char *addr, u16 vid, u16 flags)
1063 * Adds an FDB entry to dev for addr.
1064 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1065 * struct net_device *dev,
1066 * const unsigned char *addr, u16 vid)
1067 * Deletes the FDB entry from dev coresponding to addr.
1068 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1069 * struct net_device *dev, struct net_device *filter_dev,
1070 * int *idx)
1071 * Used to add FDB entries to dump requests. Implementers should add
1072 * entries to skb and update idx with the number of entries.
1073 *
1074 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1075 * u16 flags)
1076 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1077 * struct net_device *dev, u32 filter_mask,
1078 * int nlflags)
1079 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1080 * u16 flags);
1081 *
1082 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1083 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1084 * which do not represent real hardware may define this to allow their
1085 * userspace components to manage their virtual carrier state. Devices
1086 * that determine carrier state from physical hardware properties (eg
1087 * network cables) or protocol-dependent mechanisms (eg
1088 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1089 *
1090 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1091 * struct netdev_phys_item_id *ppid);
1092 * Called to get ID of physical port of this device. If driver does
1093 * not implement this, it is assumed that the hw is not able to have
1094 * multiple net devices on single physical port.
1095 *
1096 * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1097 * struct udp_tunnel_info *ti);
1098 * Called by UDP tunnel to notify a driver about the UDP port and socket
1099 * address family that a UDP tunnel is listnening to. It is called only
1100 * when a new port starts listening. The operation is protected by the
1101 * RTNL.
1102 *
1103 * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1104 * struct udp_tunnel_info *ti);
1105 * Called by UDP tunnel to notify the driver about a UDP port and socket
1106 * address family that the UDP tunnel is not listening to anymore. The
1107 * operation is protected by the RTNL.
1108 *
1109 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1110 * struct net_device *dev)
1111 * Called by upper layer devices to accelerate switching or other
1112 * station functionality into hardware. 'pdev is the lowerdev
1113 * to use for the offload and 'dev' is the net device that will
1114 * back the offload. Returns a pointer to the private structure
1115 * the upper layer will maintain.
1116 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1117 * Called by upper layer device to delete the station created
1118 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1119 * the station and priv is the structure returned by the add
1120 * operation.
1121 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1122 * int queue_index, u32 maxrate);
1123 * Called when a user wants to set a max-rate limitation of specific
1124 * TX queue.
1125 * int (*ndo_get_iflink)(const struct net_device *dev);
1126 * Called to get the iflink value of this device.
1127 * void (*ndo_change_proto_down)(struct net_device *dev,
1128 * bool proto_down);
1129 * This function is used to pass protocol port error state information
1130 * to the switch driver. The switch driver can react to the proto_down
1131 * by doing a phys down on the associated switch port.
1132 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1133 * This function is used to get egress tunnel information for given skb.
1134 * This is useful for retrieving outer tunnel header parameters while
1135 * sampling packet.
1136 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1137 * This function is used to specify the headroom that the skb must
1138 * consider when allocation skb during packet reception. Setting
1139 * appropriate rx headroom value allows avoiding skb head copy on
1140 * forward. Setting a negative value resets the rx headroom to the
1141 * default value.
1142 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1143 * This function is used to set or query state related to XDP on the
1144 * netdevice and manage BPF offload. See definition of
1145 * enum bpf_netdev_command for details.
1146 * int (*ndo_xdp_xmit)(struct net_device *dev, struct xdp_buff *xdp);
1147 * This function is used to submit a XDP packet for transmit on a
1148 * netdevice.
1149 * void (*ndo_xdp_flush)(struct net_device *dev);
1150 * This function is used to inform the driver to flush a particular
1151 * xdp tx queue. Must be called on same CPU as xdp_xmit.
1152 */
1153 struct net_device_ops {
1154 int (*ndo_init)(struct net_device *dev);
1155 void (*ndo_uninit)(struct net_device *dev);
1156 int (*ndo_open)(struct net_device *dev);
1157 int (*ndo_stop)(struct net_device *dev);
1158 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1159 struct net_device *dev);
1160 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1161 struct net_device *dev,
1162 netdev_features_t features);
1163 u16 (*ndo_select_queue)(struct net_device *dev,
1164 struct sk_buff *skb,
1165 void *accel_priv,
1166 select_queue_fallback_t fallback);
1167 void (*ndo_change_rx_flags)(struct net_device *dev,
1168 int flags);
1169 void (*ndo_set_rx_mode)(struct net_device *dev);
1170 int (*ndo_set_mac_address)(struct net_device *dev,
1171 void *addr);
1172 int (*ndo_validate_addr)(struct net_device *dev);
1173 int (*ndo_do_ioctl)(struct net_device *dev,
1174 struct ifreq *ifr, int cmd);
1175 int (*ndo_set_config)(struct net_device *dev,
1176 struct ifmap *map);
1177 int (*ndo_change_mtu)(struct net_device *dev,
1178 int new_mtu);
1179 int (*ndo_neigh_setup)(struct net_device *dev,
1180 struct neigh_parms *);
1181 void (*ndo_tx_timeout) (struct net_device *dev);
1182
1183 void (*ndo_get_stats64)(struct net_device *dev,
1184 struct rtnl_link_stats64 *storage);
1185 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1186 int (*ndo_get_offload_stats)(int attr_id,
1187 const struct net_device *dev,
1188 void *attr_data);
1189 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1190
1191 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1192 __be16 proto, u16 vid);
1193 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1194 __be16 proto, u16 vid);
1195 #ifdef CONFIG_NET_POLL_CONTROLLER
1196 void (*ndo_poll_controller)(struct net_device *dev);
1197 int (*ndo_netpoll_setup)(struct net_device *dev,
1198 struct netpoll_info *info);
1199 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1200 #endif
1201 int (*ndo_set_vf_mac)(struct net_device *dev,
1202 int queue, u8 *mac);
1203 int (*ndo_set_vf_vlan)(struct net_device *dev,
1204 int queue, u16 vlan,
1205 u8 qos, __be16 proto);
1206 int (*ndo_set_vf_rate)(struct net_device *dev,
1207 int vf, int min_tx_rate,
1208 int max_tx_rate);
1209 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1210 int vf, bool setting);
1211 int (*ndo_set_vf_trust)(struct net_device *dev,
1212 int vf, bool setting);
1213 int (*ndo_get_vf_config)(struct net_device *dev,
1214 int vf,
1215 struct ifla_vf_info *ivf);
1216 int (*ndo_set_vf_link_state)(struct net_device *dev,
1217 int vf, int link_state);
1218 int (*ndo_get_vf_stats)(struct net_device *dev,
1219 int vf,
1220 struct ifla_vf_stats
1221 *vf_stats);
1222 int (*ndo_set_vf_port)(struct net_device *dev,
1223 int vf,
1224 struct nlattr *port[]);
1225 int (*ndo_get_vf_port)(struct net_device *dev,
1226 int vf, struct sk_buff *skb);
1227 int (*ndo_set_vf_guid)(struct net_device *dev,
1228 int vf, u64 guid,
1229 int guid_type);
1230 int (*ndo_set_vf_rss_query_en)(
1231 struct net_device *dev,
1232 int vf, bool setting);
1233 int (*ndo_setup_tc)(struct net_device *dev,
1234 enum tc_setup_type type,
1235 void *type_data);
1236 #if IS_ENABLED(CONFIG_FCOE)
1237 int (*ndo_fcoe_enable)(struct net_device *dev);
1238 int (*ndo_fcoe_disable)(struct net_device *dev);
1239 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1240 u16 xid,
1241 struct scatterlist *sgl,
1242 unsigned int sgc);
1243 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1244 u16 xid);
1245 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1246 u16 xid,
1247 struct scatterlist *sgl,
1248 unsigned int sgc);
1249 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1250 struct netdev_fcoe_hbainfo *hbainfo);
1251 #endif
1252
1253 #if IS_ENABLED(CONFIG_LIBFCOE)
1254 #define NETDEV_FCOE_WWNN 0
1255 #define NETDEV_FCOE_WWPN 1
1256 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1257 u64 *wwn, int type);
1258 #endif
1259
1260 #ifdef CONFIG_RFS_ACCEL
1261 int (*ndo_rx_flow_steer)(struct net_device *dev,
1262 const struct sk_buff *skb,
1263 u16 rxq_index,
1264 u32 flow_id);
1265 #endif
1266 int (*ndo_add_slave)(struct net_device *dev,
1267 struct net_device *slave_dev,
1268 struct netlink_ext_ack *extack);
1269 int (*ndo_del_slave)(struct net_device *dev,
1270 struct net_device *slave_dev);
1271 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1272 netdev_features_t features);
1273 int (*ndo_set_features)(struct net_device *dev,
1274 netdev_features_t features);
1275 int (*ndo_neigh_construct)(struct net_device *dev,
1276 struct neighbour *n);
1277 void (*ndo_neigh_destroy)(struct net_device *dev,
1278 struct neighbour *n);
1279
1280 int (*ndo_fdb_add)(struct ndmsg *ndm,
1281 struct nlattr *tb[],
1282 struct net_device *dev,
1283 const unsigned char *addr,
1284 u16 vid,
1285 u16 flags);
1286 int (*ndo_fdb_del)(struct ndmsg *ndm,
1287 struct nlattr *tb[],
1288 struct net_device *dev,
1289 const unsigned char *addr,
1290 u16 vid);
1291 int (*ndo_fdb_dump)(struct sk_buff *skb,
1292 struct netlink_callback *cb,
1293 struct net_device *dev,
1294 struct net_device *filter_dev,
1295 int *idx);
1296
1297 int (*ndo_bridge_setlink)(struct net_device *dev,
1298 struct nlmsghdr *nlh,
1299 u16 flags);
1300 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1301 u32 pid, u32 seq,
1302 struct net_device *dev,
1303 u32 filter_mask,
1304 int nlflags);
1305 int (*ndo_bridge_dellink)(struct net_device *dev,
1306 struct nlmsghdr *nlh,
1307 u16 flags);
1308 int (*ndo_change_carrier)(struct net_device *dev,
1309 bool new_carrier);
1310 int (*ndo_get_phys_port_id)(struct net_device *dev,
1311 struct netdev_phys_item_id *ppid);
1312 int (*ndo_get_phys_port_name)(struct net_device *dev,
1313 char *name, size_t len);
1314 void (*ndo_udp_tunnel_add)(struct net_device *dev,
1315 struct udp_tunnel_info *ti);
1316 void (*ndo_udp_tunnel_del)(struct net_device *dev,
1317 struct udp_tunnel_info *ti);
1318 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1319 struct net_device *dev);
1320 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1321 void *priv);
1322
1323 int (*ndo_get_lock_subclass)(struct net_device *dev);
1324 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1325 int queue_index,
1326 u32 maxrate);
1327 int (*ndo_get_iflink)(const struct net_device *dev);
1328 int (*ndo_change_proto_down)(struct net_device *dev,
1329 bool proto_down);
1330 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1331 struct sk_buff *skb);
1332 void (*ndo_set_rx_headroom)(struct net_device *dev,
1333 int needed_headroom);
1334 int (*ndo_bpf)(struct net_device *dev,
1335 struct netdev_bpf *bpf);
1336 int (*ndo_xdp_xmit)(struct net_device *dev,
1337 struct xdp_buff *xdp);
1338 void (*ndo_xdp_flush)(struct net_device *dev);
1339 };
1340
1341 /**
1342 * enum net_device_priv_flags - &struct net_device priv_flags
1343 *
1344 * These are the &struct net_device, they are only set internally
1345 * by drivers and used in the kernel. These flags are invisible to
1346 * userspace; this means that the order of these flags can change
1347 * during any kernel release.
1348 *
1349 * You should have a pretty good reason to be extending these flags.
1350 *
1351 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1352 * @IFF_EBRIDGE: Ethernet bridging device
1353 * @IFF_BONDING: bonding master or slave
1354 * @IFF_ISATAP: ISATAP interface (RFC4214)
1355 * @IFF_WAN_HDLC: WAN HDLC device
1356 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1357 * release skb->dst
1358 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1359 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1360 * @IFF_MACVLAN_PORT: device used as macvlan port
1361 * @IFF_BRIDGE_PORT: device used as bridge port
1362 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1363 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1364 * @IFF_UNICAST_FLT: Supports unicast filtering
1365 * @IFF_TEAM_PORT: device used as team port
1366 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1367 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1368 * change when it's running
1369 * @IFF_MACVLAN: Macvlan device
1370 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1371 * underlying stacked devices
1372 * @IFF_IPVLAN_MASTER: IPvlan master device
1373 * @IFF_IPVLAN_SLAVE: IPvlan slave device
1374 * @IFF_L3MDEV_MASTER: device is an L3 master device
1375 * @IFF_NO_QUEUE: device can run without qdisc attached
1376 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1377 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1378 * @IFF_TEAM: device is a team device
1379 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1380 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1381 * entity (i.e. the master device for bridged veth)
1382 * @IFF_MACSEC: device is a MACsec device
1383 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1384 */
1385 enum netdev_priv_flags {
1386 IFF_802_1Q_VLAN = 1<<0,
1387 IFF_EBRIDGE = 1<<1,
1388 IFF_BONDING = 1<<2,
1389 IFF_ISATAP = 1<<3,
1390 IFF_WAN_HDLC = 1<<4,
1391 IFF_XMIT_DST_RELEASE = 1<<5,
1392 IFF_DONT_BRIDGE = 1<<6,
1393 IFF_DISABLE_NETPOLL = 1<<7,
1394 IFF_MACVLAN_PORT = 1<<8,
1395 IFF_BRIDGE_PORT = 1<<9,
1396 IFF_OVS_DATAPATH = 1<<10,
1397 IFF_TX_SKB_SHARING = 1<<11,
1398 IFF_UNICAST_FLT = 1<<12,
1399 IFF_TEAM_PORT = 1<<13,
1400 IFF_SUPP_NOFCS = 1<<14,
1401 IFF_LIVE_ADDR_CHANGE = 1<<15,
1402 IFF_MACVLAN = 1<<16,
1403 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1404 IFF_IPVLAN_MASTER = 1<<18,
1405 IFF_IPVLAN_SLAVE = 1<<19,
1406 IFF_L3MDEV_MASTER = 1<<20,
1407 IFF_NO_QUEUE = 1<<21,
1408 IFF_OPENVSWITCH = 1<<22,
1409 IFF_L3MDEV_SLAVE = 1<<23,
1410 IFF_TEAM = 1<<24,
1411 IFF_RXFH_CONFIGURED = 1<<25,
1412 IFF_PHONY_HEADROOM = 1<<26,
1413 IFF_MACSEC = 1<<27,
1414 IFF_L3MDEV_RX_HANDLER = 1<<28,
1415 };
1416
1417 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1418 #define IFF_EBRIDGE IFF_EBRIDGE
1419 #define IFF_BONDING IFF_BONDING
1420 #define IFF_ISATAP IFF_ISATAP
1421 #define IFF_WAN_HDLC IFF_WAN_HDLC
1422 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1423 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1424 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1425 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1426 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1427 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1428 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1429 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1430 #define IFF_TEAM_PORT IFF_TEAM_PORT
1431 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1432 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1433 #define IFF_MACVLAN IFF_MACVLAN
1434 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1435 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER
1436 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE
1437 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1438 #define IFF_NO_QUEUE IFF_NO_QUEUE
1439 #define IFF_OPENVSWITCH IFF_OPENVSWITCH
1440 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1441 #define IFF_TEAM IFF_TEAM
1442 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1443 #define IFF_MACSEC IFF_MACSEC
1444 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER
1445
1446 /**
1447 * struct net_device - The DEVICE structure.
1448 *
1449 * Actually, this whole structure is a big mistake. It mixes I/O
1450 * data with strictly "high-level" data, and it has to know about
1451 * almost every data structure used in the INET module.
1452 *
1453 * @name: This is the first field of the "visible" part of this structure
1454 * (i.e. as seen by users in the "Space.c" file). It is the name
1455 * of the interface.
1456 *
1457 * @name_hlist: Device name hash chain, please keep it close to name[]
1458 * @ifalias: SNMP alias
1459 * @mem_end: Shared memory end
1460 * @mem_start: Shared memory start
1461 * @base_addr: Device I/O address
1462 * @irq: Device IRQ number
1463 *
1464 * @carrier_changes: Stats to monitor carrier on<->off transitions
1465 *
1466 * @state: Generic network queuing layer state, see netdev_state_t
1467 * @dev_list: The global list of network devices
1468 * @napi_list: List entry used for polling NAPI devices
1469 * @unreg_list: List entry when we are unregistering the
1470 * device; see the function unregister_netdev
1471 * @close_list: List entry used when we are closing the device
1472 * @ptype_all: Device-specific packet handlers for all protocols
1473 * @ptype_specific: Device-specific, protocol-specific packet handlers
1474 *
1475 * @adj_list: Directly linked devices, like slaves for bonding
1476 * @features: Currently active device features
1477 * @hw_features: User-changeable features
1478 *
1479 * @wanted_features: User-requested features
1480 * @vlan_features: Mask of features inheritable by VLAN devices
1481 *
1482 * @hw_enc_features: Mask of features inherited by encapsulating devices
1483 * This field indicates what encapsulation
1484 * offloads the hardware is capable of doing,
1485 * and drivers will need to set them appropriately.
1486 *
1487 * @mpls_features: Mask of features inheritable by MPLS
1488 *
1489 * @ifindex: interface index
1490 * @group: The group the device belongs to
1491 *
1492 * @stats: Statistics struct, which was left as a legacy, use
1493 * rtnl_link_stats64 instead
1494 *
1495 * @rx_dropped: Dropped packets by core network,
1496 * do not use this in drivers
1497 * @tx_dropped: Dropped packets by core network,
1498 * do not use this in drivers
1499 * @rx_nohandler: nohandler dropped packets by core network on
1500 * inactive devices, do not use this in drivers
1501 *
1502 * @wireless_handlers: List of functions to handle Wireless Extensions,
1503 * instead of ioctl,
1504 * see <net/iw_handler.h> for details.
1505 * @wireless_data: Instance data managed by the core of wireless extensions
1506 *
1507 * @netdev_ops: Includes several pointers to callbacks,
1508 * if one wants to override the ndo_*() functions
1509 * @ethtool_ops: Management operations
1510 * @ndisc_ops: Includes callbacks for different IPv6 neighbour
1511 * discovery handling. Necessary for e.g. 6LoWPAN.
1512 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1513 * of Layer 2 headers.
1514 *
1515 * @flags: Interface flags (a la BSD)
1516 * @priv_flags: Like 'flags' but invisible to userspace,
1517 * see if.h for the definitions
1518 * @gflags: Global flags ( kept as legacy )
1519 * @padded: How much padding added by alloc_netdev()
1520 * @operstate: RFC2863 operstate
1521 * @link_mode: Mapping policy to operstate
1522 * @if_port: Selectable AUI, TP, ...
1523 * @dma: DMA channel
1524 * @mtu: Interface MTU value
1525 * @min_mtu: Interface Minimum MTU value
1526 * @max_mtu: Interface Maximum MTU value
1527 * @type: Interface hardware type
1528 * @hard_header_len: Maximum hardware header length.
1529 * @min_header_len: Minimum hardware header length
1530 *
1531 * @needed_headroom: Extra headroom the hardware may need, but not in all
1532 * cases can this be guaranteed
1533 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1534 * cases can this be guaranteed. Some cases also use
1535 * LL_MAX_HEADER instead to allocate the skb
1536 *
1537 * interface address info:
1538 *
1539 * @perm_addr: Permanent hw address
1540 * @addr_assign_type: Hw address assignment type
1541 * @addr_len: Hardware address length
1542 * @upper_level: Maximum depth level of upper devices.
1543 * @lower_level: Maximum depth level of lower devices.
1544 * @neigh_priv_len: Used in neigh_alloc()
1545 * @dev_id: Used to differentiate devices that share
1546 * the same link layer address
1547 * @dev_port: Used to differentiate devices that share
1548 * the same function
1549 * @addr_list_lock: XXX: need comments on this one
1550 * @uc_promisc: Counter that indicates promiscuous mode
1551 * has been enabled due to the need to listen to
1552 * additional unicast addresses in a device that
1553 * does not implement ndo_set_rx_mode()
1554 * @uc: unicast mac addresses
1555 * @mc: multicast mac addresses
1556 * @dev_addrs: list of device hw addresses
1557 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1558 * @promiscuity: Number of times the NIC is told to work in
1559 * promiscuous mode; if it becomes 0 the NIC will
1560 * exit promiscuous mode
1561 * @allmulti: Counter, enables or disables allmulticast mode
1562 *
1563 * @vlan_info: VLAN info
1564 * @dsa_ptr: dsa specific data
1565 * @tipc_ptr: TIPC specific data
1566 * @atalk_ptr: AppleTalk link
1567 * @ip_ptr: IPv4 specific data
1568 * @dn_ptr: DECnet specific data
1569 * @ip6_ptr: IPv6 specific data
1570 * @ax25_ptr: AX.25 specific data
1571 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1572 *
1573 * @dev_addr: Hw address (before bcast,
1574 * because most packets are unicast)
1575 *
1576 * @_rx: Array of RX queues
1577 * @num_rx_queues: Number of RX queues
1578 * allocated at register_netdev() time
1579 * @real_num_rx_queues: Number of RX queues currently active in device
1580 *
1581 * @rx_handler: handler for received packets
1582 * @rx_handler_data: XXX: need comments on this one
1583 * @miniq_ingress: ingress/clsact qdisc specific data for
1584 * ingress processing
1585 * @ingress_queue: XXX: need comments on this one
1586 * @broadcast: hw bcast address
1587 *
1588 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1589 * indexed by RX queue number. Assigned by driver.
1590 * This must only be set if the ndo_rx_flow_steer
1591 * operation is defined
1592 * @index_hlist: Device index hash chain
1593 *
1594 * @_tx: Array of TX queues
1595 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1596 * @real_num_tx_queues: Number of TX queues currently active in device
1597 * @qdisc: Root qdisc from userspace point of view
1598 * @tx_queue_len: Max frames per queue allowed
1599 * @tx_global_lock: XXX: need comments on this one
1600 *
1601 * @xps_maps: XXX: need comments on this one
1602 * @miniq_egress: clsact qdisc specific data for
1603 * egress processing
1604 * @watchdog_timeo: Represents the timeout that is used by
1605 * the watchdog (see dev_watchdog())
1606 * @watchdog_timer: List of timers
1607 *
1608 * @pcpu_refcnt: Number of references to this device
1609 * @todo_list: Delayed register/unregister
1610 * @link_watch_list: XXX: need comments on this one
1611 *
1612 * @reg_state: Register/unregister state machine
1613 * @dismantle: Device is going to be freed
1614 * @rtnl_link_state: This enum represents the phases of creating
1615 * a new link
1616 *
1617 * @needs_free_netdev: Should unregister perform free_netdev?
1618 * @priv_destructor: Called from unregister
1619 * @npinfo: XXX: need comments on this one
1620 * @nd_net: Network namespace this network device is inside
1621 *
1622 * @ml_priv: Mid-layer private
1623 * @lstats: Loopback statistics
1624 * @tstats: Tunnel statistics
1625 * @dstats: Dummy statistics
1626 * @vstats: Virtual ethernet statistics
1627 *
1628 * @garp_port: GARP
1629 * @mrp_port: MRP
1630 *
1631 * @dev: Class/net/name entry
1632 * @sysfs_groups: Space for optional device, statistics and wireless
1633 * sysfs groups
1634 *
1635 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1636 * @rtnl_link_ops: Rtnl_link_ops
1637 *
1638 * @gso_max_size: Maximum size of generic segmentation offload
1639 * @gso_max_segs: Maximum number of segments that can be passed to the
1640 * NIC for GSO
1641 *
1642 * @dcbnl_ops: Data Center Bridging netlink ops
1643 * @num_tc: Number of traffic classes in the net device
1644 * @tc_to_txq: XXX: need comments on this one
1645 * @prio_tc_map: XXX: need comments on this one
1646 *
1647 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1648 *
1649 * @priomap: XXX: need comments on this one
1650 * @phydev: Physical device may attach itself
1651 * for hardware timestamping
1652 *
1653 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1654 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1655 *
1656 * @proto_down: protocol port state information can be sent to the
1657 * switch driver and used to set the phys state of the
1658 * switch port.
1659 *
1660 * FIXME: cleanup struct net_device such that network protocol info
1661 * moves out.
1662 */
1663
1664 struct net_device {
1665 char name[IFNAMSIZ];
1666 struct hlist_node name_hlist;
1667 struct dev_ifalias __rcu *ifalias;
1668 /*
1669 * I/O specific fields
1670 * FIXME: Merge these and struct ifmap into one
1671 */
1672 unsigned long mem_end;
1673 unsigned long mem_start;
1674 unsigned long base_addr;
1675 int irq;
1676
1677 /*
1678 * Some hardware also needs these fields (state,dev_list,
1679 * napi_list,unreg_list,close_list) but they are not
1680 * part of the usual set specified in Space.c.
1681 */
1682
1683 unsigned long state;
1684
1685 struct list_head dev_list;
1686 struct list_head napi_list;
1687 struct list_head unreg_list;
1688 struct list_head close_list;
1689 struct list_head ptype_all;
1690 struct list_head ptype_specific;
1691
1692 struct {
1693 struct list_head upper;
1694 struct list_head lower;
1695 } adj_list;
1696
1697 netdev_features_t features;
1698 netdev_features_t hw_features;
1699 netdev_features_t wanted_features;
1700 netdev_features_t vlan_features;
1701 netdev_features_t hw_enc_features;
1702 netdev_features_t mpls_features;
1703 netdev_features_t gso_partial_features;
1704
1705 int ifindex;
1706 int group;
1707
1708 struct net_device_stats stats;
1709
1710 atomic_long_t rx_dropped;
1711 atomic_long_t tx_dropped;
1712 atomic_long_t rx_nohandler;
1713
1714 /* Stats to monitor link on/off, flapping */
1715 atomic_t carrier_up_count;
1716 atomic_t carrier_down_count;
1717
1718 #ifdef CONFIG_WIRELESS_EXT
1719 const struct iw_handler_def *wireless_handlers;
1720 struct iw_public_data *wireless_data;
1721 #endif
1722 const struct net_device_ops *netdev_ops;
1723 const struct ethtool_ops *ethtool_ops;
1724 #ifdef CONFIG_NET_SWITCHDEV
1725 const struct switchdev_ops *switchdev_ops;
1726 #endif
1727 #ifdef CONFIG_NET_L3_MASTER_DEV
1728 const struct l3mdev_ops *l3mdev_ops;
1729 #endif
1730 #if IS_ENABLED(CONFIG_IPV6)
1731 const struct ndisc_ops *ndisc_ops;
1732 #endif
1733
1734 #ifdef CONFIG_XFRM
1735 const struct xfrmdev_ops *xfrmdev_ops;
1736 #endif
1737
1738 const struct header_ops *header_ops;
1739
1740 unsigned int flags;
1741 unsigned int priv_flags;
1742
1743 unsigned short gflags;
1744 unsigned short padded;
1745
1746 unsigned char operstate;
1747 unsigned char link_mode;
1748
1749 unsigned char if_port;
1750 unsigned char dma;
1751
1752 /* Note : dev->mtu is often read without holding a lock.
1753 * Writers usually hold RTNL.
1754 * It is recommended to use READ_ONCE() to annotate the reads,
1755 * and to use WRITE_ONCE() to annotate the writes.
1756 */
1757 unsigned int mtu;
1758 unsigned int min_mtu;
1759 unsigned int max_mtu;
1760 unsigned short type;
1761 unsigned short hard_header_len;
1762 unsigned char min_header_len;
1763
1764 unsigned short needed_headroom;
1765 unsigned short needed_tailroom;
1766
1767 /* Interface address info. */
1768 unsigned char perm_addr[MAX_ADDR_LEN];
1769 unsigned char addr_assign_type;
1770 unsigned char addr_len;
1771 unsigned char upper_level;
1772 unsigned char lower_level;
1773 unsigned short neigh_priv_len;
1774 unsigned short dev_id;
1775 unsigned short dev_port;
1776 spinlock_t addr_list_lock;
1777 unsigned char name_assign_type;
1778 bool uc_promisc;
1779 struct netdev_hw_addr_list uc;
1780 struct netdev_hw_addr_list mc;
1781 struct netdev_hw_addr_list dev_addrs;
1782
1783 #ifdef CONFIG_SYSFS
1784 struct kset *queues_kset;
1785 #endif
1786 unsigned int promiscuity;
1787 unsigned int allmulti;
1788
1789
1790 /* Protocol-specific pointers */
1791
1792 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1793 struct vlan_info __rcu *vlan_info;
1794 #endif
1795 #if IS_ENABLED(CONFIG_NET_DSA)
1796 struct dsa_port *dsa_ptr;
1797 #endif
1798 #if IS_ENABLED(CONFIG_TIPC)
1799 struct tipc_bearer __rcu *tipc_ptr;
1800 #endif
1801 void *atalk_ptr;
1802 struct in_device __rcu *ip_ptr;
1803 struct dn_dev __rcu *dn_ptr;
1804 struct inet6_dev __rcu *ip6_ptr;
1805 void *ax25_ptr;
1806 struct wireless_dev *ieee80211_ptr;
1807 struct wpan_dev *ieee802154_ptr;
1808 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1809 struct mpls_dev __rcu *mpls_ptr;
1810 #endif
1811
1812 /*
1813 * Cache lines mostly used on receive path (including eth_type_trans())
1814 */
1815 /* Interface address info used in eth_type_trans() */
1816 unsigned char *dev_addr;
1817
1818 #ifdef CONFIG_SYSFS
1819 struct netdev_rx_queue *_rx;
1820
1821 unsigned int num_rx_queues;
1822 unsigned int real_num_rx_queues;
1823 #endif
1824
1825 struct bpf_prog __rcu *xdp_prog;
1826 unsigned long gro_flush_timeout;
1827 rx_handler_func_t __rcu *rx_handler;
1828 void __rcu *rx_handler_data;
1829
1830 #ifdef CONFIG_NET_CLS_ACT
1831 struct mini_Qdisc __rcu *miniq_ingress;
1832 #endif
1833 struct netdev_queue __rcu *ingress_queue;
1834 #ifdef CONFIG_NETFILTER_INGRESS
1835 struct nf_hook_entries __rcu *nf_hooks_ingress;
1836 #endif
1837
1838 unsigned char broadcast[MAX_ADDR_LEN];
1839 #ifdef CONFIG_RFS_ACCEL
1840 struct cpu_rmap *rx_cpu_rmap;
1841 #endif
1842 struct hlist_node index_hlist;
1843
1844 /*
1845 * Cache lines mostly used on transmit path
1846 */
1847 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1848 unsigned int num_tx_queues;
1849 unsigned int real_num_tx_queues;
1850 struct Qdisc *qdisc;
1851 #ifdef CONFIG_NET_SCHED
1852 DECLARE_HASHTABLE (qdisc_hash, 4);
1853 #endif
1854 unsigned int tx_queue_len;
1855 spinlock_t tx_global_lock;
1856 int watchdog_timeo;
1857
1858 #ifdef CONFIG_XPS
1859 struct xps_dev_maps __rcu *xps_maps;
1860 #endif
1861 #ifdef CONFIG_NET_CLS_ACT
1862 struct mini_Qdisc __rcu *miniq_egress;
1863 #endif
1864
1865 /* These may be needed for future network-power-down code. */
1866 struct timer_list watchdog_timer;
1867
1868 int __percpu *pcpu_refcnt;
1869 struct list_head todo_list;
1870
1871 struct list_head link_watch_list;
1872
1873 enum { NETREG_UNINITIALIZED=0,
1874 NETREG_REGISTERED, /* completed register_netdevice */
1875 NETREG_UNREGISTERING, /* called unregister_netdevice */
1876 NETREG_UNREGISTERED, /* completed unregister todo */
1877 NETREG_RELEASED, /* called free_netdev */
1878 NETREG_DUMMY, /* dummy device for NAPI poll */
1879 } reg_state:8;
1880
1881 bool dismantle;
1882
1883 enum {
1884 RTNL_LINK_INITIALIZED,
1885 RTNL_LINK_INITIALIZING,
1886 } rtnl_link_state:16;
1887
1888 bool needs_free_netdev;
1889 void (*priv_destructor)(struct net_device *dev);
1890
1891 #ifdef CONFIG_NETPOLL
1892 struct netpoll_info __rcu *npinfo;
1893 #endif
1894
1895 possible_net_t nd_net;
1896
1897 /* mid-layer private */
1898 union {
1899 void *ml_priv;
1900 struct pcpu_lstats __percpu *lstats;
1901 struct pcpu_sw_netstats __percpu *tstats;
1902 struct pcpu_dstats __percpu *dstats;
1903 struct pcpu_vstats __percpu *vstats;
1904 };
1905
1906 #if IS_ENABLED(CONFIG_GARP)
1907 struct garp_port __rcu *garp_port;
1908 #endif
1909 #if IS_ENABLED(CONFIG_MRP)
1910 struct mrp_port __rcu *mrp_port;
1911 #endif
1912
1913 struct device dev;
1914 const struct attribute_group *sysfs_groups[4];
1915 const struct attribute_group *sysfs_rx_queue_group;
1916
1917 const struct rtnl_link_ops *rtnl_link_ops;
1918
1919 /* for setting kernel sock attribute on TCP connection setup */
1920 #define GSO_MAX_SIZE 65536
1921 unsigned int gso_max_size;
1922 #define GSO_MAX_SEGS 65535
1923 u16 gso_max_segs;
1924
1925 #ifdef CONFIG_DCB
1926 const struct dcbnl_rtnl_ops *dcbnl_ops;
1927 #endif
1928 u8 num_tc;
1929 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1930 u8 prio_tc_map[TC_BITMASK + 1];
1931
1932 #if IS_ENABLED(CONFIG_FCOE)
1933 unsigned int fcoe_ddp_xid;
1934 #endif
1935 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1936 struct netprio_map __rcu *priomap;
1937 #endif
1938 struct phy_device *phydev;
1939 struct lock_class_key *qdisc_tx_busylock;
1940 struct lock_class_key *qdisc_running_key;
1941 bool proto_down;
1942 };
1943 #define to_net_dev(d) container_of(d, struct net_device, dev)
1944
1945 static inline bool netif_elide_gro(const struct net_device *dev)
1946 {
1947 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
1948 return true;
1949 return false;
1950 }
1951
1952 #define NETDEV_ALIGN 32
1953
1954 static inline
1955 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1956 {
1957 return dev->prio_tc_map[prio & TC_BITMASK];
1958 }
1959
1960 static inline
1961 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1962 {
1963 if (tc >= dev->num_tc)
1964 return -EINVAL;
1965
1966 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1967 return 0;
1968 }
1969
1970 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
1971 void netdev_reset_tc(struct net_device *dev);
1972 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
1973 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
1974
1975 static inline
1976 int netdev_get_num_tc(struct net_device *dev)
1977 {
1978 return dev->num_tc;
1979 }
1980
1981 static inline
1982 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1983 unsigned int index)
1984 {
1985 return &dev->_tx[index];
1986 }
1987
1988 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1989 const struct sk_buff *skb)
1990 {
1991 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1992 }
1993
1994 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1995 void (*f)(struct net_device *,
1996 struct netdev_queue *,
1997 void *),
1998 void *arg)
1999 {
2000 unsigned int i;
2001
2002 for (i = 0; i < dev->num_tx_queues; i++)
2003 f(dev, &dev->_tx[i], arg);
2004 }
2005
2006 #define netdev_lockdep_set_classes(dev) \
2007 { \
2008 static struct lock_class_key qdisc_tx_busylock_key; \
2009 static struct lock_class_key qdisc_running_key; \
2010 static struct lock_class_key qdisc_xmit_lock_key; \
2011 static struct lock_class_key dev_addr_list_lock_key; \
2012 unsigned int i; \
2013 \
2014 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \
2015 (dev)->qdisc_running_key = &qdisc_running_key; \
2016 lockdep_set_class(&(dev)->addr_list_lock, \
2017 &dev_addr_list_lock_key); \
2018 for (i = 0; i < (dev)->num_tx_queues; i++) \
2019 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \
2020 &qdisc_xmit_lock_key); \
2021 }
2022
2023 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2024 struct sk_buff *skb,
2025 void *accel_priv);
2026
2027 /* returns the headroom that the master device needs to take in account
2028 * when forwarding to this dev
2029 */
2030 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2031 {
2032 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2033 }
2034
2035 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2036 {
2037 if (dev->netdev_ops->ndo_set_rx_headroom)
2038 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2039 }
2040
2041 /* set the device rx headroom to the dev's default */
2042 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2043 {
2044 netdev_set_rx_headroom(dev, -1);
2045 }
2046
2047 /*
2048 * Net namespace inlines
2049 */
2050 static inline
2051 struct net *dev_net(const struct net_device *dev)
2052 {
2053 return read_pnet(&dev->nd_net);
2054 }
2055
2056 static inline
2057 void dev_net_set(struct net_device *dev, struct net *net)
2058 {
2059 write_pnet(&dev->nd_net, net);
2060 }
2061
2062 /**
2063 * netdev_priv - access network device private data
2064 * @dev: network device
2065 *
2066 * Get network device private data
2067 */
2068 static inline void *netdev_priv(const struct net_device *dev)
2069 {
2070 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2071 }
2072
2073 /* Set the sysfs physical device reference for the network logical device
2074 * if set prior to registration will cause a symlink during initialization.
2075 */
2076 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2077
2078 /* Set the sysfs device type for the network logical device to allow
2079 * fine-grained identification of different network device types. For
2080 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2081 */
2082 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2083
2084 /* Default NAPI poll() weight
2085 * Device drivers are strongly advised to not use bigger value
2086 */
2087 #define NAPI_POLL_WEIGHT 64
2088
2089 /**
2090 * netif_napi_add - initialize a NAPI context
2091 * @dev: network device
2092 * @napi: NAPI context
2093 * @poll: polling function
2094 * @weight: default weight
2095 *
2096 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2097 * *any* of the other NAPI-related functions.
2098 */
2099 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2100 int (*poll)(struct napi_struct *, int), int weight);
2101
2102 /**
2103 * netif_tx_napi_add - initialize a NAPI context
2104 * @dev: network device
2105 * @napi: NAPI context
2106 * @poll: polling function
2107 * @weight: default weight
2108 *
2109 * This variant of netif_napi_add() should be used from drivers using NAPI
2110 * to exclusively poll a TX queue.
2111 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2112 */
2113 static inline void netif_tx_napi_add(struct net_device *dev,
2114 struct napi_struct *napi,
2115 int (*poll)(struct napi_struct *, int),
2116 int weight)
2117 {
2118 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2119 netif_napi_add(dev, napi, poll, weight);
2120 }
2121
2122 /**
2123 * netif_napi_del - remove a NAPI context
2124 * @napi: NAPI context
2125 *
2126 * netif_napi_del() removes a NAPI context from the network device NAPI list
2127 */
2128 void netif_napi_del(struct napi_struct *napi);
2129
2130 struct napi_gro_cb {
2131 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2132 void *frag0;
2133
2134 /* Length of frag0. */
2135 unsigned int frag0_len;
2136
2137 /* This indicates where we are processing relative to skb->data. */
2138 int data_offset;
2139
2140 /* This is non-zero if the packet cannot be merged with the new skb. */
2141 u16 flush;
2142
2143 /* Save the IP ID here and check when we get to the transport layer */
2144 u16 flush_id;
2145
2146 /* Number of segments aggregated. */
2147 u16 count;
2148
2149 /* Start offset for remote checksum offload */
2150 u16 gro_remcsum_start;
2151
2152 /* jiffies when first packet was created/queued */
2153 unsigned long age;
2154
2155 /* Used in ipv6_gro_receive() and foo-over-udp */
2156 u16 proto;
2157
2158 /* This is non-zero if the packet may be of the same flow. */
2159 u8 same_flow:1;
2160
2161 /* Used in tunnel GRO receive */
2162 u8 encap_mark:1;
2163
2164 /* GRO checksum is valid */
2165 u8 csum_valid:1;
2166
2167 /* Number of checksums via CHECKSUM_UNNECESSARY */
2168 u8 csum_cnt:3;
2169
2170 /* Free the skb? */
2171 u8 free:2;
2172 #define NAPI_GRO_FREE 1
2173 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2174
2175 /* Used in foo-over-udp, set in udp[46]_gro_receive */
2176 u8 is_ipv6:1;
2177
2178 /* Used in GRE, set in fou/gue_gro_receive */
2179 u8 is_fou:1;
2180
2181 /* Used to determine if flush_id can be ignored */
2182 u8 is_atomic:1;
2183
2184 /* Number of gro_receive callbacks this packet already went through */
2185 u8 recursion_counter:4;
2186
2187 /* 1 bit hole */
2188
2189 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2190 __wsum csum;
2191
2192 /* used in skb_gro_receive() slow path */
2193 struct sk_buff *last;
2194 };
2195
2196 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2197
2198 #define GRO_RECURSION_LIMIT 15
2199 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2200 {
2201 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2202 }
2203
2204 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *);
2205 static inline struct sk_buff **call_gro_receive(gro_receive_t cb,
2206 struct sk_buff **head,
2207 struct sk_buff *skb)
2208 {
2209 if (unlikely(gro_recursion_inc_test(skb))) {
2210 NAPI_GRO_CB(skb)->flush |= 1;
2211 return NULL;
2212 }
2213
2214 return cb(head, skb);
2215 }
2216
2217 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **,
2218 struct sk_buff *);
2219 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb,
2220 struct sock *sk,
2221 struct sk_buff **head,
2222 struct sk_buff *skb)
2223 {
2224 if (unlikely(gro_recursion_inc_test(skb))) {
2225 NAPI_GRO_CB(skb)->flush |= 1;
2226 return NULL;
2227 }
2228
2229 return cb(sk, head, skb);
2230 }
2231
2232 struct packet_type {
2233 __be16 type; /* This is really htons(ether_type). */
2234 struct net_device *dev; /* NULL is wildcarded here */
2235 int (*func) (struct sk_buff *,
2236 struct net_device *,
2237 struct packet_type *,
2238 struct net_device *);
2239 bool (*id_match)(struct packet_type *ptype,
2240 struct sock *sk);
2241 void *af_packet_priv;
2242 struct list_head list;
2243 };
2244
2245 struct offload_callbacks {
2246 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2247 netdev_features_t features);
2248 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2249 struct sk_buff *skb);
2250 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2251 };
2252
2253 struct packet_offload {
2254 __be16 type; /* This is really htons(ether_type). */
2255 u16 priority;
2256 struct offload_callbacks callbacks;
2257 struct list_head list;
2258 };
2259
2260 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2261 struct pcpu_sw_netstats {
2262 u64 rx_packets;
2263 u64 rx_bytes;
2264 u64 tx_packets;
2265 u64 tx_bytes;
2266 struct u64_stats_sync syncp;
2267 };
2268
2269 #define __netdev_alloc_pcpu_stats(type, gfp) \
2270 ({ \
2271 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2272 if (pcpu_stats) { \
2273 int __cpu; \
2274 for_each_possible_cpu(__cpu) { \
2275 typeof(type) *stat; \
2276 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2277 u64_stats_init(&stat->syncp); \
2278 } \
2279 } \
2280 pcpu_stats; \
2281 })
2282
2283 #define netdev_alloc_pcpu_stats(type) \
2284 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2285
2286 enum netdev_lag_tx_type {
2287 NETDEV_LAG_TX_TYPE_UNKNOWN,
2288 NETDEV_LAG_TX_TYPE_RANDOM,
2289 NETDEV_LAG_TX_TYPE_BROADCAST,
2290 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2291 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2292 NETDEV_LAG_TX_TYPE_HASH,
2293 };
2294
2295 struct netdev_lag_upper_info {
2296 enum netdev_lag_tx_type tx_type;
2297 };
2298
2299 struct netdev_lag_lower_state_info {
2300 u8 link_up : 1,
2301 tx_enabled : 1;
2302 };
2303
2304 #include <linux/notifier.h>
2305
2306 /* netdevice notifier chain. Please remember to update the rtnetlink
2307 * notification exclusion list in rtnetlink_event() when adding new
2308 * types.
2309 */
2310 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
2311 #define NETDEV_DOWN 0x0002
2312 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
2313 detected a hardware crash and restarted
2314 - we can use this eg to kick tcp sessions
2315 once done */
2316 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
2317 #define NETDEV_REGISTER 0x0005
2318 #define NETDEV_UNREGISTER 0x0006
2319 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */
2320 #define NETDEV_CHANGEADDR 0x0008
2321 #define NETDEV_GOING_DOWN 0x0009
2322 #define NETDEV_CHANGENAME 0x000A
2323 #define NETDEV_FEAT_CHANGE 0x000B
2324 #define NETDEV_BONDING_FAILOVER 0x000C
2325 #define NETDEV_PRE_UP 0x000D
2326 #define NETDEV_PRE_TYPE_CHANGE 0x000E
2327 #define NETDEV_POST_TYPE_CHANGE 0x000F
2328 #define NETDEV_POST_INIT 0x0010
2329 #define NETDEV_UNREGISTER_FINAL 0x0011
2330 #define NETDEV_RELEASE 0x0012
2331 #define NETDEV_NOTIFY_PEERS 0x0013
2332 #define NETDEV_JOIN 0x0014
2333 #define NETDEV_CHANGEUPPER 0x0015
2334 #define NETDEV_RESEND_IGMP 0x0016
2335 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */
2336 #define NETDEV_CHANGEINFODATA 0x0018
2337 #define NETDEV_BONDING_INFO 0x0019
2338 #define NETDEV_PRECHANGEUPPER 0x001A
2339 #define NETDEV_CHANGELOWERSTATE 0x001B
2340 #define NETDEV_UDP_TUNNEL_PUSH_INFO 0x001C
2341 #define NETDEV_UDP_TUNNEL_DROP_INFO 0x001D
2342 #define NETDEV_CHANGE_TX_QUEUE_LEN 0x001E
2343
2344 int register_netdevice_notifier(struct notifier_block *nb);
2345 int unregister_netdevice_notifier(struct notifier_block *nb);
2346
2347 struct netdev_notifier_info {
2348 struct net_device *dev;
2349 struct netlink_ext_ack *extack;
2350 };
2351
2352 struct netdev_notifier_info_ext {
2353 struct netdev_notifier_info info; /* must be first */
2354 union {
2355 u32 mtu;
2356 } ext;
2357 };
2358
2359 struct netdev_notifier_change_info {
2360 struct netdev_notifier_info info; /* must be first */
2361 unsigned int flags_changed;
2362 };
2363
2364 struct netdev_notifier_changeupper_info {
2365 struct netdev_notifier_info info; /* must be first */
2366 struct net_device *upper_dev; /* new upper dev */
2367 bool master; /* is upper dev master */
2368 bool linking; /* is the notification for link or unlink */
2369 void *upper_info; /* upper dev info */
2370 };
2371
2372 struct netdev_notifier_changelowerstate_info {
2373 struct netdev_notifier_info info; /* must be first */
2374 void *lower_state_info; /* is lower dev state */
2375 };
2376
2377 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2378 struct net_device *dev)
2379 {
2380 info->dev = dev;
2381 info->extack = NULL;
2382 }
2383
2384 static inline struct net_device *
2385 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2386 {
2387 return info->dev;
2388 }
2389
2390 static inline struct netlink_ext_ack *
2391 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2392 {
2393 return info->extack;
2394 }
2395
2396 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2397
2398
2399 extern rwlock_t dev_base_lock; /* Device list lock */
2400
2401 #define for_each_netdev(net, d) \
2402 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2403 #define for_each_netdev_reverse(net, d) \
2404 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2405 #define for_each_netdev_rcu(net, d) \
2406 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2407 #define for_each_netdev_safe(net, d, n) \
2408 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2409 #define for_each_netdev_continue(net, d) \
2410 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2411 #define for_each_netdev_continue_rcu(net, d) \
2412 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2413 #define for_each_netdev_in_bond_rcu(bond, slave) \
2414 for_each_netdev_rcu(&init_net, slave) \
2415 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2416 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2417
2418 static inline struct net_device *next_net_device(struct net_device *dev)
2419 {
2420 struct list_head *lh;
2421 struct net *net;
2422
2423 net = dev_net(dev);
2424 lh = dev->dev_list.next;
2425 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2426 }
2427
2428 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2429 {
2430 struct list_head *lh;
2431 struct net *net;
2432
2433 net = dev_net(dev);
2434 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2435 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2436 }
2437
2438 static inline struct net_device *first_net_device(struct net *net)
2439 {
2440 return list_empty(&net->dev_base_head) ? NULL :
2441 net_device_entry(net->dev_base_head.next);
2442 }
2443
2444 static inline struct net_device *first_net_device_rcu(struct net *net)
2445 {
2446 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2447
2448 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2449 }
2450
2451 int netdev_boot_setup_check(struct net_device *dev);
2452 unsigned long netdev_boot_base(const char *prefix, int unit);
2453 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2454 const char *hwaddr);
2455 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2456 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2457 void dev_add_pack(struct packet_type *pt);
2458 void dev_remove_pack(struct packet_type *pt);
2459 void __dev_remove_pack(struct packet_type *pt);
2460 void dev_add_offload(struct packet_offload *po);
2461 void dev_remove_offload(struct packet_offload *po);
2462
2463 int dev_get_iflink(const struct net_device *dev);
2464 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2465 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2466 unsigned short mask);
2467 struct net_device *dev_get_by_name(struct net *net, const char *name);
2468 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2469 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2470 int dev_alloc_name(struct net_device *dev, const char *name);
2471 int dev_open(struct net_device *dev);
2472 void dev_close(struct net_device *dev);
2473 void dev_close_many(struct list_head *head, bool unlink);
2474 void dev_disable_lro(struct net_device *dev);
2475 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2476 int dev_queue_xmit(struct sk_buff *skb);
2477 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2478 int register_netdevice(struct net_device *dev);
2479 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2480 void unregister_netdevice_many(struct list_head *head);
2481 static inline void unregister_netdevice(struct net_device *dev)
2482 {
2483 unregister_netdevice_queue(dev, NULL);
2484 }
2485
2486 int netdev_refcnt_read(const struct net_device *dev);
2487 void free_netdev(struct net_device *dev);
2488 void netdev_freemem(struct net_device *dev);
2489 void synchronize_net(void);
2490 int init_dummy_netdev(struct net_device *dev);
2491
2492 DECLARE_PER_CPU(int, xmit_recursion);
2493 #define XMIT_RECURSION_LIMIT 10
2494
2495 static inline int dev_recursion_level(void)
2496 {
2497 return this_cpu_read(xmit_recursion);
2498 }
2499
2500 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2501 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2502 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2503 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2504 int netdev_get_name(struct net *net, char *name, int ifindex);
2505 int dev_restart(struct net_device *dev);
2506 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2507
2508 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2509 {
2510 return NAPI_GRO_CB(skb)->data_offset;
2511 }
2512
2513 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2514 {
2515 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2516 }
2517
2518 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2519 {
2520 NAPI_GRO_CB(skb)->data_offset += len;
2521 }
2522
2523 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2524 unsigned int offset)
2525 {
2526 return NAPI_GRO_CB(skb)->frag0 + offset;
2527 }
2528
2529 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2530 {
2531 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2532 }
2533
2534 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2535 {
2536 NAPI_GRO_CB(skb)->frag0 = NULL;
2537 NAPI_GRO_CB(skb)->frag0_len = 0;
2538 }
2539
2540 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2541 unsigned int offset)
2542 {
2543 if (!pskb_may_pull(skb, hlen))
2544 return NULL;
2545
2546 skb_gro_frag0_invalidate(skb);
2547 return skb->data + offset;
2548 }
2549
2550 static inline void *skb_gro_network_header(struct sk_buff *skb)
2551 {
2552 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2553 skb_network_offset(skb);
2554 }
2555
2556 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2557 const void *start, unsigned int len)
2558 {
2559 if (NAPI_GRO_CB(skb)->csum_valid)
2560 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2561 csum_partial(start, len, 0));
2562 }
2563
2564 /* GRO checksum functions. These are logical equivalents of the normal
2565 * checksum functions (in skbuff.h) except that they operate on the GRO
2566 * offsets and fields in sk_buff.
2567 */
2568
2569 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2570
2571 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2572 {
2573 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2574 }
2575
2576 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2577 bool zero_okay,
2578 __sum16 check)
2579 {
2580 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2581 skb_checksum_start_offset(skb) <
2582 skb_gro_offset(skb)) &&
2583 !skb_at_gro_remcsum_start(skb) &&
2584 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2585 (!zero_okay || check));
2586 }
2587
2588 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2589 __wsum psum)
2590 {
2591 if (NAPI_GRO_CB(skb)->csum_valid &&
2592 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2593 return 0;
2594
2595 NAPI_GRO_CB(skb)->csum = psum;
2596
2597 return __skb_gro_checksum_complete(skb);
2598 }
2599
2600 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2601 {
2602 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2603 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2604 NAPI_GRO_CB(skb)->csum_cnt--;
2605 } else {
2606 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2607 * verified a new top level checksum or an encapsulated one
2608 * during GRO. This saves work if we fallback to normal path.
2609 */
2610 __skb_incr_checksum_unnecessary(skb);
2611 }
2612 }
2613
2614 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2615 compute_pseudo) \
2616 ({ \
2617 __sum16 __ret = 0; \
2618 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2619 __ret = __skb_gro_checksum_validate_complete(skb, \
2620 compute_pseudo(skb, proto)); \
2621 if (!__ret) \
2622 skb_gro_incr_csum_unnecessary(skb); \
2623 __ret; \
2624 })
2625
2626 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2627 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2628
2629 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2630 compute_pseudo) \
2631 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2632
2633 #define skb_gro_checksum_simple_validate(skb) \
2634 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2635
2636 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2637 {
2638 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2639 !NAPI_GRO_CB(skb)->csum_valid);
2640 }
2641
2642 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2643 __sum16 check, __wsum pseudo)
2644 {
2645 NAPI_GRO_CB(skb)->csum = ~pseudo;
2646 NAPI_GRO_CB(skb)->csum_valid = 1;
2647 }
2648
2649 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2650 do { \
2651 if (__skb_gro_checksum_convert_check(skb)) \
2652 __skb_gro_checksum_convert(skb, check, \
2653 compute_pseudo(skb, proto)); \
2654 } while (0)
2655
2656 struct gro_remcsum {
2657 int offset;
2658 __wsum delta;
2659 };
2660
2661 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2662 {
2663 grc->offset = 0;
2664 grc->delta = 0;
2665 }
2666
2667 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2668 unsigned int off, size_t hdrlen,
2669 int start, int offset,
2670 struct gro_remcsum *grc,
2671 bool nopartial)
2672 {
2673 __wsum delta;
2674 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2675
2676 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2677
2678 if (!nopartial) {
2679 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2680 return ptr;
2681 }
2682
2683 ptr = skb_gro_header_fast(skb, off);
2684 if (skb_gro_header_hard(skb, off + plen)) {
2685 ptr = skb_gro_header_slow(skb, off + plen, off);
2686 if (!ptr)
2687 return NULL;
2688 }
2689
2690 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2691 start, offset);
2692
2693 /* Adjust skb->csum since we changed the packet */
2694 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2695
2696 grc->offset = off + hdrlen + offset;
2697 grc->delta = delta;
2698
2699 return ptr;
2700 }
2701
2702 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2703 struct gro_remcsum *grc)
2704 {
2705 void *ptr;
2706 size_t plen = grc->offset + sizeof(u16);
2707
2708 if (!grc->delta)
2709 return;
2710
2711 ptr = skb_gro_header_fast(skb, grc->offset);
2712 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2713 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2714 if (!ptr)
2715 return;
2716 }
2717
2718 remcsum_unadjust((__sum16 *)ptr, grc->delta);
2719 }
2720
2721 #ifdef CONFIG_XFRM_OFFLOAD
2722 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2723 {
2724 if (PTR_ERR(pp) != -EINPROGRESS)
2725 NAPI_GRO_CB(skb)->flush |= flush;
2726 }
2727 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2728 struct sk_buff **pp,
2729 int flush,
2730 struct gro_remcsum *grc)
2731 {
2732 if (PTR_ERR(pp) != -EINPROGRESS) {
2733 NAPI_GRO_CB(skb)->flush |= flush;
2734 skb_gro_remcsum_cleanup(skb, grc);
2735 skb->remcsum_offload = 0;
2736 }
2737 }
2738 #else
2739 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2740 {
2741 NAPI_GRO_CB(skb)->flush |= flush;
2742 }
2743 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2744 struct sk_buff **pp,
2745 int flush,
2746 struct gro_remcsum *grc)
2747 {
2748 NAPI_GRO_CB(skb)->flush |= flush;
2749 skb_gro_remcsum_cleanup(skb, grc);
2750 skb->remcsum_offload = 0;
2751 }
2752 #endif
2753
2754 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2755 unsigned short type,
2756 const void *daddr, const void *saddr,
2757 unsigned int len)
2758 {
2759 if (!dev->header_ops || !dev->header_ops->create)
2760 return 0;
2761
2762 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2763 }
2764
2765 static inline int dev_parse_header(const struct sk_buff *skb,
2766 unsigned char *haddr)
2767 {
2768 const struct net_device *dev = skb->dev;
2769
2770 if (!dev->header_ops || !dev->header_ops->parse)
2771 return 0;
2772 return dev->header_ops->parse(skb, haddr);
2773 }
2774
2775 /* ll_header must have at least hard_header_len allocated */
2776 static inline bool dev_validate_header(const struct net_device *dev,
2777 char *ll_header, int len)
2778 {
2779 if (likely(len >= dev->hard_header_len))
2780 return true;
2781 if (len < dev->min_header_len)
2782 return false;
2783
2784 if (capable(CAP_SYS_RAWIO)) {
2785 memset(ll_header + len, 0, dev->hard_header_len - len);
2786 return true;
2787 }
2788
2789 if (dev->header_ops && dev->header_ops->validate)
2790 return dev->header_ops->validate(ll_header, len);
2791
2792 return false;
2793 }
2794
2795 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2796 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2797 static inline int unregister_gifconf(unsigned int family)
2798 {
2799 return register_gifconf(family, NULL);
2800 }
2801
2802 #ifdef CONFIG_NET_FLOW_LIMIT
2803 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
2804 struct sd_flow_limit {
2805 u64 count;
2806 unsigned int num_buckets;
2807 unsigned int history_head;
2808 u16 history[FLOW_LIMIT_HISTORY];
2809 u8 buckets[];
2810 };
2811
2812 extern int netdev_flow_limit_table_len;
2813 #endif /* CONFIG_NET_FLOW_LIMIT */
2814
2815 /*
2816 * Incoming packets are placed on per-CPU queues
2817 */
2818 struct softnet_data {
2819 struct list_head poll_list;
2820 struct sk_buff_head process_queue;
2821
2822 /* stats */
2823 unsigned int processed;
2824 unsigned int time_squeeze;
2825 unsigned int received_rps;
2826 #ifdef CONFIG_RPS
2827 struct softnet_data *rps_ipi_list;
2828 #endif
2829 #ifdef CONFIG_NET_FLOW_LIMIT
2830 struct sd_flow_limit __rcu *flow_limit;
2831 #endif
2832 struct Qdisc *output_queue;
2833 struct Qdisc **output_queue_tailp;
2834 struct sk_buff *completion_queue;
2835
2836 #ifdef CONFIG_RPS
2837 /* input_queue_head should be written by cpu owning this struct,
2838 * and only read by other cpus. Worth using a cache line.
2839 */
2840 unsigned int input_queue_head ____cacheline_aligned_in_smp;
2841
2842 /* Elements below can be accessed between CPUs for RPS/RFS */
2843 call_single_data_t csd ____cacheline_aligned_in_smp;
2844 struct softnet_data *rps_ipi_next;
2845 unsigned int cpu;
2846 unsigned int input_queue_tail;
2847 #endif
2848 unsigned int dropped;
2849 struct sk_buff_head input_pkt_queue;
2850 struct napi_struct backlog;
2851
2852 };
2853
2854 static inline void input_queue_head_incr(struct softnet_data *sd)
2855 {
2856 #ifdef CONFIG_RPS
2857 sd->input_queue_head++;
2858 #endif
2859 }
2860
2861 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2862 unsigned int *qtail)
2863 {
2864 #ifdef CONFIG_RPS
2865 *qtail = ++sd->input_queue_tail;
2866 #endif
2867 }
2868
2869 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2870
2871 void __netif_schedule(struct Qdisc *q);
2872 void netif_schedule_queue(struct netdev_queue *txq);
2873
2874 static inline void netif_tx_schedule_all(struct net_device *dev)
2875 {
2876 unsigned int i;
2877
2878 for (i = 0; i < dev->num_tx_queues; i++)
2879 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2880 }
2881
2882 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2883 {
2884 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2885 }
2886
2887 /**
2888 * netif_start_queue - allow transmit
2889 * @dev: network device
2890 *
2891 * Allow upper layers to call the device hard_start_xmit routine.
2892 */
2893 static inline void netif_start_queue(struct net_device *dev)
2894 {
2895 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2896 }
2897
2898 static inline void netif_tx_start_all_queues(struct net_device *dev)
2899 {
2900 unsigned int i;
2901
2902 for (i = 0; i < dev->num_tx_queues; i++) {
2903 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2904 netif_tx_start_queue(txq);
2905 }
2906 }
2907
2908 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2909
2910 /**
2911 * netif_wake_queue - restart transmit
2912 * @dev: network device
2913 *
2914 * Allow upper layers to call the device hard_start_xmit routine.
2915 * Used for flow control when transmit resources are available.
2916 */
2917 static inline void netif_wake_queue(struct net_device *dev)
2918 {
2919 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2920 }
2921
2922 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2923 {
2924 unsigned int i;
2925
2926 for (i = 0; i < dev->num_tx_queues; i++) {
2927 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2928 netif_tx_wake_queue(txq);
2929 }
2930 }
2931
2932 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2933 {
2934 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2935 }
2936
2937 /**
2938 * netif_stop_queue - stop transmitted packets
2939 * @dev: network device
2940 *
2941 * Stop upper layers calling the device hard_start_xmit routine.
2942 * Used for flow control when transmit resources are unavailable.
2943 */
2944 static inline void netif_stop_queue(struct net_device *dev)
2945 {
2946 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2947 }
2948
2949 void netif_tx_stop_all_queues(struct net_device *dev);
2950
2951 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2952 {
2953 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2954 }
2955
2956 /**
2957 * netif_queue_stopped - test if transmit queue is flowblocked
2958 * @dev: network device
2959 *
2960 * Test if transmit queue on device is currently unable to send.
2961 */
2962 static inline bool netif_queue_stopped(const struct net_device *dev)
2963 {
2964 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2965 }
2966
2967 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2968 {
2969 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2970 }
2971
2972 static inline bool
2973 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2974 {
2975 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2976 }
2977
2978 static inline bool
2979 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2980 {
2981 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2982 }
2983
2984 /**
2985 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2986 * @dev_queue: pointer to transmit queue
2987 *
2988 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2989 * to give appropriate hint to the CPU.
2990 */
2991 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2992 {
2993 #ifdef CONFIG_BQL
2994 prefetchw(&dev_queue->dql.num_queued);
2995 #endif
2996 }
2997
2998 /**
2999 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3000 * @dev_queue: pointer to transmit queue
3001 *
3002 * BQL enabled drivers might use this helper in their TX completion path,
3003 * to give appropriate hint to the CPU.
3004 */
3005 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3006 {
3007 #ifdef CONFIG_BQL
3008 prefetchw(&dev_queue->dql.limit);
3009 #endif
3010 }
3011
3012 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3013 unsigned int bytes)
3014 {
3015 #ifdef CONFIG_BQL
3016 dql_queued(&dev_queue->dql, bytes);
3017
3018 if (likely(dql_avail(&dev_queue->dql) >= 0))
3019 return;
3020
3021 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3022
3023 /*
3024 * The XOFF flag must be set before checking the dql_avail below,
3025 * because in netdev_tx_completed_queue we update the dql_completed
3026 * before checking the XOFF flag.
3027 */
3028 smp_mb();
3029
3030 /* check again in case another CPU has just made room avail */
3031 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3032 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3033 #endif
3034 }
3035
3036 /**
3037 * netdev_sent_queue - report the number of bytes queued to hardware
3038 * @dev: network device
3039 * @bytes: number of bytes queued to the hardware device queue
3040 *
3041 * Report the number of bytes queued for sending/completion to the network
3042 * device hardware queue. @bytes should be a good approximation and should
3043 * exactly match netdev_completed_queue() @bytes
3044 */
3045 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3046 {
3047 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3048 }
3049
3050 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3051 unsigned int pkts, unsigned int bytes)
3052 {
3053 #ifdef CONFIG_BQL
3054 if (unlikely(!bytes))
3055 return;
3056
3057 dql_completed(&dev_queue->dql, bytes);
3058
3059 /*
3060 * Without the memory barrier there is a small possiblity that
3061 * netdev_tx_sent_queue will miss the update and cause the queue to
3062 * be stopped forever
3063 */
3064 smp_mb();
3065
3066 if (dql_avail(&dev_queue->dql) < 0)
3067 return;
3068
3069 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3070 netif_schedule_queue(dev_queue);
3071 #endif
3072 }
3073
3074 /**
3075 * netdev_completed_queue - report bytes and packets completed by device
3076 * @dev: network device
3077 * @pkts: actual number of packets sent over the medium
3078 * @bytes: actual number of bytes sent over the medium
3079 *
3080 * Report the number of bytes and packets transmitted by the network device
3081 * hardware queue over the physical medium, @bytes must exactly match the
3082 * @bytes amount passed to netdev_sent_queue()
3083 */
3084 static inline void netdev_completed_queue(struct net_device *dev,
3085 unsigned int pkts, unsigned int bytes)
3086 {
3087 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3088 }
3089
3090 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3091 {
3092 #ifdef CONFIG_BQL
3093 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3094 dql_reset(&q->dql);
3095 #endif
3096 }
3097
3098 /**
3099 * netdev_reset_queue - reset the packets and bytes count of a network device
3100 * @dev_queue: network device
3101 *
3102 * Reset the bytes and packet count of a network device and clear the
3103 * software flow control OFF bit for this network device
3104 */
3105 static inline void netdev_reset_queue(struct net_device *dev_queue)
3106 {
3107 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3108 }
3109
3110 /**
3111 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3112 * @dev: network device
3113 * @queue_index: given tx queue index
3114 *
3115 * Returns 0 if given tx queue index >= number of device tx queues,
3116 * otherwise returns the originally passed tx queue index.
3117 */
3118 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3119 {
3120 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3121 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3122 dev->name, queue_index,
3123 dev->real_num_tx_queues);
3124 return 0;
3125 }
3126
3127 return queue_index;
3128 }
3129
3130 /**
3131 * netif_running - test if up
3132 * @dev: network device
3133 *
3134 * Test if the device has been brought up.
3135 */
3136 static inline bool netif_running(const struct net_device *dev)
3137 {
3138 return test_bit(__LINK_STATE_START, &dev->state);
3139 }
3140
3141 /*
3142 * Routines to manage the subqueues on a device. We only need start,
3143 * stop, and a check if it's stopped. All other device management is
3144 * done at the overall netdevice level.
3145 * Also test the device if we're multiqueue.
3146 */
3147
3148 /**
3149 * netif_start_subqueue - allow sending packets on subqueue
3150 * @dev: network device
3151 * @queue_index: sub queue index
3152 *
3153 * Start individual transmit queue of a device with multiple transmit queues.
3154 */
3155 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3156 {
3157 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3158
3159 netif_tx_start_queue(txq);
3160 }
3161
3162 /**
3163 * netif_stop_subqueue - stop sending packets on subqueue
3164 * @dev: network device
3165 * @queue_index: sub queue index
3166 *
3167 * Stop individual transmit queue of a device with multiple transmit queues.
3168 */
3169 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3170 {
3171 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3172 netif_tx_stop_queue(txq);
3173 }
3174
3175 /**
3176 * netif_subqueue_stopped - test status of subqueue
3177 * @dev: network device
3178 * @queue_index: sub queue index
3179 *
3180 * Check individual transmit queue of a device with multiple transmit queues.
3181 */
3182 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3183 u16 queue_index)
3184 {
3185 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3186
3187 return netif_tx_queue_stopped(txq);
3188 }
3189
3190 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3191 struct sk_buff *skb)
3192 {
3193 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3194 }
3195
3196 /**
3197 * netif_wake_subqueue - allow sending packets on subqueue
3198 * @dev: network device
3199 * @queue_index: sub queue index
3200 *
3201 * Resume individual transmit queue of a device with multiple transmit queues.
3202 */
3203 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3204 {
3205 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3206
3207 netif_tx_wake_queue(txq);
3208 }
3209
3210 #ifdef CONFIG_XPS
3211 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3212 u16 index);
3213 #else
3214 static inline int netif_set_xps_queue(struct net_device *dev,
3215 const struct cpumask *mask,
3216 u16 index)
3217 {
3218 return 0;
3219 }
3220 #endif
3221
3222 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3223 unsigned int num_tx_queues);
3224
3225 /*
3226 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3227 * as a distribution range limit for the returned value.
3228 */
3229 static inline u16 skb_tx_hash(const struct net_device *dev,
3230 struct sk_buff *skb)
3231 {
3232 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3233 }
3234
3235 /**
3236 * netif_is_multiqueue - test if device has multiple transmit queues
3237 * @dev: network device
3238 *
3239 * Check if device has multiple transmit queues
3240 */
3241 static inline bool netif_is_multiqueue(const struct net_device *dev)
3242 {
3243 return dev->num_tx_queues > 1;
3244 }
3245
3246 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3247
3248 #ifdef CONFIG_SYSFS
3249 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3250 #else
3251 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3252 unsigned int rxq)
3253 {
3254 return 0;
3255 }
3256 #endif
3257
3258 #ifdef CONFIG_SYSFS
3259 static inline unsigned int get_netdev_rx_queue_index(
3260 struct netdev_rx_queue *queue)
3261 {
3262 struct net_device *dev = queue->dev;
3263 int index = queue - dev->_rx;
3264
3265 BUG_ON(index >= dev->num_rx_queues);
3266 return index;
3267 }
3268 #endif
3269
3270 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
3271 int netif_get_num_default_rss_queues(void);
3272
3273 enum skb_free_reason {
3274 SKB_REASON_CONSUMED,
3275 SKB_REASON_DROPPED,
3276 };
3277
3278 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3279 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3280
3281 /*
3282 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3283 * interrupt context or with hardware interrupts being disabled.
3284 * (in_irq() || irqs_disabled())
3285 *
3286 * We provide four helpers that can be used in following contexts :
3287 *
3288 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3289 * replacing kfree_skb(skb)
3290 *
3291 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3292 * Typically used in place of consume_skb(skb) in TX completion path
3293 *
3294 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3295 * replacing kfree_skb(skb)
3296 *
3297 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3298 * and consumed a packet. Used in place of consume_skb(skb)
3299 */
3300 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3301 {
3302 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3303 }
3304
3305 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3306 {
3307 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3308 }
3309
3310 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3311 {
3312 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3313 }
3314
3315 static inline void dev_consume_skb_any(struct sk_buff *skb)
3316 {
3317 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3318 }
3319
3320 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3321 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3322 int netif_rx(struct sk_buff *skb);
3323 int netif_rx_ni(struct sk_buff *skb);
3324 int netif_receive_skb(struct sk_buff *skb);
3325 int netif_receive_skb_core(struct sk_buff *skb);
3326 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3327 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3328 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3329 gro_result_t napi_gro_frags(struct napi_struct *napi);
3330 struct packet_offload *gro_find_receive_by_type(__be16 type);
3331 struct packet_offload *gro_find_complete_by_type(__be16 type);
3332
3333 static inline void napi_free_frags(struct napi_struct *napi)
3334 {
3335 kfree_skb(napi->skb);
3336 napi->skb = NULL;
3337 }
3338
3339 bool netdev_is_rx_handler_busy(struct net_device *dev);
3340 int netdev_rx_handler_register(struct net_device *dev,
3341 rx_handler_func_t *rx_handler,
3342 void *rx_handler_data);
3343 void netdev_rx_handler_unregister(struct net_device *dev);
3344
3345 bool dev_valid_name(const char *name);
3346 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3347 int dev_ethtool(struct net *net, struct ifreq *);
3348 unsigned int dev_get_flags(const struct net_device *);
3349 int __dev_change_flags(struct net_device *, unsigned int flags);
3350 int dev_change_flags(struct net_device *, unsigned int);
3351 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3352 unsigned int gchanges);
3353 int dev_change_name(struct net_device *, const char *);
3354 int dev_set_alias(struct net_device *, const char *, size_t);
3355 int dev_get_alias(const struct net_device *, char *, size_t);
3356 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3357 int __dev_set_mtu(struct net_device *, int);
3358 int dev_set_mtu(struct net_device *, int);
3359 void dev_set_group(struct net_device *, int);
3360 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3361 int dev_change_carrier(struct net_device *, bool new_carrier);
3362 int dev_get_phys_port_id(struct net_device *dev,
3363 struct netdev_phys_item_id *ppid);
3364 int dev_get_phys_port_name(struct net_device *dev,
3365 char *name, size_t len);
3366 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3367 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3368 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3369 struct netdev_queue *txq, int *ret);
3370
3371 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3372 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3373 int fd, u32 flags);
3374 u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t xdp_op, u32 *prog_id);
3375
3376 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3377 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3378 bool is_skb_forwardable(const struct net_device *dev,
3379 const struct sk_buff *skb);
3380
3381 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3382 struct sk_buff *skb)
3383 {
3384 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3385 unlikely(!is_skb_forwardable(dev, skb))) {
3386 atomic_long_inc(&dev->rx_dropped);
3387 kfree_skb(skb);
3388 return NET_RX_DROP;
3389 }
3390
3391 skb_scrub_packet(skb, true);
3392 skb->priority = 0;
3393 return 0;
3394 }
3395
3396 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3397
3398 extern int netdev_budget;
3399 extern unsigned int netdev_budget_usecs;
3400
3401 /* Called by rtnetlink.c:rtnl_unlock() */
3402 void netdev_run_todo(void);
3403
3404 /**
3405 * dev_put - release reference to device
3406 * @dev: network device
3407 *
3408 * Release reference to device to allow it to be freed.
3409 */
3410 static inline void dev_put(struct net_device *dev)
3411 {
3412 this_cpu_dec(*dev->pcpu_refcnt);
3413 }
3414
3415 /**
3416 * dev_hold - get reference to device
3417 * @dev: network device
3418 *
3419 * Hold reference to device to keep it from being freed.
3420 */
3421 static inline void dev_hold(struct net_device *dev)
3422 {
3423 this_cpu_inc(*dev->pcpu_refcnt);
3424 }
3425
3426 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3427 * and _off may be called from IRQ context, but it is caller
3428 * who is responsible for serialization of these calls.
3429 *
3430 * The name carrier is inappropriate, these functions should really be
3431 * called netif_lowerlayer_*() because they represent the state of any
3432 * kind of lower layer not just hardware media.
3433 */
3434
3435 void linkwatch_init_dev(struct net_device *dev);
3436 void linkwatch_fire_event(struct net_device *dev);
3437 void linkwatch_forget_dev(struct net_device *dev);
3438
3439 /**
3440 * netif_carrier_ok - test if carrier present
3441 * @dev: network device
3442 *
3443 * Check if carrier is present on device
3444 */
3445 static inline bool netif_carrier_ok(const struct net_device *dev)
3446 {
3447 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3448 }
3449
3450 unsigned long dev_trans_start(struct net_device *dev);
3451
3452 void __netdev_watchdog_up(struct net_device *dev);
3453
3454 void netif_carrier_on(struct net_device *dev);
3455
3456 void netif_carrier_off(struct net_device *dev);
3457
3458 /**
3459 * netif_dormant_on - mark device as dormant.
3460 * @dev: network device
3461 *
3462 * Mark device as dormant (as per RFC2863).
3463 *
3464 * The dormant state indicates that the relevant interface is not
3465 * actually in a condition to pass packets (i.e., it is not 'up') but is
3466 * in a "pending" state, waiting for some external event. For "on-
3467 * demand" interfaces, this new state identifies the situation where the
3468 * interface is waiting for events to place it in the up state.
3469 */
3470 static inline void netif_dormant_on(struct net_device *dev)
3471 {
3472 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3473 linkwatch_fire_event(dev);
3474 }
3475
3476 /**
3477 * netif_dormant_off - set device as not dormant.
3478 * @dev: network device
3479 *
3480 * Device is not in dormant state.
3481 */
3482 static inline void netif_dormant_off(struct net_device *dev)
3483 {
3484 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3485 linkwatch_fire_event(dev);
3486 }
3487
3488 /**
3489 * netif_dormant - test if device is dormant
3490 * @dev: network device
3491 *
3492 * Check if device is dormant.
3493 */
3494 static inline bool netif_dormant(const struct net_device *dev)
3495 {
3496 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3497 }
3498
3499
3500 /**
3501 * netif_oper_up - test if device is operational
3502 * @dev: network device
3503 *
3504 * Check if carrier is operational
3505 */
3506 static inline bool netif_oper_up(const struct net_device *dev)
3507 {
3508 return (dev->operstate == IF_OPER_UP ||
3509 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3510 }
3511
3512 /**
3513 * netif_device_present - is device available or removed
3514 * @dev: network device
3515 *
3516 * Check if device has not been removed from system.
3517 */
3518 static inline bool netif_device_present(struct net_device *dev)
3519 {
3520 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3521 }
3522
3523 void netif_device_detach(struct net_device *dev);
3524
3525 void netif_device_attach(struct net_device *dev);
3526
3527 /*
3528 * Network interface message level settings
3529 */
3530
3531 enum {
3532 NETIF_MSG_DRV = 0x0001,
3533 NETIF_MSG_PROBE = 0x0002,
3534 NETIF_MSG_LINK = 0x0004,
3535 NETIF_MSG_TIMER = 0x0008,
3536 NETIF_MSG_IFDOWN = 0x0010,
3537 NETIF_MSG_IFUP = 0x0020,
3538 NETIF_MSG_RX_ERR = 0x0040,
3539 NETIF_MSG_TX_ERR = 0x0080,
3540 NETIF_MSG_TX_QUEUED = 0x0100,
3541 NETIF_MSG_INTR = 0x0200,
3542 NETIF_MSG_TX_DONE = 0x0400,
3543 NETIF_MSG_RX_STATUS = 0x0800,
3544 NETIF_MSG_PKTDATA = 0x1000,
3545 NETIF_MSG_HW = 0x2000,
3546 NETIF_MSG_WOL = 0x4000,
3547 };
3548
3549 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3550 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3551 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3552 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3553 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3554 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3555 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3556 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3557 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3558 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3559 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3560 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3561 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3562 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3563 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3564
3565 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3566 {
3567 /* use default */
3568 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3569 return default_msg_enable_bits;
3570 if (debug_value == 0) /* no output */
3571 return 0;
3572 /* set low N bits */
3573 return (1U << debug_value) - 1;
3574 }
3575
3576 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3577 {
3578 spin_lock(&txq->_xmit_lock);
3579 txq->xmit_lock_owner = cpu;
3580 }
3581
3582 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3583 {
3584 __acquire(&txq->_xmit_lock);
3585 return true;
3586 }
3587
3588 static inline void __netif_tx_release(struct netdev_queue *txq)
3589 {
3590 __release(&txq->_xmit_lock);
3591 }
3592
3593 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3594 {
3595 spin_lock_bh(&txq->_xmit_lock);
3596 txq->xmit_lock_owner = smp_processor_id();
3597 }
3598
3599 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3600 {
3601 bool ok = spin_trylock(&txq->_xmit_lock);
3602 if (likely(ok))
3603 txq->xmit_lock_owner = smp_processor_id();
3604 return ok;
3605 }
3606
3607 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3608 {
3609 txq->xmit_lock_owner = -1;
3610 spin_unlock(&txq->_xmit_lock);
3611 }
3612
3613 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3614 {
3615 txq->xmit_lock_owner = -1;
3616 spin_unlock_bh(&txq->_xmit_lock);
3617 }
3618
3619 static inline void txq_trans_update(struct netdev_queue *txq)
3620 {
3621 if (txq->xmit_lock_owner != -1)
3622 txq->trans_start = jiffies;
3623 }
3624
3625 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3626 static inline void netif_trans_update(struct net_device *dev)
3627 {
3628 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3629
3630 if (txq->trans_start != jiffies)
3631 txq->trans_start = jiffies;
3632 }
3633
3634 /**
3635 * netif_tx_lock - grab network device transmit lock
3636 * @dev: network device
3637 *
3638 * Get network device transmit lock
3639 */
3640 static inline void netif_tx_lock(struct net_device *dev)
3641 {
3642 unsigned int i;
3643 int cpu;
3644
3645 spin_lock(&dev->tx_global_lock);
3646 cpu = smp_processor_id();
3647 for (i = 0; i < dev->num_tx_queues; i++) {
3648 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3649
3650 /* We are the only thread of execution doing a
3651 * freeze, but we have to grab the _xmit_lock in
3652 * order to synchronize with threads which are in
3653 * the ->hard_start_xmit() handler and already
3654 * checked the frozen bit.
3655 */
3656 __netif_tx_lock(txq, cpu);
3657 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3658 __netif_tx_unlock(txq);
3659 }
3660 }
3661
3662 static inline void netif_tx_lock_bh(struct net_device *dev)
3663 {
3664 local_bh_disable();
3665 netif_tx_lock(dev);
3666 }
3667
3668 static inline void netif_tx_unlock(struct net_device *dev)
3669 {
3670 unsigned int i;
3671
3672 for (i = 0; i < dev->num_tx_queues; i++) {
3673 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3674
3675 /* No need to grab the _xmit_lock here. If the
3676 * queue is not stopped for another reason, we
3677 * force a schedule.
3678 */
3679 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3680 netif_schedule_queue(txq);
3681 }
3682 spin_unlock(&dev->tx_global_lock);
3683 }
3684
3685 static inline void netif_tx_unlock_bh(struct net_device *dev)
3686 {
3687 netif_tx_unlock(dev);
3688 local_bh_enable();
3689 }
3690
3691 #define HARD_TX_LOCK(dev, txq, cpu) { \
3692 if ((dev->features & NETIF_F_LLTX) == 0) { \
3693 __netif_tx_lock(txq, cpu); \
3694 } else { \
3695 __netif_tx_acquire(txq); \
3696 } \
3697 }
3698
3699 #define HARD_TX_TRYLOCK(dev, txq) \
3700 (((dev->features & NETIF_F_LLTX) == 0) ? \
3701 __netif_tx_trylock(txq) : \
3702 __netif_tx_acquire(txq))
3703
3704 #define HARD_TX_UNLOCK(dev, txq) { \
3705 if ((dev->features & NETIF_F_LLTX) == 0) { \
3706 __netif_tx_unlock(txq); \
3707 } else { \
3708 __netif_tx_release(txq); \
3709 } \
3710 }
3711
3712 static inline void netif_tx_disable(struct net_device *dev)
3713 {
3714 unsigned int i;
3715 int cpu;
3716
3717 local_bh_disable();
3718 cpu = smp_processor_id();
3719 for (i = 0; i < dev->num_tx_queues; i++) {
3720 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3721
3722 __netif_tx_lock(txq, cpu);
3723 netif_tx_stop_queue(txq);
3724 __netif_tx_unlock(txq);
3725 }
3726 local_bh_enable();
3727 }
3728
3729 static inline void netif_addr_lock(struct net_device *dev)
3730 {
3731 spin_lock(&dev->addr_list_lock);
3732 }
3733
3734 static inline void netif_addr_lock_nested(struct net_device *dev)
3735 {
3736 int subclass = SINGLE_DEPTH_NESTING;
3737
3738 if (dev->netdev_ops->ndo_get_lock_subclass)
3739 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3740
3741 spin_lock_nested(&dev->addr_list_lock, subclass);
3742 }
3743
3744 static inline void netif_addr_lock_bh(struct net_device *dev)
3745 {
3746 spin_lock_bh(&dev->addr_list_lock);
3747 }
3748
3749 static inline void netif_addr_unlock(struct net_device *dev)
3750 {
3751 spin_unlock(&dev->addr_list_lock);
3752 }
3753
3754 static inline void netif_addr_unlock_bh(struct net_device *dev)
3755 {
3756 spin_unlock_bh(&dev->addr_list_lock);
3757 }
3758
3759 /*
3760 * dev_addrs walker. Should be used only for read access. Call with
3761 * rcu_read_lock held.
3762 */
3763 #define for_each_dev_addr(dev, ha) \
3764 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3765
3766 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3767
3768 void ether_setup(struct net_device *dev);
3769
3770 /* Support for loadable net-drivers */
3771 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3772 unsigned char name_assign_type,
3773 void (*setup)(struct net_device *),
3774 unsigned int txqs, unsigned int rxqs);
3775 int dev_get_valid_name(struct net *net, struct net_device *dev,
3776 const char *name);
3777
3778 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3779 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3780
3781 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3782 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3783 count)
3784
3785 int register_netdev(struct net_device *dev);
3786 void unregister_netdev(struct net_device *dev);
3787
3788 /* General hardware address lists handling functions */
3789 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3790 struct netdev_hw_addr_list *from_list, int addr_len);
3791 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3792 struct netdev_hw_addr_list *from_list, int addr_len);
3793 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3794 struct net_device *dev,
3795 int (*sync)(struct net_device *, const unsigned char *),
3796 int (*unsync)(struct net_device *,
3797 const unsigned char *));
3798 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3799 struct net_device *dev,
3800 int (*unsync)(struct net_device *,
3801 const unsigned char *));
3802 void __hw_addr_init(struct netdev_hw_addr_list *list);
3803
3804 /* Functions used for device addresses handling */
3805 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3806 unsigned char addr_type);
3807 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3808 unsigned char addr_type);
3809 void dev_addr_flush(struct net_device *dev);
3810 int dev_addr_init(struct net_device *dev);
3811
3812 /* Functions used for unicast addresses handling */
3813 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3814 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3815 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3816 int dev_uc_sync(struct net_device *to, struct net_device *from);
3817 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3818 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3819 void dev_uc_flush(struct net_device *dev);
3820 void dev_uc_init(struct net_device *dev);
3821
3822 /**
3823 * __dev_uc_sync - Synchonize device's unicast list
3824 * @dev: device to sync
3825 * @sync: function to call if address should be added
3826 * @unsync: function to call if address should be removed
3827 *
3828 * Add newly added addresses to the interface, and release
3829 * addresses that have been deleted.
3830 */
3831 static inline int __dev_uc_sync(struct net_device *dev,
3832 int (*sync)(struct net_device *,
3833 const unsigned char *),
3834 int (*unsync)(struct net_device *,
3835 const unsigned char *))
3836 {
3837 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3838 }
3839
3840 /**
3841 * __dev_uc_unsync - Remove synchronized addresses from device
3842 * @dev: device to sync
3843 * @unsync: function to call if address should be removed
3844 *
3845 * Remove all addresses that were added to the device by dev_uc_sync().
3846 */
3847 static inline void __dev_uc_unsync(struct net_device *dev,
3848 int (*unsync)(struct net_device *,
3849 const unsigned char *))
3850 {
3851 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3852 }
3853
3854 /* Functions used for multicast addresses handling */
3855 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3856 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3857 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3858 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3859 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3860 int dev_mc_sync(struct net_device *to, struct net_device *from);
3861 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3862 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3863 void dev_mc_flush(struct net_device *dev);
3864 void dev_mc_init(struct net_device *dev);
3865
3866 /**
3867 * __dev_mc_sync - Synchonize device's multicast list
3868 * @dev: device to sync
3869 * @sync: function to call if address should be added
3870 * @unsync: function to call if address should be removed
3871 *
3872 * Add newly added addresses to the interface, and release
3873 * addresses that have been deleted.
3874 */
3875 static inline int __dev_mc_sync(struct net_device *dev,
3876 int (*sync)(struct net_device *,
3877 const unsigned char *),
3878 int (*unsync)(struct net_device *,
3879 const unsigned char *))
3880 {
3881 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3882 }
3883
3884 /**
3885 * __dev_mc_unsync - Remove synchronized addresses from device
3886 * @dev: device to sync
3887 * @unsync: function to call if address should be removed
3888 *
3889 * Remove all addresses that were added to the device by dev_mc_sync().
3890 */
3891 static inline void __dev_mc_unsync(struct net_device *dev,
3892 int (*unsync)(struct net_device *,
3893 const unsigned char *))
3894 {
3895 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3896 }
3897
3898 /* Functions used for secondary unicast and multicast support */
3899 void dev_set_rx_mode(struct net_device *dev);
3900 void __dev_set_rx_mode(struct net_device *dev);
3901 int dev_set_promiscuity(struct net_device *dev, int inc);
3902 int dev_set_allmulti(struct net_device *dev, int inc);
3903 void netdev_state_change(struct net_device *dev);
3904 void netdev_notify_peers(struct net_device *dev);
3905 void netdev_features_change(struct net_device *dev);
3906 /* Load a device via the kmod */
3907 void dev_load(struct net *net, const char *name);
3908 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3909 struct rtnl_link_stats64 *storage);
3910 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3911 const struct net_device_stats *netdev_stats);
3912
3913 extern int netdev_max_backlog;
3914 extern int netdev_tstamp_prequeue;
3915 extern int weight_p;
3916 extern int dev_weight_rx_bias;
3917 extern int dev_weight_tx_bias;
3918 extern int dev_rx_weight;
3919 extern int dev_tx_weight;
3920
3921 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3922 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3923 struct list_head **iter);
3924 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3925 struct list_head **iter);
3926
3927 /* iterate through upper list, must be called under RCU read lock */
3928 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3929 for (iter = &(dev)->adj_list.upper, \
3930 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3931 updev; \
3932 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3933
3934 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
3935 int (*fn)(struct net_device *upper_dev,
3936 void *data),
3937 void *data);
3938
3939 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
3940 struct net_device *upper_dev);
3941
3942 bool netdev_has_any_upper_dev(struct net_device *dev);
3943
3944 void *netdev_lower_get_next_private(struct net_device *dev,
3945 struct list_head **iter);
3946 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3947 struct list_head **iter);
3948
3949 #define netdev_for_each_lower_private(dev, priv, iter) \
3950 for (iter = (dev)->adj_list.lower.next, \
3951 priv = netdev_lower_get_next_private(dev, &(iter)); \
3952 priv; \
3953 priv = netdev_lower_get_next_private(dev, &(iter)))
3954
3955 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3956 for (iter = &(dev)->adj_list.lower, \
3957 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3958 priv; \
3959 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3960
3961 void *netdev_lower_get_next(struct net_device *dev,
3962 struct list_head **iter);
3963
3964 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3965 for (iter = (dev)->adj_list.lower.next, \
3966 ldev = netdev_lower_get_next(dev, &(iter)); \
3967 ldev; \
3968 ldev = netdev_lower_get_next(dev, &(iter)))
3969
3970 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
3971 struct list_head **iter);
3972 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
3973 struct list_head **iter);
3974
3975 int netdev_walk_all_lower_dev(struct net_device *dev,
3976 int (*fn)(struct net_device *lower_dev,
3977 void *data),
3978 void *data);
3979 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
3980 int (*fn)(struct net_device *lower_dev,
3981 void *data),
3982 void *data);
3983
3984 void *netdev_adjacent_get_private(struct list_head *adj_list);
3985 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3986 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3987 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3988 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
3989 struct netlink_ext_ack *extack);
3990 int netdev_master_upper_dev_link(struct net_device *dev,
3991 struct net_device *upper_dev,
3992 void *upper_priv, void *upper_info,
3993 struct netlink_ext_ack *extack);
3994 void netdev_upper_dev_unlink(struct net_device *dev,
3995 struct net_device *upper_dev);
3996 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3997 void *netdev_lower_dev_get_private(struct net_device *dev,
3998 struct net_device *lower_dev);
3999 void netdev_lower_state_changed(struct net_device *lower_dev,
4000 void *lower_state_info);
4001
4002 /* RSS keys are 40 or 52 bytes long */
4003 #define NETDEV_RSS_KEY_LEN 52
4004 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4005 void netdev_rss_key_fill(void *buffer, size_t len);
4006
4007 int dev_get_nest_level(struct net_device *dev);
4008 int skb_checksum_help(struct sk_buff *skb);
4009 int skb_crc32c_csum_help(struct sk_buff *skb);
4010 int skb_csum_hwoffload_help(struct sk_buff *skb,
4011 const netdev_features_t features);
4012
4013 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4014 netdev_features_t features, bool tx_path);
4015 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4016 netdev_features_t features);
4017
4018 struct netdev_bonding_info {
4019 ifslave slave;
4020 ifbond master;
4021 };
4022
4023 struct netdev_notifier_bonding_info {
4024 struct netdev_notifier_info info; /* must be first */
4025 struct netdev_bonding_info bonding_info;
4026 };
4027
4028 void netdev_bonding_info_change(struct net_device *dev,
4029 struct netdev_bonding_info *bonding_info);
4030
4031 static inline
4032 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4033 {
4034 return __skb_gso_segment(skb, features, true);
4035 }
4036 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4037
4038 static inline bool can_checksum_protocol(netdev_features_t features,
4039 __be16 protocol)
4040 {
4041 if (protocol == htons(ETH_P_FCOE))
4042 return !!(features & NETIF_F_FCOE_CRC);
4043
4044 /* Assume this is an IP checksum (not SCTP CRC) */
4045
4046 if (features & NETIF_F_HW_CSUM) {
4047 /* Can checksum everything */
4048 return true;
4049 }
4050
4051 switch (protocol) {
4052 case htons(ETH_P_IP):
4053 return !!(features & NETIF_F_IP_CSUM);
4054 case htons(ETH_P_IPV6):
4055 return !!(features & NETIF_F_IPV6_CSUM);
4056 default:
4057 return false;
4058 }
4059 }
4060
4061 #ifdef CONFIG_BUG
4062 void netdev_rx_csum_fault(struct net_device *dev);
4063 #else
4064 static inline void netdev_rx_csum_fault(struct net_device *dev)
4065 {
4066 }
4067 #endif
4068 /* rx skb timestamps */
4069 void net_enable_timestamp(void);
4070 void net_disable_timestamp(void);
4071
4072 #ifdef CONFIG_PROC_FS
4073 int __init dev_proc_init(void);
4074 #else
4075 #define dev_proc_init() 0
4076 #endif
4077
4078 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4079 struct sk_buff *skb, struct net_device *dev,
4080 bool more)
4081 {
4082 skb->xmit_more = more ? 1 : 0;
4083 return ops->ndo_start_xmit(skb, dev);
4084 }
4085
4086 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4087 struct netdev_queue *txq, bool more)
4088 {
4089 const struct net_device_ops *ops = dev->netdev_ops;
4090 int rc;
4091
4092 rc = __netdev_start_xmit(ops, skb, dev, more);
4093 if (rc == NETDEV_TX_OK)
4094 txq_trans_update(txq);
4095
4096 return rc;
4097 }
4098
4099 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4100 const void *ns);
4101 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4102 const void *ns);
4103
4104 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4105 {
4106 return netdev_class_create_file_ns(class_attr, NULL);
4107 }
4108
4109 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4110 {
4111 netdev_class_remove_file_ns(class_attr, NULL);
4112 }
4113
4114 extern const struct kobj_ns_type_operations net_ns_type_operations;
4115
4116 const char *netdev_drivername(const struct net_device *dev);
4117
4118 void linkwatch_run_queue(void);
4119
4120 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4121 netdev_features_t f2)
4122 {
4123 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4124 if (f1 & NETIF_F_HW_CSUM)
4125 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4126 else
4127 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4128 }
4129
4130 return f1 & f2;
4131 }
4132
4133 static inline netdev_features_t netdev_get_wanted_features(
4134 struct net_device *dev)
4135 {
4136 return (dev->features & ~dev->hw_features) | dev->wanted_features;
4137 }
4138 netdev_features_t netdev_increment_features(netdev_features_t all,
4139 netdev_features_t one, netdev_features_t mask);
4140
4141 /* Allow TSO being used on stacked device :
4142 * Performing the GSO segmentation before last device
4143 * is a performance improvement.
4144 */
4145 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4146 netdev_features_t mask)
4147 {
4148 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4149 }
4150
4151 int __netdev_update_features(struct net_device *dev);
4152 void netdev_update_features(struct net_device *dev);
4153 void netdev_change_features(struct net_device *dev);
4154
4155 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4156 struct net_device *dev);
4157
4158 netdev_features_t passthru_features_check(struct sk_buff *skb,
4159 struct net_device *dev,
4160 netdev_features_t features);
4161 netdev_features_t netif_skb_features(struct sk_buff *skb);
4162
4163 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4164 {
4165 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4166
4167 /* check flags correspondence */
4168 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4169 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4170 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4171 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4172 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4173 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4174 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4175 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4176 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4177 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4178 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4179 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4180 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4181 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4182 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4183 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4184 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4185
4186 return (features & feature) == feature;
4187 }
4188
4189 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4190 {
4191 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4192 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4193 }
4194
4195 static inline bool netif_needs_gso(struct sk_buff *skb,
4196 netdev_features_t features)
4197 {
4198 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4199 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4200 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4201 }
4202
4203 static inline void netif_set_gso_max_size(struct net_device *dev,
4204 unsigned int size)
4205 {
4206 dev->gso_max_size = size;
4207 }
4208
4209 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4210 int pulled_hlen, u16 mac_offset,
4211 int mac_len)
4212 {
4213 skb->protocol = protocol;
4214 skb->encapsulation = 1;
4215 skb_push(skb, pulled_hlen);
4216 skb_reset_transport_header(skb);
4217 skb->mac_header = mac_offset;
4218 skb->network_header = skb->mac_header + mac_len;
4219 skb->mac_len = mac_len;
4220 }
4221
4222 static inline bool netif_is_macsec(const struct net_device *dev)
4223 {
4224 return dev->priv_flags & IFF_MACSEC;
4225 }
4226
4227 static inline bool netif_is_macvlan(const struct net_device *dev)
4228 {
4229 return dev->priv_flags & IFF_MACVLAN;
4230 }
4231
4232 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4233 {
4234 return dev->priv_flags & IFF_MACVLAN_PORT;
4235 }
4236
4237 static inline bool netif_is_ipvlan(const struct net_device *dev)
4238 {
4239 return dev->priv_flags & IFF_IPVLAN_SLAVE;
4240 }
4241
4242 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4243 {
4244 return dev->priv_flags & IFF_IPVLAN_MASTER;
4245 }
4246
4247 static inline bool netif_is_bond_master(const struct net_device *dev)
4248 {
4249 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4250 }
4251
4252 static inline bool netif_is_bond_slave(const struct net_device *dev)
4253 {
4254 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4255 }
4256
4257 static inline bool netif_supports_nofcs(struct net_device *dev)
4258 {
4259 return dev->priv_flags & IFF_SUPP_NOFCS;
4260 }
4261
4262 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4263 {
4264 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4265 }
4266
4267 static inline bool netif_is_l3_master(const struct net_device *dev)
4268 {
4269 return dev->priv_flags & IFF_L3MDEV_MASTER;
4270 }
4271
4272 static inline bool netif_is_l3_slave(const struct net_device *dev)
4273 {
4274 return dev->priv_flags & IFF_L3MDEV_SLAVE;
4275 }
4276
4277 static inline bool netif_is_bridge_master(const struct net_device *dev)
4278 {
4279 return dev->priv_flags & IFF_EBRIDGE;
4280 }
4281
4282 static inline bool netif_is_bridge_port(const struct net_device *dev)
4283 {
4284 return dev->priv_flags & IFF_BRIDGE_PORT;
4285 }
4286
4287 static inline bool netif_is_ovs_master(const struct net_device *dev)
4288 {
4289 return dev->priv_flags & IFF_OPENVSWITCH;
4290 }
4291
4292 static inline bool netif_is_ovs_port(const struct net_device *dev)
4293 {
4294 return dev->priv_flags & IFF_OVS_DATAPATH;
4295 }
4296
4297 static inline bool netif_is_team_master(const struct net_device *dev)
4298 {
4299 return dev->priv_flags & IFF_TEAM;
4300 }
4301
4302 static inline bool netif_is_team_port(const struct net_device *dev)
4303 {
4304 return dev->priv_flags & IFF_TEAM_PORT;
4305 }
4306
4307 static inline bool netif_is_lag_master(const struct net_device *dev)
4308 {
4309 return netif_is_bond_master(dev) || netif_is_team_master(dev);
4310 }
4311
4312 static inline bool netif_is_lag_port(const struct net_device *dev)
4313 {
4314 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4315 }
4316
4317 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4318 {
4319 return dev->priv_flags & IFF_RXFH_CONFIGURED;
4320 }
4321
4322 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4323 static inline void netif_keep_dst(struct net_device *dev)
4324 {
4325 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4326 }
4327
4328 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4329 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4330 {
4331 /* TODO: reserve and use an additional IFF bit, if we get more users */
4332 return dev->priv_flags & IFF_MACSEC;
4333 }
4334
4335 extern struct pernet_operations __net_initdata loopback_net_ops;
4336
4337 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4338
4339 /* netdev_printk helpers, similar to dev_printk */
4340
4341 static inline const char *netdev_name(const struct net_device *dev)
4342 {
4343 if (!dev->name[0] || strchr(dev->name, '%'))
4344 return "(unnamed net_device)";
4345 return dev->name;
4346 }
4347
4348 static inline bool netdev_unregistering(const struct net_device *dev)
4349 {
4350 return dev->reg_state == NETREG_UNREGISTERING;
4351 }
4352
4353 static inline const char *netdev_reg_state(const struct net_device *dev)
4354 {
4355 switch (dev->reg_state) {
4356 case NETREG_UNINITIALIZED: return " (uninitialized)";
4357 case NETREG_REGISTERED: return "";
4358 case NETREG_UNREGISTERING: return " (unregistering)";
4359 case NETREG_UNREGISTERED: return " (unregistered)";
4360 case NETREG_RELEASED: return " (released)";
4361 case NETREG_DUMMY: return " (dummy)";
4362 }
4363
4364 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4365 return " (unknown)";
4366 }
4367
4368 __printf(3, 4)
4369 void netdev_printk(const char *level, const struct net_device *dev,
4370 const char *format, ...);
4371 __printf(2, 3)
4372 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4373 __printf(2, 3)
4374 void netdev_alert(const struct net_device *dev, const char *format, ...);
4375 __printf(2, 3)
4376 void netdev_crit(const struct net_device *dev, const char *format, ...);
4377 __printf(2, 3)
4378 void netdev_err(const struct net_device *dev, const char *format, ...);
4379 __printf(2, 3)
4380 void netdev_warn(const struct net_device *dev, const char *format, ...);
4381 __printf(2, 3)
4382 void netdev_notice(const struct net_device *dev, const char *format, ...);
4383 __printf(2, 3)
4384 void netdev_info(const struct net_device *dev, const char *format, ...);
4385
4386 #define netdev_level_once(level, dev, fmt, ...) \
4387 do { \
4388 static bool __print_once __read_mostly; \
4389 \
4390 if (!__print_once) { \
4391 __print_once = true; \
4392 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \
4393 } \
4394 } while (0)
4395
4396 #define netdev_emerg_once(dev, fmt, ...) \
4397 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4398 #define netdev_alert_once(dev, fmt, ...) \
4399 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4400 #define netdev_crit_once(dev, fmt, ...) \
4401 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4402 #define netdev_err_once(dev, fmt, ...) \
4403 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4404 #define netdev_warn_once(dev, fmt, ...) \
4405 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4406 #define netdev_notice_once(dev, fmt, ...) \
4407 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4408 #define netdev_info_once(dev, fmt, ...) \
4409 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4410
4411 #define MODULE_ALIAS_NETDEV(device) \
4412 MODULE_ALIAS("netdev-" device)
4413
4414 #if defined(CONFIG_DYNAMIC_DEBUG)
4415 #define netdev_dbg(__dev, format, args...) \
4416 do { \
4417 dynamic_netdev_dbg(__dev, format, ##args); \
4418 } while (0)
4419 #elif defined(DEBUG)
4420 #define netdev_dbg(__dev, format, args...) \
4421 netdev_printk(KERN_DEBUG, __dev, format, ##args)
4422 #else
4423 #define netdev_dbg(__dev, format, args...) \
4424 ({ \
4425 if (0) \
4426 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4427 })
4428 #endif
4429
4430 #if defined(VERBOSE_DEBUG)
4431 #define netdev_vdbg netdev_dbg
4432 #else
4433
4434 #define netdev_vdbg(dev, format, args...) \
4435 ({ \
4436 if (0) \
4437 netdev_printk(KERN_DEBUG, dev, format, ##args); \
4438 0; \
4439 })
4440 #endif
4441
4442 /*
4443 * netdev_WARN() acts like dev_printk(), but with the key difference
4444 * of using a WARN/WARN_ON to get the message out, including the
4445 * file/line information and a backtrace.
4446 */
4447 #define netdev_WARN(dev, format, args...) \
4448 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \
4449 netdev_reg_state(dev), ##args)
4450
4451 #define netdev_WARN_ONCE(dev, format, args...) \
4452 WARN_ONCE(1, "netdevice: %s%s\n" format, netdev_name(dev), \
4453 netdev_reg_state(dev), ##args)
4454
4455 /* netif printk helpers, similar to netdev_printk */
4456
4457 #define netif_printk(priv, type, level, dev, fmt, args...) \
4458 do { \
4459 if (netif_msg_##type(priv)) \
4460 netdev_printk(level, (dev), fmt, ##args); \
4461 } while (0)
4462
4463 #define netif_level(level, priv, type, dev, fmt, args...) \
4464 do { \
4465 if (netif_msg_##type(priv)) \
4466 netdev_##level(dev, fmt, ##args); \
4467 } while (0)
4468
4469 #define netif_emerg(priv, type, dev, fmt, args...) \
4470 netif_level(emerg, priv, type, dev, fmt, ##args)
4471 #define netif_alert(priv, type, dev, fmt, args...) \
4472 netif_level(alert, priv, type, dev, fmt, ##args)
4473 #define netif_crit(priv, type, dev, fmt, args...) \
4474 netif_level(crit, priv, type, dev, fmt, ##args)
4475 #define netif_err(priv, type, dev, fmt, args...) \
4476 netif_level(err, priv, type, dev, fmt, ##args)
4477 #define netif_warn(priv, type, dev, fmt, args...) \
4478 netif_level(warn, priv, type, dev, fmt, ##args)
4479 #define netif_notice(priv, type, dev, fmt, args...) \
4480 netif_level(notice, priv, type, dev, fmt, ##args)
4481 #define netif_info(priv, type, dev, fmt, args...) \
4482 netif_level(info, priv, type, dev, fmt, ##args)
4483
4484 #if defined(CONFIG_DYNAMIC_DEBUG)
4485 #define netif_dbg(priv, type, netdev, format, args...) \
4486 do { \
4487 if (netif_msg_##type(priv)) \
4488 dynamic_netdev_dbg(netdev, format, ##args); \
4489 } while (0)
4490 #elif defined(DEBUG)
4491 #define netif_dbg(priv, type, dev, format, args...) \
4492 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4493 #else
4494 #define netif_dbg(priv, type, dev, format, args...) \
4495 ({ \
4496 if (0) \
4497 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4498 0; \
4499 })
4500 #endif
4501
4502 /* if @cond then downgrade to debug, else print at @level */
4503 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \
4504 do { \
4505 if (cond) \
4506 netif_dbg(priv, type, netdev, fmt, ##args); \
4507 else \
4508 netif_ ## level(priv, type, netdev, fmt, ##args); \
4509 } while (0)
4510
4511 #if defined(VERBOSE_DEBUG)
4512 #define netif_vdbg netif_dbg
4513 #else
4514 #define netif_vdbg(priv, type, dev, format, args...) \
4515 ({ \
4516 if (0) \
4517 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4518 0; \
4519 })
4520 #endif
4521
4522 /*
4523 * The list of packet types we will receive (as opposed to discard)
4524 * and the routines to invoke.
4525 *
4526 * Why 16. Because with 16 the only overlap we get on a hash of the
4527 * low nibble of the protocol value is RARP/SNAP/X.25.
4528 *
4529 * 0800 IP
4530 * 0001 802.3
4531 * 0002 AX.25
4532 * 0004 802.2
4533 * 8035 RARP
4534 * 0005 SNAP
4535 * 0805 X.25
4536 * 0806 ARP
4537 * 8137 IPX
4538 * 0009 Localtalk
4539 * 86DD IPv6
4540 */
4541 #define PTYPE_HASH_SIZE (16)
4542 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4543
4544 #endif /* _LINUX_NETDEVICE_H */