]> git.proxmox.com Git - qemu.git/blob - include/qemu/bswap.h
Merge branch 'axp-next' of git://github.com/rth7680/qemu
[qemu.git] / include / qemu / bswap.h
1 #ifndef BSWAP_H
2 #define BSWAP_H
3
4 #include "config-host.h"
5
6 #include <inttypes.h>
7 #include "fpu/softfloat.h"
8
9 #ifdef CONFIG_MACHINE_BSWAP_H
10 # include <sys/endian.h>
11 # include <sys/types.h>
12 # include <machine/bswap.h>
13 #elif defined(CONFIG_BYTESWAP_H)
14 # include <byteswap.h>
15
16 static inline uint16_t bswap16(uint16_t x)
17 {
18 return bswap_16(x);
19 }
20
21 static inline uint32_t bswap32(uint32_t x)
22 {
23 return bswap_32(x);
24 }
25
26 static inline uint64_t bswap64(uint64_t x)
27 {
28 return bswap_64(x);
29 }
30 # else
31 static inline uint16_t bswap16(uint16_t x)
32 {
33 return (((x & 0x00ff) << 8) |
34 ((x & 0xff00) >> 8));
35 }
36
37 static inline uint32_t bswap32(uint32_t x)
38 {
39 return (((x & 0x000000ffU) << 24) |
40 ((x & 0x0000ff00U) << 8) |
41 ((x & 0x00ff0000U) >> 8) |
42 ((x & 0xff000000U) >> 24));
43 }
44
45 static inline uint64_t bswap64(uint64_t x)
46 {
47 return (((x & 0x00000000000000ffULL) << 56) |
48 ((x & 0x000000000000ff00ULL) << 40) |
49 ((x & 0x0000000000ff0000ULL) << 24) |
50 ((x & 0x00000000ff000000ULL) << 8) |
51 ((x & 0x000000ff00000000ULL) >> 8) |
52 ((x & 0x0000ff0000000000ULL) >> 24) |
53 ((x & 0x00ff000000000000ULL) >> 40) |
54 ((x & 0xff00000000000000ULL) >> 56));
55 }
56 #endif /* ! CONFIG_MACHINE_BSWAP_H */
57
58 static inline void bswap16s(uint16_t *s)
59 {
60 *s = bswap16(*s);
61 }
62
63 static inline void bswap32s(uint32_t *s)
64 {
65 *s = bswap32(*s);
66 }
67
68 static inline void bswap64s(uint64_t *s)
69 {
70 *s = bswap64(*s);
71 }
72
73 #if defined(HOST_WORDS_BIGENDIAN)
74 #define be_bswap(v, size) (v)
75 #define le_bswap(v, size) glue(bswap, size)(v)
76 #define be_bswaps(v, size)
77 #define le_bswaps(p, size) do { *p = glue(bswap, size)(*p); } while(0)
78 #else
79 #define le_bswap(v, size) (v)
80 #define be_bswap(v, size) glue(bswap, size)(v)
81 #define le_bswaps(v, size)
82 #define be_bswaps(p, size) do { *p = glue(bswap, size)(*p); } while(0)
83 #endif
84
85 #define CPU_CONVERT(endian, size, type)\
86 static inline type endian ## size ## _to_cpu(type v)\
87 {\
88 return glue(endian, _bswap)(v, size);\
89 }\
90 \
91 static inline type cpu_to_ ## endian ## size(type v)\
92 {\
93 return glue(endian, _bswap)(v, size);\
94 }\
95 \
96 static inline void endian ## size ## _to_cpus(type *p)\
97 {\
98 glue(endian, _bswaps)(p, size);\
99 }\
100 \
101 static inline void cpu_to_ ## endian ## size ## s(type *p)\
102 {\
103 glue(endian, _bswaps)(p, size);\
104 }\
105 \
106 static inline type endian ## size ## _to_cpup(const type *p)\
107 {\
108 return glue(glue(endian, size), _to_cpu)(*p);\
109 }\
110 \
111 static inline void cpu_to_ ## endian ## size ## w(type *p, type v)\
112 {\
113 *p = glue(glue(cpu_to_, endian), size)(v);\
114 }
115
116 CPU_CONVERT(be, 16, uint16_t)
117 CPU_CONVERT(be, 32, uint32_t)
118 CPU_CONVERT(be, 64, uint64_t)
119
120 CPU_CONVERT(le, 16, uint16_t)
121 CPU_CONVERT(le, 32, uint32_t)
122 CPU_CONVERT(le, 64, uint64_t)
123
124 /* len must be one of 1, 2, 4 */
125 static inline uint32_t qemu_bswap_len(uint32_t value, int len)
126 {
127 return bswap32(value) >> (32 - 8 * len);
128 }
129
130 /* Unions for reinterpreting between floats and integers. */
131
132 typedef union {
133 float32 f;
134 uint32_t l;
135 } CPU_FloatU;
136
137 typedef union {
138 float64 d;
139 #if defined(HOST_WORDS_BIGENDIAN)
140 struct {
141 uint32_t upper;
142 uint32_t lower;
143 } l;
144 #else
145 struct {
146 uint32_t lower;
147 uint32_t upper;
148 } l;
149 #endif
150 uint64_t ll;
151 } CPU_DoubleU;
152
153 typedef union {
154 floatx80 d;
155 struct {
156 uint64_t lower;
157 uint16_t upper;
158 } l;
159 } CPU_LDoubleU;
160
161 typedef union {
162 float128 q;
163 #if defined(HOST_WORDS_BIGENDIAN)
164 struct {
165 uint32_t upmost;
166 uint32_t upper;
167 uint32_t lower;
168 uint32_t lowest;
169 } l;
170 struct {
171 uint64_t upper;
172 uint64_t lower;
173 } ll;
174 #else
175 struct {
176 uint32_t lowest;
177 uint32_t lower;
178 uint32_t upper;
179 uint32_t upmost;
180 } l;
181 struct {
182 uint64_t lower;
183 uint64_t upper;
184 } ll;
185 #endif
186 } CPU_QuadU;
187
188 /* unaligned/endian-independent pointer access */
189
190 /*
191 * the generic syntax is:
192 *
193 * load: ld{type}{sign}{size}{endian}_p(ptr)
194 *
195 * store: st{type}{size}{endian}_p(ptr, val)
196 *
197 * Note there are small differences with the softmmu access API!
198 *
199 * type is:
200 * (empty): integer access
201 * f : float access
202 *
203 * sign is:
204 * (empty): for floats or 32 bit size
205 * u : unsigned
206 * s : signed
207 *
208 * size is:
209 * b: 8 bits
210 * w: 16 bits
211 * l: 32 bits
212 * q: 64 bits
213 *
214 * endian is:
215 * (empty): host endian
216 * be : big endian
217 * le : little endian
218 */
219
220 static inline int ldub_p(const void *ptr)
221 {
222 return *(uint8_t *)ptr;
223 }
224
225 static inline int ldsb_p(const void *ptr)
226 {
227 return *(int8_t *)ptr;
228 }
229
230 static inline void stb_p(void *ptr, int v)
231 {
232 *(uint8_t *)ptr = v;
233 }
234
235 /* Any compiler worth its salt will turn these memcpy into native unaligned
236 operations. Thus we don't need to play games with packed attributes, or
237 inline byte-by-byte stores. */
238
239 static inline int lduw_p(const void *ptr)
240 {
241 uint16_t r;
242 memcpy(&r, ptr, sizeof(r));
243 return r;
244 }
245
246 static inline int ldsw_p(const void *ptr)
247 {
248 int16_t r;
249 memcpy(&r, ptr, sizeof(r));
250 return r;
251 }
252
253 static inline void stw_p(void *ptr, uint16_t v)
254 {
255 memcpy(ptr, &v, sizeof(v));
256 }
257
258 static inline int ldl_p(const void *ptr)
259 {
260 int32_t r;
261 memcpy(&r, ptr, sizeof(r));
262 return r;
263 }
264
265 static inline void stl_p(void *ptr, uint32_t v)
266 {
267 memcpy(ptr, &v, sizeof(v));
268 }
269
270 static inline uint64_t ldq_p(const void *ptr)
271 {
272 uint64_t r;
273 memcpy(&r, ptr, sizeof(r));
274 return r;
275 }
276
277 static inline void stq_p(void *ptr, uint64_t v)
278 {
279 memcpy(ptr, &v, sizeof(v));
280 }
281
282 static inline int lduw_le_p(const void *ptr)
283 {
284 return (uint16_t)le_bswap(lduw_p(ptr), 16);
285 }
286
287 static inline int ldsw_le_p(const void *ptr)
288 {
289 return (int16_t)le_bswap(lduw_p(ptr), 16);
290 }
291
292 static inline int ldl_le_p(const void *ptr)
293 {
294 return le_bswap(ldl_p(ptr), 32);
295 }
296
297 static inline uint64_t ldq_le_p(const void *ptr)
298 {
299 return le_bswap(ldq_p(ptr), 64);
300 }
301
302 static inline void stw_le_p(void *ptr, int v)
303 {
304 stw_p(ptr, le_bswap(v, 16));
305 }
306
307 static inline void stl_le_p(void *ptr, int v)
308 {
309 stl_p(ptr, le_bswap(v, 32));
310 }
311
312 static inline void stq_le_p(void *ptr, uint64_t v)
313 {
314 stq_p(ptr, le_bswap(v, 64));
315 }
316
317 /* float access */
318
319 static inline float32 ldfl_le_p(const void *ptr)
320 {
321 CPU_FloatU u;
322 u.l = ldl_le_p(ptr);
323 return u.f;
324 }
325
326 static inline void stfl_le_p(void *ptr, float32 v)
327 {
328 CPU_FloatU u;
329 u.f = v;
330 stl_le_p(ptr, u.l);
331 }
332
333 static inline float64 ldfq_le_p(const void *ptr)
334 {
335 CPU_DoubleU u;
336 u.ll = ldq_le_p(ptr);
337 return u.d;
338 }
339
340 static inline void stfq_le_p(void *ptr, float64 v)
341 {
342 CPU_DoubleU u;
343 u.d = v;
344 stq_le_p(ptr, u.ll);
345 }
346
347 static inline int lduw_be_p(const void *ptr)
348 {
349 return (uint16_t)be_bswap(lduw_p(ptr), 16);
350 }
351
352 static inline int ldsw_be_p(const void *ptr)
353 {
354 return (int16_t)be_bswap(lduw_p(ptr), 16);
355 }
356
357 static inline int ldl_be_p(const void *ptr)
358 {
359 return be_bswap(ldl_p(ptr), 32);
360 }
361
362 static inline uint64_t ldq_be_p(const void *ptr)
363 {
364 return be_bswap(ldq_p(ptr), 64);
365 }
366
367 static inline void stw_be_p(void *ptr, int v)
368 {
369 stw_p(ptr, be_bswap(v, 16));
370 }
371
372 static inline void stl_be_p(void *ptr, int v)
373 {
374 stl_p(ptr, be_bswap(v, 32));
375 }
376
377 static inline void stq_be_p(void *ptr, uint64_t v)
378 {
379 stq_p(ptr, be_bswap(v, 64));
380 }
381
382 /* float access */
383
384 static inline float32 ldfl_be_p(const void *ptr)
385 {
386 CPU_FloatU u;
387 u.l = ldl_be_p(ptr);
388 return u.f;
389 }
390
391 static inline void stfl_be_p(void *ptr, float32 v)
392 {
393 CPU_FloatU u;
394 u.f = v;
395 stl_be_p(ptr, u.l);
396 }
397
398 static inline float64 ldfq_be_p(const void *ptr)
399 {
400 CPU_DoubleU u;
401 u.ll = ldq_be_p(ptr);
402 return u.d;
403 }
404
405 static inline void stfq_be_p(void *ptr, float64 v)
406 {
407 CPU_DoubleU u;
408 u.d = v;
409 stq_be_p(ptr, u.ll);
410 }
411
412 /* Legacy unaligned versions. Note that we never had a complete set. */
413
414 static inline void cpu_to_le16wu(uint16_t *p, uint16_t v)
415 {
416 stw_le_p(p, v);
417 }
418
419 static inline void cpu_to_le32wu(uint32_t *p, uint32_t v)
420 {
421 stl_le_p(p, v);
422 }
423
424 static inline uint16_t le16_to_cpupu(const uint16_t *p)
425 {
426 return lduw_le_p(p);
427 }
428
429 static inline uint32_t le32_to_cpupu(const uint32_t *p)
430 {
431 return ldl_le_p(p);
432 }
433
434 static inline uint32_t be32_to_cpupu(const uint32_t *p)
435 {
436 return ldl_be_p(p);
437 }
438
439 static inline void cpu_to_be16wu(uint16_t *p, uint16_t v)
440 {
441 stw_be_p(p, v);
442 }
443
444 static inline void cpu_to_be32wu(uint32_t *p, uint32_t v)
445 {
446 stl_be_p(p, v);
447 }
448
449 static inline void cpu_to_be64wu(uint64_t *p, uint64_t v)
450 {
451 stq_be_p(p, v);
452 }
453
454 static inline void cpu_to_32wu(uint32_t *p, uint32_t v)
455 {
456 stl_p(p, v);
457 }
458
459 static inline unsigned long leul_to_cpu(unsigned long v)
460 {
461 return le_bswap(v, HOST_LONG_BITS);
462 }
463
464 #undef le_bswap
465 #undef be_bswap
466 #undef le_bswaps
467 #undef be_bswaps
468
469 #endif /* BSWAP_H */