]> git.proxmox.com Git - mirror_spl.git/blob - include/sys/kmem.h
Improved vmem cached deadlock detection
[mirror_spl.git] / include / sys / kmem.h
1 /*****************************************************************************\
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6 * UCRL-CODE-235197
7 *
8 * This file is part of the SPL, Solaris Porting Layer.
9 * For details, see <http://github.com/behlendorf/spl/>.
10 *
11 * The SPL is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * The SPL is distributed in the hope that it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
23 \*****************************************************************************/
24
25 #ifndef _SPL_KMEM_H
26 #define _SPL_KMEM_H
27
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/vmalloc.h>
31 #include <linux/spinlock.h>
32 #include <linux/rwsem.h>
33 #include <linux/hash.h>
34 #include <linux/ctype.h>
35 #include <asm/atomic.h>
36 #include <sys/types.h>
37 #include <sys/vmsystm.h>
38 #include <sys/kstat.h>
39
40 /*
41 * Memory allocation interfaces
42 */
43 #define KM_SLEEP GFP_KERNEL /* Can sleep, never fails */
44 #define KM_NOSLEEP GFP_ATOMIC /* Can not sleep, may fail */
45 #define KM_PUSHPAGE (GFP_NOIO | __GFP_HIGH) /* Use reserved memory */
46 #define KM_NODEBUG __GFP_NOWARN /* Suppress warnings */
47 #define KM_FLAGS __GFP_BITS_MASK
48 #define KM_VMFLAGS GFP_LEVEL_MASK
49
50 /*
51 * Used internally, the kernel does not need to support this flag
52 */
53 #ifndef __GFP_ZERO
54 # define __GFP_ZERO 0x8000
55 #endif
56
57 /*
58 * PF_NOFS is a per-process debug flag which is set in current->flags to
59 * detect when a process is performing an unsafe allocation. All tasks
60 * with PF_NOFS set must strictly use KM_PUSHPAGE for allocations because
61 * if they enter direct reclaim and initiate I/O the may deadlock.
62 *
63 * When debugging is disabled, any incorrect usage will be detected and
64 * a call stack with warning will be printed to the console. The flags
65 * will then be automatically corrected to allow for safe execution. If
66 * debugging is enabled this will be treated as a fatal condition.
67 *
68 * To avoid any risk of conflicting with the existing PF_ flags. The
69 * PF_NOFS bit shadows the rarely used PF_MUTEX_TESTER bit. Only when
70 * CONFIG_RT_MUTEX_TESTER is not set, and we know this bit is unused,
71 * will the PF_NOFS bit be valid. Happily, most existing distributions
72 * ship a kernel with CONFIG_RT_MUTEX_TESTER disabled.
73 */
74 #if !defined(CONFIG_RT_MUTEX_TESTER) && defined(PF_MUTEX_TESTER)
75 # define PF_NOFS PF_MUTEX_TESTER
76
77 static inline void
78 sanitize_flags(struct task_struct *p, gfp_t *flags)
79 {
80 if (unlikely((p->flags & PF_NOFS) && (*flags & (__GFP_IO|__GFP_FS)))) {
81 # ifdef NDEBUG
82 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "Fixing allocation for "
83 "task %s (%d) which used GFP flags 0x%x with PF_NOFS set\n",
84 p->comm, p->pid, flags);
85 spl_debug_dumpstack(p);
86 *flags &= ~(__GFP_IO|__GFP_FS);
87 # else
88 PANIC("FATAL allocation for task %s (%d) which used GFP "
89 "flags 0x%x with PF_NOFS set\n", p->comm, p->pid, flags);
90 # endif /* NDEBUG */
91 }
92 }
93 #else
94 # define PF_NOFS 0x00000000
95 # define sanitize_flags(p, fl) ((void)0)
96 #endif /* !defined(CONFIG_RT_MUTEX_TESTER) && defined(PF_MUTEX_TESTER) */
97
98 /*
99 * __GFP_NOFAIL looks like it will be removed from the kernel perhaps as
100 * early as 2.6.32. To avoid this issue when it occurs in upstream kernels
101 * we retry the allocation here as long as it is not __GFP_WAIT (GFP_ATOMIC).
102 * I would prefer the caller handle the failure case cleanly but we are
103 * trying to emulate Solaris and those are not the Solaris semantics.
104 */
105 static inline void *
106 kmalloc_nofail(size_t size, gfp_t flags)
107 {
108 void *ptr;
109
110 sanitize_flags(current, &flags);
111
112 do {
113 ptr = kmalloc(size, flags);
114 } while (ptr == NULL && (flags & __GFP_WAIT));
115
116 return ptr;
117 }
118
119 static inline void *
120 kzalloc_nofail(size_t size, gfp_t flags)
121 {
122 void *ptr;
123
124 sanitize_flags(current, &flags);
125
126 do {
127 ptr = kzalloc(size, flags);
128 } while (ptr == NULL && (flags & __GFP_WAIT));
129
130 return ptr;
131 }
132
133 static inline void *
134 kmalloc_node_nofail(size_t size, gfp_t flags, int node)
135 {
136 #ifdef HAVE_KMALLOC_NODE
137 void *ptr;
138
139 sanitize_flags(current, &flags);
140
141 do {
142 ptr = kmalloc_node(size, flags, node);
143 } while (ptr == NULL && (flags & __GFP_WAIT));
144
145 return ptr;
146 #else
147 return kmalloc_nofail(size, flags);
148 #endif /* HAVE_KMALLOC_NODE */
149 }
150
151 static inline void *
152 vmalloc_nofail(size_t size, gfp_t flags)
153 {
154 void *ptr;
155
156 sanitize_flags(current, &flags);
157
158 /*
159 * Retry failed __vmalloc() allocations once every second. The
160 * rational for the delay is that the likely failure modes are:
161 *
162 * 1) The system has completely exhausted memory, in which case
163 * delaying 1 second for the memory reclaim to run is reasonable
164 * to avoid thrashing the system.
165 * 2) The system has memory but has exhausted the small virtual
166 * address space available on 32-bit systems. Retrying the
167 * allocation immediately will only result in spinning on the
168 * virtual address space lock. It is better delay a second and
169 * hope that another process will free some of the address space.
170 * But the bottom line is there is not much we can actually do
171 * since we can never safely return a failure and honor the
172 * Solaris semantics.
173 */
174 while (1) {
175 ptr = __vmalloc(size, flags | __GFP_HIGHMEM, PAGE_KERNEL);
176 if (unlikely((ptr == NULL) && (flags & __GFP_WAIT))) {
177 set_current_state(TASK_INTERRUPTIBLE);
178 schedule_timeout(HZ);
179 } else {
180 break;
181 }
182 }
183
184 return ptr;
185 }
186
187 static inline void *
188 vzalloc_nofail(size_t size, gfp_t flags)
189 {
190 void *ptr;
191
192 ptr = vmalloc_nofail(size, flags);
193 if (ptr)
194 memset(ptr, 0, (size));
195
196 return ptr;
197 }
198
199 #ifdef DEBUG_KMEM
200
201 /*
202 * Memory accounting functions to be used only when DEBUG_KMEM is set.
203 */
204 # ifdef HAVE_ATOMIC64_T
205
206 # define kmem_alloc_used_add(size) atomic64_add(size, &kmem_alloc_used)
207 # define kmem_alloc_used_sub(size) atomic64_sub(size, &kmem_alloc_used)
208 # define kmem_alloc_used_read() atomic64_read(&kmem_alloc_used)
209 # define kmem_alloc_used_set(size) atomic64_set(&kmem_alloc_used, size)
210 # define vmem_alloc_used_add(size) atomic64_add(size, &vmem_alloc_used)
211 # define vmem_alloc_used_sub(size) atomic64_sub(size, &vmem_alloc_used)
212 # define vmem_alloc_used_read() atomic64_read(&vmem_alloc_used)
213 # define vmem_alloc_used_set(size) atomic64_set(&vmem_alloc_used, size)
214
215 extern atomic64_t kmem_alloc_used;
216 extern unsigned long long kmem_alloc_max;
217 extern atomic64_t vmem_alloc_used;
218 extern unsigned long long vmem_alloc_max;
219
220 # else /* HAVE_ATOMIC64_T */
221
222 # define kmem_alloc_used_add(size) atomic_add(size, &kmem_alloc_used)
223 # define kmem_alloc_used_sub(size) atomic_sub(size, &kmem_alloc_used)
224 # define kmem_alloc_used_read() atomic_read(&kmem_alloc_used)
225 # define kmem_alloc_used_set(size) atomic_set(&kmem_alloc_used, size)
226 # define vmem_alloc_used_add(size) atomic_add(size, &vmem_alloc_used)
227 # define vmem_alloc_used_sub(size) atomic_sub(size, &vmem_alloc_used)
228 # define vmem_alloc_used_read() atomic_read(&vmem_alloc_used)
229 # define vmem_alloc_used_set(size) atomic_set(&vmem_alloc_used, size)
230
231 extern atomic_t kmem_alloc_used;
232 extern unsigned long long kmem_alloc_max;
233 extern atomic_t vmem_alloc_used;
234 extern unsigned long long vmem_alloc_max;
235
236 # endif /* HAVE_ATOMIC64_T */
237
238 # ifdef DEBUG_KMEM_TRACKING
239 /*
240 * DEBUG_KMEM && DEBUG_KMEM_TRACKING
241 *
242 * The maximum level of memory debugging. All memory will be accounted
243 * for and each allocation will be explicitly tracked. Any allocation
244 * which is leaked will be reported on module unload and the exact location
245 * where that memory was allocation will be reported. This level of memory
246 * tracking will have a significant impact on performance and should only
247 * be enabled for debugging. This feature may be enabled by passing
248 * --enable-debug-kmem-tracking to configure.
249 */
250 # define kmem_alloc(sz, fl) kmem_alloc_track((sz), (fl), \
251 __FUNCTION__, __LINE__, 0, 0)
252 # define kmem_zalloc(sz, fl) kmem_alloc_track((sz), (fl)|__GFP_ZERO,\
253 __FUNCTION__, __LINE__, 0, 0)
254 # define kmem_alloc_node(sz, fl, nd) kmem_alloc_track((sz), (fl), \
255 __FUNCTION__, __LINE__, 1, nd)
256 # define kmem_free(ptr, sz) kmem_free_track((ptr), (sz))
257
258 # define vmem_alloc(sz, fl) vmem_alloc_track((sz), (fl), \
259 __FUNCTION__, __LINE__)
260 # define vmem_zalloc(sz, fl) vmem_alloc_track((sz), (fl)|__GFP_ZERO,\
261 __FUNCTION__, __LINE__)
262 # define vmem_free(ptr, sz) vmem_free_track((ptr), (sz))
263
264 extern void *kmem_alloc_track(size_t, int, const char *, int, int, int);
265 extern void kmem_free_track(const void *, size_t);
266 extern void *vmem_alloc_track(size_t, int, const char *, int);
267 extern void vmem_free_track(const void *, size_t);
268
269 # else /* DEBUG_KMEM_TRACKING */
270 /*
271 * DEBUG_KMEM && !DEBUG_KMEM_TRACKING
272 *
273 * The default build will set DEBUG_KEM. This provides basic memory
274 * accounting with little to no impact on performance. When the module
275 * is unloaded in any memory was leaked the total number of leaked bytes
276 * will be reported on the console. To disable this basic accounting
277 * pass the --disable-debug-kmem option to configure.
278 */
279 # define kmem_alloc(sz, fl) kmem_alloc_debug((sz), (fl), \
280 __FUNCTION__, __LINE__, 0, 0)
281 # define kmem_zalloc(sz, fl) kmem_alloc_debug((sz), (fl)|__GFP_ZERO,\
282 __FUNCTION__, __LINE__, 0, 0)
283 # define kmem_alloc_node(sz, fl, nd) kmem_alloc_debug((sz), (fl), \
284 __FUNCTION__, __LINE__, 1, nd)
285 # define kmem_free(ptr, sz) kmem_free_debug((ptr), (sz))
286
287 # define vmem_alloc(sz, fl) vmem_alloc_debug((sz), (fl), \
288 __FUNCTION__, __LINE__)
289 # define vmem_zalloc(sz, fl) vmem_alloc_debug((sz), (fl)|__GFP_ZERO,\
290 __FUNCTION__, __LINE__)
291 # define vmem_free(ptr, sz) vmem_free_debug((ptr), (sz))
292
293 extern void *kmem_alloc_debug(size_t, int, const char *, int, int, int);
294 extern void kmem_free_debug(const void *, size_t);
295 extern void *vmem_alloc_debug(size_t, int, const char *, int);
296 extern void vmem_free_debug(const void *, size_t);
297
298 # endif /* DEBUG_KMEM_TRACKING */
299 #else /* DEBUG_KMEM */
300 /*
301 * !DEBUG_KMEM && !DEBUG_KMEM_TRACKING
302 *
303 * All debugging is disabled. There will be no overhead even for
304 * minimal memory accounting. To enable basic accounting pass the
305 * --enable-debug-kmem option to configure.
306 */
307 # define kmem_alloc(sz, fl) kmalloc_nofail((sz), (fl))
308 # define kmem_zalloc(sz, fl) kzalloc_nofail((sz), (fl))
309 # define kmem_alloc_node(sz, fl, nd) kmalloc_node_nofail((sz), (fl), (nd))
310 # define kmem_free(ptr, sz) ((void)(sz), kfree(ptr))
311
312 # define vmem_alloc(sz, fl) vmalloc_nofail((sz), (fl))
313 # define vmem_zalloc(sz, fl) vzalloc_nofail((sz), (fl))
314 # define vmem_free(ptr, sz) ((void)(sz), vfree(ptr))
315
316 #endif /* DEBUG_KMEM */
317
318 extern int kmem_debugging(void);
319 extern char *kmem_vasprintf(const char *fmt, va_list ap);
320 extern char *kmem_asprintf(const char *fmt, ...);
321 extern char *strdup(const char *str);
322 extern void strfree(char *str);
323
324
325 /*
326 * Slab allocation interfaces. The SPL slab differs from the standard
327 * Linux SLAB or SLUB primarily in that each cache may be backed by slabs
328 * allocated from the physical or virtal memory address space. The virtual
329 * slabs allow for good behavior when allocation large objects of identical
330 * size. This slab implementation also supports both constructors and
331 * destructions which the Linux slab does not.
332 */
333 enum {
334 KMC_BIT_NOTOUCH = 0, /* Don't update ages */
335 KMC_BIT_NODEBUG = 1, /* Default behavior */
336 KMC_BIT_NOMAGAZINE = 2, /* XXX: Unsupported */
337 KMC_BIT_NOHASH = 3, /* XXX: Unsupported */
338 KMC_BIT_QCACHE = 4, /* XXX: Unsupported */
339 KMC_BIT_KMEM = 5, /* Use kmem cache */
340 KMC_BIT_VMEM = 6, /* Use vmem cache */
341 KMC_BIT_OFFSLAB = 7, /* Objects not on slab */
342 KMC_BIT_NOEMERGENCY = 8, /* Disable emergency objects */
343 KMC_BIT_DEADLOCKED = 14, /* Deadlock detected */
344 KMC_BIT_GROWING = 15, /* Growing in progress */
345 KMC_BIT_REAPING = 16, /* Reaping in progress */
346 KMC_BIT_DESTROY = 17, /* Destroy in progress */
347 KMC_BIT_TOTAL = 18, /* Proc handler helper bit */
348 KMC_BIT_ALLOC = 19, /* Proc handler helper bit */
349 KMC_BIT_MAX = 20, /* Proc handler helper bit */
350 };
351
352 /* kmem move callback return values */
353 typedef enum kmem_cbrc {
354 KMEM_CBRC_YES = 0, /* Object moved */
355 KMEM_CBRC_NO = 1, /* Object not moved */
356 KMEM_CBRC_LATER = 2, /* Object not moved, try again later */
357 KMEM_CBRC_DONT_NEED = 3, /* Neither object is needed */
358 KMEM_CBRC_DONT_KNOW = 4, /* Object unknown */
359 } kmem_cbrc_t;
360
361 #define KMC_NOTOUCH (1 << KMC_BIT_NOTOUCH)
362 #define KMC_NODEBUG (1 << KMC_BIT_NODEBUG)
363 #define KMC_NOMAGAZINE (1 << KMC_BIT_NOMAGAZINE)
364 #define KMC_NOHASH (1 << KMC_BIT_NOHASH)
365 #define KMC_QCACHE (1 << KMC_BIT_QCACHE)
366 #define KMC_KMEM (1 << KMC_BIT_KMEM)
367 #define KMC_VMEM (1 << KMC_BIT_VMEM)
368 #define KMC_OFFSLAB (1 << KMC_BIT_OFFSLAB)
369 #define KMC_NOEMERGENCY (1 << KMC_BIT_NOEMERGENCY)
370 #define KMC_DEADLOCKED (1 << KMC_BIT_DEADLOCKED)
371 #define KMC_GROWING (1 << KMC_BIT_GROWING)
372 #define KMC_REAPING (1 << KMC_BIT_REAPING)
373 #define KMC_DESTROY (1 << KMC_BIT_DESTROY)
374 #define KMC_TOTAL (1 << KMC_BIT_TOTAL)
375 #define KMC_ALLOC (1 << KMC_BIT_ALLOC)
376 #define KMC_MAX (1 << KMC_BIT_MAX)
377
378 #define KMC_REAP_CHUNK INT_MAX
379 #define KMC_DEFAULT_SEEKS 1
380
381 extern struct list_head spl_kmem_cache_list;
382 extern struct rw_semaphore spl_kmem_cache_sem;
383
384 #define SKM_MAGIC 0x2e2e2e2e
385 #define SKO_MAGIC 0x20202020
386 #define SKS_MAGIC 0x22222222
387 #define SKC_MAGIC 0x2c2c2c2c
388
389 #define SPL_KMEM_CACHE_DELAY 15 /* Minimum slab release age */
390 #define SPL_KMEM_CACHE_REAP 0 /* Default reap everything */
391 #define SPL_KMEM_CACHE_OBJ_PER_SLAB 16 /* Target objects per slab */
392 #define SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN 8 /* Minimum objects per slab */
393 #define SPL_KMEM_CACHE_ALIGN 8 /* Default object alignment */
394
395 #define POINTER_IS_VALID(p) 0 /* Unimplemented */
396 #define POINTER_INVALIDATE(pp) /* Unimplemented */
397
398 typedef int (*spl_kmem_ctor_t)(void *, void *, int);
399 typedef void (*spl_kmem_dtor_t)(void *, void *);
400 typedef void (*spl_kmem_reclaim_t)(void *);
401
402 typedef struct spl_kmem_magazine {
403 uint32_t skm_magic; /* Sanity magic */
404 uint32_t skm_avail; /* Available objects */
405 uint32_t skm_size; /* Magazine size */
406 uint32_t skm_refill; /* Batch refill size */
407 struct spl_kmem_cache *skm_cache; /* Owned by cache */
408 struct delayed_work skm_work; /* Magazine reclaim work */
409 unsigned long skm_age; /* Last cache access */
410 unsigned int skm_cpu; /* Owned by cpu */
411 void *skm_objs[0]; /* Object pointers */
412 } spl_kmem_magazine_t;
413
414 typedef struct spl_kmem_obj {
415 uint32_t sko_magic; /* Sanity magic */
416 void *sko_addr; /* Buffer address */
417 struct spl_kmem_slab *sko_slab; /* Owned by slab */
418 struct list_head sko_list; /* Free object list linkage */
419 } spl_kmem_obj_t;
420
421 typedef struct spl_kmem_slab {
422 uint32_t sks_magic; /* Sanity magic */
423 uint32_t sks_objs; /* Objects per slab */
424 struct spl_kmem_cache *sks_cache; /* Owned by cache */
425 struct list_head sks_list; /* Slab list linkage */
426 struct list_head sks_free_list; /* Free object list */
427 unsigned long sks_age; /* Last modify jiffie */
428 uint32_t sks_ref; /* Ref count used objects */
429 } spl_kmem_slab_t;
430
431 typedef struct spl_kmem_alloc {
432 struct spl_kmem_cache *ska_cache; /* Owned by cache */
433 int ska_flags; /* Allocation flags */
434 struct delayed_work ska_work; /* Allocation work */
435 } spl_kmem_alloc_t;
436
437 typedef struct spl_kmem_emergency {
438 void *ske_obj; /* Buffer address */
439 struct list_head ske_list; /* Emergency list linkage */
440 } spl_kmem_emergency_t;
441
442 typedef struct spl_kmem_cache {
443 uint32_t skc_magic; /* Sanity magic */
444 uint32_t skc_name_size; /* Name length */
445 char *skc_name; /* Name string */
446 spl_kmem_magazine_t *skc_mag[NR_CPUS]; /* Per-CPU warm cache */
447 uint32_t skc_mag_size; /* Magazine size */
448 uint32_t skc_mag_refill; /* Magazine refill count */
449 spl_kmem_ctor_t skc_ctor; /* Constructor */
450 spl_kmem_dtor_t skc_dtor; /* Destructor */
451 spl_kmem_reclaim_t skc_reclaim; /* Reclaimator */
452 void *skc_private; /* Private data */
453 void *skc_vmp; /* Unused */
454 unsigned long skc_flags; /* Flags */
455 uint32_t skc_obj_size; /* Object size */
456 uint32_t skc_obj_align; /* Object alignment */
457 uint32_t skc_slab_objs; /* Objects per slab */
458 uint32_t skc_slab_size; /* Slab size */
459 uint32_t skc_delay; /* Slab reclaim interval */
460 uint32_t skc_reap; /* Slab reclaim count */
461 atomic_t skc_ref; /* Ref count callers */
462 struct delayed_work skc_work; /* Slab reclaim work */
463 struct list_head skc_list; /* List of caches linkage */
464 struct list_head skc_complete_list;/* Completely alloc'ed */
465 struct list_head skc_partial_list; /* Partially alloc'ed */
466 struct list_head skc_emergency_list; /* Min sized objects */
467 spinlock_t skc_lock; /* Cache lock */
468 wait_queue_head_t skc_waitq; /* Allocation waiters */
469 uint64_t skc_slab_fail; /* Slab alloc failures */
470 uint64_t skc_slab_create;/* Slab creates */
471 uint64_t skc_slab_destroy;/* Slab destroys */
472 uint64_t skc_slab_total; /* Slab total current */
473 uint64_t skc_slab_alloc; /* Slab alloc current */
474 uint64_t skc_slab_max; /* Slab max historic */
475 uint64_t skc_obj_total; /* Obj total current */
476 uint64_t skc_obj_alloc; /* Obj alloc current */
477 uint64_t skc_obj_max; /* Obj max historic */
478 uint64_t skc_obj_deadlock; /* Obj emergency deadlocks */
479 uint64_t skc_obj_emergency; /* Obj emergency current */
480 uint64_t skc_obj_emergency_max; /* Obj emergency max */
481 } spl_kmem_cache_t;
482 #define kmem_cache_t spl_kmem_cache_t
483
484 extern spl_kmem_cache_t *spl_kmem_cache_create(char *name, size_t size,
485 size_t align, spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor,
486 spl_kmem_reclaim_t reclaim, void *priv, void *vmp, int flags);
487 extern void spl_kmem_cache_set_move(spl_kmem_cache_t *,
488 kmem_cbrc_t (*)(void *, void *, size_t, void *));
489 extern void spl_kmem_cache_destroy(spl_kmem_cache_t *skc);
490 extern void *spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags);
491 extern void spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj);
492 extern void spl_kmem_cache_reap_now(spl_kmem_cache_t *skc, int count);
493 extern void spl_kmem_reap(void);
494
495 int spl_kmem_init_kallsyms_lookup(void);
496 int spl_kmem_init(void);
497 void spl_kmem_fini(void);
498
499 #define kmem_cache_create(name,size,align,ctor,dtor,rclm,priv,vmp,flags) \
500 spl_kmem_cache_create(name,size,align,ctor,dtor,rclm,priv,vmp,flags)
501 #define kmem_cache_set_move(skc, move) spl_kmem_cache_set_move(skc, move)
502 #define kmem_cache_destroy(skc) spl_kmem_cache_destroy(skc)
503 #define kmem_cache_alloc(skc, flags) spl_kmem_cache_alloc(skc, flags)
504 #define kmem_cache_free(skc, obj) spl_kmem_cache_free(skc, obj)
505 #define kmem_cache_reap_now(skc) \
506 spl_kmem_cache_reap_now(skc, skc->skc_reap)
507 #define kmem_reap() spl_kmem_reap()
508 #define kmem_virt(ptr) (((ptr) >= (void *)VMALLOC_START) && \
509 ((ptr) < (void *)VMALLOC_END))
510
511 #endif /* _SPL_KMEM_H */