]> git.proxmox.com Git - mirror_spl.git/blob - include/sys/kmem.h
Add PF_NOFS debugging flag
[mirror_spl.git] / include / sys / kmem.h
1 /*****************************************************************************\
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6 * UCRL-CODE-235197
7 *
8 * This file is part of the SPL, Solaris Porting Layer.
9 * For details, see <http://github.com/behlendorf/spl/>.
10 *
11 * The SPL is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * The SPL is distributed in the hope that it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
23 \*****************************************************************************/
24
25 #ifndef _SPL_KMEM_H
26 #define _SPL_KMEM_H
27
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/vmalloc.h>
31 #include <linux/mm_compat.h>
32 #include <linux/spinlock.h>
33 #include <linux/rwsem.h>
34 #include <linux/hash.h>
35 #include <linux/ctype.h>
36 #include <asm/atomic.h>
37 #include <sys/types.h>
38 #include <sys/vmsystm.h>
39 #include <sys/kstat.h>
40
41 /*
42 * Memory allocation interfaces
43 */
44 #define KM_SLEEP GFP_KERNEL /* Can sleep, never fails */
45 #define KM_NOSLEEP GFP_ATOMIC /* Can not sleep, may fail */
46 #define KM_PUSHPAGE (GFP_NOIO | __GFP_HIGH) /* Use reserved memory */
47 #define KM_NODEBUG __GFP_NOWARN /* Suppress warnings */
48 #define KM_FLAGS __GFP_BITS_MASK
49 #define KM_VMFLAGS GFP_LEVEL_MASK
50
51 /*
52 * Used internally, the kernel does not need to support this flag
53 */
54 #ifndef __GFP_ZERO
55 # define __GFP_ZERO 0x8000
56 #endif
57
58 /*
59 * PF_NOFS is a per-process debug flag which is set in current->flags to
60 * detect when a process is performing an unsafe allocation. All tasks
61 * with PF_NOFS set must strictly use KM_PUSHPAGE for allocations because
62 * if they enter direct reclaim and initiate I/O the may deadlock.
63 *
64 * When debugging is disabled, any incorrect usage will be detected and
65 * a call stack with warning will be printed to the console. The flags
66 * will then be automatically corrected to allow for safe execution. If
67 * debugging is enabled this will be treated as a fatal condition.
68 *
69 * To avoid any risk of conflicting with the existing PF_ flags. The
70 * PF_NOFS bit shadows the rarely used PF_MUTEX_TESTER bit. Only when
71 * CONFIG_RT_MUTEX_TESTER is not set, and we know this bit is unused,
72 * will the PF_NOFS bit be valid. Happily, most existing distributions
73 * ship a kernel with CONFIG_RT_MUTEX_TESTER disabled.
74 */
75 #if !defined(CONFIG_RT_MUTEX_TESTER) && defined(PF_MUTEX_TESTER)
76 # define PF_NOFS PF_MUTEX_TESTER
77
78 static inline void
79 sanitize_flags(struct task_struct *p, gfp_t *flags)
80 {
81 if (unlikely((p->flags & PF_NOFS) && (*flags & (__GFP_IO|__GFP_FS)))) {
82 # ifdef NDEBUG
83 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "Fixing allocation for "
84 "task %s (%d) which used GFP flags 0x%x with PF_NOFS set\n",
85 p->comm, p->pid, flags);
86 spl_debug_dumpstack(p);
87 *flags &= ~(__GFP_IO|__GFP_FS);
88 # else
89 PANIC("FATAL allocation for task %s (%d) which used GFP "
90 "flags 0x%x with PF_NOFS set\n", p->comm, p->pid, flags);
91 # endif /* NDEBUG */
92 }
93 }
94 #else
95 # define PF_NOFS 0x00000000
96 # define sanitize_flags(p, fl) ((void)0)
97 #endif /* !defined(CONFIG_RT_MUTEX_TESTER) && defined(PF_MUTEX_TESTER) */
98
99 /*
100 * __GFP_NOFAIL looks like it will be removed from the kernel perhaps as
101 * early as 2.6.32. To avoid this issue when it occurs in upstream kernels
102 * we retry the allocation here as long as it is not __GFP_WAIT (GFP_ATOMIC).
103 * I would prefer the caller handle the failure case cleanly but we are
104 * trying to emulate Solaris and those are not the Solaris semantics.
105 */
106 static inline void *
107 kmalloc_nofail(size_t size, gfp_t flags)
108 {
109 void *ptr;
110
111 sanitize_flags(current, &flags);
112
113 do {
114 ptr = kmalloc(size, flags);
115 } while (ptr == NULL && (flags & __GFP_WAIT));
116
117 return ptr;
118 }
119
120 static inline void *
121 kzalloc_nofail(size_t size, gfp_t flags)
122 {
123 void *ptr;
124
125 sanitize_flags(current, &flags);
126
127 do {
128 ptr = kzalloc(size, flags);
129 } while (ptr == NULL && (flags & __GFP_WAIT));
130
131 return ptr;
132 }
133
134 static inline void *
135 kmalloc_node_nofail(size_t size, gfp_t flags, int node)
136 {
137 #ifdef HAVE_KMALLOC_NODE
138 void *ptr;
139
140 sanitize_flags(current, &flags);
141
142 do {
143 ptr = kmalloc_node(size, flags, node);
144 } while (ptr == NULL && (flags & __GFP_WAIT));
145
146 return ptr;
147 #else
148 return kmalloc_nofail(size, flags);
149 #endif /* HAVE_KMALLOC_NODE */
150 }
151
152 static inline void *
153 vmalloc_nofail(size_t size, gfp_t flags)
154 {
155 void *ptr;
156
157 sanitize_flags(current, &flags);
158
159 /*
160 * Retry failed __vmalloc() allocations once every second. The
161 * rational for the delay is that the likely failure modes are:
162 *
163 * 1) The system has completely exhausted memory, in which case
164 * delaying 1 second for the memory reclaim to run is reasonable
165 * to avoid thrashing the system.
166 * 2) The system has memory but has exhausted the small virtual
167 * address space available on 32-bit systems. Retrying the
168 * allocation immediately will only result in spinning on the
169 * virtual address space lock. It is better delay a second and
170 * hope that another process will free some of the address space.
171 * But the bottom line is there is not much we can actually do
172 * since we can never safely return a failure and honor the
173 * Solaris semantics.
174 */
175 while (1) {
176 ptr = __vmalloc(size, flags | __GFP_HIGHMEM, PAGE_KERNEL);
177 if (unlikely((ptr == NULL) && (flags & __GFP_WAIT))) {
178 set_current_state(TASK_INTERRUPTIBLE);
179 schedule_timeout(HZ);
180 } else {
181 break;
182 }
183 }
184
185 return ptr;
186 }
187
188 static inline void *
189 vzalloc_nofail(size_t size, gfp_t flags)
190 {
191 void *ptr;
192
193 ptr = vmalloc_nofail(size, flags);
194 if (ptr)
195 memset(ptr, 0, (size));
196
197 return ptr;
198 }
199
200 #ifdef DEBUG_KMEM
201
202 /*
203 * Memory accounting functions to be used only when DEBUG_KMEM is set.
204 */
205 # ifdef HAVE_ATOMIC64_T
206
207 # define kmem_alloc_used_add(size) atomic64_add(size, &kmem_alloc_used)
208 # define kmem_alloc_used_sub(size) atomic64_sub(size, &kmem_alloc_used)
209 # define kmem_alloc_used_read() atomic64_read(&kmem_alloc_used)
210 # define kmem_alloc_used_set(size) atomic64_set(&kmem_alloc_used, size)
211 # define vmem_alloc_used_add(size) atomic64_add(size, &vmem_alloc_used)
212 # define vmem_alloc_used_sub(size) atomic64_sub(size, &vmem_alloc_used)
213 # define vmem_alloc_used_read() atomic64_read(&vmem_alloc_used)
214 # define vmem_alloc_used_set(size) atomic64_set(&vmem_alloc_used, size)
215
216 extern atomic64_t kmem_alloc_used;
217 extern unsigned long long kmem_alloc_max;
218 extern atomic64_t vmem_alloc_used;
219 extern unsigned long long vmem_alloc_max;
220
221 # else /* HAVE_ATOMIC64_T */
222
223 # define kmem_alloc_used_add(size) atomic_add(size, &kmem_alloc_used)
224 # define kmem_alloc_used_sub(size) atomic_sub(size, &kmem_alloc_used)
225 # define kmem_alloc_used_read() atomic_read(&kmem_alloc_used)
226 # define kmem_alloc_used_set(size) atomic_set(&kmem_alloc_used, size)
227 # define vmem_alloc_used_add(size) atomic_add(size, &vmem_alloc_used)
228 # define vmem_alloc_used_sub(size) atomic_sub(size, &vmem_alloc_used)
229 # define vmem_alloc_used_read() atomic_read(&vmem_alloc_used)
230 # define vmem_alloc_used_set(size) atomic_set(&vmem_alloc_used, size)
231
232 extern atomic_t kmem_alloc_used;
233 extern unsigned long long kmem_alloc_max;
234 extern atomic_t vmem_alloc_used;
235 extern unsigned long long vmem_alloc_max;
236
237 # endif /* HAVE_ATOMIC64_T */
238
239 # ifdef DEBUG_KMEM_TRACKING
240 /*
241 * DEBUG_KMEM && DEBUG_KMEM_TRACKING
242 *
243 * The maximum level of memory debugging. All memory will be accounted
244 * for and each allocation will be explicitly tracked. Any allocation
245 * which is leaked will be reported on module unload and the exact location
246 * where that memory was allocation will be reported. This level of memory
247 * tracking will have a significant impact on performance and should only
248 * be enabled for debugging. This feature may be enabled by passing
249 * --enable-debug-kmem-tracking to configure.
250 */
251 # define kmem_alloc(sz, fl) kmem_alloc_track((sz), (fl), \
252 __FUNCTION__, __LINE__, 0, 0)
253 # define kmem_zalloc(sz, fl) kmem_alloc_track((sz), (fl)|__GFP_ZERO,\
254 __FUNCTION__, __LINE__, 0, 0)
255 # define kmem_alloc_node(sz, fl, nd) kmem_alloc_track((sz), (fl), \
256 __FUNCTION__, __LINE__, 1, nd)
257 # define kmem_free(ptr, sz) kmem_free_track((ptr), (sz))
258
259 # define vmem_alloc(sz, fl) vmem_alloc_track((sz), (fl), \
260 __FUNCTION__, __LINE__)
261 # define vmem_zalloc(sz, fl) vmem_alloc_track((sz), (fl)|__GFP_ZERO,\
262 __FUNCTION__, __LINE__)
263 # define vmem_free(ptr, sz) vmem_free_track((ptr), (sz))
264
265 extern void *kmem_alloc_track(size_t, int, const char *, int, int, int);
266 extern void kmem_free_track(const void *, size_t);
267 extern void *vmem_alloc_track(size_t, int, const char *, int);
268 extern void vmem_free_track(const void *, size_t);
269
270 # else /* DEBUG_KMEM_TRACKING */
271 /*
272 * DEBUG_KMEM && !DEBUG_KMEM_TRACKING
273 *
274 * The default build will set DEBUG_KEM. This provides basic memory
275 * accounting with little to no impact on performance. When the module
276 * is unloaded in any memory was leaked the total number of leaked bytes
277 * will be reported on the console. To disable this basic accounting
278 * pass the --disable-debug-kmem option to configure.
279 */
280 # define kmem_alloc(sz, fl) kmem_alloc_debug((sz), (fl), \
281 __FUNCTION__, __LINE__, 0, 0)
282 # define kmem_zalloc(sz, fl) kmem_alloc_debug((sz), (fl)|__GFP_ZERO,\
283 __FUNCTION__, __LINE__, 0, 0)
284 # define kmem_alloc_node(sz, fl, nd) kmem_alloc_debug((sz), (fl), \
285 __FUNCTION__, __LINE__, 1, nd)
286 # define kmem_free(ptr, sz) kmem_free_debug((ptr), (sz))
287
288 # define vmem_alloc(sz, fl) vmem_alloc_debug((sz), (fl), \
289 __FUNCTION__, __LINE__)
290 # define vmem_zalloc(sz, fl) vmem_alloc_debug((sz), (fl)|__GFP_ZERO,\
291 __FUNCTION__, __LINE__)
292 # define vmem_free(ptr, sz) vmem_free_debug((ptr), (sz))
293
294 extern void *kmem_alloc_debug(size_t, int, const char *, int, int, int);
295 extern void kmem_free_debug(const void *, size_t);
296 extern void *vmem_alloc_debug(size_t, int, const char *, int);
297 extern void vmem_free_debug(const void *, size_t);
298
299 # endif /* DEBUG_KMEM_TRACKING */
300 #else /* DEBUG_KMEM */
301 /*
302 * !DEBUG_KMEM && !DEBUG_KMEM_TRACKING
303 *
304 * All debugging is disabled. There will be no overhead even for
305 * minimal memory accounting. To enable basic accounting pass the
306 * --enable-debug-kmem option to configure.
307 */
308 # define kmem_alloc(sz, fl) kmalloc_nofail((sz), (fl))
309 # define kmem_zalloc(sz, fl) kzalloc_nofail((sz), (fl))
310 # define kmem_alloc_node(sz, fl, nd) kmalloc_node_nofail((sz), (fl), (nd))
311 # define kmem_free(ptr, sz) ((void)(sz), kfree(ptr))
312
313 # define vmem_alloc(sz, fl) vmalloc_nofail((sz), (fl))
314 # define vmem_zalloc(sz, fl) vzalloc_nofail((sz), (fl))
315 # define vmem_free(ptr, sz) ((void)(sz), vfree(ptr))
316
317 #endif /* DEBUG_KMEM */
318
319 extern int kmem_debugging(void);
320 extern char *kmem_vasprintf(const char *fmt, va_list ap);
321 extern char *kmem_asprintf(const char *fmt, ...);
322 extern char *strdup(const char *str);
323 extern void strfree(char *str);
324
325
326 /*
327 * Slab allocation interfaces. The SPL slab differs from the standard
328 * Linux SLAB or SLUB primarily in that each cache may be backed by slabs
329 * allocated from the physical or virtal memory address space. The virtual
330 * slabs allow for good behavior when allocation large objects of identical
331 * size. This slab implementation also supports both constructors and
332 * destructions which the Linux slab does not.
333 */
334 enum {
335 KMC_BIT_NOTOUCH = 0, /* Don't update ages */
336 KMC_BIT_NODEBUG = 1, /* Default behavior */
337 KMC_BIT_NOMAGAZINE = 2, /* XXX: Unsupported */
338 KMC_BIT_NOHASH = 3, /* XXX: Unsupported */
339 KMC_BIT_QCACHE = 4, /* XXX: Unsupported */
340 KMC_BIT_KMEM = 5, /* Use kmem cache */
341 KMC_BIT_VMEM = 6, /* Use vmem cache */
342 KMC_BIT_OFFSLAB = 7, /* Objects not on slab */
343 KMC_BIT_GROWING = 15, /* Growing in progress */
344 KMC_BIT_REAPING = 16, /* Reaping in progress */
345 KMC_BIT_DESTROY = 17, /* Destroy in progress */
346 KMC_BIT_TOTAL = 18, /* Proc handler helper bit */
347 KMC_BIT_ALLOC = 19, /* Proc handler helper bit */
348 KMC_BIT_MAX = 20, /* Proc handler helper bit */
349 };
350
351 /* kmem move callback return values */
352 typedef enum kmem_cbrc {
353 KMEM_CBRC_YES = 0, /* Object moved */
354 KMEM_CBRC_NO = 1, /* Object not moved */
355 KMEM_CBRC_LATER = 2, /* Object not moved, try again later */
356 KMEM_CBRC_DONT_NEED = 3, /* Neither object is needed */
357 KMEM_CBRC_DONT_KNOW = 4, /* Object unknown */
358 } kmem_cbrc_t;
359
360 #define KMC_NOTOUCH (1 << KMC_BIT_NOTOUCH)
361 #define KMC_NODEBUG (1 << KMC_BIT_NODEBUG)
362 #define KMC_NOMAGAZINE (1 << KMC_BIT_NOMAGAZINE)
363 #define KMC_NOHASH (1 << KMC_BIT_NOHASH)
364 #define KMC_QCACHE (1 << KMC_BIT_QCACHE)
365 #define KMC_KMEM (1 << KMC_BIT_KMEM)
366 #define KMC_VMEM (1 << KMC_BIT_VMEM)
367 #define KMC_OFFSLAB (1 << KMC_BIT_OFFSLAB)
368 #define KMC_GROWING (1 << KMC_BIT_GROWING)
369 #define KMC_REAPING (1 << KMC_BIT_REAPING)
370 #define KMC_DESTROY (1 << KMC_BIT_DESTROY)
371 #define KMC_TOTAL (1 << KMC_BIT_TOTAL)
372 #define KMC_ALLOC (1 << KMC_BIT_ALLOC)
373 #define KMC_MAX (1 << KMC_BIT_MAX)
374
375 #define KMC_REAP_CHUNK INT_MAX
376 #define KMC_DEFAULT_SEEKS 1
377
378 extern struct list_head spl_kmem_cache_list;
379 extern struct rw_semaphore spl_kmem_cache_sem;
380
381 #define SKM_MAGIC 0x2e2e2e2e
382 #define SKO_MAGIC 0x20202020
383 #define SKS_MAGIC 0x22222222
384 #define SKC_MAGIC 0x2c2c2c2c
385
386 #define SPL_KMEM_CACHE_DELAY 15 /* Minimum slab release age */
387 #define SPL_KMEM_CACHE_REAP 0 /* Default reap everything */
388 #define SPL_KMEM_CACHE_OBJ_PER_SLAB 16 /* Target objects per slab */
389 #define SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN 8 /* Minimum objects per slab */
390 #define SPL_KMEM_CACHE_ALIGN 8 /* Default object alignment */
391
392 #define POINTER_IS_VALID(p) 0 /* Unimplemented */
393 #define POINTER_INVALIDATE(pp) /* Unimplemented */
394
395 typedef int (*spl_kmem_ctor_t)(void *, void *, int);
396 typedef void (*spl_kmem_dtor_t)(void *, void *);
397 typedef void (*spl_kmem_reclaim_t)(void *);
398
399 typedef struct spl_kmem_magazine {
400 uint32_t skm_magic; /* Sanity magic */
401 uint32_t skm_avail; /* Available objects */
402 uint32_t skm_size; /* Magazine size */
403 uint32_t skm_refill; /* Batch refill size */
404 struct spl_kmem_cache *skm_cache; /* Owned by cache */
405 struct delayed_work skm_work; /* Magazine reclaim work */
406 unsigned long skm_age; /* Last cache access */
407 unsigned int skm_cpu; /* Owned by cpu */
408 void *skm_objs[0]; /* Object pointers */
409 } spl_kmem_magazine_t;
410
411 typedef struct spl_kmem_obj {
412 uint32_t sko_magic; /* Sanity magic */
413 void *sko_addr; /* Buffer address */
414 struct spl_kmem_slab *sko_slab; /* Owned by slab */
415 struct list_head sko_list; /* Free object list linkage */
416 } spl_kmem_obj_t;
417
418 typedef struct spl_kmem_slab {
419 uint32_t sks_magic; /* Sanity magic */
420 uint32_t sks_objs; /* Objects per slab */
421 struct spl_kmem_cache *sks_cache; /* Owned by cache */
422 struct list_head sks_list; /* Slab list linkage */
423 struct list_head sks_free_list; /* Free object list */
424 unsigned long sks_age; /* Last modify jiffie */
425 uint32_t sks_ref; /* Ref count used objects */
426 } spl_kmem_slab_t;
427
428 typedef struct spl_kmem_alloc {
429 struct spl_kmem_cache *ska_cache; /* Owned by cache */
430 int ska_flags; /* Allocation flags */
431 struct delayed_work ska_work; /* Allocation work */
432 } spl_kmem_alloc_t;
433
434 typedef struct spl_kmem_emergency {
435 void *ske_obj; /* Buffer address */
436 struct list_head ske_list; /* Emergency list linkage */
437 } spl_kmem_emergency_t;
438
439 typedef struct spl_kmem_cache {
440 uint32_t skc_magic; /* Sanity magic */
441 uint32_t skc_name_size; /* Name length */
442 char *skc_name; /* Name string */
443 spl_kmem_magazine_t *skc_mag[NR_CPUS]; /* Per-CPU warm cache */
444 uint32_t skc_mag_size; /* Magazine size */
445 uint32_t skc_mag_refill; /* Magazine refill count */
446 spl_kmem_ctor_t skc_ctor; /* Constructor */
447 spl_kmem_dtor_t skc_dtor; /* Destructor */
448 spl_kmem_reclaim_t skc_reclaim; /* Reclaimator */
449 void *skc_private; /* Private data */
450 void *skc_vmp; /* Unused */
451 unsigned long skc_flags; /* Flags */
452 uint32_t skc_obj_size; /* Object size */
453 uint32_t skc_obj_align; /* Object alignment */
454 uint32_t skc_slab_objs; /* Objects per slab */
455 uint32_t skc_slab_size; /* Slab size */
456 uint32_t skc_delay; /* Slab reclaim interval */
457 uint32_t skc_reap; /* Slab reclaim count */
458 atomic_t skc_ref; /* Ref count callers */
459 struct delayed_work skc_work; /* Slab reclaim work */
460 struct list_head skc_list; /* List of caches linkage */
461 struct list_head skc_complete_list;/* Completely alloc'ed */
462 struct list_head skc_partial_list; /* Partially alloc'ed */
463 struct list_head skc_emergency_list; /* Min sized objects */
464 spinlock_t skc_lock; /* Cache lock */
465 wait_queue_head_t skc_waitq; /* Allocation waiters */
466 uint64_t skc_slab_fail; /* Slab alloc failures */
467 uint64_t skc_slab_create;/* Slab creates */
468 uint64_t skc_slab_destroy;/* Slab destroys */
469 uint64_t skc_slab_total; /* Slab total current */
470 uint64_t skc_slab_alloc; /* Slab alloc current */
471 uint64_t skc_slab_max; /* Slab max historic */
472 uint64_t skc_obj_total; /* Obj total current */
473 uint64_t skc_obj_alloc; /* Obj alloc current */
474 uint64_t skc_obj_max; /* Obj max historic */
475 uint64_t skc_obj_emergency; /* Obj emergency current */
476 uint64_t skc_obj_emergency_max; /* Obj emergency max */
477 } spl_kmem_cache_t;
478 #define kmem_cache_t spl_kmem_cache_t
479
480 extern spl_kmem_cache_t *spl_kmem_cache_create(char *name, size_t size,
481 size_t align, spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor,
482 spl_kmem_reclaim_t reclaim, void *priv, void *vmp, int flags);
483 extern void spl_kmem_cache_set_move(spl_kmem_cache_t *,
484 kmem_cbrc_t (*)(void *, void *, size_t, void *));
485 extern void spl_kmem_cache_destroy(spl_kmem_cache_t *skc);
486 extern void *spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags);
487 extern void spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj);
488 extern void spl_kmem_cache_reap_now(spl_kmem_cache_t *skc, int count);
489 extern void spl_kmem_reap(void);
490
491 int spl_kmem_init_kallsyms_lookup(void);
492 int spl_kmem_init(void);
493 void spl_kmem_fini(void);
494
495 #define kmem_cache_create(name,size,align,ctor,dtor,rclm,priv,vmp,flags) \
496 spl_kmem_cache_create(name,size,align,ctor,dtor,rclm,priv,vmp,flags)
497 #define kmem_cache_set_move(skc, move) spl_kmem_cache_set_move(skc, move)
498 #define kmem_cache_destroy(skc) spl_kmem_cache_destroy(skc)
499 #define kmem_cache_alloc(skc, flags) spl_kmem_cache_alloc(skc, flags)
500 #define kmem_cache_free(skc, obj) spl_kmem_cache_free(skc, obj)
501 #define kmem_cache_reap_now(skc) \
502 spl_kmem_cache_reap_now(skc, skc->skc_reap)
503 #define kmem_reap() spl_kmem_reap()
504 #define kmem_virt(ptr) (((ptr) >= (void *)VMALLOC_START) && \
505 ((ptr) < (void *)VMALLOC_END))
506
507 #endif /* _SPL_KMEM_H */