]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - kernel/events/core.c
perf: Fix STATE_EXIT usage
[mirror_ubuntu-disco-kernel.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47
48 #include "internal.h"
49
50 #include <asm/irq_regs.h>
51
52 static struct workqueue_struct *perf_wq;
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57 struct task_struct *p;
58 remote_function_f func;
59 void *info;
60 int ret;
61 };
62
63 static void remote_function(void *data)
64 {
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 tfc->ret = -EAGAIN;
70 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 return;
72 }
73
74 tfc->ret = tfc->func(tfc->info);
75 }
76
77 /**
78 * task_function_call - call a function on the cpu on which a task runs
79 * @p: the task to evaluate
80 * @func: the function to be called
81 * @info: the function call argument
82 *
83 * Calls the function @func when the task is currently running. This might
84 * be on the current CPU, which just calls the function directly
85 *
86 * returns: @func return value, or
87 * -ESRCH - when the process isn't running
88 * -EAGAIN - when the process moved away
89 */
90 static int
91 task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 {
93 struct remote_function_call data = {
94 .p = p,
95 .func = func,
96 .info = info,
97 .ret = -ESRCH, /* No such (running) process */
98 };
99
100 if (task_curr(p))
101 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102
103 return data.ret;
104 }
105
106 /**
107 * cpu_function_call - call a function on the cpu
108 * @func: the function to be called
109 * @info: the function call argument
110 *
111 * Calls the function @func on the remote cpu.
112 *
113 * returns: @func return value or -ENXIO when the cpu is offline
114 */
115 static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 {
117 struct remote_function_call data = {
118 .p = NULL,
119 .func = func,
120 .info = info,
121 .ret = -ENXIO, /* No such CPU */
122 };
123
124 smp_call_function_single(cpu, remote_function, &data, 1);
125
126 return data.ret;
127 }
128
129 static inline struct perf_cpu_context *
130 __get_cpu_context(struct perf_event_context *ctx)
131 {
132 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
133 }
134
135 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
136 struct perf_event_context *ctx)
137 {
138 raw_spin_lock(&cpuctx->ctx.lock);
139 if (ctx)
140 raw_spin_lock(&ctx->lock);
141 }
142
143 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
144 struct perf_event_context *ctx)
145 {
146 if (ctx)
147 raw_spin_unlock(&ctx->lock);
148 raw_spin_unlock(&cpuctx->ctx.lock);
149 }
150
151 #define TASK_TOMBSTONE ((void *)-1L)
152
153 static bool is_kernel_event(struct perf_event *event)
154 {
155 return event->owner == TASK_TOMBSTONE;
156 }
157
158 /*
159 * On task ctx scheduling...
160 *
161 * When !ctx->nr_events a task context will not be scheduled. This means
162 * we can disable the scheduler hooks (for performance) without leaving
163 * pending task ctx state.
164 *
165 * This however results in two special cases:
166 *
167 * - removing the last event from a task ctx; this is relatively straight
168 * forward and is done in __perf_remove_from_context.
169 *
170 * - adding the first event to a task ctx; this is tricky because we cannot
171 * rely on ctx->is_active and therefore cannot use event_function_call().
172 * See perf_install_in_context().
173 *
174 * This is because we need a ctx->lock serialized variable (ctx->is_active)
175 * to reliably determine if a particular task/context is scheduled in. The
176 * task_curr() use in task_function_call() is racy in that a remote context
177 * switch is not a single atomic operation.
178 *
179 * As is, the situation is 'safe' because we set rq->curr before we do the
180 * actual context switch. This means that task_curr() will fail early, but
181 * we'll continue spinning on ctx->is_active until we've passed
182 * perf_event_task_sched_out().
183 *
184 * Without this ctx->lock serialized variable we could have race where we find
185 * the task (and hence the context) would not be active while in fact they are.
186 *
187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188 */
189
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 struct perf_event_context *, void *);
192
193 struct event_function_struct {
194 struct perf_event *event;
195 event_f func;
196 void *data;
197 };
198
199 static int event_function(void *info)
200 {
201 struct event_function_struct *efs = info;
202 struct perf_event *event = efs->event;
203 struct perf_event_context *ctx = event->ctx;
204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 struct perf_event_context *task_ctx = cpuctx->task_ctx;
206 int ret = 0;
207
208 WARN_ON_ONCE(!irqs_disabled());
209
210 perf_ctx_lock(cpuctx, task_ctx);
211 /*
212 * Since we do the IPI call without holding ctx->lock things can have
213 * changed, double check we hit the task we set out to hit.
214 */
215 if (ctx->task) {
216 if (ctx->task != current) {
217 ret = -EAGAIN;
218 goto unlock;
219 }
220
221 /*
222 * We only use event_function_call() on established contexts,
223 * and event_function() is only ever called when active (or
224 * rather, we'll have bailed in task_function_call() or the
225 * above ctx->task != current test), therefore we must have
226 * ctx->is_active here.
227 */
228 WARN_ON_ONCE(!ctx->is_active);
229 /*
230 * And since we have ctx->is_active, cpuctx->task_ctx must
231 * match.
232 */
233 WARN_ON_ONCE(task_ctx != ctx);
234 } else {
235 WARN_ON_ONCE(&cpuctx->ctx != ctx);
236 }
237
238 efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240 perf_ctx_unlock(cpuctx, task_ctx);
241
242 return ret;
243 }
244
245 static void event_function_local(struct perf_event *event, event_f func, void *data)
246 {
247 struct event_function_struct efs = {
248 .event = event,
249 .func = func,
250 .data = data,
251 };
252
253 int ret = event_function(&efs);
254 WARN_ON_ONCE(ret);
255 }
256
257 static void event_function_call(struct perf_event *event, event_f func, void *data)
258 {
259 struct perf_event_context *ctx = event->ctx;
260 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
261 struct event_function_struct efs = {
262 .event = event,
263 .func = func,
264 .data = data,
265 };
266
267 if (!event->parent) {
268 /*
269 * If this is a !child event, we must hold ctx::mutex to
270 * stabilize the the event->ctx relation. See
271 * perf_event_ctx_lock().
272 */
273 lockdep_assert_held(&ctx->mutex);
274 }
275
276 if (!task) {
277 cpu_function_call(event->cpu, event_function, &efs);
278 return;
279 }
280
281 again:
282 if (task == TASK_TOMBSTONE)
283 return;
284
285 if (!task_function_call(task, event_function, &efs))
286 return;
287
288 raw_spin_lock_irq(&ctx->lock);
289 /*
290 * Reload the task pointer, it might have been changed by
291 * a concurrent perf_event_context_sched_out().
292 */
293 task = ctx->task;
294 if (task != TASK_TOMBSTONE) {
295 if (ctx->is_active) {
296 raw_spin_unlock_irq(&ctx->lock);
297 goto again;
298 }
299 func(event, NULL, ctx, data);
300 }
301 raw_spin_unlock_irq(&ctx->lock);
302 }
303
304 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
305 PERF_FLAG_FD_OUTPUT |\
306 PERF_FLAG_PID_CGROUP |\
307 PERF_FLAG_FD_CLOEXEC)
308
309 /*
310 * branch priv levels that need permission checks
311 */
312 #define PERF_SAMPLE_BRANCH_PERM_PLM \
313 (PERF_SAMPLE_BRANCH_KERNEL |\
314 PERF_SAMPLE_BRANCH_HV)
315
316 enum event_type_t {
317 EVENT_FLEXIBLE = 0x1,
318 EVENT_PINNED = 0x2,
319 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
320 };
321
322 /*
323 * perf_sched_events : >0 events exist
324 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
325 */
326 struct static_key_deferred perf_sched_events __read_mostly;
327 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
328 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
329
330 static atomic_t nr_mmap_events __read_mostly;
331 static atomic_t nr_comm_events __read_mostly;
332 static atomic_t nr_task_events __read_mostly;
333 static atomic_t nr_freq_events __read_mostly;
334 static atomic_t nr_switch_events __read_mostly;
335
336 static LIST_HEAD(pmus);
337 static DEFINE_MUTEX(pmus_lock);
338 static struct srcu_struct pmus_srcu;
339
340 /*
341 * perf event paranoia level:
342 * -1 - not paranoid at all
343 * 0 - disallow raw tracepoint access for unpriv
344 * 1 - disallow cpu events for unpriv
345 * 2 - disallow kernel profiling for unpriv
346 */
347 int sysctl_perf_event_paranoid __read_mostly = 1;
348
349 /* Minimum for 512 kiB + 1 user control page */
350 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
351
352 /*
353 * max perf event sample rate
354 */
355 #define DEFAULT_MAX_SAMPLE_RATE 100000
356 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
357 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
358
359 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
360
361 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
362 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
363
364 static int perf_sample_allowed_ns __read_mostly =
365 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
366
367 static void update_perf_cpu_limits(void)
368 {
369 u64 tmp = perf_sample_period_ns;
370
371 tmp *= sysctl_perf_cpu_time_max_percent;
372 do_div(tmp, 100);
373 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
374 }
375
376 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
377
378 int perf_proc_update_handler(struct ctl_table *table, int write,
379 void __user *buffer, size_t *lenp,
380 loff_t *ppos)
381 {
382 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
383
384 if (ret || !write)
385 return ret;
386
387 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
388 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
389 update_perf_cpu_limits();
390
391 return 0;
392 }
393
394 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
395
396 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
397 void __user *buffer, size_t *lenp,
398 loff_t *ppos)
399 {
400 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
401
402 if (ret || !write)
403 return ret;
404
405 update_perf_cpu_limits();
406
407 return 0;
408 }
409
410 /*
411 * perf samples are done in some very critical code paths (NMIs).
412 * If they take too much CPU time, the system can lock up and not
413 * get any real work done. This will drop the sample rate when
414 * we detect that events are taking too long.
415 */
416 #define NR_ACCUMULATED_SAMPLES 128
417 static DEFINE_PER_CPU(u64, running_sample_length);
418
419 static void perf_duration_warn(struct irq_work *w)
420 {
421 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
422 u64 avg_local_sample_len;
423 u64 local_samples_len;
424
425 local_samples_len = __this_cpu_read(running_sample_length);
426 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
427
428 printk_ratelimited(KERN_WARNING
429 "perf interrupt took too long (%lld > %lld), lowering "
430 "kernel.perf_event_max_sample_rate to %d\n",
431 avg_local_sample_len, allowed_ns >> 1,
432 sysctl_perf_event_sample_rate);
433 }
434
435 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
436
437 void perf_sample_event_took(u64 sample_len_ns)
438 {
439 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
440 u64 avg_local_sample_len;
441 u64 local_samples_len;
442
443 if (allowed_ns == 0)
444 return;
445
446 /* decay the counter by 1 average sample */
447 local_samples_len = __this_cpu_read(running_sample_length);
448 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
449 local_samples_len += sample_len_ns;
450 __this_cpu_write(running_sample_length, local_samples_len);
451
452 /*
453 * note: this will be biased artifically low until we have
454 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
455 * from having to maintain a count.
456 */
457 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
458
459 if (avg_local_sample_len <= allowed_ns)
460 return;
461
462 if (max_samples_per_tick <= 1)
463 return;
464
465 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
466 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
467 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
468
469 update_perf_cpu_limits();
470
471 if (!irq_work_queue(&perf_duration_work)) {
472 early_printk("perf interrupt took too long (%lld > %lld), lowering "
473 "kernel.perf_event_max_sample_rate to %d\n",
474 avg_local_sample_len, allowed_ns >> 1,
475 sysctl_perf_event_sample_rate);
476 }
477 }
478
479 static atomic64_t perf_event_id;
480
481 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
482 enum event_type_t event_type);
483
484 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
485 enum event_type_t event_type,
486 struct task_struct *task);
487
488 static void update_context_time(struct perf_event_context *ctx);
489 static u64 perf_event_time(struct perf_event *event);
490
491 void __weak perf_event_print_debug(void) { }
492
493 extern __weak const char *perf_pmu_name(void)
494 {
495 return "pmu";
496 }
497
498 static inline u64 perf_clock(void)
499 {
500 return local_clock();
501 }
502
503 static inline u64 perf_event_clock(struct perf_event *event)
504 {
505 return event->clock();
506 }
507
508 #ifdef CONFIG_CGROUP_PERF
509
510 static inline bool
511 perf_cgroup_match(struct perf_event *event)
512 {
513 struct perf_event_context *ctx = event->ctx;
514 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
515
516 /* @event doesn't care about cgroup */
517 if (!event->cgrp)
518 return true;
519
520 /* wants specific cgroup scope but @cpuctx isn't associated with any */
521 if (!cpuctx->cgrp)
522 return false;
523
524 /*
525 * Cgroup scoping is recursive. An event enabled for a cgroup is
526 * also enabled for all its descendant cgroups. If @cpuctx's
527 * cgroup is a descendant of @event's (the test covers identity
528 * case), it's a match.
529 */
530 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
531 event->cgrp->css.cgroup);
532 }
533
534 static inline void perf_detach_cgroup(struct perf_event *event)
535 {
536 css_put(&event->cgrp->css);
537 event->cgrp = NULL;
538 }
539
540 static inline int is_cgroup_event(struct perf_event *event)
541 {
542 return event->cgrp != NULL;
543 }
544
545 static inline u64 perf_cgroup_event_time(struct perf_event *event)
546 {
547 struct perf_cgroup_info *t;
548
549 t = per_cpu_ptr(event->cgrp->info, event->cpu);
550 return t->time;
551 }
552
553 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
554 {
555 struct perf_cgroup_info *info;
556 u64 now;
557
558 now = perf_clock();
559
560 info = this_cpu_ptr(cgrp->info);
561
562 info->time += now - info->timestamp;
563 info->timestamp = now;
564 }
565
566 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
567 {
568 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
569 if (cgrp_out)
570 __update_cgrp_time(cgrp_out);
571 }
572
573 static inline void update_cgrp_time_from_event(struct perf_event *event)
574 {
575 struct perf_cgroup *cgrp;
576
577 /*
578 * ensure we access cgroup data only when needed and
579 * when we know the cgroup is pinned (css_get)
580 */
581 if (!is_cgroup_event(event))
582 return;
583
584 cgrp = perf_cgroup_from_task(current, event->ctx);
585 /*
586 * Do not update time when cgroup is not active
587 */
588 if (cgrp == event->cgrp)
589 __update_cgrp_time(event->cgrp);
590 }
591
592 static inline void
593 perf_cgroup_set_timestamp(struct task_struct *task,
594 struct perf_event_context *ctx)
595 {
596 struct perf_cgroup *cgrp;
597 struct perf_cgroup_info *info;
598
599 /*
600 * ctx->lock held by caller
601 * ensure we do not access cgroup data
602 * unless we have the cgroup pinned (css_get)
603 */
604 if (!task || !ctx->nr_cgroups)
605 return;
606
607 cgrp = perf_cgroup_from_task(task, ctx);
608 info = this_cpu_ptr(cgrp->info);
609 info->timestamp = ctx->timestamp;
610 }
611
612 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
613 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
614
615 /*
616 * reschedule events based on the cgroup constraint of task.
617 *
618 * mode SWOUT : schedule out everything
619 * mode SWIN : schedule in based on cgroup for next
620 */
621 static void perf_cgroup_switch(struct task_struct *task, int mode)
622 {
623 struct perf_cpu_context *cpuctx;
624 struct pmu *pmu;
625 unsigned long flags;
626
627 /*
628 * disable interrupts to avoid geting nr_cgroup
629 * changes via __perf_event_disable(). Also
630 * avoids preemption.
631 */
632 local_irq_save(flags);
633
634 /*
635 * we reschedule only in the presence of cgroup
636 * constrained events.
637 */
638
639 list_for_each_entry_rcu(pmu, &pmus, entry) {
640 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
641 if (cpuctx->unique_pmu != pmu)
642 continue; /* ensure we process each cpuctx once */
643
644 /*
645 * perf_cgroup_events says at least one
646 * context on this CPU has cgroup events.
647 *
648 * ctx->nr_cgroups reports the number of cgroup
649 * events for a context.
650 */
651 if (cpuctx->ctx.nr_cgroups > 0) {
652 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
653 perf_pmu_disable(cpuctx->ctx.pmu);
654
655 if (mode & PERF_CGROUP_SWOUT) {
656 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
657 /*
658 * must not be done before ctxswout due
659 * to event_filter_match() in event_sched_out()
660 */
661 cpuctx->cgrp = NULL;
662 }
663
664 if (mode & PERF_CGROUP_SWIN) {
665 WARN_ON_ONCE(cpuctx->cgrp);
666 /*
667 * set cgrp before ctxsw in to allow
668 * event_filter_match() to not have to pass
669 * task around
670 * we pass the cpuctx->ctx to perf_cgroup_from_task()
671 * because cgorup events are only per-cpu
672 */
673 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
674 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
675 }
676 perf_pmu_enable(cpuctx->ctx.pmu);
677 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
678 }
679 }
680
681 local_irq_restore(flags);
682 }
683
684 static inline void perf_cgroup_sched_out(struct task_struct *task,
685 struct task_struct *next)
686 {
687 struct perf_cgroup *cgrp1;
688 struct perf_cgroup *cgrp2 = NULL;
689
690 rcu_read_lock();
691 /*
692 * we come here when we know perf_cgroup_events > 0
693 * we do not need to pass the ctx here because we know
694 * we are holding the rcu lock
695 */
696 cgrp1 = perf_cgroup_from_task(task, NULL);
697 cgrp2 = perf_cgroup_from_task(next, NULL);
698
699 /*
700 * only schedule out current cgroup events if we know
701 * that we are switching to a different cgroup. Otherwise,
702 * do no touch the cgroup events.
703 */
704 if (cgrp1 != cgrp2)
705 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
706
707 rcu_read_unlock();
708 }
709
710 static inline void perf_cgroup_sched_in(struct task_struct *prev,
711 struct task_struct *task)
712 {
713 struct perf_cgroup *cgrp1;
714 struct perf_cgroup *cgrp2 = NULL;
715
716 rcu_read_lock();
717 /*
718 * we come here when we know perf_cgroup_events > 0
719 * we do not need to pass the ctx here because we know
720 * we are holding the rcu lock
721 */
722 cgrp1 = perf_cgroup_from_task(task, NULL);
723 cgrp2 = perf_cgroup_from_task(prev, NULL);
724
725 /*
726 * only need to schedule in cgroup events if we are changing
727 * cgroup during ctxsw. Cgroup events were not scheduled
728 * out of ctxsw out if that was not the case.
729 */
730 if (cgrp1 != cgrp2)
731 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
732
733 rcu_read_unlock();
734 }
735
736 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
737 struct perf_event_attr *attr,
738 struct perf_event *group_leader)
739 {
740 struct perf_cgroup *cgrp;
741 struct cgroup_subsys_state *css;
742 struct fd f = fdget(fd);
743 int ret = 0;
744
745 if (!f.file)
746 return -EBADF;
747
748 css = css_tryget_online_from_dir(f.file->f_path.dentry,
749 &perf_event_cgrp_subsys);
750 if (IS_ERR(css)) {
751 ret = PTR_ERR(css);
752 goto out;
753 }
754
755 cgrp = container_of(css, struct perf_cgroup, css);
756 event->cgrp = cgrp;
757
758 /*
759 * all events in a group must monitor
760 * the same cgroup because a task belongs
761 * to only one perf cgroup at a time
762 */
763 if (group_leader && group_leader->cgrp != cgrp) {
764 perf_detach_cgroup(event);
765 ret = -EINVAL;
766 }
767 out:
768 fdput(f);
769 return ret;
770 }
771
772 static inline void
773 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
774 {
775 struct perf_cgroup_info *t;
776 t = per_cpu_ptr(event->cgrp->info, event->cpu);
777 event->shadow_ctx_time = now - t->timestamp;
778 }
779
780 static inline void
781 perf_cgroup_defer_enabled(struct perf_event *event)
782 {
783 /*
784 * when the current task's perf cgroup does not match
785 * the event's, we need to remember to call the
786 * perf_mark_enable() function the first time a task with
787 * a matching perf cgroup is scheduled in.
788 */
789 if (is_cgroup_event(event) && !perf_cgroup_match(event))
790 event->cgrp_defer_enabled = 1;
791 }
792
793 static inline void
794 perf_cgroup_mark_enabled(struct perf_event *event,
795 struct perf_event_context *ctx)
796 {
797 struct perf_event *sub;
798 u64 tstamp = perf_event_time(event);
799
800 if (!event->cgrp_defer_enabled)
801 return;
802
803 event->cgrp_defer_enabled = 0;
804
805 event->tstamp_enabled = tstamp - event->total_time_enabled;
806 list_for_each_entry(sub, &event->sibling_list, group_entry) {
807 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
808 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
809 sub->cgrp_defer_enabled = 0;
810 }
811 }
812 }
813 #else /* !CONFIG_CGROUP_PERF */
814
815 static inline bool
816 perf_cgroup_match(struct perf_event *event)
817 {
818 return true;
819 }
820
821 static inline void perf_detach_cgroup(struct perf_event *event)
822 {}
823
824 static inline int is_cgroup_event(struct perf_event *event)
825 {
826 return 0;
827 }
828
829 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
830 {
831 return 0;
832 }
833
834 static inline void update_cgrp_time_from_event(struct perf_event *event)
835 {
836 }
837
838 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
839 {
840 }
841
842 static inline void perf_cgroup_sched_out(struct task_struct *task,
843 struct task_struct *next)
844 {
845 }
846
847 static inline void perf_cgroup_sched_in(struct task_struct *prev,
848 struct task_struct *task)
849 {
850 }
851
852 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
853 struct perf_event_attr *attr,
854 struct perf_event *group_leader)
855 {
856 return -EINVAL;
857 }
858
859 static inline void
860 perf_cgroup_set_timestamp(struct task_struct *task,
861 struct perf_event_context *ctx)
862 {
863 }
864
865 void
866 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
867 {
868 }
869
870 static inline void
871 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
872 {
873 }
874
875 static inline u64 perf_cgroup_event_time(struct perf_event *event)
876 {
877 return 0;
878 }
879
880 static inline void
881 perf_cgroup_defer_enabled(struct perf_event *event)
882 {
883 }
884
885 static inline void
886 perf_cgroup_mark_enabled(struct perf_event *event,
887 struct perf_event_context *ctx)
888 {
889 }
890 #endif
891
892 /*
893 * set default to be dependent on timer tick just
894 * like original code
895 */
896 #define PERF_CPU_HRTIMER (1000 / HZ)
897 /*
898 * function must be called with interrupts disbled
899 */
900 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
901 {
902 struct perf_cpu_context *cpuctx;
903 int rotations = 0;
904
905 WARN_ON(!irqs_disabled());
906
907 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
908 rotations = perf_rotate_context(cpuctx);
909
910 raw_spin_lock(&cpuctx->hrtimer_lock);
911 if (rotations)
912 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
913 else
914 cpuctx->hrtimer_active = 0;
915 raw_spin_unlock(&cpuctx->hrtimer_lock);
916
917 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
918 }
919
920 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
921 {
922 struct hrtimer *timer = &cpuctx->hrtimer;
923 struct pmu *pmu = cpuctx->ctx.pmu;
924 u64 interval;
925
926 /* no multiplexing needed for SW PMU */
927 if (pmu->task_ctx_nr == perf_sw_context)
928 return;
929
930 /*
931 * check default is sane, if not set then force to
932 * default interval (1/tick)
933 */
934 interval = pmu->hrtimer_interval_ms;
935 if (interval < 1)
936 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
937
938 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
939
940 raw_spin_lock_init(&cpuctx->hrtimer_lock);
941 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
942 timer->function = perf_mux_hrtimer_handler;
943 }
944
945 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
946 {
947 struct hrtimer *timer = &cpuctx->hrtimer;
948 struct pmu *pmu = cpuctx->ctx.pmu;
949 unsigned long flags;
950
951 /* not for SW PMU */
952 if (pmu->task_ctx_nr == perf_sw_context)
953 return 0;
954
955 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
956 if (!cpuctx->hrtimer_active) {
957 cpuctx->hrtimer_active = 1;
958 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
959 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
960 }
961 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
962
963 return 0;
964 }
965
966 void perf_pmu_disable(struct pmu *pmu)
967 {
968 int *count = this_cpu_ptr(pmu->pmu_disable_count);
969 if (!(*count)++)
970 pmu->pmu_disable(pmu);
971 }
972
973 void perf_pmu_enable(struct pmu *pmu)
974 {
975 int *count = this_cpu_ptr(pmu->pmu_disable_count);
976 if (!--(*count))
977 pmu->pmu_enable(pmu);
978 }
979
980 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
981
982 /*
983 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
984 * perf_event_task_tick() are fully serialized because they're strictly cpu
985 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
986 * disabled, while perf_event_task_tick is called from IRQ context.
987 */
988 static void perf_event_ctx_activate(struct perf_event_context *ctx)
989 {
990 struct list_head *head = this_cpu_ptr(&active_ctx_list);
991
992 WARN_ON(!irqs_disabled());
993
994 WARN_ON(!list_empty(&ctx->active_ctx_list));
995
996 list_add(&ctx->active_ctx_list, head);
997 }
998
999 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1000 {
1001 WARN_ON(!irqs_disabled());
1002
1003 WARN_ON(list_empty(&ctx->active_ctx_list));
1004
1005 list_del_init(&ctx->active_ctx_list);
1006 }
1007
1008 static void get_ctx(struct perf_event_context *ctx)
1009 {
1010 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1011 }
1012
1013 static void free_ctx(struct rcu_head *head)
1014 {
1015 struct perf_event_context *ctx;
1016
1017 ctx = container_of(head, struct perf_event_context, rcu_head);
1018 kfree(ctx->task_ctx_data);
1019 kfree(ctx);
1020 }
1021
1022 static void put_ctx(struct perf_event_context *ctx)
1023 {
1024 if (atomic_dec_and_test(&ctx->refcount)) {
1025 if (ctx->parent_ctx)
1026 put_ctx(ctx->parent_ctx);
1027 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1028 put_task_struct(ctx->task);
1029 call_rcu(&ctx->rcu_head, free_ctx);
1030 }
1031 }
1032
1033 /*
1034 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1035 * perf_pmu_migrate_context() we need some magic.
1036 *
1037 * Those places that change perf_event::ctx will hold both
1038 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1039 *
1040 * Lock ordering is by mutex address. There are two other sites where
1041 * perf_event_context::mutex nests and those are:
1042 *
1043 * - perf_event_exit_task_context() [ child , 0 ]
1044 * __perf_event_exit_task()
1045 * sync_child_event()
1046 * put_event() [ parent, 1 ]
1047 *
1048 * - perf_event_init_context() [ parent, 0 ]
1049 * inherit_task_group()
1050 * inherit_group()
1051 * inherit_event()
1052 * perf_event_alloc()
1053 * perf_init_event()
1054 * perf_try_init_event() [ child , 1 ]
1055 *
1056 * While it appears there is an obvious deadlock here -- the parent and child
1057 * nesting levels are inverted between the two. This is in fact safe because
1058 * life-time rules separate them. That is an exiting task cannot fork, and a
1059 * spawning task cannot (yet) exit.
1060 *
1061 * But remember that that these are parent<->child context relations, and
1062 * migration does not affect children, therefore these two orderings should not
1063 * interact.
1064 *
1065 * The change in perf_event::ctx does not affect children (as claimed above)
1066 * because the sys_perf_event_open() case will install a new event and break
1067 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1068 * concerned with cpuctx and that doesn't have children.
1069 *
1070 * The places that change perf_event::ctx will issue:
1071 *
1072 * perf_remove_from_context();
1073 * synchronize_rcu();
1074 * perf_install_in_context();
1075 *
1076 * to affect the change. The remove_from_context() + synchronize_rcu() should
1077 * quiesce the event, after which we can install it in the new location. This
1078 * means that only external vectors (perf_fops, prctl) can perturb the event
1079 * while in transit. Therefore all such accessors should also acquire
1080 * perf_event_context::mutex to serialize against this.
1081 *
1082 * However; because event->ctx can change while we're waiting to acquire
1083 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1084 * function.
1085 *
1086 * Lock order:
1087 * task_struct::perf_event_mutex
1088 * perf_event_context::mutex
1089 * perf_event::child_mutex;
1090 * perf_event_context::lock
1091 * perf_event::mmap_mutex
1092 * mmap_sem
1093 */
1094 static struct perf_event_context *
1095 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1096 {
1097 struct perf_event_context *ctx;
1098
1099 again:
1100 rcu_read_lock();
1101 ctx = ACCESS_ONCE(event->ctx);
1102 if (!atomic_inc_not_zero(&ctx->refcount)) {
1103 rcu_read_unlock();
1104 goto again;
1105 }
1106 rcu_read_unlock();
1107
1108 mutex_lock_nested(&ctx->mutex, nesting);
1109 if (event->ctx != ctx) {
1110 mutex_unlock(&ctx->mutex);
1111 put_ctx(ctx);
1112 goto again;
1113 }
1114
1115 return ctx;
1116 }
1117
1118 static inline struct perf_event_context *
1119 perf_event_ctx_lock(struct perf_event *event)
1120 {
1121 return perf_event_ctx_lock_nested(event, 0);
1122 }
1123
1124 static void perf_event_ctx_unlock(struct perf_event *event,
1125 struct perf_event_context *ctx)
1126 {
1127 mutex_unlock(&ctx->mutex);
1128 put_ctx(ctx);
1129 }
1130
1131 /*
1132 * This must be done under the ctx->lock, such as to serialize against
1133 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1134 * calling scheduler related locks and ctx->lock nests inside those.
1135 */
1136 static __must_check struct perf_event_context *
1137 unclone_ctx(struct perf_event_context *ctx)
1138 {
1139 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1140
1141 lockdep_assert_held(&ctx->lock);
1142
1143 if (parent_ctx)
1144 ctx->parent_ctx = NULL;
1145 ctx->generation++;
1146
1147 return parent_ctx;
1148 }
1149
1150 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1151 {
1152 /*
1153 * only top level events have the pid namespace they were created in
1154 */
1155 if (event->parent)
1156 event = event->parent;
1157
1158 return task_tgid_nr_ns(p, event->ns);
1159 }
1160
1161 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1162 {
1163 /*
1164 * only top level events have the pid namespace they were created in
1165 */
1166 if (event->parent)
1167 event = event->parent;
1168
1169 return task_pid_nr_ns(p, event->ns);
1170 }
1171
1172 /*
1173 * If we inherit events we want to return the parent event id
1174 * to userspace.
1175 */
1176 static u64 primary_event_id(struct perf_event *event)
1177 {
1178 u64 id = event->id;
1179
1180 if (event->parent)
1181 id = event->parent->id;
1182
1183 return id;
1184 }
1185
1186 /*
1187 * Get the perf_event_context for a task and lock it.
1188 *
1189 * This has to cope with with the fact that until it is locked,
1190 * the context could get moved to another task.
1191 */
1192 static struct perf_event_context *
1193 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1194 {
1195 struct perf_event_context *ctx;
1196
1197 retry:
1198 /*
1199 * One of the few rules of preemptible RCU is that one cannot do
1200 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1201 * part of the read side critical section was irqs-enabled -- see
1202 * rcu_read_unlock_special().
1203 *
1204 * Since ctx->lock nests under rq->lock we must ensure the entire read
1205 * side critical section has interrupts disabled.
1206 */
1207 local_irq_save(*flags);
1208 rcu_read_lock();
1209 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1210 if (ctx) {
1211 /*
1212 * If this context is a clone of another, it might
1213 * get swapped for another underneath us by
1214 * perf_event_task_sched_out, though the
1215 * rcu_read_lock() protects us from any context
1216 * getting freed. Lock the context and check if it
1217 * got swapped before we could get the lock, and retry
1218 * if so. If we locked the right context, then it
1219 * can't get swapped on us any more.
1220 */
1221 raw_spin_lock(&ctx->lock);
1222 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1223 raw_spin_unlock(&ctx->lock);
1224 rcu_read_unlock();
1225 local_irq_restore(*flags);
1226 goto retry;
1227 }
1228
1229 if (ctx->task == TASK_TOMBSTONE ||
1230 !atomic_inc_not_zero(&ctx->refcount)) {
1231 raw_spin_unlock(&ctx->lock);
1232 ctx = NULL;
1233 } else {
1234 WARN_ON_ONCE(ctx->task != task);
1235 }
1236 }
1237 rcu_read_unlock();
1238 if (!ctx)
1239 local_irq_restore(*flags);
1240 return ctx;
1241 }
1242
1243 /*
1244 * Get the context for a task and increment its pin_count so it
1245 * can't get swapped to another task. This also increments its
1246 * reference count so that the context can't get freed.
1247 */
1248 static struct perf_event_context *
1249 perf_pin_task_context(struct task_struct *task, int ctxn)
1250 {
1251 struct perf_event_context *ctx;
1252 unsigned long flags;
1253
1254 ctx = perf_lock_task_context(task, ctxn, &flags);
1255 if (ctx) {
1256 ++ctx->pin_count;
1257 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1258 }
1259 return ctx;
1260 }
1261
1262 static void perf_unpin_context(struct perf_event_context *ctx)
1263 {
1264 unsigned long flags;
1265
1266 raw_spin_lock_irqsave(&ctx->lock, flags);
1267 --ctx->pin_count;
1268 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1269 }
1270
1271 /*
1272 * Update the record of the current time in a context.
1273 */
1274 static void update_context_time(struct perf_event_context *ctx)
1275 {
1276 u64 now = perf_clock();
1277
1278 ctx->time += now - ctx->timestamp;
1279 ctx->timestamp = now;
1280 }
1281
1282 static u64 perf_event_time(struct perf_event *event)
1283 {
1284 struct perf_event_context *ctx = event->ctx;
1285
1286 if (is_cgroup_event(event))
1287 return perf_cgroup_event_time(event);
1288
1289 return ctx ? ctx->time : 0;
1290 }
1291
1292 /*
1293 * Update the total_time_enabled and total_time_running fields for a event.
1294 * The caller of this function needs to hold the ctx->lock.
1295 */
1296 static void update_event_times(struct perf_event *event)
1297 {
1298 struct perf_event_context *ctx = event->ctx;
1299 u64 run_end;
1300
1301 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1302 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1303 return;
1304 /*
1305 * in cgroup mode, time_enabled represents
1306 * the time the event was enabled AND active
1307 * tasks were in the monitored cgroup. This is
1308 * independent of the activity of the context as
1309 * there may be a mix of cgroup and non-cgroup events.
1310 *
1311 * That is why we treat cgroup events differently
1312 * here.
1313 */
1314 if (is_cgroup_event(event))
1315 run_end = perf_cgroup_event_time(event);
1316 else if (ctx->is_active)
1317 run_end = ctx->time;
1318 else
1319 run_end = event->tstamp_stopped;
1320
1321 event->total_time_enabled = run_end - event->tstamp_enabled;
1322
1323 if (event->state == PERF_EVENT_STATE_INACTIVE)
1324 run_end = event->tstamp_stopped;
1325 else
1326 run_end = perf_event_time(event);
1327
1328 event->total_time_running = run_end - event->tstamp_running;
1329
1330 }
1331
1332 /*
1333 * Update total_time_enabled and total_time_running for all events in a group.
1334 */
1335 static void update_group_times(struct perf_event *leader)
1336 {
1337 struct perf_event *event;
1338
1339 update_event_times(leader);
1340 list_for_each_entry(event, &leader->sibling_list, group_entry)
1341 update_event_times(event);
1342 }
1343
1344 static struct list_head *
1345 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1346 {
1347 if (event->attr.pinned)
1348 return &ctx->pinned_groups;
1349 else
1350 return &ctx->flexible_groups;
1351 }
1352
1353 /*
1354 * Add a event from the lists for its context.
1355 * Must be called with ctx->mutex and ctx->lock held.
1356 */
1357 static void
1358 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1359 {
1360 lockdep_assert_held(&ctx->lock);
1361
1362 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1363 event->attach_state |= PERF_ATTACH_CONTEXT;
1364
1365 /*
1366 * If we're a stand alone event or group leader, we go to the context
1367 * list, group events are kept attached to the group so that
1368 * perf_group_detach can, at all times, locate all siblings.
1369 */
1370 if (event->group_leader == event) {
1371 struct list_head *list;
1372
1373 if (is_software_event(event))
1374 event->group_flags |= PERF_GROUP_SOFTWARE;
1375
1376 list = ctx_group_list(event, ctx);
1377 list_add_tail(&event->group_entry, list);
1378 }
1379
1380 if (is_cgroup_event(event))
1381 ctx->nr_cgroups++;
1382
1383 list_add_rcu(&event->event_entry, &ctx->event_list);
1384 ctx->nr_events++;
1385 if (event->attr.inherit_stat)
1386 ctx->nr_stat++;
1387
1388 ctx->generation++;
1389 }
1390
1391 /*
1392 * Initialize event state based on the perf_event_attr::disabled.
1393 */
1394 static inline void perf_event__state_init(struct perf_event *event)
1395 {
1396 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1397 PERF_EVENT_STATE_INACTIVE;
1398 }
1399
1400 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1401 {
1402 int entry = sizeof(u64); /* value */
1403 int size = 0;
1404 int nr = 1;
1405
1406 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1407 size += sizeof(u64);
1408
1409 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1410 size += sizeof(u64);
1411
1412 if (event->attr.read_format & PERF_FORMAT_ID)
1413 entry += sizeof(u64);
1414
1415 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1416 nr += nr_siblings;
1417 size += sizeof(u64);
1418 }
1419
1420 size += entry * nr;
1421 event->read_size = size;
1422 }
1423
1424 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1425 {
1426 struct perf_sample_data *data;
1427 u16 size = 0;
1428
1429 if (sample_type & PERF_SAMPLE_IP)
1430 size += sizeof(data->ip);
1431
1432 if (sample_type & PERF_SAMPLE_ADDR)
1433 size += sizeof(data->addr);
1434
1435 if (sample_type & PERF_SAMPLE_PERIOD)
1436 size += sizeof(data->period);
1437
1438 if (sample_type & PERF_SAMPLE_WEIGHT)
1439 size += sizeof(data->weight);
1440
1441 if (sample_type & PERF_SAMPLE_READ)
1442 size += event->read_size;
1443
1444 if (sample_type & PERF_SAMPLE_DATA_SRC)
1445 size += sizeof(data->data_src.val);
1446
1447 if (sample_type & PERF_SAMPLE_TRANSACTION)
1448 size += sizeof(data->txn);
1449
1450 event->header_size = size;
1451 }
1452
1453 /*
1454 * Called at perf_event creation and when events are attached/detached from a
1455 * group.
1456 */
1457 static void perf_event__header_size(struct perf_event *event)
1458 {
1459 __perf_event_read_size(event,
1460 event->group_leader->nr_siblings);
1461 __perf_event_header_size(event, event->attr.sample_type);
1462 }
1463
1464 static void perf_event__id_header_size(struct perf_event *event)
1465 {
1466 struct perf_sample_data *data;
1467 u64 sample_type = event->attr.sample_type;
1468 u16 size = 0;
1469
1470 if (sample_type & PERF_SAMPLE_TID)
1471 size += sizeof(data->tid_entry);
1472
1473 if (sample_type & PERF_SAMPLE_TIME)
1474 size += sizeof(data->time);
1475
1476 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1477 size += sizeof(data->id);
1478
1479 if (sample_type & PERF_SAMPLE_ID)
1480 size += sizeof(data->id);
1481
1482 if (sample_type & PERF_SAMPLE_STREAM_ID)
1483 size += sizeof(data->stream_id);
1484
1485 if (sample_type & PERF_SAMPLE_CPU)
1486 size += sizeof(data->cpu_entry);
1487
1488 event->id_header_size = size;
1489 }
1490
1491 static bool perf_event_validate_size(struct perf_event *event)
1492 {
1493 /*
1494 * The values computed here will be over-written when we actually
1495 * attach the event.
1496 */
1497 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1498 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1499 perf_event__id_header_size(event);
1500
1501 /*
1502 * Sum the lot; should not exceed the 64k limit we have on records.
1503 * Conservative limit to allow for callchains and other variable fields.
1504 */
1505 if (event->read_size + event->header_size +
1506 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1507 return false;
1508
1509 return true;
1510 }
1511
1512 static void perf_group_attach(struct perf_event *event)
1513 {
1514 struct perf_event *group_leader = event->group_leader, *pos;
1515
1516 /*
1517 * We can have double attach due to group movement in perf_event_open.
1518 */
1519 if (event->attach_state & PERF_ATTACH_GROUP)
1520 return;
1521
1522 event->attach_state |= PERF_ATTACH_GROUP;
1523
1524 if (group_leader == event)
1525 return;
1526
1527 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1528
1529 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1530 !is_software_event(event))
1531 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1532
1533 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1534 group_leader->nr_siblings++;
1535
1536 perf_event__header_size(group_leader);
1537
1538 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1539 perf_event__header_size(pos);
1540 }
1541
1542 /*
1543 * Remove a event from the lists for its context.
1544 * Must be called with ctx->mutex and ctx->lock held.
1545 */
1546 static void
1547 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1548 {
1549 struct perf_cpu_context *cpuctx;
1550
1551 WARN_ON_ONCE(event->ctx != ctx);
1552 lockdep_assert_held(&ctx->lock);
1553
1554 /*
1555 * We can have double detach due to exit/hot-unplug + close.
1556 */
1557 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1558 return;
1559
1560 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1561
1562 if (is_cgroup_event(event)) {
1563 ctx->nr_cgroups--;
1564 /*
1565 * Because cgroup events are always per-cpu events, this will
1566 * always be called from the right CPU.
1567 */
1568 cpuctx = __get_cpu_context(ctx);
1569 /*
1570 * If there are no more cgroup events then clear cgrp to avoid
1571 * stale pointer in update_cgrp_time_from_cpuctx().
1572 */
1573 if (!ctx->nr_cgroups)
1574 cpuctx->cgrp = NULL;
1575 }
1576
1577 ctx->nr_events--;
1578 if (event->attr.inherit_stat)
1579 ctx->nr_stat--;
1580
1581 list_del_rcu(&event->event_entry);
1582
1583 if (event->group_leader == event)
1584 list_del_init(&event->group_entry);
1585
1586 update_group_times(event);
1587
1588 /*
1589 * If event was in error state, then keep it
1590 * that way, otherwise bogus counts will be
1591 * returned on read(). The only way to get out
1592 * of error state is by explicit re-enabling
1593 * of the event
1594 */
1595 if (event->state > PERF_EVENT_STATE_OFF)
1596 event->state = PERF_EVENT_STATE_OFF;
1597
1598 ctx->generation++;
1599 }
1600
1601 static void perf_group_detach(struct perf_event *event)
1602 {
1603 struct perf_event *sibling, *tmp;
1604 struct list_head *list = NULL;
1605
1606 /*
1607 * We can have double detach due to exit/hot-unplug + close.
1608 */
1609 if (!(event->attach_state & PERF_ATTACH_GROUP))
1610 return;
1611
1612 event->attach_state &= ~PERF_ATTACH_GROUP;
1613
1614 /*
1615 * If this is a sibling, remove it from its group.
1616 */
1617 if (event->group_leader != event) {
1618 list_del_init(&event->group_entry);
1619 event->group_leader->nr_siblings--;
1620 goto out;
1621 }
1622
1623 if (!list_empty(&event->group_entry))
1624 list = &event->group_entry;
1625
1626 /*
1627 * If this was a group event with sibling events then
1628 * upgrade the siblings to singleton events by adding them
1629 * to whatever list we are on.
1630 */
1631 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1632 if (list)
1633 list_move_tail(&sibling->group_entry, list);
1634 sibling->group_leader = sibling;
1635
1636 /* Inherit group flags from the previous leader */
1637 sibling->group_flags = event->group_flags;
1638
1639 WARN_ON_ONCE(sibling->ctx != event->ctx);
1640 }
1641
1642 out:
1643 perf_event__header_size(event->group_leader);
1644
1645 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1646 perf_event__header_size(tmp);
1647 }
1648
1649 /*
1650 * User event without the task.
1651 */
1652 static bool is_orphaned_event(struct perf_event *event)
1653 {
1654 return event && !is_kernel_event(event) && !event->owner;
1655 }
1656
1657 /*
1658 * Event has a parent but parent's task finished and it's
1659 * alive only because of children holding refference.
1660 */
1661 static bool is_orphaned_child(struct perf_event *event)
1662 {
1663 return is_orphaned_event(event->parent);
1664 }
1665
1666 static void orphans_remove_work(struct work_struct *work);
1667
1668 static void schedule_orphans_remove(struct perf_event_context *ctx)
1669 {
1670 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1671 return;
1672
1673 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1674 get_ctx(ctx);
1675 ctx->orphans_remove_sched = true;
1676 }
1677 }
1678
1679 static int __init perf_workqueue_init(void)
1680 {
1681 perf_wq = create_singlethread_workqueue("perf");
1682 WARN(!perf_wq, "failed to create perf workqueue\n");
1683 return perf_wq ? 0 : -1;
1684 }
1685
1686 core_initcall(perf_workqueue_init);
1687
1688 static inline int pmu_filter_match(struct perf_event *event)
1689 {
1690 struct pmu *pmu = event->pmu;
1691 return pmu->filter_match ? pmu->filter_match(event) : 1;
1692 }
1693
1694 static inline int
1695 event_filter_match(struct perf_event *event)
1696 {
1697 return (event->cpu == -1 || event->cpu == smp_processor_id())
1698 && perf_cgroup_match(event) && pmu_filter_match(event);
1699 }
1700
1701 static void
1702 event_sched_out(struct perf_event *event,
1703 struct perf_cpu_context *cpuctx,
1704 struct perf_event_context *ctx)
1705 {
1706 u64 tstamp = perf_event_time(event);
1707 u64 delta;
1708
1709 WARN_ON_ONCE(event->ctx != ctx);
1710 lockdep_assert_held(&ctx->lock);
1711
1712 /*
1713 * An event which could not be activated because of
1714 * filter mismatch still needs to have its timings
1715 * maintained, otherwise bogus information is return
1716 * via read() for time_enabled, time_running:
1717 */
1718 if (event->state == PERF_EVENT_STATE_INACTIVE
1719 && !event_filter_match(event)) {
1720 delta = tstamp - event->tstamp_stopped;
1721 event->tstamp_running += delta;
1722 event->tstamp_stopped = tstamp;
1723 }
1724
1725 if (event->state != PERF_EVENT_STATE_ACTIVE)
1726 return;
1727
1728 perf_pmu_disable(event->pmu);
1729
1730 event->state = PERF_EVENT_STATE_INACTIVE;
1731 if (event->pending_disable) {
1732 event->pending_disable = 0;
1733 event->state = PERF_EVENT_STATE_OFF;
1734 }
1735 event->tstamp_stopped = tstamp;
1736 event->pmu->del(event, 0);
1737 event->oncpu = -1;
1738
1739 if (!is_software_event(event))
1740 cpuctx->active_oncpu--;
1741 if (!--ctx->nr_active)
1742 perf_event_ctx_deactivate(ctx);
1743 if (event->attr.freq && event->attr.sample_freq)
1744 ctx->nr_freq--;
1745 if (event->attr.exclusive || !cpuctx->active_oncpu)
1746 cpuctx->exclusive = 0;
1747
1748 if (is_orphaned_child(event))
1749 schedule_orphans_remove(ctx);
1750
1751 perf_pmu_enable(event->pmu);
1752 }
1753
1754 static void
1755 group_sched_out(struct perf_event *group_event,
1756 struct perf_cpu_context *cpuctx,
1757 struct perf_event_context *ctx)
1758 {
1759 struct perf_event *event;
1760 int state = group_event->state;
1761
1762 event_sched_out(group_event, cpuctx, ctx);
1763
1764 /*
1765 * Schedule out siblings (if any):
1766 */
1767 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1768 event_sched_out(event, cpuctx, ctx);
1769
1770 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1771 cpuctx->exclusive = 0;
1772 }
1773
1774 /*
1775 * Cross CPU call to remove a performance event
1776 *
1777 * We disable the event on the hardware level first. After that we
1778 * remove it from the context list.
1779 */
1780 static void
1781 __perf_remove_from_context(struct perf_event *event,
1782 struct perf_cpu_context *cpuctx,
1783 struct perf_event_context *ctx,
1784 void *info)
1785 {
1786 bool detach_group = (unsigned long)info;
1787
1788 event_sched_out(event, cpuctx, ctx);
1789 if (detach_group)
1790 perf_group_detach(event);
1791 list_del_event(event, ctx);
1792
1793 if (!ctx->nr_events && ctx->is_active) {
1794 ctx->is_active = 0;
1795 if (ctx->task) {
1796 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1797 cpuctx->task_ctx = NULL;
1798 }
1799 }
1800 }
1801
1802 /*
1803 * Remove the event from a task's (or a CPU's) list of events.
1804 *
1805 * If event->ctx is a cloned context, callers must make sure that
1806 * every task struct that event->ctx->task could possibly point to
1807 * remains valid. This is OK when called from perf_release since
1808 * that only calls us on the top-level context, which can't be a clone.
1809 * When called from perf_event_exit_task, it's OK because the
1810 * context has been detached from its task.
1811 */
1812 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1813 {
1814 lockdep_assert_held(&event->ctx->mutex);
1815
1816 event_function_call(event, __perf_remove_from_context,
1817 (void *)(unsigned long)detach_group);
1818 }
1819
1820 /*
1821 * Cross CPU call to disable a performance event
1822 */
1823 static void __perf_event_disable(struct perf_event *event,
1824 struct perf_cpu_context *cpuctx,
1825 struct perf_event_context *ctx,
1826 void *info)
1827 {
1828 if (event->state < PERF_EVENT_STATE_INACTIVE)
1829 return;
1830
1831 update_context_time(ctx);
1832 update_cgrp_time_from_event(event);
1833 update_group_times(event);
1834 if (event == event->group_leader)
1835 group_sched_out(event, cpuctx, ctx);
1836 else
1837 event_sched_out(event, cpuctx, ctx);
1838 event->state = PERF_EVENT_STATE_OFF;
1839 }
1840
1841 /*
1842 * Disable a event.
1843 *
1844 * If event->ctx is a cloned context, callers must make sure that
1845 * every task struct that event->ctx->task could possibly point to
1846 * remains valid. This condition is satisifed when called through
1847 * perf_event_for_each_child or perf_event_for_each because they
1848 * hold the top-level event's child_mutex, so any descendant that
1849 * goes to exit will block in sync_child_event.
1850 * When called from perf_pending_event it's OK because event->ctx
1851 * is the current context on this CPU and preemption is disabled,
1852 * hence we can't get into perf_event_task_sched_out for this context.
1853 */
1854 static void _perf_event_disable(struct perf_event *event)
1855 {
1856 struct perf_event_context *ctx = event->ctx;
1857
1858 raw_spin_lock_irq(&ctx->lock);
1859 if (event->state <= PERF_EVENT_STATE_OFF) {
1860 raw_spin_unlock_irq(&ctx->lock);
1861 return;
1862 }
1863 raw_spin_unlock_irq(&ctx->lock);
1864
1865 event_function_call(event, __perf_event_disable, NULL);
1866 }
1867
1868 void perf_event_disable_local(struct perf_event *event)
1869 {
1870 event_function_local(event, __perf_event_disable, NULL);
1871 }
1872
1873 /*
1874 * Strictly speaking kernel users cannot create groups and therefore this
1875 * interface does not need the perf_event_ctx_lock() magic.
1876 */
1877 void perf_event_disable(struct perf_event *event)
1878 {
1879 struct perf_event_context *ctx;
1880
1881 ctx = perf_event_ctx_lock(event);
1882 _perf_event_disable(event);
1883 perf_event_ctx_unlock(event, ctx);
1884 }
1885 EXPORT_SYMBOL_GPL(perf_event_disable);
1886
1887 static void perf_set_shadow_time(struct perf_event *event,
1888 struct perf_event_context *ctx,
1889 u64 tstamp)
1890 {
1891 /*
1892 * use the correct time source for the time snapshot
1893 *
1894 * We could get by without this by leveraging the
1895 * fact that to get to this function, the caller
1896 * has most likely already called update_context_time()
1897 * and update_cgrp_time_xx() and thus both timestamp
1898 * are identical (or very close). Given that tstamp is,
1899 * already adjusted for cgroup, we could say that:
1900 * tstamp - ctx->timestamp
1901 * is equivalent to
1902 * tstamp - cgrp->timestamp.
1903 *
1904 * Then, in perf_output_read(), the calculation would
1905 * work with no changes because:
1906 * - event is guaranteed scheduled in
1907 * - no scheduled out in between
1908 * - thus the timestamp would be the same
1909 *
1910 * But this is a bit hairy.
1911 *
1912 * So instead, we have an explicit cgroup call to remain
1913 * within the time time source all along. We believe it
1914 * is cleaner and simpler to understand.
1915 */
1916 if (is_cgroup_event(event))
1917 perf_cgroup_set_shadow_time(event, tstamp);
1918 else
1919 event->shadow_ctx_time = tstamp - ctx->timestamp;
1920 }
1921
1922 #define MAX_INTERRUPTS (~0ULL)
1923
1924 static void perf_log_throttle(struct perf_event *event, int enable);
1925 static void perf_log_itrace_start(struct perf_event *event);
1926
1927 static int
1928 event_sched_in(struct perf_event *event,
1929 struct perf_cpu_context *cpuctx,
1930 struct perf_event_context *ctx)
1931 {
1932 u64 tstamp = perf_event_time(event);
1933 int ret = 0;
1934
1935 lockdep_assert_held(&ctx->lock);
1936
1937 if (event->state <= PERF_EVENT_STATE_OFF)
1938 return 0;
1939
1940 event->state = PERF_EVENT_STATE_ACTIVE;
1941 event->oncpu = smp_processor_id();
1942
1943 /*
1944 * Unthrottle events, since we scheduled we might have missed several
1945 * ticks already, also for a heavily scheduling task there is little
1946 * guarantee it'll get a tick in a timely manner.
1947 */
1948 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1949 perf_log_throttle(event, 1);
1950 event->hw.interrupts = 0;
1951 }
1952
1953 /*
1954 * The new state must be visible before we turn it on in the hardware:
1955 */
1956 smp_wmb();
1957
1958 perf_pmu_disable(event->pmu);
1959
1960 perf_set_shadow_time(event, ctx, tstamp);
1961
1962 perf_log_itrace_start(event);
1963
1964 if (event->pmu->add(event, PERF_EF_START)) {
1965 event->state = PERF_EVENT_STATE_INACTIVE;
1966 event->oncpu = -1;
1967 ret = -EAGAIN;
1968 goto out;
1969 }
1970
1971 event->tstamp_running += tstamp - event->tstamp_stopped;
1972
1973 if (!is_software_event(event))
1974 cpuctx->active_oncpu++;
1975 if (!ctx->nr_active++)
1976 perf_event_ctx_activate(ctx);
1977 if (event->attr.freq && event->attr.sample_freq)
1978 ctx->nr_freq++;
1979
1980 if (event->attr.exclusive)
1981 cpuctx->exclusive = 1;
1982
1983 if (is_orphaned_child(event))
1984 schedule_orphans_remove(ctx);
1985
1986 out:
1987 perf_pmu_enable(event->pmu);
1988
1989 return ret;
1990 }
1991
1992 static int
1993 group_sched_in(struct perf_event *group_event,
1994 struct perf_cpu_context *cpuctx,
1995 struct perf_event_context *ctx)
1996 {
1997 struct perf_event *event, *partial_group = NULL;
1998 struct pmu *pmu = ctx->pmu;
1999 u64 now = ctx->time;
2000 bool simulate = false;
2001
2002 if (group_event->state == PERF_EVENT_STATE_OFF)
2003 return 0;
2004
2005 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2006
2007 if (event_sched_in(group_event, cpuctx, ctx)) {
2008 pmu->cancel_txn(pmu);
2009 perf_mux_hrtimer_restart(cpuctx);
2010 return -EAGAIN;
2011 }
2012
2013 /*
2014 * Schedule in siblings as one group (if any):
2015 */
2016 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2017 if (event_sched_in(event, cpuctx, ctx)) {
2018 partial_group = event;
2019 goto group_error;
2020 }
2021 }
2022
2023 if (!pmu->commit_txn(pmu))
2024 return 0;
2025
2026 group_error:
2027 /*
2028 * Groups can be scheduled in as one unit only, so undo any
2029 * partial group before returning:
2030 * The events up to the failed event are scheduled out normally,
2031 * tstamp_stopped will be updated.
2032 *
2033 * The failed events and the remaining siblings need to have
2034 * their timings updated as if they had gone thru event_sched_in()
2035 * and event_sched_out(). This is required to get consistent timings
2036 * across the group. This also takes care of the case where the group
2037 * could never be scheduled by ensuring tstamp_stopped is set to mark
2038 * the time the event was actually stopped, such that time delta
2039 * calculation in update_event_times() is correct.
2040 */
2041 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2042 if (event == partial_group)
2043 simulate = true;
2044
2045 if (simulate) {
2046 event->tstamp_running += now - event->tstamp_stopped;
2047 event->tstamp_stopped = now;
2048 } else {
2049 event_sched_out(event, cpuctx, ctx);
2050 }
2051 }
2052 event_sched_out(group_event, cpuctx, ctx);
2053
2054 pmu->cancel_txn(pmu);
2055
2056 perf_mux_hrtimer_restart(cpuctx);
2057
2058 return -EAGAIN;
2059 }
2060
2061 /*
2062 * Work out whether we can put this event group on the CPU now.
2063 */
2064 static int group_can_go_on(struct perf_event *event,
2065 struct perf_cpu_context *cpuctx,
2066 int can_add_hw)
2067 {
2068 /*
2069 * Groups consisting entirely of software events can always go on.
2070 */
2071 if (event->group_flags & PERF_GROUP_SOFTWARE)
2072 return 1;
2073 /*
2074 * If an exclusive group is already on, no other hardware
2075 * events can go on.
2076 */
2077 if (cpuctx->exclusive)
2078 return 0;
2079 /*
2080 * If this group is exclusive and there are already
2081 * events on the CPU, it can't go on.
2082 */
2083 if (event->attr.exclusive && cpuctx->active_oncpu)
2084 return 0;
2085 /*
2086 * Otherwise, try to add it if all previous groups were able
2087 * to go on.
2088 */
2089 return can_add_hw;
2090 }
2091
2092 static void add_event_to_ctx(struct perf_event *event,
2093 struct perf_event_context *ctx)
2094 {
2095 u64 tstamp = perf_event_time(event);
2096
2097 list_add_event(event, ctx);
2098 perf_group_attach(event);
2099 event->tstamp_enabled = tstamp;
2100 event->tstamp_running = tstamp;
2101 event->tstamp_stopped = tstamp;
2102 }
2103
2104 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2105 struct perf_event_context *ctx);
2106 static void
2107 ctx_sched_in(struct perf_event_context *ctx,
2108 struct perf_cpu_context *cpuctx,
2109 enum event_type_t event_type,
2110 struct task_struct *task);
2111
2112 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2113 struct perf_event_context *ctx,
2114 struct task_struct *task)
2115 {
2116 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2117 if (ctx)
2118 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2119 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2120 if (ctx)
2121 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2122 }
2123
2124 static void ctx_resched(struct perf_cpu_context *cpuctx,
2125 struct perf_event_context *task_ctx)
2126 {
2127 perf_pmu_disable(cpuctx->ctx.pmu);
2128 if (task_ctx)
2129 task_ctx_sched_out(cpuctx, task_ctx);
2130 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2131 perf_event_sched_in(cpuctx, task_ctx, current);
2132 perf_pmu_enable(cpuctx->ctx.pmu);
2133 }
2134
2135 /*
2136 * Cross CPU call to install and enable a performance event
2137 *
2138 * Must be called with ctx->mutex held
2139 */
2140 static int __perf_install_in_context(void *info)
2141 {
2142 struct perf_event_context *ctx = info;
2143 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2144 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2145
2146 raw_spin_lock(&cpuctx->ctx.lock);
2147 if (ctx->task) {
2148 raw_spin_lock(&ctx->lock);
2149 /*
2150 * If we hit the 'wrong' task, we've since scheduled and
2151 * everything should be sorted, nothing to do!
2152 */
2153 task_ctx = ctx;
2154 if (ctx->task != current)
2155 goto unlock;
2156
2157 /*
2158 * If task_ctx is set, it had better be to us.
2159 */
2160 WARN_ON_ONCE(cpuctx->task_ctx != ctx && cpuctx->task_ctx);
2161 } else if (task_ctx) {
2162 raw_spin_lock(&task_ctx->lock);
2163 }
2164
2165 ctx_resched(cpuctx, task_ctx);
2166 unlock:
2167 perf_ctx_unlock(cpuctx, task_ctx);
2168
2169 return 0;
2170 }
2171
2172 /*
2173 * Attach a performance event to a context
2174 */
2175 static void
2176 perf_install_in_context(struct perf_event_context *ctx,
2177 struct perf_event *event,
2178 int cpu)
2179 {
2180 struct task_struct *task = NULL;
2181
2182 lockdep_assert_held(&ctx->mutex);
2183
2184 event->ctx = ctx;
2185 if (event->cpu != -1)
2186 event->cpu = cpu;
2187
2188 /*
2189 * Installing events is tricky because we cannot rely on ctx->is_active
2190 * to be set in case this is the nr_events 0 -> 1 transition.
2191 *
2192 * So what we do is we add the event to the list here, which will allow
2193 * a future context switch to DTRT and then send a racy IPI. If the IPI
2194 * fails to hit the right task, this means a context switch must have
2195 * happened and that will have taken care of business.
2196 */
2197 raw_spin_lock_irq(&ctx->lock);
2198 task = ctx->task;
2199 /*
2200 * Worse, we cannot even rely on the ctx actually existing anymore. If
2201 * between find_get_context() and perf_install_in_context() the task
2202 * went through perf_event_exit_task() its dead and we should not be
2203 * adding new events.
2204 */
2205 if (task == TASK_TOMBSTONE) {
2206 raw_spin_unlock_irq(&ctx->lock);
2207 return;
2208 }
2209 update_context_time(ctx);
2210 /*
2211 * Update cgrp time only if current cgrp matches event->cgrp.
2212 * Must be done before calling add_event_to_ctx().
2213 */
2214 update_cgrp_time_from_event(event);
2215 add_event_to_ctx(event, ctx);
2216 raw_spin_unlock_irq(&ctx->lock);
2217
2218 if (task)
2219 task_function_call(task, __perf_install_in_context, ctx);
2220 else
2221 cpu_function_call(cpu, __perf_install_in_context, ctx);
2222 }
2223
2224 /*
2225 * Put a event into inactive state and update time fields.
2226 * Enabling the leader of a group effectively enables all
2227 * the group members that aren't explicitly disabled, so we
2228 * have to update their ->tstamp_enabled also.
2229 * Note: this works for group members as well as group leaders
2230 * since the non-leader members' sibling_lists will be empty.
2231 */
2232 static void __perf_event_mark_enabled(struct perf_event *event)
2233 {
2234 struct perf_event *sub;
2235 u64 tstamp = perf_event_time(event);
2236
2237 event->state = PERF_EVENT_STATE_INACTIVE;
2238 event->tstamp_enabled = tstamp - event->total_time_enabled;
2239 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2240 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2241 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2242 }
2243 }
2244
2245 /*
2246 * Cross CPU call to enable a performance event
2247 */
2248 static void __perf_event_enable(struct perf_event *event,
2249 struct perf_cpu_context *cpuctx,
2250 struct perf_event_context *ctx,
2251 void *info)
2252 {
2253 struct perf_event *leader = event->group_leader;
2254 struct perf_event_context *task_ctx;
2255
2256 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2257 event->state <= PERF_EVENT_STATE_ERROR)
2258 return;
2259
2260 update_context_time(ctx);
2261 __perf_event_mark_enabled(event);
2262
2263 if (!ctx->is_active)
2264 return;
2265
2266 if (!event_filter_match(event)) {
2267 if (is_cgroup_event(event)) {
2268 perf_cgroup_set_timestamp(current, ctx); // XXX ?
2269 perf_cgroup_defer_enabled(event);
2270 }
2271 return;
2272 }
2273
2274 /*
2275 * If the event is in a group and isn't the group leader,
2276 * then don't put it on unless the group is on.
2277 */
2278 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2279 return;
2280
2281 task_ctx = cpuctx->task_ctx;
2282 if (ctx->task)
2283 WARN_ON_ONCE(task_ctx != ctx);
2284
2285 ctx_resched(cpuctx, task_ctx);
2286 }
2287
2288 /*
2289 * Enable a event.
2290 *
2291 * If event->ctx is a cloned context, callers must make sure that
2292 * every task struct that event->ctx->task could possibly point to
2293 * remains valid. This condition is satisfied when called through
2294 * perf_event_for_each_child or perf_event_for_each as described
2295 * for perf_event_disable.
2296 */
2297 static void _perf_event_enable(struct perf_event *event)
2298 {
2299 struct perf_event_context *ctx = event->ctx;
2300
2301 raw_spin_lock_irq(&ctx->lock);
2302 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2303 event->state < PERF_EVENT_STATE_ERROR) {
2304 raw_spin_unlock_irq(&ctx->lock);
2305 return;
2306 }
2307
2308 /*
2309 * If the event is in error state, clear that first.
2310 *
2311 * That way, if we see the event in error state below, we know that it
2312 * has gone back into error state, as distinct from the task having
2313 * been scheduled away before the cross-call arrived.
2314 */
2315 if (event->state == PERF_EVENT_STATE_ERROR)
2316 event->state = PERF_EVENT_STATE_OFF;
2317 raw_spin_unlock_irq(&ctx->lock);
2318
2319 event_function_call(event, __perf_event_enable, NULL);
2320 }
2321
2322 /*
2323 * See perf_event_disable();
2324 */
2325 void perf_event_enable(struct perf_event *event)
2326 {
2327 struct perf_event_context *ctx;
2328
2329 ctx = perf_event_ctx_lock(event);
2330 _perf_event_enable(event);
2331 perf_event_ctx_unlock(event, ctx);
2332 }
2333 EXPORT_SYMBOL_GPL(perf_event_enable);
2334
2335 static int _perf_event_refresh(struct perf_event *event, int refresh)
2336 {
2337 /*
2338 * not supported on inherited events
2339 */
2340 if (event->attr.inherit || !is_sampling_event(event))
2341 return -EINVAL;
2342
2343 atomic_add(refresh, &event->event_limit);
2344 _perf_event_enable(event);
2345
2346 return 0;
2347 }
2348
2349 /*
2350 * See perf_event_disable()
2351 */
2352 int perf_event_refresh(struct perf_event *event, int refresh)
2353 {
2354 struct perf_event_context *ctx;
2355 int ret;
2356
2357 ctx = perf_event_ctx_lock(event);
2358 ret = _perf_event_refresh(event, refresh);
2359 perf_event_ctx_unlock(event, ctx);
2360
2361 return ret;
2362 }
2363 EXPORT_SYMBOL_GPL(perf_event_refresh);
2364
2365 static void ctx_sched_out(struct perf_event_context *ctx,
2366 struct perf_cpu_context *cpuctx,
2367 enum event_type_t event_type)
2368 {
2369 int is_active = ctx->is_active;
2370 struct perf_event *event;
2371
2372 lockdep_assert_held(&ctx->lock);
2373
2374 if (likely(!ctx->nr_events)) {
2375 /*
2376 * See __perf_remove_from_context().
2377 */
2378 WARN_ON_ONCE(ctx->is_active);
2379 if (ctx->task)
2380 WARN_ON_ONCE(cpuctx->task_ctx);
2381 return;
2382 }
2383
2384 ctx->is_active &= ~event_type;
2385 if (ctx->task) {
2386 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2387 if (!ctx->is_active)
2388 cpuctx->task_ctx = NULL;
2389 }
2390
2391 update_context_time(ctx);
2392 update_cgrp_time_from_cpuctx(cpuctx);
2393 if (!ctx->nr_active)
2394 return;
2395
2396 perf_pmu_disable(ctx->pmu);
2397 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2398 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2399 group_sched_out(event, cpuctx, ctx);
2400 }
2401
2402 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2403 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2404 group_sched_out(event, cpuctx, ctx);
2405 }
2406 perf_pmu_enable(ctx->pmu);
2407 }
2408
2409 /*
2410 * Test whether two contexts are equivalent, i.e. whether they have both been
2411 * cloned from the same version of the same context.
2412 *
2413 * Equivalence is measured using a generation number in the context that is
2414 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2415 * and list_del_event().
2416 */
2417 static int context_equiv(struct perf_event_context *ctx1,
2418 struct perf_event_context *ctx2)
2419 {
2420 lockdep_assert_held(&ctx1->lock);
2421 lockdep_assert_held(&ctx2->lock);
2422
2423 /* Pinning disables the swap optimization */
2424 if (ctx1->pin_count || ctx2->pin_count)
2425 return 0;
2426
2427 /* If ctx1 is the parent of ctx2 */
2428 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2429 return 1;
2430
2431 /* If ctx2 is the parent of ctx1 */
2432 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2433 return 1;
2434
2435 /*
2436 * If ctx1 and ctx2 have the same parent; we flatten the parent
2437 * hierarchy, see perf_event_init_context().
2438 */
2439 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2440 ctx1->parent_gen == ctx2->parent_gen)
2441 return 1;
2442
2443 /* Unmatched */
2444 return 0;
2445 }
2446
2447 static void __perf_event_sync_stat(struct perf_event *event,
2448 struct perf_event *next_event)
2449 {
2450 u64 value;
2451
2452 if (!event->attr.inherit_stat)
2453 return;
2454
2455 /*
2456 * Update the event value, we cannot use perf_event_read()
2457 * because we're in the middle of a context switch and have IRQs
2458 * disabled, which upsets smp_call_function_single(), however
2459 * we know the event must be on the current CPU, therefore we
2460 * don't need to use it.
2461 */
2462 switch (event->state) {
2463 case PERF_EVENT_STATE_ACTIVE:
2464 event->pmu->read(event);
2465 /* fall-through */
2466
2467 case PERF_EVENT_STATE_INACTIVE:
2468 update_event_times(event);
2469 break;
2470
2471 default:
2472 break;
2473 }
2474
2475 /*
2476 * In order to keep per-task stats reliable we need to flip the event
2477 * values when we flip the contexts.
2478 */
2479 value = local64_read(&next_event->count);
2480 value = local64_xchg(&event->count, value);
2481 local64_set(&next_event->count, value);
2482
2483 swap(event->total_time_enabled, next_event->total_time_enabled);
2484 swap(event->total_time_running, next_event->total_time_running);
2485
2486 /*
2487 * Since we swizzled the values, update the user visible data too.
2488 */
2489 perf_event_update_userpage(event);
2490 perf_event_update_userpage(next_event);
2491 }
2492
2493 static void perf_event_sync_stat(struct perf_event_context *ctx,
2494 struct perf_event_context *next_ctx)
2495 {
2496 struct perf_event *event, *next_event;
2497
2498 if (!ctx->nr_stat)
2499 return;
2500
2501 update_context_time(ctx);
2502
2503 event = list_first_entry(&ctx->event_list,
2504 struct perf_event, event_entry);
2505
2506 next_event = list_first_entry(&next_ctx->event_list,
2507 struct perf_event, event_entry);
2508
2509 while (&event->event_entry != &ctx->event_list &&
2510 &next_event->event_entry != &next_ctx->event_list) {
2511
2512 __perf_event_sync_stat(event, next_event);
2513
2514 event = list_next_entry(event, event_entry);
2515 next_event = list_next_entry(next_event, event_entry);
2516 }
2517 }
2518
2519 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2520 struct task_struct *next)
2521 {
2522 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2523 struct perf_event_context *next_ctx;
2524 struct perf_event_context *parent, *next_parent;
2525 struct perf_cpu_context *cpuctx;
2526 int do_switch = 1;
2527
2528 if (likely(!ctx))
2529 return;
2530
2531 cpuctx = __get_cpu_context(ctx);
2532 if (!cpuctx->task_ctx)
2533 return;
2534
2535 rcu_read_lock();
2536 next_ctx = next->perf_event_ctxp[ctxn];
2537 if (!next_ctx)
2538 goto unlock;
2539
2540 parent = rcu_dereference(ctx->parent_ctx);
2541 next_parent = rcu_dereference(next_ctx->parent_ctx);
2542
2543 /* If neither context have a parent context; they cannot be clones. */
2544 if (!parent && !next_parent)
2545 goto unlock;
2546
2547 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2548 /*
2549 * Looks like the two contexts are clones, so we might be
2550 * able to optimize the context switch. We lock both
2551 * contexts and check that they are clones under the
2552 * lock (including re-checking that neither has been
2553 * uncloned in the meantime). It doesn't matter which
2554 * order we take the locks because no other cpu could
2555 * be trying to lock both of these tasks.
2556 */
2557 raw_spin_lock(&ctx->lock);
2558 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2559 if (context_equiv(ctx, next_ctx)) {
2560 WRITE_ONCE(ctx->task, next);
2561 WRITE_ONCE(next_ctx->task, task);
2562
2563 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2564
2565 /*
2566 * RCU_INIT_POINTER here is safe because we've not
2567 * modified the ctx and the above modification of
2568 * ctx->task and ctx->task_ctx_data are immaterial
2569 * since those values are always verified under
2570 * ctx->lock which we're now holding.
2571 */
2572 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2573 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2574
2575 do_switch = 0;
2576
2577 perf_event_sync_stat(ctx, next_ctx);
2578 }
2579 raw_spin_unlock(&next_ctx->lock);
2580 raw_spin_unlock(&ctx->lock);
2581 }
2582 unlock:
2583 rcu_read_unlock();
2584
2585 if (do_switch) {
2586 raw_spin_lock(&ctx->lock);
2587 task_ctx_sched_out(cpuctx, ctx);
2588 raw_spin_unlock(&ctx->lock);
2589 }
2590 }
2591
2592 void perf_sched_cb_dec(struct pmu *pmu)
2593 {
2594 this_cpu_dec(perf_sched_cb_usages);
2595 }
2596
2597 void perf_sched_cb_inc(struct pmu *pmu)
2598 {
2599 this_cpu_inc(perf_sched_cb_usages);
2600 }
2601
2602 /*
2603 * This function provides the context switch callback to the lower code
2604 * layer. It is invoked ONLY when the context switch callback is enabled.
2605 */
2606 static void perf_pmu_sched_task(struct task_struct *prev,
2607 struct task_struct *next,
2608 bool sched_in)
2609 {
2610 struct perf_cpu_context *cpuctx;
2611 struct pmu *pmu;
2612 unsigned long flags;
2613
2614 if (prev == next)
2615 return;
2616
2617 local_irq_save(flags);
2618
2619 rcu_read_lock();
2620
2621 list_for_each_entry_rcu(pmu, &pmus, entry) {
2622 if (pmu->sched_task) {
2623 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2624
2625 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2626
2627 perf_pmu_disable(pmu);
2628
2629 pmu->sched_task(cpuctx->task_ctx, sched_in);
2630
2631 perf_pmu_enable(pmu);
2632
2633 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2634 }
2635 }
2636
2637 rcu_read_unlock();
2638
2639 local_irq_restore(flags);
2640 }
2641
2642 static void perf_event_switch(struct task_struct *task,
2643 struct task_struct *next_prev, bool sched_in);
2644
2645 #define for_each_task_context_nr(ctxn) \
2646 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2647
2648 /*
2649 * Called from scheduler to remove the events of the current task,
2650 * with interrupts disabled.
2651 *
2652 * We stop each event and update the event value in event->count.
2653 *
2654 * This does not protect us against NMI, but disable()
2655 * sets the disabled bit in the control field of event _before_
2656 * accessing the event control register. If a NMI hits, then it will
2657 * not restart the event.
2658 */
2659 void __perf_event_task_sched_out(struct task_struct *task,
2660 struct task_struct *next)
2661 {
2662 int ctxn;
2663
2664 if (__this_cpu_read(perf_sched_cb_usages))
2665 perf_pmu_sched_task(task, next, false);
2666
2667 if (atomic_read(&nr_switch_events))
2668 perf_event_switch(task, next, false);
2669
2670 for_each_task_context_nr(ctxn)
2671 perf_event_context_sched_out(task, ctxn, next);
2672
2673 /*
2674 * if cgroup events exist on this CPU, then we need
2675 * to check if we have to switch out PMU state.
2676 * cgroup event are system-wide mode only
2677 */
2678 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2679 perf_cgroup_sched_out(task, next);
2680 }
2681
2682 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2683 struct perf_event_context *ctx)
2684 {
2685 if (!cpuctx->task_ctx)
2686 return;
2687
2688 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2689 return;
2690
2691 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2692 }
2693
2694 /*
2695 * Called with IRQs disabled
2696 */
2697 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2698 enum event_type_t event_type)
2699 {
2700 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2701 }
2702
2703 static void
2704 ctx_pinned_sched_in(struct perf_event_context *ctx,
2705 struct perf_cpu_context *cpuctx)
2706 {
2707 struct perf_event *event;
2708
2709 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2710 if (event->state <= PERF_EVENT_STATE_OFF)
2711 continue;
2712 if (!event_filter_match(event))
2713 continue;
2714
2715 /* may need to reset tstamp_enabled */
2716 if (is_cgroup_event(event))
2717 perf_cgroup_mark_enabled(event, ctx);
2718
2719 if (group_can_go_on(event, cpuctx, 1))
2720 group_sched_in(event, cpuctx, ctx);
2721
2722 /*
2723 * If this pinned group hasn't been scheduled,
2724 * put it in error state.
2725 */
2726 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2727 update_group_times(event);
2728 event->state = PERF_EVENT_STATE_ERROR;
2729 }
2730 }
2731 }
2732
2733 static void
2734 ctx_flexible_sched_in(struct perf_event_context *ctx,
2735 struct perf_cpu_context *cpuctx)
2736 {
2737 struct perf_event *event;
2738 int can_add_hw = 1;
2739
2740 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2741 /* Ignore events in OFF or ERROR state */
2742 if (event->state <= PERF_EVENT_STATE_OFF)
2743 continue;
2744 /*
2745 * Listen to the 'cpu' scheduling filter constraint
2746 * of events:
2747 */
2748 if (!event_filter_match(event))
2749 continue;
2750
2751 /* may need to reset tstamp_enabled */
2752 if (is_cgroup_event(event))
2753 perf_cgroup_mark_enabled(event, ctx);
2754
2755 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2756 if (group_sched_in(event, cpuctx, ctx))
2757 can_add_hw = 0;
2758 }
2759 }
2760 }
2761
2762 static void
2763 ctx_sched_in(struct perf_event_context *ctx,
2764 struct perf_cpu_context *cpuctx,
2765 enum event_type_t event_type,
2766 struct task_struct *task)
2767 {
2768 int is_active = ctx->is_active;
2769 u64 now;
2770
2771 lockdep_assert_held(&ctx->lock);
2772
2773 if (likely(!ctx->nr_events))
2774 return;
2775
2776 ctx->is_active |= event_type;
2777 if (ctx->task) {
2778 if (!is_active)
2779 cpuctx->task_ctx = ctx;
2780 else
2781 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2782 }
2783
2784 now = perf_clock();
2785 ctx->timestamp = now;
2786 perf_cgroup_set_timestamp(task, ctx);
2787 /*
2788 * First go through the list and put on any pinned groups
2789 * in order to give them the best chance of going on.
2790 */
2791 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2792 ctx_pinned_sched_in(ctx, cpuctx);
2793
2794 /* Then walk through the lower prio flexible groups */
2795 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2796 ctx_flexible_sched_in(ctx, cpuctx);
2797 }
2798
2799 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2800 enum event_type_t event_type,
2801 struct task_struct *task)
2802 {
2803 struct perf_event_context *ctx = &cpuctx->ctx;
2804
2805 ctx_sched_in(ctx, cpuctx, event_type, task);
2806 }
2807
2808 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2809 struct task_struct *task)
2810 {
2811 struct perf_cpu_context *cpuctx;
2812
2813 cpuctx = __get_cpu_context(ctx);
2814 if (cpuctx->task_ctx == ctx)
2815 return;
2816
2817 perf_ctx_lock(cpuctx, ctx);
2818 perf_pmu_disable(ctx->pmu);
2819 /*
2820 * We want to keep the following priority order:
2821 * cpu pinned (that don't need to move), task pinned,
2822 * cpu flexible, task flexible.
2823 */
2824 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2825 perf_event_sched_in(cpuctx, ctx, task);
2826 perf_pmu_enable(ctx->pmu);
2827 perf_ctx_unlock(cpuctx, ctx);
2828 }
2829
2830 /*
2831 * Called from scheduler to add the events of the current task
2832 * with interrupts disabled.
2833 *
2834 * We restore the event value and then enable it.
2835 *
2836 * This does not protect us against NMI, but enable()
2837 * sets the enabled bit in the control field of event _before_
2838 * accessing the event control register. If a NMI hits, then it will
2839 * keep the event running.
2840 */
2841 void __perf_event_task_sched_in(struct task_struct *prev,
2842 struct task_struct *task)
2843 {
2844 struct perf_event_context *ctx;
2845 int ctxn;
2846
2847 /*
2848 * If cgroup events exist on this CPU, then we need to check if we have
2849 * to switch in PMU state; cgroup event are system-wide mode only.
2850 *
2851 * Since cgroup events are CPU events, we must schedule these in before
2852 * we schedule in the task events.
2853 */
2854 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2855 perf_cgroup_sched_in(prev, task);
2856
2857 for_each_task_context_nr(ctxn) {
2858 ctx = task->perf_event_ctxp[ctxn];
2859 if (likely(!ctx))
2860 continue;
2861
2862 perf_event_context_sched_in(ctx, task);
2863 }
2864
2865 if (atomic_read(&nr_switch_events))
2866 perf_event_switch(task, prev, true);
2867
2868 if (__this_cpu_read(perf_sched_cb_usages))
2869 perf_pmu_sched_task(prev, task, true);
2870 }
2871
2872 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2873 {
2874 u64 frequency = event->attr.sample_freq;
2875 u64 sec = NSEC_PER_SEC;
2876 u64 divisor, dividend;
2877
2878 int count_fls, nsec_fls, frequency_fls, sec_fls;
2879
2880 count_fls = fls64(count);
2881 nsec_fls = fls64(nsec);
2882 frequency_fls = fls64(frequency);
2883 sec_fls = 30;
2884
2885 /*
2886 * We got @count in @nsec, with a target of sample_freq HZ
2887 * the target period becomes:
2888 *
2889 * @count * 10^9
2890 * period = -------------------
2891 * @nsec * sample_freq
2892 *
2893 */
2894
2895 /*
2896 * Reduce accuracy by one bit such that @a and @b converge
2897 * to a similar magnitude.
2898 */
2899 #define REDUCE_FLS(a, b) \
2900 do { \
2901 if (a##_fls > b##_fls) { \
2902 a >>= 1; \
2903 a##_fls--; \
2904 } else { \
2905 b >>= 1; \
2906 b##_fls--; \
2907 } \
2908 } while (0)
2909
2910 /*
2911 * Reduce accuracy until either term fits in a u64, then proceed with
2912 * the other, so that finally we can do a u64/u64 division.
2913 */
2914 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2915 REDUCE_FLS(nsec, frequency);
2916 REDUCE_FLS(sec, count);
2917 }
2918
2919 if (count_fls + sec_fls > 64) {
2920 divisor = nsec * frequency;
2921
2922 while (count_fls + sec_fls > 64) {
2923 REDUCE_FLS(count, sec);
2924 divisor >>= 1;
2925 }
2926
2927 dividend = count * sec;
2928 } else {
2929 dividend = count * sec;
2930
2931 while (nsec_fls + frequency_fls > 64) {
2932 REDUCE_FLS(nsec, frequency);
2933 dividend >>= 1;
2934 }
2935
2936 divisor = nsec * frequency;
2937 }
2938
2939 if (!divisor)
2940 return dividend;
2941
2942 return div64_u64(dividend, divisor);
2943 }
2944
2945 static DEFINE_PER_CPU(int, perf_throttled_count);
2946 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2947
2948 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2949 {
2950 struct hw_perf_event *hwc = &event->hw;
2951 s64 period, sample_period;
2952 s64 delta;
2953
2954 period = perf_calculate_period(event, nsec, count);
2955
2956 delta = (s64)(period - hwc->sample_period);
2957 delta = (delta + 7) / 8; /* low pass filter */
2958
2959 sample_period = hwc->sample_period + delta;
2960
2961 if (!sample_period)
2962 sample_period = 1;
2963
2964 hwc->sample_period = sample_period;
2965
2966 if (local64_read(&hwc->period_left) > 8*sample_period) {
2967 if (disable)
2968 event->pmu->stop(event, PERF_EF_UPDATE);
2969
2970 local64_set(&hwc->period_left, 0);
2971
2972 if (disable)
2973 event->pmu->start(event, PERF_EF_RELOAD);
2974 }
2975 }
2976
2977 /*
2978 * combine freq adjustment with unthrottling to avoid two passes over the
2979 * events. At the same time, make sure, having freq events does not change
2980 * the rate of unthrottling as that would introduce bias.
2981 */
2982 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2983 int needs_unthr)
2984 {
2985 struct perf_event *event;
2986 struct hw_perf_event *hwc;
2987 u64 now, period = TICK_NSEC;
2988 s64 delta;
2989
2990 /*
2991 * only need to iterate over all events iff:
2992 * - context have events in frequency mode (needs freq adjust)
2993 * - there are events to unthrottle on this cpu
2994 */
2995 if (!(ctx->nr_freq || needs_unthr))
2996 return;
2997
2998 raw_spin_lock(&ctx->lock);
2999 perf_pmu_disable(ctx->pmu);
3000
3001 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3002 if (event->state != PERF_EVENT_STATE_ACTIVE)
3003 continue;
3004
3005 if (!event_filter_match(event))
3006 continue;
3007
3008 perf_pmu_disable(event->pmu);
3009
3010 hwc = &event->hw;
3011
3012 if (hwc->interrupts == MAX_INTERRUPTS) {
3013 hwc->interrupts = 0;
3014 perf_log_throttle(event, 1);
3015 event->pmu->start(event, 0);
3016 }
3017
3018 if (!event->attr.freq || !event->attr.sample_freq)
3019 goto next;
3020
3021 /*
3022 * stop the event and update event->count
3023 */
3024 event->pmu->stop(event, PERF_EF_UPDATE);
3025
3026 now = local64_read(&event->count);
3027 delta = now - hwc->freq_count_stamp;
3028 hwc->freq_count_stamp = now;
3029
3030 /*
3031 * restart the event
3032 * reload only if value has changed
3033 * we have stopped the event so tell that
3034 * to perf_adjust_period() to avoid stopping it
3035 * twice.
3036 */
3037 if (delta > 0)
3038 perf_adjust_period(event, period, delta, false);
3039
3040 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3041 next:
3042 perf_pmu_enable(event->pmu);
3043 }
3044
3045 perf_pmu_enable(ctx->pmu);
3046 raw_spin_unlock(&ctx->lock);
3047 }
3048
3049 /*
3050 * Round-robin a context's events:
3051 */
3052 static void rotate_ctx(struct perf_event_context *ctx)
3053 {
3054 /*
3055 * Rotate the first entry last of non-pinned groups. Rotation might be
3056 * disabled by the inheritance code.
3057 */
3058 if (!ctx->rotate_disable)
3059 list_rotate_left(&ctx->flexible_groups);
3060 }
3061
3062 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3063 {
3064 struct perf_event_context *ctx = NULL;
3065 int rotate = 0;
3066
3067 if (cpuctx->ctx.nr_events) {
3068 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3069 rotate = 1;
3070 }
3071
3072 ctx = cpuctx->task_ctx;
3073 if (ctx && ctx->nr_events) {
3074 if (ctx->nr_events != ctx->nr_active)
3075 rotate = 1;
3076 }
3077
3078 if (!rotate)
3079 goto done;
3080
3081 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3082 perf_pmu_disable(cpuctx->ctx.pmu);
3083
3084 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3085 if (ctx)
3086 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3087
3088 rotate_ctx(&cpuctx->ctx);
3089 if (ctx)
3090 rotate_ctx(ctx);
3091
3092 perf_event_sched_in(cpuctx, ctx, current);
3093
3094 perf_pmu_enable(cpuctx->ctx.pmu);
3095 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3096 done:
3097
3098 return rotate;
3099 }
3100
3101 #ifdef CONFIG_NO_HZ_FULL
3102 bool perf_event_can_stop_tick(void)
3103 {
3104 if (atomic_read(&nr_freq_events) ||
3105 __this_cpu_read(perf_throttled_count))
3106 return false;
3107 else
3108 return true;
3109 }
3110 #endif
3111
3112 void perf_event_task_tick(void)
3113 {
3114 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3115 struct perf_event_context *ctx, *tmp;
3116 int throttled;
3117
3118 WARN_ON(!irqs_disabled());
3119
3120 __this_cpu_inc(perf_throttled_seq);
3121 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3122
3123 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3124 perf_adjust_freq_unthr_context(ctx, throttled);
3125 }
3126
3127 static int event_enable_on_exec(struct perf_event *event,
3128 struct perf_event_context *ctx)
3129 {
3130 if (!event->attr.enable_on_exec)
3131 return 0;
3132
3133 event->attr.enable_on_exec = 0;
3134 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3135 return 0;
3136
3137 __perf_event_mark_enabled(event);
3138
3139 return 1;
3140 }
3141
3142 /*
3143 * Enable all of a task's events that have been marked enable-on-exec.
3144 * This expects task == current.
3145 */
3146 static void perf_event_enable_on_exec(int ctxn)
3147 {
3148 struct perf_event_context *ctx, *clone_ctx = NULL;
3149 struct perf_cpu_context *cpuctx;
3150 struct perf_event *event;
3151 unsigned long flags;
3152 int enabled = 0;
3153
3154 local_irq_save(flags);
3155 ctx = current->perf_event_ctxp[ctxn];
3156 if (!ctx || !ctx->nr_events)
3157 goto out;
3158
3159 cpuctx = __get_cpu_context(ctx);
3160 perf_ctx_lock(cpuctx, ctx);
3161 list_for_each_entry(event, &ctx->event_list, event_entry)
3162 enabled |= event_enable_on_exec(event, ctx);
3163
3164 /*
3165 * Unclone and reschedule this context if we enabled any event.
3166 */
3167 if (enabled) {
3168 clone_ctx = unclone_ctx(ctx);
3169 ctx_resched(cpuctx, ctx);
3170 }
3171 perf_ctx_unlock(cpuctx, ctx);
3172
3173 out:
3174 local_irq_restore(flags);
3175
3176 if (clone_ctx)
3177 put_ctx(clone_ctx);
3178 }
3179
3180 void perf_event_exec(void)
3181 {
3182 int ctxn;
3183
3184 rcu_read_lock();
3185 for_each_task_context_nr(ctxn)
3186 perf_event_enable_on_exec(ctxn);
3187 rcu_read_unlock();
3188 }
3189
3190 struct perf_read_data {
3191 struct perf_event *event;
3192 bool group;
3193 int ret;
3194 };
3195
3196 /*
3197 * Cross CPU call to read the hardware event
3198 */
3199 static void __perf_event_read(void *info)
3200 {
3201 struct perf_read_data *data = info;
3202 struct perf_event *sub, *event = data->event;
3203 struct perf_event_context *ctx = event->ctx;
3204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3205 struct pmu *pmu = event->pmu;
3206
3207 /*
3208 * If this is a task context, we need to check whether it is
3209 * the current task context of this cpu. If not it has been
3210 * scheduled out before the smp call arrived. In that case
3211 * event->count would have been updated to a recent sample
3212 * when the event was scheduled out.
3213 */
3214 if (ctx->task && cpuctx->task_ctx != ctx)
3215 return;
3216
3217 raw_spin_lock(&ctx->lock);
3218 if (ctx->is_active) {
3219 update_context_time(ctx);
3220 update_cgrp_time_from_event(event);
3221 }
3222
3223 update_event_times(event);
3224 if (event->state != PERF_EVENT_STATE_ACTIVE)
3225 goto unlock;
3226
3227 if (!data->group) {
3228 pmu->read(event);
3229 data->ret = 0;
3230 goto unlock;
3231 }
3232
3233 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3234
3235 pmu->read(event);
3236
3237 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3238 update_event_times(sub);
3239 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3240 /*
3241 * Use sibling's PMU rather than @event's since
3242 * sibling could be on different (eg: software) PMU.
3243 */
3244 sub->pmu->read(sub);
3245 }
3246 }
3247
3248 data->ret = pmu->commit_txn(pmu);
3249
3250 unlock:
3251 raw_spin_unlock(&ctx->lock);
3252 }
3253
3254 static inline u64 perf_event_count(struct perf_event *event)
3255 {
3256 if (event->pmu->count)
3257 return event->pmu->count(event);
3258
3259 return __perf_event_count(event);
3260 }
3261
3262 /*
3263 * NMI-safe method to read a local event, that is an event that
3264 * is:
3265 * - either for the current task, or for this CPU
3266 * - does not have inherit set, for inherited task events
3267 * will not be local and we cannot read them atomically
3268 * - must not have a pmu::count method
3269 */
3270 u64 perf_event_read_local(struct perf_event *event)
3271 {
3272 unsigned long flags;
3273 u64 val;
3274
3275 /*
3276 * Disabling interrupts avoids all counter scheduling (context
3277 * switches, timer based rotation and IPIs).
3278 */
3279 local_irq_save(flags);
3280
3281 /* If this is a per-task event, it must be for current */
3282 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3283 event->hw.target != current);
3284
3285 /* If this is a per-CPU event, it must be for this CPU */
3286 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3287 event->cpu != smp_processor_id());
3288
3289 /*
3290 * It must not be an event with inherit set, we cannot read
3291 * all child counters from atomic context.
3292 */
3293 WARN_ON_ONCE(event->attr.inherit);
3294
3295 /*
3296 * It must not have a pmu::count method, those are not
3297 * NMI safe.
3298 */
3299 WARN_ON_ONCE(event->pmu->count);
3300
3301 /*
3302 * If the event is currently on this CPU, its either a per-task event,
3303 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3304 * oncpu == -1).
3305 */
3306 if (event->oncpu == smp_processor_id())
3307 event->pmu->read(event);
3308
3309 val = local64_read(&event->count);
3310 local_irq_restore(flags);
3311
3312 return val;
3313 }
3314
3315 static int perf_event_read(struct perf_event *event, bool group)
3316 {
3317 int ret = 0;
3318
3319 /*
3320 * If event is enabled and currently active on a CPU, update the
3321 * value in the event structure:
3322 */
3323 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3324 struct perf_read_data data = {
3325 .event = event,
3326 .group = group,
3327 .ret = 0,
3328 };
3329 smp_call_function_single(event->oncpu,
3330 __perf_event_read, &data, 1);
3331 ret = data.ret;
3332 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3333 struct perf_event_context *ctx = event->ctx;
3334 unsigned long flags;
3335
3336 raw_spin_lock_irqsave(&ctx->lock, flags);
3337 /*
3338 * may read while context is not active
3339 * (e.g., thread is blocked), in that case
3340 * we cannot update context time
3341 */
3342 if (ctx->is_active) {
3343 update_context_time(ctx);
3344 update_cgrp_time_from_event(event);
3345 }
3346 if (group)
3347 update_group_times(event);
3348 else
3349 update_event_times(event);
3350 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3351 }
3352
3353 return ret;
3354 }
3355
3356 /*
3357 * Initialize the perf_event context in a task_struct:
3358 */
3359 static void __perf_event_init_context(struct perf_event_context *ctx)
3360 {
3361 raw_spin_lock_init(&ctx->lock);
3362 mutex_init(&ctx->mutex);
3363 INIT_LIST_HEAD(&ctx->active_ctx_list);
3364 INIT_LIST_HEAD(&ctx->pinned_groups);
3365 INIT_LIST_HEAD(&ctx->flexible_groups);
3366 INIT_LIST_HEAD(&ctx->event_list);
3367 atomic_set(&ctx->refcount, 1);
3368 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3369 }
3370
3371 static struct perf_event_context *
3372 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3373 {
3374 struct perf_event_context *ctx;
3375
3376 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3377 if (!ctx)
3378 return NULL;
3379
3380 __perf_event_init_context(ctx);
3381 if (task) {
3382 ctx->task = task;
3383 get_task_struct(task);
3384 }
3385 ctx->pmu = pmu;
3386
3387 return ctx;
3388 }
3389
3390 static struct task_struct *
3391 find_lively_task_by_vpid(pid_t vpid)
3392 {
3393 struct task_struct *task;
3394 int err;
3395
3396 rcu_read_lock();
3397 if (!vpid)
3398 task = current;
3399 else
3400 task = find_task_by_vpid(vpid);
3401 if (task)
3402 get_task_struct(task);
3403 rcu_read_unlock();
3404
3405 if (!task)
3406 return ERR_PTR(-ESRCH);
3407
3408 /* Reuse ptrace permission checks for now. */
3409 err = -EACCES;
3410 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3411 goto errout;
3412
3413 return task;
3414 errout:
3415 put_task_struct(task);
3416 return ERR_PTR(err);
3417
3418 }
3419
3420 /*
3421 * Returns a matching context with refcount and pincount.
3422 */
3423 static struct perf_event_context *
3424 find_get_context(struct pmu *pmu, struct task_struct *task,
3425 struct perf_event *event)
3426 {
3427 struct perf_event_context *ctx, *clone_ctx = NULL;
3428 struct perf_cpu_context *cpuctx;
3429 void *task_ctx_data = NULL;
3430 unsigned long flags;
3431 int ctxn, err;
3432 int cpu = event->cpu;
3433
3434 if (!task) {
3435 /* Must be root to operate on a CPU event: */
3436 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3437 return ERR_PTR(-EACCES);
3438
3439 /*
3440 * We could be clever and allow to attach a event to an
3441 * offline CPU and activate it when the CPU comes up, but
3442 * that's for later.
3443 */
3444 if (!cpu_online(cpu))
3445 return ERR_PTR(-ENODEV);
3446
3447 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3448 ctx = &cpuctx->ctx;
3449 get_ctx(ctx);
3450 ++ctx->pin_count;
3451
3452 return ctx;
3453 }
3454
3455 err = -EINVAL;
3456 ctxn = pmu->task_ctx_nr;
3457 if (ctxn < 0)
3458 goto errout;
3459
3460 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3461 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3462 if (!task_ctx_data) {
3463 err = -ENOMEM;
3464 goto errout;
3465 }
3466 }
3467
3468 retry:
3469 ctx = perf_lock_task_context(task, ctxn, &flags);
3470 if (ctx) {
3471 clone_ctx = unclone_ctx(ctx);
3472 ++ctx->pin_count;
3473
3474 if (task_ctx_data && !ctx->task_ctx_data) {
3475 ctx->task_ctx_data = task_ctx_data;
3476 task_ctx_data = NULL;
3477 }
3478 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3479
3480 if (clone_ctx)
3481 put_ctx(clone_ctx);
3482 } else {
3483 ctx = alloc_perf_context(pmu, task);
3484 err = -ENOMEM;
3485 if (!ctx)
3486 goto errout;
3487
3488 if (task_ctx_data) {
3489 ctx->task_ctx_data = task_ctx_data;
3490 task_ctx_data = NULL;
3491 }
3492
3493 err = 0;
3494 mutex_lock(&task->perf_event_mutex);
3495 /*
3496 * If it has already passed perf_event_exit_task().
3497 * we must see PF_EXITING, it takes this mutex too.
3498 */
3499 if (task->flags & PF_EXITING)
3500 err = -ESRCH;
3501 else if (task->perf_event_ctxp[ctxn])
3502 err = -EAGAIN;
3503 else {
3504 get_ctx(ctx);
3505 ++ctx->pin_count;
3506 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3507 }
3508 mutex_unlock(&task->perf_event_mutex);
3509
3510 if (unlikely(err)) {
3511 put_ctx(ctx);
3512
3513 if (err == -EAGAIN)
3514 goto retry;
3515 goto errout;
3516 }
3517 }
3518
3519 kfree(task_ctx_data);
3520 return ctx;
3521
3522 errout:
3523 kfree(task_ctx_data);
3524 return ERR_PTR(err);
3525 }
3526
3527 static void perf_event_free_filter(struct perf_event *event);
3528 static void perf_event_free_bpf_prog(struct perf_event *event);
3529
3530 static void free_event_rcu(struct rcu_head *head)
3531 {
3532 struct perf_event *event;
3533
3534 event = container_of(head, struct perf_event, rcu_head);
3535 if (event->ns)
3536 put_pid_ns(event->ns);
3537 perf_event_free_filter(event);
3538 kfree(event);
3539 }
3540
3541 static void ring_buffer_attach(struct perf_event *event,
3542 struct ring_buffer *rb);
3543
3544 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3545 {
3546 if (event->parent)
3547 return;
3548
3549 if (is_cgroup_event(event))
3550 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3551 }
3552
3553 static void unaccount_event(struct perf_event *event)
3554 {
3555 bool dec = false;
3556
3557 if (event->parent)
3558 return;
3559
3560 if (event->attach_state & PERF_ATTACH_TASK)
3561 dec = true;
3562 if (event->attr.mmap || event->attr.mmap_data)
3563 atomic_dec(&nr_mmap_events);
3564 if (event->attr.comm)
3565 atomic_dec(&nr_comm_events);
3566 if (event->attr.task)
3567 atomic_dec(&nr_task_events);
3568 if (event->attr.freq)
3569 atomic_dec(&nr_freq_events);
3570 if (event->attr.context_switch) {
3571 dec = true;
3572 atomic_dec(&nr_switch_events);
3573 }
3574 if (is_cgroup_event(event))
3575 dec = true;
3576 if (has_branch_stack(event))
3577 dec = true;
3578
3579 if (dec)
3580 static_key_slow_dec_deferred(&perf_sched_events);
3581
3582 unaccount_event_cpu(event, event->cpu);
3583 }
3584
3585 /*
3586 * The following implement mutual exclusion of events on "exclusive" pmus
3587 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3588 * at a time, so we disallow creating events that might conflict, namely:
3589 *
3590 * 1) cpu-wide events in the presence of per-task events,
3591 * 2) per-task events in the presence of cpu-wide events,
3592 * 3) two matching events on the same context.
3593 *
3594 * The former two cases are handled in the allocation path (perf_event_alloc(),
3595 * _free_event()), the latter -- before the first perf_install_in_context().
3596 */
3597 static int exclusive_event_init(struct perf_event *event)
3598 {
3599 struct pmu *pmu = event->pmu;
3600
3601 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3602 return 0;
3603
3604 /*
3605 * Prevent co-existence of per-task and cpu-wide events on the
3606 * same exclusive pmu.
3607 *
3608 * Negative pmu::exclusive_cnt means there are cpu-wide
3609 * events on this "exclusive" pmu, positive means there are
3610 * per-task events.
3611 *
3612 * Since this is called in perf_event_alloc() path, event::ctx
3613 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3614 * to mean "per-task event", because unlike other attach states it
3615 * never gets cleared.
3616 */
3617 if (event->attach_state & PERF_ATTACH_TASK) {
3618 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3619 return -EBUSY;
3620 } else {
3621 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3622 return -EBUSY;
3623 }
3624
3625 return 0;
3626 }
3627
3628 static void exclusive_event_destroy(struct perf_event *event)
3629 {
3630 struct pmu *pmu = event->pmu;
3631
3632 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3633 return;
3634
3635 /* see comment in exclusive_event_init() */
3636 if (event->attach_state & PERF_ATTACH_TASK)
3637 atomic_dec(&pmu->exclusive_cnt);
3638 else
3639 atomic_inc(&pmu->exclusive_cnt);
3640 }
3641
3642 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3643 {
3644 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3645 (e1->cpu == e2->cpu ||
3646 e1->cpu == -1 ||
3647 e2->cpu == -1))
3648 return true;
3649 return false;
3650 }
3651
3652 /* Called under the same ctx::mutex as perf_install_in_context() */
3653 static bool exclusive_event_installable(struct perf_event *event,
3654 struct perf_event_context *ctx)
3655 {
3656 struct perf_event *iter_event;
3657 struct pmu *pmu = event->pmu;
3658
3659 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3660 return true;
3661
3662 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3663 if (exclusive_event_match(iter_event, event))
3664 return false;
3665 }
3666
3667 return true;
3668 }
3669
3670 static void _free_event(struct perf_event *event)
3671 {
3672 irq_work_sync(&event->pending);
3673
3674 unaccount_event(event);
3675
3676 if (event->rb) {
3677 /*
3678 * Can happen when we close an event with re-directed output.
3679 *
3680 * Since we have a 0 refcount, perf_mmap_close() will skip
3681 * over us; possibly making our ring_buffer_put() the last.
3682 */
3683 mutex_lock(&event->mmap_mutex);
3684 ring_buffer_attach(event, NULL);
3685 mutex_unlock(&event->mmap_mutex);
3686 }
3687
3688 if (is_cgroup_event(event))
3689 perf_detach_cgroup(event);
3690
3691 if (!event->parent) {
3692 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3693 put_callchain_buffers();
3694 }
3695
3696 perf_event_free_bpf_prog(event);
3697
3698 if (event->destroy)
3699 event->destroy(event);
3700
3701 if (event->ctx)
3702 put_ctx(event->ctx);
3703
3704 if (event->pmu) {
3705 exclusive_event_destroy(event);
3706 module_put(event->pmu->module);
3707 }
3708
3709 call_rcu(&event->rcu_head, free_event_rcu);
3710 }
3711
3712 /*
3713 * Used to free events which have a known refcount of 1, such as in error paths
3714 * where the event isn't exposed yet and inherited events.
3715 */
3716 static void free_event(struct perf_event *event)
3717 {
3718 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3719 "unexpected event refcount: %ld; ptr=%p\n",
3720 atomic_long_read(&event->refcount), event)) {
3721 /* leak to avoid use-after-free */
3722 return;
3723 }
3724
3725 _free_event(event);
3726 }
3727
3728 /*
3729 * Remove user event from the owner task.
3730 */
3731 static void perf_remove_from_owner(struct perf_event *event)
3732 {
3733 struct task_struct *owner;
3734
3735 rcu_read_lock();
3736 owner = ACCESS_ONCE(event->owner);
3737 /*
3738 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3739 * !owner it means the list deletion is complete and we can indeed
3740 * free this event, otherwise we need to serialize on
3741 * owner->perf_event_mutex.
3742 */
3743 smp_read_barrier_depends();
3744 if (owner) {
3745 /*
3746 * Since delayed_put_task_struct() also drops the last
3747 * task reference we can safely take a new reference
3748 * while holding the rcu_read_lock().
3749 */
3750 get_task_struct(owner);
3751 }
3752 rcu_read_unlock();
3753
3754 if (owner) {
3755 /*
3756 * If we're here through perf_event_exit_task() we're already
3757 * holding ctx->mutex which would be an inversion wrt. the
3758 * normal lock order.
3759 *
3760 * However we can safely take this lock because its the child
3761 * ctx->mutex.
3762 */
3763 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3764
3765 /*
3766 * We have to re-check the event->owner field, if it is cleared
3767 * we raced with perf_event_exit_task(), acquiring the mutex
3768 * ensured they're done, and we can proceed with freeing the
3769 * event.
3770 */
3771 if (event->owner)
3772 list_del_init(&event->owner_entry);
3773 mutex_unlock(&owner->perf_event_mutex);
3774 put_task_struct(owner);
3775 }
3776 }
3777
3778 static void put_event(struct perf_event *event)
3779 {
3780 struct perf_event_context *ctx;
3781
3782 if (!atomic_long_dec_and_test(&event->refcount))
3783 return;
3784
3785 if (!is_kernel_event(event))
3786 perf_remove_from_owner(event);
3787
3788 /*
3789 * There are two ways this annotation is useful:
3790 *
3791 * 1) there is a lock recursion from perf_event_exit_task
3792 * see the comment there.
3793 *
3794 * 2) there is a lock-inversion with mmap_sem through
3795 * perf_read_group(), which takes faults while
3796 * holding ctx->mutex, however this is called after
3797 * the last filedesc died, so there is no possibility
3798 * to trigger the AB-BA case.
3799 */
3800 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3801 WARN_ON_ONCE(ctx->parent_ctx);
3802 perf_remove_from_context(event, true);
3803 perf_event_ctx_unlock(event, ctx);
3804
3805 _free_event(event);
3806 }
3807
3808 int perf_event_release_kernel(struct perf_event *event)
3809 {
3810 put_event(event);
3811 return 0;
3812 }
3813 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3814
3815 /*
3816 * Called when the last reference to the file is gone.
3817 */
3818 static int perf_release(struct inode *inode, struct file *file)
3819 {
3820 put_event(file->private_data);
3821 return 0;
3822 }
3823
3824 /*
3825 * Remove all orphanes events from the context.
3826 */
3827 static void orphans_remove_work(struct work_struct *work)
3828 {
3829 struct perf_event_context *ctx;
3830 struct perf_event *event, *tmp;
3831
3832 ctx = container_of(work, struct perf_event_context,
3833 orphans_remove.work);
3834
3835 mutex_lock(&ctx->mutex);
3836 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3837 struct perf_event *parent_event = event->parent;
3838
3839 if (!is_orphaned_child(event))
3840 continue;
3841
3842 perf_remove_from_context(event, true);
3843
3844 mutex_lock(&parent_event->child_mutex);
3845 list_del_init(&event->child_list);
3846 mutex_unlock(&parent_event->child_mutex);
3847
3848 free_event(event);
3849 put_event(parent_event);
3850 }
3851
3852 raw_spin_lock_irq(&ctx->lock);
3853 ctx->orphans_remove_sched = false;
3854 raw_spin_unlock_irq(&ctx->lock);
3855 mutex_unlock(&ctx->mutex);
3856
3857 put_ctx(ctx);
3858 }
3859
3860 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3861 {
3862 struct perf_event *child;
3863 u64 total = 0;
3864
3865 *enabled = 0;
3866 *running = 0;
3867
3868 mutex_lock(&event->child_mutex);
3869
3870 (void)perf_event_read(event, false);
3871 total += perf_event_count(event);
3872
3873 *enabled += event->total_time_enabled +
3874 atomic64_read(&event->child_total_time_enabled);
3875 *running += event->total_time_running +
3876 atomic64_read(&event->child_total_time_running);
3877
3878 list_for_each_entry(child, &event->child_list, child_list) {
3879 (void)perf_event_read(child, false);
3880 total += perf_event_count(child);
3881 *enabled += child->total_time_enabled;
3882 *running += child->total_time_running;
3883 }
3884 mutex_unlock(&event->child_mutex);
3885
3886 return total;
3887 }
3888 EXPORT_SYMBOL_GPL(perf_event_read_value);
3889
3890 static int __perf_read_group_add(struct perf_event *leader,
3891 u64 read_format, u64 *values)
3892 {
3893 struct perf_event *sub;
3894 int n = 1; /* skip @nr */
3895 int ret;
3896
3897 ret = perf_event_read(leader, true);
3898 if (ret)
3899 return ret;
3900
3901 /*
3902 * Since we co-schedule groups, {enabled,running} times of siblings
3903 * will be identical to those of the leader, so we only publish one
3904 * set.
3905 */
3906 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3907 values[n++] += leader->total_time_enabled +
3908 atomic64_read(&leader->child_total_time_enabled);
3909 }
3910
3911 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3912 values[n++] += leader->total_time_running +
3913 atomic64_read(&leader->child_total_time_running);
3914 }
3915
3916 /*
3917 * Write {count,id} tuples for every sibling.
3918 */
3919 values[n++] += perf_event_count(leader);
3920 if (read_format & PERF_FORMAT_ID)
3921 values[n++] = primary_event_id(leader);
3922
3923 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3924 values[n++] += perf_event_count(sub);
3925 if (read_format & PERF_FORMAT_ID)
3926 values[n++] = primary_event_id(sub);
3927 }
3928
3929 return 0;
3930 }
3931
3932 static int perf_read_group(struct perf_event *event,
3933 u64 read_format, char __user *buf)
3934 {
3935 struct perf_event *leader = event->group_leader, *child;
3936 struct perf_event_context *ctx = leader->ctx;
3937 int ret;
3938 u64 *values;
3939
3940 lockdep_assert_held(&ctx->mutex);
3941
3942 values = kzalloc(event->read_size, GFP_KERNEL);
3943 if (!values)
3944 return -ENOMEM;
3945
3946 values[0] = 1 + leader->nr_siblings;
3947
3948 /*
3949 * By locking the child_mutex of the leader we effectively
3950 * lock the child list of all siblings.. XXX explain how.
3951 */
3952 mutex_lock(&leader->child_mutex);
3953
3954 ret = __perf_read_group_add(leader, read_format, values);
3955 if (ret)
3956 goto unlock;
3957
3958 list_for_each_entry(child, &leader->child_list, child_list) {
3959 ret = __perf_read_group_add(child, read_format, values);
3960 if (ret)
3961 goto unlock;
3962 }
3963
3964 mutex_unlock(&leader->child_mutex);
3965
3966 ret = event->read_size;
3967 if (copy_to_user(buf, values, event->read_size))
3968 ret = -EFAULT;
3969 goto out;
3970
3971 unlock:
3972 mutex_unlock(&leader->child_mutex);
3973 out:
3974 kfree(values);
3975 return ret;
3976 }
3977
3978 static int perf_read_one(struct perf_event *event,
3979 u64 read_format, char __user *buf)
3980 {
3981 u64 enabled, running;
3982 u64 values[4];
3983 int n = 0;
3984
3985 values[n++] = perf_event_read_value(event, &enabled, &running);
3986 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3987 values[n++] = enabled;
3988 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3989 values[n++] = running;
3990 if (read_format & PERF_FORMAT_ID)
3991 values[n++] = primary_event_id(event);
3992
3993 if (copy_to_user(buf, values, n * sizeof(u64)))
3994 return -EFAULT;
3995
3996 return n * sizeof(u64);
3997 }
3998
3999 static bool is_event_hup(struct perf_event *event)
4000 {
4001 bool no_children;
4002
4003 if (event->state != PERF_EVENT_STATE_EXIT)
4004 return false;
4005
4006 mutex_lock(&event->child_mutex);
4007 no_children = list_empty(&event->child_list);
4008 mutex_unlock(&event->child_mutex);
4009 return no_children;
4010 }
4011
4012 /*
4013 * Read the performance event - simple non blocking version for now
4014 */
4015 static ssize_t
4016 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4017 {
4018 u64 read_format = event->attr.read_format;
4019 int ret;
4020
4021 /*
4022 * Return end-of-file for a read on a event that is in
4023 * error state (i.e. because it was pinned but it couldn't be
4024 * scheduled on to the CPU at some point).
4025 */
4026 if (event->state == PERF_EVENT_STATE_ERROR)
4027 return 0;
4028
4029 if (count < event->read_size)
4030 return -ENOSPC;
4031
4032 WARN_ON_ONCE(event->ctx->parent_ctx);
4033 if (read_format & PERF_FORMAT_GROUP)
4034 ret = perf_read_group(event, read_format, buf);
4035 else
4036 ret = perf_read_one(event, read_format, buf);
4037
4038 return ret;
4039 }
4040
4041 static ssize_t
4042 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4043 {
4044 struct perf_event *event = file->private_data;
4045 struct perf_event_context *ctx;
4046 int ret;
4047
4048 ctx = perf_event_ctx_lock(event);
4049 ret = __perf_read(event, buf, count);
4050 perf_event_ctx_unlock(event, ctx);
4051
4052 return ret;
4053 }
4054
4055 static unsigned int perf_poll(struct file *file, poll_table *wait)
4056 {
4057 struct perf_event *event = file->private_data;
4058 struct ring_buffer *rb;
4059 unsigned int events = POLLHUP;
4060
4061 poll_wait(file, &event->waitq, wait);
4062
4063 if (is_event_hup(event))
4064 return events;
4065
4066 /*
4067 * Pin the event->rb by taking event->mmap_mutex; otherwise
4068 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4069 */
4070 mutex_lock(&event->mmap_mutex);
4071 rb = event->rb;
4072 if (rb)
4073 events = atomic_xchg(&rb->poll, 0);
4074 mutex_unlock(&event->mmap_mutex);
4075 return events;
4076 }
4077
4078 static void _perf_event_reset(struct perf_event *event)
4079 {
4080 (void)perf_event_read(event, false);
4081 local64_set(&event->count, 0);
4082 perf_event_update_userpage(event);
4083 }
4084
4085 /*
4086 * Holding the top-level event's child_mutex means that any
4087 * descendant process that has inherited this event will block
4088 * in sync_child_event if it goes to exit, thus satisfying the
4089 * task existence requirements of perf_event_enable/disable.
4090 */
4091 static void perf_event_for_each_child(struct perf_event *event,
4092 void (*func)(struct perf_event *))
4093 {
4094 struct perf_event *child;
4095
4096 WARN_ON_ONCE(event->ctx->parent_ctx);
4097
4098 mutex_lock(&event->child_mutex);
4099 func(event);
4100 list_for_each_entry(child, &event->child_list, child_list)
4101 func(child);
4102 mutex_unlock(&event->child_mutex);
4103 }
4104
4105 static void perf_event_for_each(struct perf_event *event,
4106 void (*func)(struct perf_event *))
4107 {
4108 struct perf_event_context *ctx = event->ctx;
4109 struct perf_event *sibling;
4110
4111 lockdep_assert_held(&ctx->mutex);
4112
4113 event = event->group_leader;
4114
4115 perf_event_for_each_child(event, func);
4116 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4117 perf_event_for_each_child(sibling, func);
4118 }
4119
4120 static void __perf_event_period(struct perf_event *event,
4121 struct perf_cpu_context *cpuctx,
4122 struct perf_event_context *ctx,
4123 void *info)
4124 {
4125 u64 value = *((u64 *)info);
4126 bool active;
4127
4128 if (event->attr.freq) {
4129 event->attr.sample_freq = value;
4130 } else {
4131 event->attr.sample_period = value;
4132 event->hw.sample_period = value;
4133 }
4134
4135 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4136 if (active) {
4137 perf_pmu_disable(ctx->pmu);
4138 event->pmu->stop(event, PERF_EF_UPDATE);
4139 }
4140
4141 local64_set(&event->hw.period_left, 0);
4142
4143 if (active) {
4144 event->pmu->start(event, PERF_EF_RELOAD);
4145 perf_pmu_enable(ctx->pmu);
4146 }
4147 }
4148
4149 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4150 {
4151 u64 value;
4152
4153 if (!is_sampling_event(event))
4154 return -EINVAL;
4155
4156 if (copy_from_user(&value, arg, sizeof(value)))
4157 return -EFAULT;
4158
4159 if (!value)
4160 return -EINVAL;
4161
4162 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4163 return -EINVAL;
4164
4165 event_function_call(event, __perf_event_period, &value);
4166
4167 return 0;
4168 }
4169
4170 static const struct file_operations perf_fops;
4171
4172 static inline int perf_fget_light(int fd, struct fd *p)
4173 {
4174 struct fd f = fdget(fd);
4175 if (!f.file)
4176 return -EBADF;
4177
4178 if (f.file->f_op != &perf_fops) {
4179 fdput(f);
4180 return -EBADF;
4181 }
4182 *p = f;
4183 return 0;
4184 }
4185
4186 static int perf_event_set_output(struct perf_event *event,
4187 struct perf_event *output_event);
4188 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4189 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4190
4191 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4192 {
4193 void (*func)(struct perf_event *);
4194 u32 flags = arg;
4195
4196 switch (cmd) {
4197 case PERF_EVENT_IOC_ENABLE:
4198 func = _perf_event_enable;
4199 break;
4200 case PERF_EVENT_IOC_DISABLE:
4201 func = _perf_event_disable;
4202 break;
4203 case PERF_EVENT_IOC_RESET:
4204 func = _perf_event_reset;
4205 break;
4206
4207 case PERF_EVENT_IOC_REFRESH:
4208 return _perf_event_refresh(event, arg);
4209
4210 case PERF_EVENT_IOC_PERIOD:
4211 return perf_event_period(event, (u64 __user *)arg);
4212
4213 case PERF_EVENT_IOC_ID:
4214 {
4215 u64 id = primary_event_id(event);
4216
4217 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4218 return -EFAULT;
4219 return 0;
4220 }
4221
4222 case PERF_EVENT_IOC_SET_OUTPUT:
4223 {
4224 int ret;
4225 if (arg != -1) {
4226 struct perf_event *output_event;
4227 struct fd output;
4228 ret = perf_fget_light(arg, &output);
4229 if (ret)
4230 return ret;
4231 output_event = output.file->private_data;
4232 ret = perf_event_set_output(event, output_event);
4233 fdput(output);
4234 } else {
4235 ret = perf_event_set_output(event, NULL);
4236 }
4237 return ret;
4238 }
4239
4240 case PERF_EVENT_IOC_SET_FILTER:
4241 return perf_event_set_filter(event, (void __user *)arg);
4242
4243 case PERF_EVENT_IOC_SET_BPF:
4244 return perf_event_set_bpf_prog(event, arg);
4245
4246 default:
4247 return -ENOTTY;
4248 }
4249
4250 if (flags & PERF_IOC_FLAG_GROUP)
4251 perf_event_for_each(event, func);
4252 else
4253 perf_event_for_each_child(event, func);
4254
4255 return 0;
4256 }
4257
4258 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4259 {
4260 struct perf_event *event = file->private_data;
4261 struct perf_event_context *ctx;
4262 long ret;
4263
4264 ctx = perf_event_ctx_lock(event);
4265 ret = _perf_ioctl(event, cmd, arg);
4266 perf_event_ctx_unlock(event, ctx);
4267
4268 return ret;
4269 }
4270
4271 #ifdef CONFIG_COMPAT
4272 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4273 unsigned long arg)
4274 {
4275 switch (_IOC_NR(cmd)) {
4276 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4277 case _IOC_NR(PERF_EVENT_IOC_ID):
4278 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4279 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4280 cmd &= ~IOCSIZE_MASK;
4281 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4282 }
4283 break;
4284 }
4285 return perf_ioctl(file, cmd, arg);
4286 }
4287 #else
4288 # define perf_compat_ioctl NULL
4289 #endif
4290
4291 int perf_event_task_enable(void)
4292 {
4293 struct perf_event_context *ctx;
4294 struct perf_event *event;
4295
4296 mutex_lock(&current->perf_event_mutex);
4297 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4298 ctx = perf_event_ctx_lock(event);
4299 perf_event_for_each_child(event, _perf_event_enable);
4300 perf_event_ctx_unlock(event, ctx);
4301 }
4302 mutex_unlock(&current->perf_event_mutex);
4303
4304 return 0;
4305 }
4306
4307 int perf_event_task_disable(void)
4308 {
4309 struct perf_event_context *ctx;
4310 struct perf_event *event;
4311
4312 mutex_lock(&current->perf_event_mutex);
4313 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4314 ctx = perf_event_ctx_lock(event);
4315 perf_event_for_each_child(event, _perf_event_disable);
4316 perf_event_ctx_unlock(event, ctx);
4317 }
4318 mutex_unlock(&current->perf_event_mutex);
4319
4320 return 0;
4321 }
4322
4323 static int perf_event_index(struct perf_event *event)
4324 {
4325 if (event->hw.state & PERF_HES_STOPPED)
4326 return 0;
4327
4328 if (event->state != PERF_EVENT_STATE_ACTIVE)
4329 return 0;
4330
4331 return event->pmu->event_idx(event);
4332 }
4333
4334 static void calc_timer_values(struct perf_event *event,
4335 u64 *now,
4336 u64 *enabled,
4337 u64 *running)
4338 {
4339 u64 ctx_time;
4340
4341 *now = perf_clock();
4342 ctx_time = event->shadow_ctx_time + *now;
4343 *enabled = ctx_time - event->tstamp_enabled;
4344 *running = ctx_time - event->tstamp_running;
4345 }
4346
4347 static void perf_event_init_userpage(struct perf_event *event)
4348 {
4349 struct perf_event_mmap_page *userpg;
4350 struct ring_buffer *rb;
4351
4352 rcu_read_lock();
4353 rb = rcu_dereference(event->rb);
4354 if (!rb)
4355 goto unlock;
4356
4357 userpg = rb->user_page;
4358
4359 /* Allow new userspace to detect that bit 0 is deprecated */
4360 userpg->cap_bit0_is_deprecated = 1;
4361 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4362 userpg->data_offset = PAGE_SIZE;
4363 userpg->data_size = perf_data_size(rb);
4364
4365 unlock:
4366 rcu_read_unlock();
4367 }
4368
4369 void __weak arch_perf_update_userpage(
4370 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4371 {
4372 }
4373
4374 /*
4375 * Callers need to ensure there can be no nesting of this function, otherwise
4376 * the seqlock logic goes bad. We can not serialize this because the arch
4377 * code calls this from NMI context.
4378 */
4379 void perf_event_update_userpage(struct perf_event *event)
4380 {
4381 struct perf_event_mmap_page *userpg;
4382 struct ring_buffer *rb;
4383 u64 enabled, running, now;
4384
4385 rcu_read_lock();
4386 rb = rcu_dereference(event->rb);
4387 if (!rb)
4388 goto unlock;
4389
4390 /*
4391 * compute total_time_enabled, total_time_running
4392 * based on snapshot values taken when the event
4393 * was last scheduled in.
4394 *
4395 * we cannot simply called update_context_time()
4396 * because of locking issue as we can be called in
4397 * NMI context
4398 */
4399 calc_timer_values(event, &now, &enabled, &running);
4400
4401 userpg = rb->user_page;
4402 /*
4403 * Disable preemption so as to not let the corresponding user-space
4404 * spin too long if we get preempted.
4405 */
4406 preempt_disable();
4407 ++userpg->lock;
4408 barrier();
4409 userpg->index = perf_event_index(event);
4410 userpg->offset = perf_event_count(event);
4411 if (userpg->index)
4412 userpg->offset -= local64_read(&event->hw.prev_count);
4413
4414 userpg->time_enabled = enabled +
4415 atomic64_read(&event->child_total_time_enabled);
4416
4417 userpg->time_running = running +
4418 atomic64_read(&event->child_total_time_running);
4419
4420 arch_perf_update_userpage(event, userpg, now);
4421
4422 barrier();
4423 ++userpg->lock;
4424 preempt_enable();
4425 unlock:
4426 rcu_read_unlock();
4427 }
4428
4429 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4430 {
4431 struct perf_event *event = vma->vm_file->private_data;
4432 struct ring_buffer *rb;
4433 int ret = VM_FAULT_SIGBUS;
4434
4435 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4436 if (vmf->pgoff == 0)
4437 ret = 0;
4438 return ret;
4439 }
4440
4441 rcu_read_lock();
4442 rb = rcu_dereference(event->rb);
4443 if (!rb)
4444 goto unlock;
4445
4446 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4447 goto unlock;
4448
4449 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4450 if (!vmf->page)
4451 goto unlock;
4452
4453 get_page(vmf->page);
4454 vmf->page->mapping = vma->vm_file->f_mapping;
4455 vmf->page->index = vmf->pgoff;
4456
4457 ret = 0;
4458 unlock:
4459 rcu_read_unlock();
4460
4461 return ret;
4462 }
4463
4464 static void ring_buffer_attach(struct perf_event *event,
4465 struct ring_buffer *rb)
4466 {
4467 struct ring_buffer *old_rb = NULL;
4468 unsigned long flags;
4469
4470 if (event->rb) {
4471 /*
4472 * Should be impossible, we set this when removing
4473 * event->rb_entry and wait/clear when adding event->rb_entry.
4474 */
4475 WARN_ON_ONCE(event->rcu_pending);
4476
4477 old_rb = event->rb;
4478 spin_lock_irqsave(&old_rb->event_lock, flags);
4479 list_del_rcu(&event->rb_entry);
4480 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4481
4482 event->rcu_batches = get_state_synchronize_rcu();
4483 event->rcu_pending = 1;
4484 }
4485
4486 if (rb) {
4487 if (event->rcu_pending) {
4488 cond_synchronize_rcu(event->rcu_batches);
4489 event->rcu_pending = 0;
4490 }
4491
4492 spin_lock_irqsave(&rb->event_lock, flags);
4493 list_add_rcu(&event->rb_entry, &rb->event_list);
4494 spin_unlock_irqrestore(&rb->event_lock, flags);
4495 }
4496
4497 rcu_assign_pointer(event->rb, rb);
4498
4499 if (old_rb) {
4500 ring_buffer_put(old_rb);
4501 /*
4502 * Since we detached before setting the new rb, so that we
4503 * could attach the new rb, we could have missed a wakeup.
4504 * Provide it now.
4505 */
4506 wake_up_all(&event->waitq);
4507 }
4508 }
4509
4510 static void ring_buffer_wakeup(struct perf_event *event)
4511 {
4512 struct ring_buffer *rb;
4513
4514 rcu_read_lock();
4515 rb = rcu_dereference(event->rb);
4516 if (rb) {
4517 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4518 wake_up_all(&event->waitq);
4519 }
4520 rcu_read_unlock();
4521 }
4522
4523 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4524 {
4525 struct ring_buffer *rb;
4526
4527 rcu_read_lock();
4528 rb = rcu_dereference(event->rb);
4529 if (rb) {
4530 if (!atomic_inc_not_zero(&rb->refcount))
4531 rb = NULL;
4532 }
4533 rcu_read_unlock();
4534
4535 return rb;
4536 }
4537
4538 void ring_buffer_put(struct ring_buffer *rb)
4539 {
4540 if (!atomic_dec_and_test(&rb->refcount))
4541 return;
4542
4543 WARN_ON_ONCE(!list_empty(&rb->event_list));
4544
4545 call_rcu(&rb->rcu_head, rb_free_rcu);
4546 }
4547
4548 static void perf_mmap_open(struct vm_area_struct *vma)
4549 {
4550 struct perf_event *event = vma->vm_file->private_data;
4551
4552 atomic_inc(&event->mmap_count);
4553 atomic_inc(&event->rb->mmap_count);
4554
4555 if (vma->vm_pgoff)
4556 atomic_inc(&event->rb->aux_mmap_count);
4557
4558 if (event->pmu->event_mapped)
4559 event->pmu->event_mapped(event);
4560 }
4561
4562 /*
4563 * A buffer can be mmap()ed multiple times; either directly through the same
4564 * event, or through other events by use of perf_event_set_output().
4565 *
4566 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4567 * the buffer here, where we still have a VM context. This means we need
4568 * to detach all events redirecting to us.
4569 */
4570 static void perf_mmap_close(struct vm_area_struct *vma)
4571 {
4572 struct perf_event *event = vma->vm_file->private_data;
4573
4574 struct ring_buffer *rb = ring_buffer_get(event);
4575 struct user_struct *mmap_user = rb->mmap_user;
4576 int mmap_locked = rb->mmap_locked;
4577 unsigned long size = perf_data_size(rb);
4578
4579 if (event->pmu->event_unmapped)
4580 event->pmu->event_unmapped(event);
4581
4582 /*
4583 * rb->aux_mmap_count will always drop before rb->mmap_count and
4584 * event->mmap_count, so it is ok to use event->mmap_mutex to
4585 * serialize with perf_mmap here.
4586 */
4587 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4588 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4589 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4590 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4591
4592 rb_free_aux(rb);
4593 mutex_unlock(&event->mmap_mutex);
4594 }
4595
4596 atomic_dec(&rb->mmap_count);
4597
4598 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4599 goto out_put;
4600
4601 ring_buffer_attach(event, NULL);
4602 mutex_unlock(&event->mmap_mutex);
4603
4604 /* If there's still other mmap()s of this buffer, we're done. */
4605 if (atomic_read(&rb->mmap_count))
4606 goto out_put;
4607
4608 /*
4609 * No other mmap()s, detach from all other events that might redirect
4610 * into the now unreachable buffer. Somewhat complicated by the
4611 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4612 */
4613 again:
4614 rcu_read_lock();
4615 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4616 if (!atomic_long_inc_not_zero(&event->refcount)) {
4617 /*
4618 * This event is en-route to free_event() which will
4619 * detach it and remove it from the list.
4620 */
4621 continue;
4622 }
4623 rcu_read_unlock();
4624
4625 mutex_lock(&event->mmap_mutex);
4626 /*
4627 * Check we didn't race with perf_event_set_output() which can
4628 * swizzle the rb from under us while we were waiting to
4629 * acquire mmap_mutex.
4630 *
4631 * If we find a different rb; ignore this event, a next
4632 * iteration will no longer find it on the list. We have to
4633 * still restart the iteration to make sure we're not now
4634 * iterating the wrong list.
4635 */
4636 if (event->rb == rb)
4637 ring_buffer_attach(event, NULL);
4638
4639 mutex_unlock(&event->mmap_mutex);
4640 put_event(event);
4641
4642 /*
4643 * Restart the iteration; either we're on the wrong list or
4644 * destroyed its integrity by doing a deletion.
4645 */
4646 goto again;
4647 }
4648 rcu_read_unlock();
4649
4650 /*
4651 * It could be there's still a few 0-ref events on the list; they'll
4652 * get cleaned up by free_event() -- they'll also still have their
4653 * ref on the rb and will free it whenever they are done with it.
4654 *
4655 * Aside from that, this buffer is 'fully' detached and unmapped,
4656 * undo the VM accounting.
4657 */
4658
4659 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4660 vma->vm_mm->pinned_vm -= mmap_locked;
4661 free_uid(mmap_user);
4662
4663 out_put:
4664 ring_buffer_put(rb); /* could be last */
4665 }
4666
4667 static const struct vm_operations_struct perf_mmap_vmops = {
4668 .open = perf_mmap_open,
4669 .close = perf_mmap_close, /* non mergable */
4670 .fault = perf_mmap_fault,
4671 .page_mkwrite = perf_mmap_fault,
4672 };
4673
4674 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4675 {
4676 struct perf_event *event = file->private_data;
4677 unsigned long user_locked, user_lock_limit;
4678 struct user_struct *user = current_user();
4679 unsigned long locked, lock_limit;
4680 struct ring_buffer *rb = NULL;
4681 unsigned long vma_size;
4682 unsigned long nr_pages;
4683 long user_extra = 0, extra = 0;
4684 int ret = 0, flags = 0;
4685
4686 /*
4687 * Don't allow mmap() of inherited per-task counters. This would
4688 * create a performance issue due to all children writing to the
4689 * same rb.
4690 */
4691 if (event->cpu == -1 && event->attr.inherit)
4692 return -EINVAL;
4693
4694 if (!(vma->vm_flags & VM_SHARED))
4695 return -EINVAL;
4696
4697 vma_size = vma->vm_end - vma->vm_start;
4698
4699 if (vma->vm_pgoff == 0) {
4700 nr_pages = (vma_size / PAGE_SIZE) - 1;
4701 } else {
4702 /*
4703 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4704 * mapped, all subsequent mappings should have the same size
4705 * and offset. Must be above the normal perf buffer.
4706 */
4707 u64 aux_offset, aux_size;
4708
4709 if (!event->rb)
4710 return -EINVAL;
4711
4712 nr_pages = vma_size / PAGE_SIZE;
4713
4714 mutex_lock(&event->mmap_mutex);
4715 ret = -EINVAL;
4716
4717 rb = event->rb;
4718 if (!rb)
4719 goto aux_unlock;
4720
4721 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4722 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4723
4724 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4725 goto aux_unlock;
4726
4727 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4728 goto aux_unlock;
4729
4730 /* already mapped with a different offset */
4731 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4732 goto aux_unlock;
4733
4734 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4735 goto aux_unlock;
4736
4737 /* already mapped with a different size */
4738 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4739 goto aux_unlock;
4740
4741 if (!is_power_of_2(nr_pages))
4742 goto aux_unlock;
4743
4744 if (!atomic_inc_not_zero(&rb->mmap_count))
4745 goto aux_unlock;
4746
4747 if (rb_has_aux(rb)) {
4748 atomic_inc(&rb->aux_mmap_count);
4749 ret = 0;
4750 goto unlock;
4751 }
4752
4753 atomic_set(&rb->aux_mmap_count, 1);
4754 user_extra = nr_pages;
4755
4756 goto accounting;
4757 }
4758
4759 /*
4760 * If we have rb pages ensure they're a power-of-two number, so we
4761 * can do bitmasks instead of modulo.
4762 */
4763 if (nr_pages != 0 && !is_power_of_2(nr_pages))
4764 return -EINVAL;
4765
4766 if (vma_size != PAGE_SIZE * (1 + nr_pages))
4767 return -EINVAL;
4768
4769 WARN_ON_ONCE(event->ctx->parent_ctx);
4770 again:
4771 mutex_lock(&event->mmap_mutex);
4772 if (event->rb) {
4773 if (event->rb->nr_pages != nr_pages) {
4774 ret = -EINVAL;
4775 goto unlock;
4776 }
4777
4778 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4779 /*
4780 * Raced against perf_mmap_close() through
4781 * perf_event_set_output(). Try again, hope for better
4782 * luck.
4783 */
4784 mutex_unlock(&event->mmap_mutex);
4785 goto again;
4786 }
4787
4788 goto unlock;
4789 }
4790
4791 user_extra = nr_pages + 1;
4792
4793 accounting:
4794 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4795
4796 /*
4797 * Increase the limit linearly with more CPUs:
4798 */
4799 user_lock_limit *= num_online_cpus();
4800
4801 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4802
4803 if (user_locked > user_lock_limit)
4804 extra = user_locked - user_lock_limit;
4805
4806 lock_limit = rlimit(RLIMIT_MEMLOCK);
4807 lock_limit >>= PAGE_SHIFT;
4808 locked = vma->vm_mm->pinned_vm + extra;
4809
4810 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4811 !capable(CAP_IPC_LOCK)) {
4812 ret = -EPERM;
4813 goto unlock;
4814 }
4815
4816 WARN_ON(!rb && event->rb);
4817
4818 if (vma->vm_flags & VM_WRITE)
4819 flags |= RING_BUFFER_WRITABLE;
4820
4821 if (!rb) {
4822 rb = rb_alloc(nr_pages,
4823 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4824 event->cpu, flags);
4825
4826 if (!rb) {
4827 ret = -ENOMEM;
4828 goto unlock;
4829 }
4830
4831 atomic_set(&rb->mmap_count, 1);
4832 rb->mmap_user = get_current_user();
4833 rb->mmap_locked = extra;
4834
4835 ring_buffer_attach(event, rb);
4836
4837 perf_event_init_userpage(event);
4838 perf_event_update_userpage(event);
4839 } else {
4840 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4841 event->attr.aux_watermark, flags);
4842 if (!ret)
4843 rb->aux_mmap_locked = extra;
4844 }
4845
4846 unlock:
4847 if (!ret) {
4848 atomic_long_add(user_extra, &user->locked_vm);
4849 vma->vm_mm->pinned_vm += extra;
4850
4851 atomic_inc(&event->mmap_count);
4852 } else if (rb) {
4853 atomic_dec(&rb->mmap_count);
4854 }
4855 aux_unlock:
4856 mutex_unlock(&event->mmap_mutex);
4857
4858 /*
4859 * Since pinned accounting is per vm we cannot allow fork() to copy our
4860 * vma.
4861 */
4862 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4863 vma->vm_ops = &perf_mmap_vmops;
4864
4865 if (event->pmu->event_mapped)
4866 event->pmu->event_mapped(event);
4867
4868 return ret;
4869 }
4870
4871 static int perf_fasync(int fd, struct file *filp, int on)
4872 {
4873 struct inode *inode = file_inode(filp);
4874 struct perf_event *event = filp->private_data;
4875 int retval;
4876
4877 mutex_lock(&inode->i_mutex);
4878 retval = fasync_helper(fd, filp, on, &event->fasync);
4879 mutex_unlock(&inode->i_mutex);
4880
4881 if (retval < 0)
4882 return retval;
4883
4884 return 0;
4885 }
4886
4887 static const struct file_operations perf_fops = {
4888 .llseek = no_llseek,
4889 .release = perf_release,
4890 .read = perf_read,
4891 .poll = perf_poll,
4892 .unlocked_ioctl = perf_ioctl,
4893 .compat_ioctl = perf_compat_ioctl,
4894 .mmap = perf_mmap,
4895 .fasync = perf_fasync,
4896 };
4897
4898 /*
4899 * Perf event wakeup
4900 *
4901 * If there's data, ensure we set the poll() state and publish everything
4902 * to user-space before waking everybody up.
4903 */
4904
4905 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4906 {
4907 /* only the parent has fasync state */
4908 if (event->parent)
4909 event = event->parent;
4910 return &event->fasync;
4911 }
4912
4913 void perf_event_wakeup(struct perf_event *event)
4914 {
4915 ring_buffer_wakeup(event);
4916
4917 if (event->pending_kill) {
4918 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4919 event->pending_kill = 0;
4920 }
4921 }
4922
4923 static void perf_pending_event(struct irq_work *entry)
4924 {
4925 struct perf_event *event = container_of(entry,
4926 struct perf_event, pending);
4927 int rctx;
4928
4929 rctx = perf_swevent_get_recursion_context();
4930 /*
4931 * If we 'fail' here, that's OK, it means recursion is already disabled
4932 * and we won't recurse 'further'.
4933 */
4934
4935 if (event->pending_disable) {
4936 event->pending_disable = 0;
4937 perf_event_disable_local(event);
4938 }
4939
4940 if (event->pending_wakeup) {
4941 event->pending_wakeup = 0;
4942 perf_event_wakeup(event);
4943 }
4944
4945 if (rctx >= 0)
4946 perf_swevent_put_recursion_context(rctx);
4947 }
4948
4949 /*
4950 * We assume there is only KVM supporting the callbacks.
4951 * Later on, we might change it to a list if there is
4952 * another virtualization implementation supporting the callbacks.
4953 */
4954 struct perf_guest_info_callbacks *perf_guest_cbs;
4955
4956 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4957 {
4958 perf_guest_cbs = cbs;
4959 return 0;
4960 }
4961 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4962
4963 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4964 {
4965 perf_guest_cbs = NULL;
4966 return 0;
4967 }
4968 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4969
4970 static void
4971 perf_output_sample_regs(struct perf_output_handle *handle,
4972 struct pt_regs *regs, u64 mask)
4973 {
4974 int bit;
4975
4976 for_each_set_bit(bit, (const unsigned long *) &mask,
4977 sizeof(mask) * BITS_PER_BYTE) {
4978 u64 val;
4979
4980 val = perf_reg_value(regs, bit);
4981 perf_output_put(handle, val);
4982 }
4983 }
4984
4985 static void perf_sample_regs_user(struct perf_regs *regs_user,
4986 struct pt_regs *regs,
4987 struct pt_regs *regs_user_copy)
4988 {
4989 if (user_mode(regs)) {
4990 regs_user->abi = perf_reg_abi(current);
4991 regs_user->regs = regs;
4992 } else if (current->mm) {
4993 perf_get_regs_user(regs_user, regs, regs_user_copy);
4994 } else {
4995 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4996 regs_user->regs = NULL;
4997 }
4998 }
4999
5000 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5001 struct pt_regs *regs)
5002 {
5003 regs_intr->regs = regs;
5004 regs_intr->abi = perf_reg_abi(current);
5005 }
5006
5007
5008 /*
5009 * Get remaining task size from user stack pointer.
5010 *
5011 * It'd be better to take stack vma map and limit this more
5012 * precisly, but there's no way to get it safely under interrupt,
5013 * so using TASK_SIZE as limit.
5014 */
5015 static u64 perf_ustack_task_size(struct pt_regs *regs)
5016 {
5017 unsigned long addr = perf_user_stack_pointer(regs);
5018
5019 if (!addr || addr >= TASK_SIZE)
5020 return 0;
5021
5022 return TASK_SIZE - addr;
5023 }
5024
5025 static u16
5026 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5027 struct pt_regs *regs)
5028 {
5029 u64 task_size;
5030
5031 /* No regs, no stack pointer, no dump. */
5032 if (!regs)
5033 return 0;
5034
5035 /*
5036 * Check if we fit in with the requested stack size into the:
5037 * - TASK_SIZE
5038 * If we don't, we limit the size to the TASK_SIZE.
5039 *
5040 * - remaining sample size
5041 * If we don't, we customize the stack size to
5042 * fit in to the remaining sample size.
5043 */
5044
5045 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5046 stack_size = min(stack_size, (u16) task_size);
5047
5048 /* Current header size plus static size and dynamic size. */
5049 header_size += 2 * sizeof(u64);
5050
5051 /* Do we fit in with the current stack dump size? */
5052 if ((u16) (header_size + stack_size) < header_size) {
5053 /*
5054 * If we overflow the maximum size for the sample,
5055 * we customize the stack dump size to fit in.
5056 */
5057 stack_size = USHRT_MAX - header_size - sizeof(u64);
5058 stack_size = round_up(stack_size, sizeof(u64));
5059 }
5060
5061 return stack_size;
5062 }
5063
5064 static void
5065 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5066 struct pt_regs *regs)
5067 {
5068 /* Case of a kernel thread, nothing to dump */
5069 if (!regs) {
5070 u64 size = 0;
5071 perf_output_put(handle, size);
5072 } else {
5073 unsigned long sp;
5074 unsigned int rem;
5075 u64 dyn_size;
5076
5077 /*
5078 * We dump:
5079 * static size
5080 * - the size requested by user or the best one we can fit
5081 * in to the sample max size
5082 * data
5083 * - user stack dump data
5084 * dynamic size
5085 * - the actual dumped size
5086 */
5087
5088 /* Static size. */
5089 perf_output_put(handle, dump_size);
5090
5091 /* Data. */
5092 sp = perf_user_stack_pointer(regs);
5093 rem = __output_copy_user(handle, (void *) sp, dump_size);
5094 dyn_size = dump_size - rem;
5095
5096 perf_output_skip(handle, rem);
5097
5098 /* Dynamic size. */
5099 perf_output_put(handle, dyn_size);
5100 }
5101 }
5102
5103 static void __perf_event_header__init_id(struct perf_event_header *header,
5104 struct perf_sample_data *data,
5105 struct perf_event *event)
5106 {
5107 u64 sample_type = event->attr.sample_type;
5108
5109 data->type = sample_type;
5110 header->size += event->id_header_size;
5111
5112 if (sample_type & PERF_SAMPLE_TID) {
5113 /* namespace issues */
5114 data->tid_entry.pid = perf_event_pid(event, current);
5115 data->tid_entry.tid = perf_event_tid(event, current);
5116 }
5117
5118 if (sample_type & PERF_SAMPLE_TIME)
5119 data->time = perf_event_clock(event);
5120
5121 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5122 data->id = primary_event_id(event);
5123
5124 if (sample_type & PERF_SAMPLE_STREAM_ID)
5125 data->stream_id = event->id;
5126
5127 if (sample_type & PERF_SAMPLE_CPU) {
5128 data->cpu_entry.cpu = raw_smp_processor_id();
5129 data->cpu_entry.reserved = 0;
5130 }
5131 }
5132
5133 void perf_event_header__init_id(struct perf_event_header *header,
5134 struct perf_sample_data *data,
5135 struct perf_event *event)
5136 {
5137 if (event->attr.sample_id_all)
5138 __perf_event_header__init_id(header, data, event);
5139 }
5140
5141 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5142 struct perf_sample_data *data)
5143 {
5144 u64 sample_type = data->type;
5145
5146 if (sample_type & PERF_SAMPLE_TID)
5147 perf_output_put(handle, data->tid_entry);
5148
5149 if (sample_type & PERF_SAMPLE_TIME)
5150 perf_output_put(handle, data->time);
5151
5152 if (sample_type & PERF_SAMPLE_ID)
5153 perf_output_put(handle, data->id);
5154
5155 if (sample_type & PERF_SAMPLE_STREAM_ID)
5156 perf_output_put(handle, data->stream_id);
5157
5158 if (sample_type & PERF_SAMPLE_CPU)
5159 perf_output_put(handle, data->cpu_entry);
5160
5161 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5162 perf_output_put(handle, data->id);
5163 }
5164
5165 void perf_event__output_id_sample(struct perf_event *event,
5166 struct perf_output_handle *handle,
5167 struct perf_sample_data *sample)
5168 {
5169 if (event->attr.sample_id_all)
5170 __perf_event__output_id_sample(handle, sample);
5171 }
5172
5173 static void perf_output_read_one(struct perf_output_handle *handle,
5174 struct perf_event *event,
5175 u64 enabled, u64 running)
5176 {
5177 u64 read_format = event->attr.read_format;
5178 u64 values[4];
5179 int n = 0;
5180
5181 values[n++] = perf_event_count(event);
5182 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5183 values[n++] = enabled +
5184 atomic64_read(&event->child_total_time_enabled);
5185 }
5186 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5187 values[n++] = running +
5188 atomic64_read(&event->child_total_time_running);
5189 }
5190 if (read_format & PERF_FORMAT_ID)
5191 values[n++] = primary_event_id(event);
5192
5193 __output_copy(handle, values, n * sizeof(u64));
5194 }
5195
5196 /*
5197 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5198 */
5199 static void perf_output_read_group(struct perf_output_handle *handle,
5200 struct perf_event *event,
5201 u64 enabled, u64 running)
5202 {
5203 struct perf_event *leader = event->group_leader, *sub;
5204 u64 read_format = event->attr.read_format;
5205 u64 values[5];
5206 int n = 0;
5207
5208 values[n++] = 1 + leader->nr_siblings;
5209
5210 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5211 values[n++] = enabled;
5212
5213 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5214 values[n++] = running;
5215
5216 if (leader != event)
5217 leader->pmu->read(leader);
5218
5219 values[n++] = perf_event_count(leader);
5220 if (read_format & PERF_FORMAT_ID)
5221 values[n++] = primary_event_id(leader);
5222
5223 __output_copy(handle, values, n * sizeof(u64));
5224
5225 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5226 n = 0;
5227
5228 if ((sub != event) &&
5229 (sub->state == PERF_EVENT_STATE_ACTIVE))
5230 sub->pmu->read(sub);
5231
5232 values[n++] = perf_event_count(sub);
5233 if (read_format & PERF_FORMAT_ID)
5234 values[n++] = primary_event_id(sub);
5235
5236 __output_copy(handle, values, n * sizeof(u64));
5237 }
5238 }
5239
5240 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5241 PERF_FORMAT_TOTAL_TIME_RUNNING)
5242
5243 static void perf_output_read(struct perf_output_handle *handle,
5244 struct perf_event *event)
5245 {
5246 u64 enabled = 0, running = 0, now;
5247 u64 read_format = event->attr.read_format;
5248
5249 /*
5250 * compute total_time_enabled, total_time_running
5251 * based on snapshot values taken when the event
5252 * was last scheduled in.
5253 *
5254 * we cannot simply called update_context_time()
5255 * because of locking issue as we are called in
5256 * NMI context
5257 */
5258 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5259 calc_timer_values(event, &now, &enabled, &running);
5260
5261 if (event->attr.read_format & PERF_FORMAT_GROUP)
5262 perf_output_read_group(handle, event, enabled, running);
5263 else
5264 perf_output_read_one(handle, event, enabled, running);
5265 }
5266
5267 void perf_output_sample(struct perf_output_handle *handle,
5268 struct perf_event_header *header,
5269 struct perf_sample_data *data,
5270 struct perf_event *event)
5271 {
5272 u64 sample_type = data->type;
5273
5274 perf_output_put(handle, *header);
5275
5276 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5277 perf_output_put(handle, data->id);
5278
5279 if (sample_type & PERF_SAMPLE_IP)
5280 perf_output_put(handle, data->ip);
5281
5282 if (sample_type & PERF_SAMPLE_TID)
5283 perf_output_put(handle, data->tid_entry);
5284
5285 if (sample_type & PERF_SAMPLE_TIME)
5286 perf_output_put(handle, data->time);
5287
5288 if (sample_type & PERF_SAMPLE_ADDR)
5289 perf_output_put(handle, data->addr);
5290
5291 if (sample_type & PERF_SAMPLE_ID)
5292 perf_output_put(handle, data->id);
5293
5294 if (sample_type & PERF_SAMPLE_STREAM_ID)
5295 perf_output_put(handle, data->stream_id);
5296
5297 if (sample_type & PERF_SAMPLE_CPU)
5298 perf_output_put(handle, data->cpu_entry);
5299
5300 if (sample_type & PERF_SAMPLE_PERIOD)
5301 perf_output_put(handle, data->period);
5302
5303 if (sample_type & PERF_SAMPLE_READ)
5304 perf_output_read(handle, event);
5305
5306 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5307 if (data->callchain) {
5308 int size = 1;
5309
5310 if (data->callchain)
5311 size += data->callchain->nr;
5312
5313 size *= sizeof(u64);
5314
5315 __output_copy(handle, data->callchain, size);
5316 } else {
5317 u64 nr = 0;
5318 perf_output_put(handle, nr);
5319 }
5320 }
5321
5322 if (sample_type & PERF_SAMPLE_RAW) {
5323 if (data->raw) {
5324 u32 raw_size = data->raw->size;
5325 u32 real_size = round_up(raw_size + sizeof(u32),
5326 sizeof(u64)) - sizeof(u32);
5327 u64 zero = 0;
5328
5329 perf_output_put(handle, real_size);
5330 __output_copy(handle, data->raw->data, raw_size);
5331 if (real_size - raw_size)
5332 __output_copy(handle, &zero, real_size - raw_size);
5333 } else {
5334 struct {
5335 u32 size;
5336 u32 data;
5337 } raw = {
5338 .size = sizeof(u32),
5339 .data = 0,
5340 };
5341 perf_output_put(handle, raw);
5342 }
5343 }
5344
5345 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5346 if (data->br_stack) {
5347 size_t size;
5348
5349 size = data->br_stack->nr
5350 * sizeof(struct perf_branch_entry);
5351
5352 perf_output_put(handle, data->br_stack->nr);
5353 perf_output_copy(handle, data->br_stack->entries, size);
5354 } else {
5355 /*
5356 * we always store at least the value of nr
5357 */
5358 u64 nr = 0;
5359 perf_output_put(handle, nr);
5360 }
5361 }
5362
5363 if (sample_type & PERF_SAMPLE_REGS_USER) {
5364 u64 abi = data->regs_user.abi;
5365
5366 /*
5367 * If there are no regs to dump, notice it through
5368 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5369 */
5370 perf_output_put(handle, abi);
5371
5372 if (abi) {
5373 u64 mask = event->attr.sample_regs_user;
5374 perf_output_sample_regs(handle,
5375 data->regs_user.regs,
5376 mask);
5377 }
5378 }
5379
5380 if (sample_type & PERF_SAMPLE_STACK_USER) {
5381 perf_output_sample_ustack(handle,
5382 data->stack_user_size,
5383 data->regs_user.regs);
5384 }
5385
5386 if (sample_type & PERF_SAMPLE_WEIGHT)
5387 perf_output_put(handle, data->weight);
5388
5389 if (sample_type & PERF_SAMPLE_DATA_SRC)
5390 perf_output_put(handle, data->data_src.val);
5391
5392 if (sample_type & PERF_SAMPLE_TRANSACTION)
5393 perf_output_put(handle, data->txn);
5394
5395 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5396 u64 abi = data->regs_intr.abi;
5397 /*
5398 * If there are no regs to dump, notice it through
5399 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5400 */
5401 perf_output_put(handle, abi);
5402
5403 if (abi) {
5404 u64 mask = event->attr.sample_regs_intr;
5405
5406 perf_output_sample_regs(handle,
5407 data->regs_intr.regs,
5408 mask);
5409 }
5410 }
5411
5412 if (!event->attr.watermark) {
5413 int wakeup_events = event->attr.wakeup_events;
5414
5415 if (wakeup_events) {
5416 struct ring_buffer *rb = handle->rb;
5417 int events = local_inc_return(&rb->events);
5418
5419 if (events >= wakeup_events) {
5420 local_sub(wakeup_events, &rb->events);
5421 local_inc(&rb->wakeup);
5422 }
5423 }
5424 }
5425 }
5426
5427 void perf_prepare_sample(struct perf_event_header *header,
5428 struct perf_sample_data *data,
5429 struct perf_event *event,
5430 struct pt_regs *regs)
5431 {
5432 u64 sample_type = event->attr.sample_type;
5433
5434 header->type = PERF_RECORD_SAMPLE;
5435 header->size = sizeof(*header) + event->header_size;
5436
5437 header->misc = 0;
5438 header->misc |= perf_misc_flags(regs);
5439
5440 __perf_event_header__init_id(header, data, event);
5441
5442 if (sample_type & PERF_SAMPLE_IP)
5443 data->ip = perf_instruction_pointer(regs);
5444
5445 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5446 int size = 1;
5447
5448 data->callchain = perf_callchain(event, regs);
5449
5450 if (data->callchain)
5451 size += data->callchain->nr;
5452
5453 header->size += size * sizeof(u64);
5454 }
5455
5456 if (sample_type & PERF_SAMPLE_RAW) {
5457 int size = sizeof(u32);
5458
5459 if (data->raw)
5460 size += data->raw->size;
5461 else
5462 size += sizeof(u32);
5463
5464 header->size += round_up(size, sizeof(u64));
5465 }
5466
5467 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5468 int size = sizeof(u64); /* nr */
5469 if (data->br_stack) {
5470 size += data->br_stack->nr
5471 * sizeof(struct perf_branch_entry);
5472 }
5473 header->size += size;
5474 }
5475
5476 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5477 perf_sample_regs_user(&data->regs_user, regs,
5478 &data->regs_user_copy);
5479
5480 if (sample_type & PERF_SAMPLE_REGS_USER) {
5481 /* regs dump ABI info */
5482 int size = sizeof(u64);
5483
5484 if (data->regs_user.regs) {
5485 u64 mask = event->attr.sample_regs_user;
5486 size += hweight64(mask) * sizeof(u64);
5487 }
5488
5489 header->size += size;
5490 }
5491
5492 if (sample_type & PERF_SAMPLE_STACK_USER) {
5493 /*
5494 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5495 * processed as the last one or have additional check added
5496 * in case new sample type is added, because we could eat
5497 * up the rest of the sample size.
5498 */
5499 u16 stack_size = event->attr.sample_stack_user;
5500 u16 size = sizeof(u64);
5501
5502 stack_size = perf_sample_ustack_size(stack_size, header->size,
5503 data->regs_user.regs);
5504
5505 /*
5506 * If there is something to dump, add space for the dump
5507 * itself and for the field that tells the dynamic size,
5508 * which is how many have been actually dumped.
5509 */
5510 if (stack_size)
5511 size += sizeof(u64) + stack_size;
5512
5513 data->stack_user_size = stack_size;
5514 header->size += size;
5515 }
5516
5517 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5518 /* regs dump ABI info */
5519 int size = sizeof(u64);
5520
5521 perf_sample_regs_intr(&data->regs_intr, regs);
5522
5523 if (data->regs_intr.regs) {
5524 u64 mask = event->attr.sample_regs_intr;
5525
5526 size += hweight64(mask) * sizeof(u64);
5527 }
5528
5529 header->size += size;
5530 }
5531 }
5532
5533 void perf_event_output(struct perf_event *event,
5534 struct perf_sample_data *data,
5535 struct pt_regs *regs)
5536 {
5537 struct perf_output_handle handle;
5538 struct perf_event_header header;
5539
5540 /* protect the callchain buffers */
5541 rcu_read_lock();
5542
5543 perf_prepare_sample(&header, data, event, regs);
5544
5545 if (perf_output_begin(&handle, event, header.size))
5546 goto exit;
5547
5548 perf_output_sample(&handle, &header, data, event);
5549
5550 perf_output_end(&handle);
5551
5552 exit:
5553 rcu_read_unlock();
5554 }
5555
5556 /*
5557 * read event_id
5558 */
5559
5560 struct perf_read_event {
5561 struct perf_event_header header;
5562
5563 u32 pid;
5564 u32 tid;
5565 };
5566
5567 static void
5568 perf_event_read_event(struct perf_event *event,
5569 struct task_struct *task)
5570 {
5571 struct perf_output_handle handle;
5572 struct perf_sample_data sample;
5573 struct perf_read_event read_event = {
5574 .header = {
5575 .type = PERF_RECORD_READ,
5576 .misc = 0,
5577 .size = sizeof(read_event) + event->read_size,
5578 },
5579 .pid = perf_event_pid(event, task),
5580 .tid = perf_event_tid(event, task),
5581 };
5582 int ret;
5583
5584 perf_event_header__init_id(&read_event.header, &sample, event);
5585 ret = perf_output_begin(&handle, event, read_event.header.size);
5586 if (ret)
5587 return;
5588
5589 perf_output_put(&handle, read_event);
5590 perf_output_read(&handle, event);
5591 perf_event__output_id_sample(event, &handle, &sample);
5592
5593 perf_output_end(&handle);
5594 }
5595
5596 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5597
5598 static void
5599 perf_event_aux_ctx(struct perf_event_context *ctx,
5600 perf_event_aux_output_cb output,
5601 void *data)
5602 {
5603 struct perf_event *event;
5604
5605 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5606 if (event->state < PERF_EVENT_STATE_INACTIVE)
5607 continue;
5608 if (!event_filter_match(event))
5609 continue;
5610 output(event, data);
5611 }
5612 }
5613
5614 static void
5615 perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5616 struct perf_event_context *task_ctx)
5617 {
5618 rcu_read_lock();
5619 preempt_disable();
5620 perf_event_aux_ctx(task_ctx, output, data);
5621 preempt_enable();
5622 rcu_read_unlock();
5623 }
5624
5625 static void
5626 perf_event_aux(perf_event_aux_output_cb output, void *data,
5627 struct perf_event_context *task_ctx)
5628 {
5629 struct perf_cpu_context *cpuctx;
5630 struct perf_event_context *ctx;
5631 struct pmu *pmu;
5632 int ctxn;
5633
5634 /*
5635 * If we have task_ctx != NULL we only notify
5636 * the task context itself. The task_ctx is set
5637 * only for EXIT events before releasing task
5638 * context.
5639 */
5640 if (task_ctx) {
5641 perf_event_aux_task_ctx(output, data, task_ctx);
5642 return;
5643 }
5644
5645 rcu_read_lock();
5646 list_for_each_entry_rcu(pmu, &pmus, entry) {
5647 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5648 if (cpuctx->unique_pmu != pmu)
5649 goto next;
5650 perf_event_aux_ctx(&cpuctx->ctx, output, data);
5651 ctxn = pmu->task_ctx_nr;
5652 if (ctxn < 0)
5653 goto next;
5654 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5655 if (ctx)
5656 perf_event_aux_ctx(ctx, output, data);
5657 next:
5658 put_cpu_ptr(pmu->pmu_cpu_context);
5659 }
5660 rcu_read_unlock();
5661 }
5662
5663 /*
5664 * task tracking -- fork/exit
5665 *
5666 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5667 */
5668
5669 struct perf_task_event {
5670 struct task_struct *task;
5671 struct perf_event_context *task_ctx;
5672
5673 struct {
5674 struct perf_event_header header;
5675
5676 u32 pid;
5677 u32 ppid;
5678 u32 tid;
5679 u32 ptid;
5680 u64 time;
5681 } event_id;
5682 };
5683
5684 static int perf_event_task_match(struct perf_event *event)
5685 {
5686 return event->attr.comm || event->attr.mmap ||
5687 event->attr.mmap2 || event->attr.mmap_data ||
5688 event->attr.task;
5689 }
5690
5691 static void perf_event_task_output(struct perf_event *event,
5692 void *data)
5693 {
5694 struct perf_task_event *task_event = data;
5695 struct perf_output_handle handle;
5696 struct perf_sample_data sample;
5697 struct task_struct *task = task_event->task;
5698 int ret, size = task_event->event_id.header.size;
5699
5700 if (!perf_event_task_match(event))
5701 return;
5702
5703 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5704
5705 ret = perf_output_begin(&handle, event,
5706 task_event->event_id.header.size);
5707 if (ret)
5708 goto out;
5709
5710 task_event->event_id.pid = perf_event_pid(event, task);
5711 task_event->event_id.ppid = perf_event_pid(event, current);
5712
5713 task_event->event_id.tid = perf_event_tid(event, task);
5714 task_event->event_id.ptid = perf_event_tid(event, current);
5715
5716 task_event->event_id.time = perf_event_clock(event);
5717
5718 perf_output_put(&handle, task_event->event_id);
5719
5720 perf_event__output_id_sample(event, &handle, &sample);
5721
5722 perf_output_end(&handle);
5723 out:
5724 task_event->event_id.header.size = size;
5725 }
5726
5727 static void perf_event_task(struct task_struct *task,
5728 struct perf_event_context *task_ctx,
5729 int new)
5730 {
5731 struct perf_task_event task_event;
5732
5733 if (!atomic_read(&nr_comm_events) &&
5734 !atomic_read(&nr_mmap_events) &&
5735 !atomic_read(&nr_task_events))
5736 return;
5737
5738 task_event = (struct perf_task_event){
5739 .task = task,
5740 .task_ctx = task_ctx,
5741 .event_id = {
5742 .header = {
5743 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5744 .misc = 0,
5745 .size = sizeof(task_event.event_id),
5746 },
5747 /* .pid */
5748 /* .ppid */
5749 /* .tid */
5750 /* .ptid */
5751 /* .time */
5752 },
5753 };
5754
5755 perf_event_aux(perf_event_task_output,
5756 &task_event,
5757 task_ctx);
5758 }
5759
5760 void perf_event_fork(struct task_struct *task)
5761 {
5762 perf_event_task(task, NULL, 1);
5763 }
5764
5765 /*
5766 * comm tracking
5767 */
5768
5769 struct perf_comm_event {
5770 struct task_struct *task;
5771 char *comm;
5772 int comm_size;
5773
5774 struct {
5775 struct perf_event_header header;
5776
5777 u32 pid;
5778 u32 tid;
5779 } event_id;
5780 };
5781
5782 static int perf_event_comm_match(struct perf_event *event)
5783 {
5784 return event->attr.comm;
5785 }
5786
5787 static void perf_event_comm_output(struct perf_event *event,
5788 void *data)
5789 {
5790 struct perf_comm_event *comm_event = data;
5791 struct perf_output_handle handle;
5792 struct perf_sample_data sample;
5793 int size = comm_event->event_id.header.size;
5794 int ret;
5795
5796 if (!perf_event_comm_match(event))
5797 return;
5798
5799 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5800 ret = perf_output_begin(&handle, event,
5801 comm_event->event_id.header.size);
5802
5803 if (ret)
5804 goto out;
5805
5806 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5807 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5808
5809 perf_output_put(&handle, comm_event->event_id);
5810 __output_copy(&handle, comm_event->comm,
5811 comm_event->comm_size);
5812
5813 perf_event__output_id_sample(event, &handle, &sample);
5814
5815 perf_output_end(&handle);
5816 out:
5817 comm_event->event_id.header.size = size;
5818 }
5819
5820 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5821 {
5822 char comm[TASK_COMM_LEN];
5823 unsigned int size;
5824
5825 memset(comm, 0, sizeof(comm));
5826 strlcpy(comm, comm_event->task->comm, sizeof(comm));
5827 size = ALIGN(strlen(comm)+1, sizeof(u64));
5828
5829 comm_event->comm = comm;
5830 comm_event->comm_size = size;
5831
5832 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5833
5834 perf_event_aux(perf_event_comm_output,
5835 comm_event,
5836 NULL);
5837 }
5838
5839 void perf_event_comm(struct task_struct *task, bool exec)
5840 {
5841 struct perf_comm_event comm_event;
5842
5843 if (!atomic_read(&nr_comm_events))
5844 return;
5845
5846 comm_event = (struct perf_comm_event){
5847 .task = task,
5848 /* .comm */
5849 /* .comm_size */
5850 .event_id = {
5851 .header = {
5852 .type = PERF_RECORD_COMM,
5853 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5854 /* .size */
5855 },
5856 /* .pid */
5857 /* .tid */
5858 },
5859 };
5860
5861 perf_event_comm_event(&comm_event);
5862 }
5863
5864 /*
5865 * mmap tracking
5866 */
5867
5868 struct perf_mmap_event {
5869 struct vm_area_struct *vma;
5870
5871 const char *file_name;
5872 int file_size;
5873 int maj, min;
5874 u64 ino;
5875 u64 ino_generation;
5876 u32 prot, flags;
5877
5878 struct {
5879 struct perf_event_header header;
5880
5881 u32 pid;
5882 u32 tid;
5883 u64 start;
5884 u64 len;
5885 u64 pgoff;
5886 } event_id;
5887 };
5888
5889 static int perf_event_mmap_match(struct perf_event *event,
5890 void *data)
5891 {
5892 struct perf_mmap_event *mmap_event = data;
5893 struct vm_area_struct *vma = mmap_event->vma;
5894 int executable = vma->vm_flags & VM_EXEC;
5895
5896 return (!executable && event->attr.mmap_data) ||
5897 (executable && (event->attr.mmap || event->attr.mmap2));
5898 }
5899
5900 static void perf_event_mmap_output(struct perf_event *event,
5901 void *data)
5902 {
5903 struct perf_mmap_event *mmap_event = data;
5904 struct perf_output_handle handle;
5905 struct perf_sample_data sample;
5906 int size = mmap_event->event_id.header.size;
5907 int ret;
5908
5909 if (!perf_event_mmap_match(event, data))
5910 return;
5911
5912 if (event->attr.mmap2) {
5913 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5914 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5915 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5916 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5917 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5918 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5919 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5920 }
5921
5922 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5923 ret = perf_output_begin(&handle, event,
5924 mmap_event->event_id.header.size);
5925 if (ret)
5926 goto out;
5927
5928 mmap_event->event_id.pid = perf_event_pid(event, current);
5929 mmap_event->event_id.tid = perf_event_tid(event, current);
5930
5931 perf_output_put(&handle, mmap_event->event_id);
5932
5933 if (event->attr.mmap2) {
5934 perf_output_put(&handle, mmap_event->maj);
5935 perf_output_put(&handle, mmap_event->min);
5936 perf_output_put(&handle, mmap_event->ino);
5937 perf_output_put(&handle, mmap_event->ino_generation);
5938 perf_output_put(&handle, mmap_event->prot);
5939 perf_output_put(&handle, mmap_event->flags);
5940 }
5941
5942 __output_copy(&handle, mmap_event->file_name,
5943 mmap_event->file_size);
5944
5945 perf_event__output_id_sample(event, &handle, &sample);
5946
5947 perf_output_end(&handle);
5948 out:
5949 mmap_event->event_id.header.size = size;
5950 }
5951
5952 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5953 {
5954 struct vm_area_struct *vma = mmap_event->vma;
5955 struct file *file = vma->vm_file;
5956 int maj = 0, min = 0;
5957 u64 ino = 0, gen = 0;
5958 u32 prot = 0, flags = 0;
5959 unsigned int size;
5960 char tmp[16];
5961 char *buf = NULL;
5962 char *name;
5963
5964 if (file) {
5965 struct inode *inode;
5966 dev_t dev;
5967
5968 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5969 if (!buf) {
5970 name = "//enomem";
5971 goto cpy_name;
5972 }
5973 /*
5974 * d_path() works from the end of the rb backwards, so we
5975 * need to add enough zero bytes after the string to handle
5976 * the 64bit alignment we do later.
5977 */
5978 name = file_path(file, buf, PATH_MAX - sizeof(u64));
5979 if (IS_ERR(name)) {
5980 name = "//toolong";
5981 goto cpy_name;
5982 }
5983 inode = file_inode(vma->vm_file);
5984 dev = inode->i_sb->s_dev;
5985 ino = inode->i_ino;
5986 gen = inode->i_generation;
5987 maj = MAJOR(dev);
5988 min = MINOR(dev);
5989
5990 if (vma->vm_flags & VM_READ)
5991 prot |= PROT_READ;
5992 if (vma->vm_flags & VM_WRITE)
5993 prot |= PROT_WRITE;
5994 if (vma->vm_flags & VM_EXEC)
5995 prot |= PROT_EXEC;
5996
5997 if (vma->vm_flags & VM_MAYSHARE)
5998 flags = MAP_SHARED;
5999 else
6000 flags = MAP_PRIVATE;
6001
6002 if (vma->vm_flags & VM_DENYWRITE)
6003 flags |= MAP_DENYWRITE;
6004 if (vma->vm_flags & VM_MAYEXEC)
6005 flags |= MAP_EXECUTABLE;
6006 if (vma->vm_flags & VM_LOCKED)
6007 flags |= MAP_LOCKED;
6008 if (vma->vm_flags & VM_HUGETLB)
6009 flags |= MAP_HUGETLB;
6010
6011 goto got_name;
6012 } else {
6013 if (vma->vm_ops && vma->vm_ops->name) {
6014 name = (char *) vma->vm_ops->name(vma);
6015 if (name)
6016 goto cpy_name;
6017 }
6018
6019 name = (char *)arch_vma_name(vma);
6020 if (name)
6021 goto cpy_name;
6022
6023 if (vma->vm_start <= vma->vm_mm->start_brk &&
6024 vma->vm_end >= vma->vm_mm->brk) {
6025 name = "[heap]";
6026 goto cpy_name;
6027 }
6028 if (vma->vm_start <= vma->vm_mm->start_stack &&
6029 vma->vm_end >= vma->vm_mm->start_stack) {
6030 name = "[stack]";
6031 goto cpy_name;
6032 }
6033
6034 name = "//anon";
6035 goto cpy_name;
6036 }
6037
6038 cpy_name:
6039 strlcpy(tmp, name, sizeof(tmp));
6040 name = tmp;
6041 got_name:
6042 /*
6043 * Since our buffer works in 8 byte units we need to align our string
6044 * size to a multiple of 8. However, we must guarantee the tail end is
6045 * zero'd out to avoid leaking random bits to userspace.
6046 */
6047 size = strlen(name)+1;
6048 while (!IS_ALIGNED(size, sizeof(u64)))
6049 name[size++] = '\0';
6050
6051 mmap_event->file_name = name;
6052 mmap_event->file_size = size;
6053 mmap_event->maj = maj;
6054 mmap_event->min = min;
6055 mmap_event->ino = ino;
6056 mmap_event->ino_generation = gen;
6057 mmap_event->prot = prot;
6058 mmap_event->flags = flags;
6059
6060 if (!(vma->vm_flags & VM_EXEC))
6061 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6062
6063 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6064
6065 perf_event_aux(perf_event_mmap_output,
6066 mmap_event,
6067 NULL);
6068
6069 kfree(buf);
6070 }
6071
6072 void perf_event_mmap(struct vm_area_struct *vma)
6073 {
6074 struct perf_mmap_event mmap_event;
6075
6076 if (!atomic_read(&nr_mmap_events))
6077 return;
6078
6079 mmap_event = (struct perf_mmap_event){
6080 .vma = vma,
6081 /* .file_name */
6082 /* .file_size */
6083 .event_id = {
6084 .header = {
6085 .type = PERF_RECORD_MMAP,
6086 .misc = PERF_RECORD_MISC_USER,
6087 /* .size */
6088 },
6089 /* .pid */
6090 /* .tid */
6091 .start = vma->vm_start,
6092 .len = vma->vm_end - vma->vm_start,
6093 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
6094 },
6095 /* .maj (attr_mmap2 only) */
6096 /* .min (attr_mmap2 only) */
6097 /* .ino (attr_mmap2 only) */
6098 /* .ino_generation (attr_mmap2 only) */
6099 /* .prot (attr_mmap2 only) */
6100 /* .flags (attr_mmap2 only) */
6101 };
6102
6103 perf_event_mmap_event(&mmap_event);
6104 }
6105
6106 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6107 unsigned long size, u64 flags)
6108 {
6109 struct perf_output_handle handle;
6110 struct perf_sample_data sample;
6111 struct perf_aux_event {
6112 struct perf_event_header header;
6113 u64 offset;
6114 u64 size;
6115 u64 flags;
6116 } rec = {
6117 .header = {
6118 .type = PERF_RECORD_AUX,
6119 .misc = 0,
6120 .size = sizeof(rec),
6121 },
6122 .offset = head,
6123 .size = size,
6124 .flags = flags,
6125 };
6126 int ret;
6127
6128 perf_event_header__init_id(&rec.header, &sample, event);
6129 ret = perf_output_begin(&handle, event, rec.header.size);
6130
6131 if (ret)
6132 return;
6133
6134 perf_output_put(&handle, rec);
6135 perf_event__output_id_sample(event, &handle, &sample);
6136
6137 perf_output_end(&handle);
6138 }
6139
6140 /*
6141 * Lost/dropped samples logging
6142 */
6143 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6144 {
6145 struct perf_output_handle handle;
6146 struct perf_sample_data sample;
6147 int ret;
6148
6149 struct {
6150 struct perf_event_header header;
6151 u64 lost;
6152 } lost_samples_event = {
6153 .header = {
6154 .type = PERF_RECORD_LOST_SAMPLES,
6155 .misc = 0,
6156 .size = sizeof(lost_samples_event),
6157 },
6158 .lost = lost,
6159 };
6160
6161 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6162
6163 ret = perf_output_begin(&handle, event,
6164 lost_samples_event.header.size);
6165 if (ret)
6166 return;
6167
6168 perf_output_put(&handle, lost_samples_event);
6169 perf_event__output_id_sample(event, &handle, &sample);
6170 perf_output_end(&handle);
6171 }
6172
6173 /*
6174 * context_switch tracking
6175 */
6176
6177 struct perf_switch_event {
6178 struct task_struct *task;
6179 struct task_struct *next_prev;
6180
6181 struct {
6182 struct perf_event_header header;
6183 u32 next_prev_pid;
6184 u32 next_prev_tid;
6185 } event_id;
6186 };
6187
6188 static int perf_event_switch_match(struct perf_event *event)
6189 {
6190 return event->attr.context_switch;
6191 }
6192
6193 static void perf_event_switch_output(struct perf_event *event, void *data)
6194 {
6195 struct perf_switch_event *se = data;
6196 struct perf_output_handle handle;
6197 struct perf_sample_data sample;
6198 int ret;
6199
6200 if (!perf_event_switch_match(event))
6201 return;
6202
6203 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6204 if (event->ctx->task) {
6205 se->event_id.header.type = PERF_RECORD_SWITCH;
6206 se->event_id.header.size = sizeof(se->event_id.header);
6207 } else {
6208 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6209 se->event_id.header.size = sizeof(se->event_id);
6210 se->event_id.next_prev_pid =
6211 perf_event_pid(event, se->next_prev);
6212 se->event_id.next_prev_tid =
6213 perf_event_tid(event, se->next_prev);
6214 }
6215
6216 perf_event_header__init_id(&se->event_id.header, &sample, event);
6217
6218 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6219 if (ret)
6220 return;
6221
6222 if (event->ctx->task)
6223 perf_output_put(&handle, se->event_id.header);
6224 else
6225 perf_output_put(&handle, se->event_id);
6226
6227 perf_event__output_id_sample(event, &handle, &sample);
6228
6229 perf_output_end(&handle);
6230 }
6231
6232 static void perf_event_switch(struct task_struct *task,
6233 struct task_struct *next_prev, bool sched_in)
6234 {
6235 struct perf_switch_event switch_event;
6236
6237 /* N.B. caller checks nr_switch_events != 0 */
6238
6239 switch_event = (struct perf_switch_event){
6240 .task = task,
6241 .next_prev = next_prev,
6242 .event_id = {
6243 .header = {
6244 /* .type */
6245 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6246 /* .size */
6247 },
6248 /* .next_prev_pid */
6249 /* .next_prev_tid */
6250 },
6251 };
6252
6253 perf_event_aux(perf_event_switch_output,
6254 &switch_event,
6255 NULL);
6256 }
6257
6258 /*
6259 * IRQ throttle logging
6260 */
6261
6262 static void perf_log_throttle(struct perf_event *event, int enable)
6263 {
6264 struct perf_output_handle handle;
6265 struct perf_sample_data sample;
6266 int ret;
6267
6268 struct {
6269 struct perf_event_header header;
6270 u64 time;
6271 u64 id;
6272 u64 stream_id;
6273 } throttle_event = {
6274 .header = {
6275 .type = PERF_RECORD_THROTTLE,
6276 .misc = 0,
6277 .size = sizeof(throttle_event),
6278 },
6279 .time = perf_event_clock(event),
6280 .id = primary_event_id(event),
6281 .stream_id = event->id,
6282 };
6283
6284 if (enable)
6285 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6286
6287 perf_event_header__init_id(&throttle_event.header, &sample, event);
6288
6289 ret = perf_output_begin(&handle, event,
6290 throttle_event.header.size);
6291 if (ret)
6292 return;
6293
6294 perf_output_put(&handle, throttle_event);
6295 perf_event__output_id_sample(event, &handle, &sample);
6296 perf_output_end(&handle);
6297 }
6298
6299 static void perf_log_itrace_start(struct perf_event *event)
6300 {
6301 struct perf_output_handle handle;
6302 struct perf_sample_data sample;
6303 struct perf_aux_event {
6304 struct perf_event_header header;
6305 u32 pid;
6306 u32 tid;
6307 } rec;
6308 int ret;
6309
6310 if (event->parent)
6311 event = event->parent;
6312
6313 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6314 event->hw.itrace_started)
6315 return;
6316
6317 rec.header.type = PERF_RECORD_ITRACE_START;
6318 rec.header.misc = 0;
6319 rec.header.size = sizeof(rec);
6320 rec.pid = perf_event_pid(event, current);
6321 rec.tid = perf_event_tid(event, current);
6322
6323 perf_event_header__init_id(&rec.header, &sample, event);
6324 ret = perf_output_begin(&handle, event, rec.header.size);
6325
6326 if (ret)
6327 return;
6328
6329 perf_output_put(&handle, rec);
6330 perf_event__output_id_sample(event, &handle, &sample);
6331
6332 perf_output_end(&handle);
6333 }
6334
6335 /*
6336 * Generic event overflow handling, sampling.
6337 */
6338
6339 static int __perf_event_overflow(struct perf_event *event,
6340 int throttle, struct perf_sample_data *data,
6341 struct pt_regs *regs)
6342 {
6343 int events = atomic_read(&event->event_limit);
6344 struct hw_perf_event *hwc = &event->hw;
6345 u64 seq;
6346 int ret = 0;
6347
6348 /*
6349 * Non-sampling counters might still use the PMI to fold short
6350 * hardware counters, ignore those.
6351 */
6352 if (unlikely(!is_sampling_event(event)))
6353 return 0;
6354
6355 seq = __this_cpu_read(perf_throttled_seq);
6356 if (seq != hwc->interrupts_seq) {
6357 hwc->interrupts_seq = seq;
6358 hwc->interrupts = 1;
6359 } else {
6360 hwc->interrupts++;
6361 if (unlikely(throttle
6362 && hwc->interrupts >= max_samples_per_tick)) {
6363 __this_cpu_inc(perf_throttled_count);
6364 hwc->interrupts = MAX_INTERRUPTS;
6365 perf_log_throttle(event, 0);
6366 tick_nohz_full_kick();
6367 ret = 1;
6368 }
6369 }
6370
6371 if (event->attr.freq) {
6372 u64 now = perf_clock();
6373 s64 delta = now - hwc->freq_time_stamp;
6374
6375 hwc->freq_time_stamp = now;
6376
6377 if (delta > 0 && delta < 2*TICK_NSEC)
6378 perf_adjust_period(event, delta, hwc->last_period, true);
6379 }
6380
6381 /*
6382 * XXX event_limit might not quite work as expected on inherited
6383 * events
6384 */
6385
6386 event->pending_kill = POLL_IN;
6387 if (events && atomic_dec_and_test(&event->event_limit)) {
6388 ret = 1;
6389 event->pending_kill = POLL_HUP;
6390 event->pending_disable = 1;
6391 irq_work_queue(&event->pending);
6392 }
6393
6394 if (event->overflow_handler)
6395 event->overflow_handler(event, data, regs);
6396 else
6397 perf_event_output(event, data, regs);
6398
6399 if (*perf_event_fasync(event) && event->pending_kill) {
6400 event->pending_wakeup = 1;
6401 irq_work_queue(&event->pending);
6402 }
6403
6404 return ret;
6405 }
6406
6407 int perf_event_overflow(struct perf_event *event,
6408 struct perf_sample_data *data,
6409 struct pt_regs *regs)
6410 {
6411 return __perf_event_overflow(event, 1, data, regs);
6412 }
6413
6414 /*
6415 * Generic software event infrastructure
6416 */
6417
6418 struct swevent_htable {
6419 struct swevent_hlist *swevent_hlist;
6420 struct mutex hlist_mutex;
6421 int hlist_refcount;
6422
6423 /* Recursion avoidance in each contexts */
6424 int recursion[PERF_NR_CONTEXTS];
6425 };
6426
6427 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6428
6429 /*
6430 * We directly increment event->count and keep a second value in
6431 * event->hw.period_left to count intervals. This period event
6432 * is kept in the range [-sample_period, 0] so that we can use the
6433 * sign as trigger.
6434 */
6435
6436 u64 perf_swevent_set_period(struct perf_event *event)
6437 {
6438 struct hw_perf_event *hwc = &event->hw;
6439 u64 period = hwc->last_period;
6440 u64 nr, offset;
6441 s64 old, val;
6442
6443 hwc->last_period = hwc->sample_period;
6444
6445 again:
6446 old = val = local64_read(&hwc->period_left);
6447 if (val < 0)
6448 return 0;
6449
6450 nr = div64_u64(period + val, period);
6451 offset = nr * period;
6452 val -= offset;
6453 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6454 goto again;
6455
6456 return nr;
6457 }
6458
6459 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6460 struct perf_sample_data *data,
6461 struct pt_regs *regs)
6462 {
6463 struct hw_perf_event *hwc = &event->hw;
6464 int throttle = 0;
6465
6466 if (!overflow)
6467 overflow = perf_swevent_set_period(event);
6468
6469 if (hwc->interrupts == MAX_INTERRUPTS)
6470 return;
6471
6472 for (; overflow; overflow--) {
6473 if (__perf_event_overflow(event, throttle,
6474 data, regs)) {
6475 /*
6476 * We inhibit the overflow from happening when
6477 * hwc->interrupts == MAX_INTERRUPTS.
6478 */
6479 break;
6480 }
6481 throttle = 1;
6482 }
6483 }
6484
6485 static void perf_swevent_event(struct perf_event *event, u64 nr,
6486 struct perf_sample_data *data,
6487 struct pt_regs *regs)
6488 {
6489 struct hw_perf_event *hwc = &event->hw;
6490
6491 local64_add(nr, &event->count);
6492
6493 if (!regs)
6494 return;
6495
6496 if (!is_sampling_event(event))
6497 return;
6498
6499 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6500 data->period = nr;
6501 return perf_swevent_overflow(event, 1, data, regs);
6502 } else
6503 data->period = event->hw.last_period;
6504
6505 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6506 return perf_swevent_overflow(event, 1, data, regs);
6507
6508 if (local64_add_negative(nr, &hwc->period_left))
6509 return;
6510
6511 perf_swevent_overflow(event, 0, data, regs);
6512 }
6513
6514 static int perf_exclude_event(struct perf_event *event,
6515 struct pt_regs *regs)
6516 {
6517 if (event->hw.state & PERF_HES_STOPPED)
6518 return 1;
6519
6520 if (regs) {
6521 if (event->attr.exclude_user && user_mode(regs))
6522 return 1;
6523
6524 if (event->attr.exclude_kernel && !user_mode(regs))
6525 return 1;
6526 }
6527
6528 return 0;
6529 }
6530
6531 static int perf_swevent_match(struct perf_event *event,
6532 enum perf_type_id type,
6533 u32 event_id,
6534 struct perf_sample_data *data,
6535 struct pt_regs *regs)
6536 {
6537 if (event->attr.type != type)
6538 return 0;
6539
6540 if (event->attr.config != event_id)
6541 return 0;
6542
6543 if (perf_exclude_event(event, regs))
6544 return 0;
6545
6546 return 1;
6547 }
6548
6549 static inline u64 swevent_hash(u64 type, u32 event_id)
6550 {
6551 u64 val = event_id | (type << 32);
6552
6553 return hash_64(val, SWEVENT_HLIST_BITS);
6554 }
6555
6556 static inline struct hlist_head *
6557 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6558 {
6559 u64 hash = swevent_hash(type, event_id);
6560
6561 return &hlist->heads[hash];
6562 }
6563
6564 /* For the read side: events when they trigger */
6565 static inline struct hlist_head *
6566 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6567 {
6568 struct swevent_hlist *hlist;
6569
6570 hlist = rcu_dereference(swhash->swevent_hlist);
6571 if (!hlist)
6572 return NULL;
6573
6574 return __find_swevent_head(hlist, type, event_id);
6575 }
6576
6577 /* For the event head insertion and removal in the hlist */
6578 static inline struct hlist_head *
6579 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6580 {
6581 struct swevent_hlist *hlist;
6582 u32 event_id = event->attr.config;
6583 u64 type = event->attr.type;
6584
6585 /*
6586 * Event scheduling is always serialized against hlist allocation
6587 * and release. Which makes the protected version suitable here.
6588 * The context lock guarantees that.
6589 */
6590 hlist = rcu_dereference_protected(swhash->swevent_hlist,
6591 lockdep_is_held(&event->ctx->lock));
6592 if (!hlist)
6593 return NULL;
6594
6595 return __find_swevent_head(hlist, type, event_id);
6596 }
6597
6598 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6599 u64 nr,
6600 struct perf_sample_data *data,
6601 struct pt_regs *regs)
6602 {
6603 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6604 struct perf_event *event;
6605 struct hlist_head *head;
6606
6607 rcu_read_lock();
6608 head = find_swevent_head_rcu(swhash, type, event_id);
6609 if (!head)
6610 goto end;
6611
6612 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6613 if (perf_swevent_match(event, type, event_id, data, regs))
6614 perf_swevent_event(event, nr, data, regs);
6615 }
6616 end:
6617 rcu_read_unlock();
6618 }
6619
6620 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6621
6622 int perf_swevent_get_recursion_context(void)
6623 {
6624 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6625
6626 return get_recursion_context(swhash->recursion);
6627 }
6628 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6629
6630 inline void perf_swevent_put_recursion_context(int rctx)
6631 {
6632 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6633
6634 put_recursion_context(swhash->recursion, rctx);
6635 }
6636
6637 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6638 {
6639 struct perf_sample_data data;
6640
6641 if (WARN_ON_ONCE(!regs))
6642 return;
6643
6644 perf_sample_data_init(&data, addr, 0);
6645 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6646 }
6647
6648 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6649 {
6650 int rctx;
6651
6652 preempt_disable_notrace();
6653 rctx = perf_swevent_get_recursion_context();
6654 if (unlikely(rctx < 0))
6655 goto fail;
6656
6657 ___perf_sw_event(event_id, nr, regs, addr);
6658
6659 perf_swevent_put_recursion_context(rctx);
6660 fail:
6661 preempt_enable_notrace();
6662 }
6663
6664 static void perf_swevent_read(struct perf_event *event)
6665 {
6666 }
6667
6668 static int perf_swevent_add(struct perf_event *event, int flags)
6669 {
6670 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6671 struct hw_perf_event *hwc = &event->hw;
6672 struct hlist_head *head;
6673
6674 if (is_sampling_event(event)) {
6675 hwc->last_period = hwc->sample_period;
6676 perf_swevent_set_period(event);
6677 }
6678
6679 hwc->state = !(flags & PERF_EF_START);
6680
6681 head = find_swevent_head(swhash, event);
6682 if (WARN_ON_ONCE(!head))
6683 return -EINVAL;
6684
6685 hlist_add_head_rcu(&event->hlist_entry, head);
6686 perf_event_update_userpage(event);
6687
6688 return 0;
6689 }
6690
6691 static void perf_swevent_del(struct perf_event *event, int flags)
6692 {
6693 hlist_del_rcu(&event->hlist_entry);
6694 }
6695
6696 static void perf_swevent_start(struct perf_event *event, int flags)
6697 {
6698 event->hw.state = 0;
6699 }
6700
6701 static void perf_swevent_stop(struct perf_event *event, int flags)
6702 {
6703 event->hw.state = PERF_HES_STOPPED;
6704 }
6705
6706 /* Deref the hlist from the update side */
6707 static inline struct swevent_hlist *
6708 swevent_hlist_deref(struct swevent_htable *swhash)
6709 {
6710 return rcu_dereference_protected(swhash->swevent_hlist,
6711 lockdep_is_held(&swhash->hlist_mutex));
6712 }
6713
6714 static void swevent_hlist_release(struct swevent_htable *swhash)
6715 {
6716 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6717
6718 if (!hlist)
6719 return;
6720
6721 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6722 kfree_rcu(hlist, rcu_head);
6723 }
6724
6725 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6726 {
6727 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6728
6729 mutex_lock(&swhash->hlist_mutex);
6730
6731 if (!--swhash->hlist_refcount)
6732 swevent_hlist_release(swhash);
6733
6734 mutex_unlock(&swhash->hlist_mutex);
6735 }
6736
6737 static void swevent_hlist_put(struct perf_event *event)
6738 {
6739 int cpu;
6740
6741 for_each_possible_cpu(cpu)
6742 swevent_hlist_put_cpu(event, cpu);
6743 }
6744
6745 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6746 {
6747 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6748 int err = 0;
6749
6750 mutex_lock(&swhash->hlist_mutex);
6751 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6752 struct swevent_hlist *hlist;
6753
6754 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6755 if (!hlist) {
6756 err = -ENOMEM;
6757 goto exit;
6758 }
6759 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6760 }
6761 swhash->hlist_refcount++;
6762 exit:
6763 mutex_unlock(&swhash->hlist_mutex);
6764
6765 return err;
6766 }
6767
6768 static int swevent_hlist_get(struct perf_event *event)
6769 {
6770 int err;
6771 int cpu, failed_cpu;
6772
6773 get_online_cpus();
6774 for_each_possible_cpu(cpu) {
6775 err = swevent_hlist_get_cpu(event, cpu);
6776 if (err) {
6777 failed_cpu = cpu;
6778 goto fail;
6779 }
6780 }
6781 put_online_cpus();
6782
6783 return 0;
6784 fail:
6785 for_each_possible_cpu(cpu) {
6786 if (cpu == failed_cpu)
6787 break;
6788 swevent_hlist_put_cpu(event, cpu);
6789 }
6790
6791 put_online_cpus();
6792 return err;
6793 }
6794
6795 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6796
6797 static void sw_perf_event_destroy(struct perf_event *event)
6798 {
6799 u64 event_id = event->attr.config;
6800
6801 WARN_ON(event->parent);
6802
6803 static_key_slow_dec(&perf_swevent_enabled[event_id]);
6804 swevent_hlist_put(event);
6805 }
6806
6807 static int perf_swevent_init(struct perf_event *event)
6808 {
6809 u64 event_id = event->attr.config;
6810
6811 if (event->attr.type != PERF_TYPE_SOFTWARE)
6812 return -ENOENT;
6813
6814 /*
6815 * no branch sampling for software events
6816 */
6817 if (has_branch_stack(event))
6818 return -EOPNOTSUPP;
6819
6820 switch (event_id) {
6821 case PERF_COUNT_SW_CPU_CLOCK:
6822 case PERF_COUNT_SW_TASK_CLOCK:
6823 return -ENOENT;
6824
6825 default:
6826 break;
6827 }
6828
6829 if (event_id >= PERF_COUNT_SW_MAX)
6830 return -ENOENT;
6831
6832 if (!event->parent) {
6833 int err;
6834
6835 err = swevent_hlist_get(event);
6836 if (err)
6837 return err;
6838
6839 static_key_slow_inc(&perf_swevent_enabled[event_id]);
6840 event->destroy = sw_perf_event_destroy;
6841 }
6842
6843 return 0;
6844 }
6845
6846 static struct pmu perf_swevent = {
6847 .task_ctx_nr = perf_sw_context,
6848
6849 .capabilities = PERF_PMU_CAP_NO_NMI,
6850
6851 .event_init = perf_swevent_init,
6852 .add = perf_swevent_add,
6853 .del = perf_swevent_del,
6854 .start = perf_swevent_start,
6855 .stop = perf_swevent_stop,
6856 .read = perf_swevent_read,
6857 };
6858
6859 #ifdef CONFIG_EVENT_TRACING
6860
6861 static int perf_tp_filter_match(struct perf_event *event,
6862 struct perf_sample_data *data)
6863 {
6864 void *record = data->raw->data;
6865
6866 /* only top level events have filters set */
6867 if (event->parent)
6868 event = event->parent;
6869
6870 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6871 return 1;
6872 return 0;
6873 }
6874
6875 static int perf_tp_event_match(struct perf_event *event,
6876 struct perf_sample_data *data,
6877 struct pt_regs *regs)
6878 {
6879 if (event->hw.state & PERF_HES_STOPPED)
6880 return 0;
6881 /*
6882 * All tracepoints are from kernel-space.
6883 */
6884 if (event->attr.exclude_kernel)
6885 return 0;
6886
6887 if (!perf_tp_filter_match(event, data))
6888 return 0;
6889
6890 return 1;
6891 }
6892
6893 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6894 struct pt_regs *regs, struct hlist_head *head, int rctx,
6895 struct task_struct *task)
6896 {
6897 struct perf_sample_data data;
6898 struct perf_event *event;
6899
6900 struct perf_raw_record raw = {
6901 .size = entry_size,
6902 .data = record,
6903 };
6904
6905 perf_sample_data_init(&data, addr, 0);
6906 data.raw = &raw;
6907
6908 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6909 if (perf_tp_event_match(event, &data, regs))
6910 perf_swevent_event(event, count, &data, regs);
6911 }
6912
6913 /*
6914 * If we got specified a target task, also iterate its context and
6915 * deliver this event there too.
6916 */
6917 if (task && task != current) {
6918 struct perf_event_context *ctx;
6919 struct trace_entry *entry = record;
6920
6921 rcu_read_lock();
6922 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6923 if (!ctx)
6924 goto unlock;
6925
6926 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6927 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6928 continue;
6929 if (event->attr.config != entry->type)
6930 continue;
6931 if (perf_tp_event_match(event, &data, regs))
6932 perf_swevent_event(event, count, &data, regs);
6933 }
6934 unlock:
6935 rcu_read_unlock();
6936 }
6937
6938 perf_swevent_put_recursion_context(rctx);
6939 }
6940 EXPORT_SYMBOL_GPL(perf_tp_event);
6941
6942 static void tp_perf_event_destroy(struct perf_event *event)
6943 {
6944 perf_trace_destroy(event);
6945 }
6946
6947 static int perf_tp_event_init(struct perf_event *event)
6948 {
6949 int err;
6950
6951 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6952 return -ENOENT;
6953
6954 /*
6955 * no branch sampling for tracepoint events
6956 */
6957 if (has_branch_stack(event))
6958 return -EOPNOTSUPP;
6959
6960 err = perf_trace_init(event);
6961 if (err)
6962 return err;
6963
6964 event->destroy = tp_perf_event_destroy;
6965
6966 return 0;
6967 }
6968
6969 static struct pmu perf_tracepoint = {
6970 .task_ctx_nr = perf_sw_context,
6971
6972 .event_init = perf_tp_event_init,
6973 .add = perf_trace_add,
6974 .del = perf_trace_del,
6975 .start = perf_swevent_start,
6976 .stop = perf_swevent_stop,
6977 .read = perf_swevent_read,
6978 };
6979
6980 static inline void perf_tp_register(void)
6981 {
6982 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6983 }
6984
6985 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6986 {
6987 char *filter_str;
6988 int ret;
6989
6990 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6991 return -EINVAL;
6992
6993 filter_str = strndup_user(arg, PAGE_SIZE);
6994 if (IS_ERR(filter_str))
6995 return PTR_ERR(filter_str);
6996
6997 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6998
6999 kfree(filter_str);
7000 return ret;
7001 }
7002
7003 static void perf_event_free_filter(struct perf_event *event)
7004 {
7005 ftrace_profile_free_filter(event);
7006 }
7007
7008 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7009 {
7010 struct bpf_prog *prog;
7011
7012 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7013 return -EINVAL;
7014
7015 if (event->tp_event->prog)
7016 return -EEXIST;
7017
7018 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7019 /* bpf programs can only be attached to u/kprobes */
7020 return -EINVAL;
7021
7022 prog = bpf_prog_get(prog_fd);
7023 if (IS_ERR(prog))
7024 return PTR_ERR(prog);
7025
7026 if (prog->type != BPF_PROG_TYPE_KPROBE) {
7027 /* valid fd, but invalid bpf program type */
7028 bpf_prog_put(prog);
7029 return -EINVAL;
7030 }
7031
7032 event->tp_event->prog = prog;
7033
7034 return 0;
7035 }
7036
7037 static void perf_event_free_bpf_prog(struct perf_event *event)
7038 {
7039 struct bpf_prog *prog;
7040
7041 if (!event->tp_event)
7042 return;
7043
7044 prog = event->tp_event->prog;
7045 if (prog) {
7046 event->tp_event->prog = NULL;
7047 bpf_prog_put(prog);
7048 }
7049 }
7050
7051 #else
7052
7053 static inline void perf_tp_register(void)
7054 {
7055 }
7056
7057 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7058 {
7059 return -ENOENT;
7060 }
7061
7062 static void perf_event_free_filter(struct perf_event *event)
7063 {
7064 }
7065
7066 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7067 {
7068 return -ENOENT;
7069 }
7070
7071 static void perf_event_free_bpf_prog(struct perf_event *event)
7072 {
7073 }
7074 #endif /* CONFIG_EVENT_TRACING */
7075
7076 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7077 void perf_bp_event(struct perf_event *bp, void *data)
7078 {
7079 struct perf_sample_data sample;
7080 struct pt_regs *regs = data;
7081
7082 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7083
7084 if (!bp->hw.state && !perf_exclude_event(bp, regs))
7085 perf_swevent_event(bp, 1, &sample, regs);
7086 }
7087 #endif
7088
7089 /*
7090 * hrtimer based swevent callback
7091 */
7092
7093 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7094 {
7095 enum hrtimer_restart ret = HRTIMER_RESTART;
7096 struct perf_sample_data data;
7097 struct pt_regs *regs;
7098 struct perf_event *event;
7099 u64 period;
7100
7101 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7102
7103 if (event->state != PERF_EVENT_STATE_ACTIVE)
7104 return HRTIMER_NORESTART;
7105
7106 event->pmu->read(event);
7107
7108 perf_sample_data_init(&data, 0, event->hw.last_period);
7109 regs = get_irq_regs();
7110
7111 if (regs && !perf_exclude_event(event, regs)) {
7112 if (!(event->attr.exclude_idle && is_idle_task(current)))
7113 if (__perf_event_overflow(event, 1, &data, regs))
7114 ret = HRTIMER_NORESTART;
7115 }
7116
7117 period = max_t(u64, 10000, event->hw.sample_period);
7118 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7119
7120 return ret;
7121 }
7122
7123 static void perf_swevent_start_hrtimer(struct perf_event *event)
7124 {
7125 struct hw_perf_event *hwc = &event->hw;
7126 s64 period;
7127
7128 if (!is_sampling_event(event))
7129 return;
7130
7131 period = local64_read(&hwc->period_left);
7132 if (period) {
7133 if (period < 0)
7134 period = 10000;
7135
7136 local64_set(&hwc->period_left, 0);
7137 } else {
7138 period = max_t(u64, 10000, hwc->sample_period);
7139 }
7140 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7141 HRTIMER_MODE_REL_PINNED);
7142 }
7143
7144 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7145 {
7146 struct hw_perf_event *hwc = &event->hw;
7147
7148 if (is_sampling_event(event)) {
7149 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
7150 local64_set(&hwc->period_left, ktime_to_ns(remaining));
7151
7152 hrtimer_cancel(&hwc->hrtimer);
7153 }
7154 }
7155
7156 static void perf_swevent_init_hrtimer(struct perf_event *event)
7157 {
7158 struct hw_perf_event *hwc = &event->hw;
7159
7160 if (!is_sampling_event(event))
7161 return;
7162
7163 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7164 hwc->hrtimer.function = perf_swevent_hrtimer;
7165
7166 /*
7167 * Since hrtimers have a fixed rate, we can do a static freq->period
7168 * mapping and avoid the whole period adjust feedback stuff.
7169 */
7170 if (event->attr.freq) {
7171 long freq = event->attr.sample_freq;
7172
7173 event->attr.sample_period = NSEC_PER_SEC / freq;
7174 hwc->sample_period = event->attr.sample_period;
7175 local64_set(&hwc->period_left, hwc->sample_period);
7176 hwc->last_period = hwc->sample_period;
7177 event->attr.freq = 0;
7178 }
7179 }
7180
7181 /*
7182 * Software event: cpu wall time clock
7183 */
7184
7185 static void cpu_clock_event_update(struct perf_event *event)
7186 {
7187 s64 prev;
7188 u64 now;
7189
7190 now = local_clock();
7191 prev = local64_xchg(&event->hw.prev_count, now);
7192 local64_add(now - prev, &event->count);
7193 }
7194
7195 static void cpu_clock_event_start(struct perf_event *event, int flags)
7196 {
7197 local64_set(&event->hw.prev_count, local_clock());
7198 perf_swevent_start_hrtimer(event);
7199 }
7200
7201 static void cpu_clock_event_stop(struct perf_event *event, int flags)
7202 {
7203 perf_swevent_cancel_hrtimer(event);
7204 cpu_clock_event_update(event);
7205 }
7206
7207 static int cpu_clock_event_add(struct perf_event *event, int flags)
7208 {
7209 if (flags & PERF_EF_START)
7210 cpu_clock_event_start(event, flags);
7211 perf_event_update_userpage(event);
7212
7213 return 0;
7214 }
7215
7216 static void cpu_clock_event_del(struct perf_event *event, int flags)
7217 {
7218 cpu_clock_event_stop(event, flags);
7219 }
7220
7221 static void cpu_clock_event_read(struct perf_event *event)
7222 {
7223 cpu_clock_event_update(event);
7224 }
7225
7226 static int cpu_clock_event_init(struct perf_event *event)
7227 {
7228 if (event->attr.type != PERF_TYPE_SOFTWARE)
7229 return -ENOENT;
7230
7231 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7232 return -ENOENT;
7233
7234 /*
7235 * no branch sampling for software events
7236 */
7237 if (has_branch_stack(event))
7238 return -EOPNOTSUPP;
7239
7240 perf_swevent_init_hrtimer(event);
7241
7242 return 0;
7243 }
7244
7245 static struct pmu perf_cpu_clock = {
7246 .task_ctx_nr = perf_sw_context,
7247
7248 .capabilities = PERF_PMU_CAP_NO_NMI,
7249
7250 .event_init = cpu_clock_event_init,
7251 .add = cpu_clock_event_add,
7252 .del = cpu_clock_event_del,
7253 .start = cpu_clock_event_start,
7254 .stop = cpu_clock_event_stop,
7255 .read = cpu_clock_event_read,
7256 };
7257
7258 /*
7259 * Software event: task time clock
7260 */
7261
7262 static void task_clock_event_update(struct perf_event *event, u64 now)
7263 {
7264 u64 prev;
7265 s64 delta;
7266
7267 prev = local64_xchg(&event->hw.prev_count, now);
7268 delta = now - prev;
7269 local64_add(delta, &event->count);
7270 }
7271
7272 static void task_clock_event_start(struct perf_event *event, int flags)
7273 {
7274 local64_set(&event->hw.prev_count, event->ctx->time);
7275 perf_swevent_start_hrtimer(event);
7276 }
7277
7278 static void task_clock_event_stop(struct perf_event *event, int flags)
7279 {
7280 perf_swevent_cancel_hrtimer(event);
7281 task_clock_event_update(event, event->ctx->time);
7282 }
7283
7284 static int task_clock_event_add(struct perf_event *event, int flags)
7285 {
7286 if (flags & PERF_EF_START)
7287 task_clock_event_start(event, flags);
7288 perf_event_update_userpage(event);
7289
7290 return 0;
7291 }
7292
7293 static void task_clock_event_del(struct perf_event *event, int flags)
7294 {
7295 task_clock_event_stop(event, PERF_EF_UPDATE);
7296 }
7297
7298 static void task_clock_event_read(struct perf_event *event)
7299 {
7300 u64 now = perf_clock();
7301 u64 delta = now - event->ctx->timestamp;
7302 u64 time = event->ctx->time + delta;
7303
7304 task_clock_event_update(event, time);
7305 }
7306
7307 static int task_clock_event_init(struct perf_event *event)
7308 {
7309 if (event->attr.type != PERF_TYPE_SOFTWARE)
7310 return -ENOENT;
7311
7312 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7313 return -ENOENT;
7314
7315 /*
7316 * no branch sampling for software events
7317 */
7318 if (has_branch_stack(event))
7319 return -EOPNOTSUPP;
7320
7321 perf_swevent_init_hrtimer(event);
7322
7323 return 0;
7324 }
7325
7326 static struct pmu perf_task_clock = {
7327 .task_ctx_nr = perf_sw_context,
7328
7329 .capabilities = PERF_PMU_CAP_NO_NMI,
7330
7331 .event_init = task_clock_event_init,
7332 .add = task_clock_event_add,
7333 .del = task_clock_event_del,
7334 .start = task_clock_event_start,
7335 .stop = task_clock_event_stop,
7336 .read = task_clock_event_read,
7337 };
7338
7339 static void perf_pmu_nop_void(struct pmu *pmu)
7340 {
7341 }
7342
7343 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7344 {
7345 }
7346
7347 static int perf_pmu_nop_int(struct pmu *pmu)
7348 {
7349 return 0;
7350 }
7351
7352 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7353
7354 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
7355 {
7356 __this_cpu_write(nop_txn_flags, flags);
7357
7358 if (flags & ~PERF_PMU_TXN_ADD)
7359 return;
7360
7361 perf_pmu_disable(pmu);
7362 }
7363
7364 static int perf_pmu_commit_txn(struct pmu *pmu)
7365 {
7366 unsigned int flags = __this_cpu_read(nop_txn_flags);
7367
7368 __this_cpu_write(nop_txn_flags, 0);
7369
7370 if (flags & ~PERF_PMU_TXN_ADD)
7371 return 0;
7372
7373 perf_pmu_enable(pmu);
7374 return 0;
7375 }
7376
7377 static void perf_pmu_cancel_txn(struct pmu *pmu)
7378 {
7379 unsigned int flags = __this_cpu_read(nop_txn_flags);
7380
7381 __this_cpu_write(nop_txn_flags, 0);
7382
7383 if (flags & ~PERF_PMU_TXN_ADD)
7384 return;
7385
7386 perf_pmu_enable(pmu);
7387 }
7388
7389 static int perf_event_idx_default(struct perf_event *event)
7390 {
7391 return 0;
7392 }
7393
7394 /*
7395 * Ensures all contexts with the same task_ctx_nr have the same
7396 * pmu_cpu_context too.
7397 */
7398 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7399 {
7400 struct pmu *pmu;
7401
7402 if (ctxn < 0)
7403 return NULL;
7404
7405 list_for_each_entry(pmu, &pmus, entry) {
7406 if (pmu->task_ctx_nr == ctxn)
7407 return pmu->pmu_cpu_context;
7408 }
7409
7410 return NULL;
7411 }
7412
7413 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7414 {
7415 int cpu;
7416
7417 for_each_possible_cpu(cpu) {
7418 struct perf_cpu_context *cpuctx;
7419
7420 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7421
7422 if (cpuctx->unique_pmu == old_pmu)
7423 cpuctx->unique_pmu = pmu;
7424 }
7425 }
7426
7427 static void free_pmu_context(struct pmu *pmu)
7428 {
7429 struct pmu *i;
7430
7431 mutex_lock(&pmus_lock);
7432 /*
7433 * Like a real lame refcount.
7434 */
7435 list_for_each_entry(i, &pmus, entry) {
7436 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7437 update_pmu_context(i, pmu);
7438 goto out;
7439 }
7440 }
7441
7442 free_percpu(pmu->pmu_cpu_context);
7443 out:
7444 mutex_unlock(&pmus_lock);
7445 }
7446 static struct idr pmu_idr;
7447
7448 static ssize_t
7449 type_show(struct device *dev, struct device_attribute *attr, char *page)
7450 {
7451 struct pmu *pmu = dev_get_drvdata(dev);
7452
7453 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7454 }
7455 static DEVICE_ATTR_RO(type);
7456
7457 static ssize_t
7458 perf_event_mux_interval_ms_show(struct device *dev,
7459 struct device_attribute *attr,
7460 char *page)
7461 {
7462 struct pmu *pmu = dev_get_drvdata(dev);
7463
7464 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7465 }
7466
7467 static DEFINE_MUTEX(mux_interval_mutex);
7468
7469 static ssize_t
7470 perf_event_mux_interval_ms_store(struct device *dev,
7471 struct device_attribute *attr,
7472 const char *buf, size_t count)
7473 {
7474 struct pmu *pmu = dev_get_drvdata(dev);
7475 int timer, cpu, ret;
7476
7477 ret = kstrtoint(buf, 0, &timer);
7478 if (ret)
7479 return ret;
7480
7481 if (timer < 1)
7482 return -EINVAL;
7483
7484 /* same value, noting to do */
7485 if (timer == pmu->hrtimer_interval_ms)
7486 return count;
7487
7488 mutex_lock(&mux_interval_mutex);
7489 pmu->hrtimer_interval_ms = timer;
7490
7491 /* update all cpuctx for this PMU */
7492 get_online_cpus();
7493 for_each_online_cpu(cpu) {
7494 struct perf_cpu_context *cpuctx;
7495 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7496 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7497
7498 cpu_function_call(cpu,
7499 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7500 }
7501 put_online_cpus();
7502 mutex_unlock(&mux_interval_mutex);
7503
7504 return count;
7505 }
7506 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7507
7508 static struct attribute *pmu_dev_attrs[] = {
7509 &dev_attr_type.attr,
7510 &dev_attr_perf_event_mux_interval_ms.attr,
7511 NULL,
7512 };
7513 ATTRIBUTE_GROUPS(pmu_dev);
7514
7515 static int pmu_bus_running;
7516 static struct bus_type pmu_bus = {
7517 .name = "event_source",
7518 .dev_groups = pmu_dev_groups,
7519 };
7520
7521 static void pmu_dev_release(struct device *dev)
7522 {
7523 kfree(dev);
7524 }
7525
7526 static int pmu_dev_alloc(struct pmu *pmu)
7527 {
7528 int ret = -ENOMEM;
7529
7530 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7531 if (!pmu->dev)
7532 goto out;
7533
7534 pmu->dev->groups = pmu->attr_groups;
7535 device_initialize(pmu->dev);
7536 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7537 if (ret)
7538 goto free_dev;
7539
7540 dev_set_drvdata(pmu->dev, pmu);
7541 pmu->dev->bus = &pmu_bus;
7542 pmu->dev->release = pmu_dev_release;
7543 ret = device_add(pmu->dev);
7544 if (ret)
7545 goto free_dev;
7546
7547 out:
7548 return ret;
7549
7550 free_dev:
7551 put_device(pmu->dev);
7552 goto out;
7553 }
7554
7555 static struct lock_class_key cpuctx_mutex;
7556 static struct lock_class_key cpuctx_lock;
7557
7558 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7559 {
7560 int cpu, ret;
7561
7562 mutex_lock(&pmus_lock);
7563 ret = -ENOMEM;
7564 pmu->pmu_disable_count = alloc_percpu(int);
7565 if (!pmu->pmu_disable_count)
7566 goto unlock;
7567
7568 pmu->type = -1;
7569 if (!name)
7570 goto skip_type;
7571 pmu->name = name;
7572
7573 if (type < 0) {
7574 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7575 if (type < 0) {
7576 ret = type;
7577 goto free_pdc;
7578 }
7579 }
7580 pmu->type = type;
7581
7582 if (pmu_bus_running) {
7583 ret = pmu_dev_alloc(pmu);
7584 if (ret)
7585 goto free_idr;
7586 }
7587
7588 skip_type:
7589 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7590 if (pmu->pmu_cpu_context)
7591 goto got_cpu_context;
7592
7593 ret = -ENOMEM;
7594 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7595 if (!pmu->pmu_cpu_context)
7596 goto free_dev;
7597
7598 for_each_possible_cpu(cpu) {
7599 struct perf_cpu_context *cpuctx;
7600
7601 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7602 __perf_event_init_context(&cpuctx->ctx);
7603 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7604 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7605 cpuctx->ctx.pmu = pmu;
7606
7607 __perf_mux_hrtimer_init(cpuctx, cpu);
7608
7609 cpuctx->unique_pmu = pmu;
7610 }
7611
7612 got_cpu_context:
7613 if (!pmu->start_txn) {
7614 if (pmu->pmu_enable) {
7615 /*
7616 * If we have pmu_enable/pmu_disable calls, install
7617 * transaction stubs that use that to try and batch
7618 * hardware accesses.
7619 */
7620 pmu->start_txn = perf_pmu_start_txn;
7621 pmu->commit_txn = perf_pmu_commit_txn;
7622 pmu->cancel_txn = perf_pmu_cancel_txn;
7623 } else {
7624 pmu->start_txn = perf_pmu_nop_txn;
7625 pmu->commit_txn = perf_pmu_nop_int;
7626 pmu->cancel_txn = perf_pmu_nop_void;
7627 }
7628 }
7629
7630 if (!pmu->pmu_enable) {
7631 pmu->pmu_enable = perf_pmu_nop_void;
7632 pmu->pmu_disable = perf_pmu_nop_void;
7633 }
7634
7635 if (!pmu->event_idx)
7636 pmu->event_idx = perf_event_idx_default;
7637
7638 list_add_rcu(&pmu->entry, &pmus);
7639 atomic_set(&pmu->exclusive_cnt, 0);
7640 ret = 0;
7641 unlock:
7642 mutex_unlock(&pmus_lock);
7643
7644 return ret;
7645
7646 free_dev:
7647 device_del(pmu->dev);
7648 put_device(pmu->dev);
7649
7650 free_idr:
7651 if (pmu->type >= PERF_TYPE_MAX)
7652 idr_remove(&pmu_idr, pmu->type);
7653
7654 free_pdc:
7655 free_percpu(pmu->pmu_disable_count);
7656 goto unlock;
7657 }
7658 EXPORT_SYMBOL_GPL(perf_pmu_register);
7659
7660 void perf_pmu_unregister(struct pmu *pmu)
7661 {
7662 mutex_lock(&pmus_lock);
7663 list_del_rcu(&pmu->entry);
7664 mutex_unlock(&pmus_lock);
7665
7666 /*
7667 * We dereference the pmu list under both SRCU and regular RCU, so
7668 * synchronize against both of those.
7669 */
7670 synchronize_srcu(&pmus_srcu);
7671 synchronize_rcu();
7672
7673 free_percpu(pmu->pmu_disable_count);
7674 if (pmu->type >= PERF_TYPE_MAX)
7675 idr_remove(&pmu_idr, pmu->type);
7676 device_del(pmu->dev);
7677 put_device(pmu->dev);
7678 free_pmu_context(pmu);
7679 }
7680 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7681
7682 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7683 {
7684 struct perf_event_context *ctx = NULL;
7685 int ret;
7686
7687 if (!try_module_get(pmu->module))
7688 return -ENODEV;
7689
7690 if (event->group_leader != event) {
7691 /*
7692 * This ctx->mutex can nest when we're called through
7693 * inheritance. See the perf_event_ctx_lock_nested() comment.
7694 */
7695 ctx = perf_event_ctx_lock_nested(event->group_leader,
7696 SINGLE_DEPTH_NESTING);
7697 BUG_ON(!ctx);
7698 }
7699
7700 event->pmu = pmu;
7701 ret = pmu->event_init(event);
7702
7703 if (ctx)
7704 perf_event_ctx_unlock(event->group_leader, ctx);
7705
7706 if (ret)
7707 module_put(pmu->module);
7708
7709 return ret;
7710 }
7711
7712 static struct pmu *perf_init_event(struct perf_event *event)
7713 {
7714 struct pmu *pmu = NULL;
7715 int idx;
7716 int ret;
7717
7718 idx = srcu_read_lock(&pmus_srcu);
7719
7720 rcu_read_lock();
7721 pmu = idr_find(&pmu_idr, event->attr.type);
7722 rcu_read_unlock();
7723 if (pmu) {
7724 ret = perf_try_init_event(pmu, event);
7725 if (ret)
7726 pmu = ERR_PTR(ret);
7727 goto unlock;
7728 }
7729
7730 list_for_each_entry_rcu(pmu, &pmus, entry) {
7731 ret = perf_try_init_event(pmu, event);
7732 if (!ret)
7733 goto unlock;
7734
7735 if (ret != -ENOENT) {
7736 pmu = ERR_PTR(ret);
7737 goto unlock;
7738 }
7739 }
7740 pmu = ERR_PTR(-ENOENT);
7741 unlock:
7742 srcu_read_unlock(&pmus_srcu, idx);
7743
7744 return pmu;
7745 }
7746
7747 static void account_event_cpu(struct perf_event *event, int cpu)
7748 {
7749 if (event->parent)
7750 return;
7751
7752 if (is_cgroup_event(event))
7753 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7754 }
7755
7756 static void account_event(struct perf_event *event)
7757 {
7758 bool inc = false;
7759
7760 if (event->parent)
7761 return;
7762
7763 if (event->attach_state & PERF_ATTACH_TASK)
7764 inc = true;
7765 if (event->attr.mmap || event->attr.mmap_data)
7766 atomic_inc(&nr_mmap_events);
7767 if (event->attr.comm)
7768 atomic_inc(&nr_comm_events);
7769 if (event->attr.task)
7770 atomic_inc(&nr_task_events);
7771 if (event->attr.freq) {
7772 if (atomic_inc_return(&nr_freq_events) == 1)
7773 tick_nohz_full_kick_all();
7774 }
7775 if (event->attr.context_switch) {
7776 atomic_inc(&nr_switch_events);
7777 inc = true;
7778 }
7779 if (has_branch_stack(event))
7780 inc = true;
7781 if (is_cgroup_event(event))
7782 inc = true;
7783
7784 if (inc)
7785 static_key_slow_inc(&perf_sched_events.key);
7786
7787 account_event_cpu(event, event->cpu);
7788 }
7789
7790 /*
7791 * Allocate and initialize a event structure
7792 */
7793 static struct perf_event *
7794 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7795 struct task_struct *task,
7796 struct perf_event *group_leader,
7797 struct perf_event *parent_event,
7798 perf_overflow_handler_t overflow_handler,
7799 void *context, int cgroup_fd)
7800 {
7801 struct pmu *pmu;
7802 struct perf_event *event;
7803 struct hw_perf_event *hwc;
7804 long err = -EINVAL;
7805
7806 if ((unsigned)cpu >= nr_cpu_ids) {
7807 if (!task || cpu != -1)
7808 return ERR_PTR(-EINVAL);
7809 }
7810
7811 event = kzalloc(sizeof(*event), GFP_KERNEL);
7812 if (!event)
7813 return ERR_PTR(-ENOMEM);
7814
7815 /*
7816 * Single events are their own group leaders, with an
7817 * empty sibling list:
7818 */
7819 if (!group_leader)
7820 group_leader = event;
7821
7822 mutex_init(&event->child_mutex);
7823 INIT_LIST_HEAD(&event->child_list);
7824
7825 INIT_LIST_HEAD(&event->group_entry);
7826 INIT_LIST_HEAD(&event->event_entry);
7827 INIT_LIST_HEAD(&event->sibling_list);
7828 INIT_LIST_HEAD(&event->rb_entry);
7829 INIT_LIST_HEAD(&event->active_entry);
7830 INIT_HLIST_NODE(&event->hlist_entry);
7831
7832
7833 init_waitqueue_head(&event->waitq);
7834 init_irq_work(&event->pending, perf_pending_event);
7835
7836 mutex_init(&event->mmap_mutex);
7837
7838 atomic_long_set(&event->refcount, 1);
7839 event->cpu = cpu;
7840 event->attr = *attr;
7841 event->group_leader = group_leader;
7842 event->pmu = NULL;
7843 event->oncpu = -1;
7844
7845 event->parent = parent_event;
7846
7847 event->ns = get_pid_ns(task_active_pid_ns(current));
7848 event->id = atomic64_inc_return(&perf_event_id);
7849
7850 event->state = PERF_EVENT_STATE_INACTIVE;
7851
7852 if (task) {
7853 event->attach_state = PERF_ATTACH_TASK;
7854 /*
7855 * XXX pmu::event_init needs to know what task to account to
7856 * and we cannot use the ctx information because we need the
7857 * pmu before we get a ctx.
7858 */
7859 event->hw.target = task;
7860 }
7861
7862 event->clock = &local_clock;
7863 if (parent_event)
7864 event->clock = parent_event->clock;
7865
7866 if (!overflow_handler && parent_event) {
7867 overflow_handler = parent_event->overflow_handler;
7868 context = parent_event->overflow_handler_context;
7869 }
7870
7871 event->overflow_handler = overflow_handler;
7872 event->overflow_handler_context = context;
7873
7874 perf_event__state_init(event);
7875
7876 pmu = NULL;
7877
7878 hwc = &event->hw;
7879 hwc->sample_period = attr->sample_period;
7880 if (attr->freq && attr->sample_freq)
7881 hwc->sample_period = 1;
7882 hwc->last_period = hwc->sample_period;
7883
7884 local64_set(&hwc->period_left, hwc->sample_period);
7885
7886 /*
7887 * we currently do not support PERF_FORMAT_GROUP on inherited events
7888 */
7889 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7890 goto err_ns;
7891
7892 if (!has_branch_stack(event))
7893 event->attr.branch_sample_type = 0;
7894
7895 if (cgroup_fd != -1) {
7896 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7897 if (err)
7898 goto err_ns;
7899 }
7900
7901 pmu = perf_init_event(event);
7902 if (!pmu)
7903 goto err_ns;
7904 else if (IS_ERR(pmu)) {
7905 err = PTR_ERR(pmu);
7906 goto err_ns;
7907 }
7908
7909 err = exclusive_event_init(event);
7910 if (err)
7911 goto err_pmu;
7912
7913 if (!event->parent) {
7914 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7915 err = get_callchain_buffers();
7916 if (err)
7917 goto err_per_task;
7918 }
7919 }
7920
7921 return event;
7922
7923 err_per_task:
7924 exclusive_event_destroy(event);
7925
7926 err_pmu:
7927 if (event->destroy)
7928 event->destroy(event);
7929 module_put(pmu->module);
7930 err_ns:
7931 if (is_cgroup_event(event))
7932 perf_detach_cgroup(event);
7933 if (event->ns)
7934 put_pid_ns(event->ns);
7935 kfree(event);
7936
7937 return ERR_PTR(err);
7938 }
7939
7940 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7941 struct perf_event_attr *attr)
7942 {
7943 u32 size;
7944 int ret;
7945
7946 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7947 return -EFAULT;
7948
7949 /*
7950 * zero the full structure, so that a short copy will be nice.
7951 */
7952 memset(attr, 0, sizeof(*attr));
7953
7954 ret = get_user(size, &uattr->size);
7955 if (ret)
7956 return ret;
7957
7958 if (size > PAGE_SIZE) /* silly large */
7959 goto err_size;
7960
7961 if (!size) /* abi compat */
7962 size = PERF_ATTR_SIZE_VER0;
7963
7964 if (size < PERF_ATTR_SIZE_VER0)
7965 goto err_size;
7966
7967 /*
7968 * If we're handed a bigger struct than we know of,
7969 * ensure all the unknown bits are 0 - i.e. new
7970 * user-space does not rely on any kernel feature
7971 * extensions we dont know about yet.
7972 */
7973 if (size > sizeof(*attr)) {
7974 unsigned char __user *addr;
7975 unsigned char __user *end;
7976 unsigned char val;
7977
7978 addr = (void __user *)uattr + sizeof(*attr);
7979 end = (void __user *)uattr + size;
7980
7981 for (; addr < end; addr++) {
7982 ret = get_user(val, addr);
7983 if (ret)
7984 return ret;
7985 if (val)
7986 goto err_size;
7987 }
7988 size = sizeof(*attr);
7989 }
7990
7991 ret = copy_from_user(attr, uattr, size);
7992 if (ret)
7993 return -EFAULT;
7994
7995 if (attr->__reserved_1)
7996 return -EINVAL;
7997
7998 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7999 return -EINVAL;
8000
8001 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8002 return -EINVAL;
8003
8004 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8005 u64 mask = attr->branch_sample_type;
8006
8007 /* only using defined bits */
8008 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8009 return -EINVAL;
8010
8011 /* at least one branch bit must be set */
8012 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8013 return -EINVAL;
8014
8015 /* propagate priv level, when not set for branch */
8016 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8017
8018 /* exclude_kernel checked on syscall entry */
8019 if (!attr->exclude_kernel)
8020 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8021
8022 if (!attr->exclude_user)
8023 mask |= PERF_SAMPLE_BRANCH_USER;
8024
8025 if (!attr->exclude_hv)
8026 mask |= PERF_SAMPLE_BRANCH_HV;
8027 /*
8028 * adjust user setting (for HW filter setup)
8029 */
8030 attr->branch_sample_type = mask;
8031 }
8032 /* privileged levels capture (kernel, hv): check permissions */
8033 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8034 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8035 return -EACCES;
8036 }
8037
8038 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8039 ret = perf_reg_validate(attr->sample_regs_user);
8040 if (ret)
8041 return ret;
8042 }
8043
8044 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8045 if (!arch_perf_have_user_stack_dump())
8046 return -ENOSYS;
8047
8048 /*
8049 * We have __u32 type for the size, but so far
8050 * we can only use __u16 as maximum due to the
8051 * __u16 sample size limit.
8052 */
8053 if (attr->sample_stack_user >= USHRT_MAX)
8054 ret = -EINVAL;
8055 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8056 ret = -EINVAL;
8057 }
8058
8059 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8060 ret = perf_reg_validate(attr->sample_regs_intr);
8061 out:
8062 return ret;
8063
8064 err_size:
8065 put_user(sizeof(*attr), &uattr->size);
8066 ret = -E2BIG;
8067 goto out;
8068 }
8069
8070 static int
8071 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8072 {
8073 struct ring_buffer *rb = NULL;
8074 int ret = -EINVAL;
8075
8076 if (!output_event)
8077 goto set;
8078
8079 /* don't allow circular references */
8080 if (event == output_event)
8081 goto out;
8082
8083 /*
8084 * Don't allow cross-cpu buffers
8085 */
8086 if (output_event->cpu != event->cpu)
8087 goto out;
8088
8089 /*
8090 * If its not a per-cpu rb, it must be the same task.
8091 */
8092 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8093 goto out;
8094
8095 /*
8096 * Mixing clocks in the same buffer is trouble you don't need.
8097 */
8098 if (output_event->clock != event->clock)
8099 goto out;
8100
8101 /*
8102 * If both events generate aux data, they must be on the same PMU
8103 */
8104 if (has_aux(event) && has_aux(output_event) &&
8105 event->pmu != output_event->pmu)
8106 goto out;
8107
8108 set:
8109 mutex_lock(&event->mmap_mutex);
8110 /* Can't redirect output if we've got an active mmap() */
8111 if (atomic_read(&event->mmap_count))
8112 goto unlock;
8113
8114 if (output_event) {
8115 /* get the rb we want to redirect to */
8116 rb = ring_buffer_get(output_event);
8117 if (!rb)
8118 goto unlock;
8119 }
8120
8121 ring_buffer_attach(event, rb);
8122
8123 ret = 0;
8124 unlock:
8125 mutex_unlock(&event->mmap_mutex);
8126
8127 out:
8128 return ret;
8129 }
8130
8131 static void mutex_lock_double(struct mutex *a, struct mutex *b)
8132 {
8133 if (b < a)
8134 swap(a, b);
8135
8136 mutex_lock(a);
8137 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8138 }
8139
8140 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8141 {
8142 bool nmi_safe = false;
8143
8144 switch (clk_id) {
8145 case CLOCK_MONOTONIC:
8146 event->clock = &ktime_get_mono_fast_ns;
8147 nmi_safe = true;
8148 break;
8149
8150 case CLOCK_MONOTONIC_RAW:
8151 event->clock = &ktime_get_raw_fast_ns;
8152 nmi_safe = true;
8153 break;
8154
8155 case CLOCK_REALTIME:
8156 event->clock = &ktime_get_real_ns;
8157 break;
8158
8159 case CLOCK_BOOTTIME:
8160 event->clock = &ktime_get_boot_ns;
8161 break;
8162
8163 case CLOCK_TAI:
8164 event->clock = &ktime_get_tai_ns;
8165 break;
8166
8167 default:
8168 return -EINVAL;
8169 }
8170
8171 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8172 return -EINVAL;
8173
8174 return 0;
8175 }
8176
8177 /**
8178 * sys_perf_event_open - open a performance event, associate it to a task/cpu
8179 *
8180 * @attr_uptr: event_id type attributes for monitoring/sampling
8181 * @pid: target pid
8182 * @cpu: target cpu
8183 * @group_fd: group leader event fd
8184 */
8185 SYSCALL_DEFINE5(perf_event_open,
8186 struct perf_event_attr __user *, attr_uptr,
8187 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
8188 {
8189 struct perf_event *group_leader = NULL, *output_event = NULL;
8190 struct perf_event *event, *sibling;
8191 struct perf_event_attr attr;
8192 struct perf_event_context *ctx, *uninitialized_var(gctx);
8193 struct file *event_file = NULL;
8194 struct fd group = {NULL, 0};
8195 struct task_struct *task = NULL;
8196 struct pmu *pmu;
8197 int event_fd;
8198 int move_group = 0;
8199 int err;
8200 int f_flags = O_RDWR;
8201 int cgroup_fd = -1;
8202
8203 /* for future expandability... */
8204 if (flags & ~PERF_FLAG_ALL)
8205 return -EINVAL;
8206
8207 err = perf_copy_attr(attr_uptr, &attr);
8208 if (err)
8209 return err;
8210
8211 if (!attr.exclude_kernel) {
8212 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8213 return -EACCES;
8214 }
8215
8216 if (attr.freq) {
8217 if (attr.sample_freq > sysctl_perf_event_sample_rate)
8218 return -EINVAL;
8219 } else {
8220 if (attr.sample_period & (1ULL << 63))
8221 return -EINVAL;
8222 }
8223
8224 /*
8225 * In cgroup mode, the pid argument is used to pass the fd
8226 * opened to the cgroup directory in cgroupfs. The cpu argument
8227 * designates the cpu on which to monitor threads from that
8228 * cgroup.
8229 */
8230 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8231 return -EINVAL;
8232
8233 if (flags & PERF_FLAG_FD_CLOEXEC)
8234 f_flags |= O_CLOEXEC;
8235
8236 event_fd = get_unused_fd_flags(f_flags);
8237 if (event_fd < 0)
8238 return event_fd;
8239
8240 if (group_fd != -1) {
8241 err = perf_fget_light(group_fd, &group);
8242 if (err)
8243 goto err_fd;
8244 group_leader = group.file->private_data;
8245 if (flags & PERF_FLAG_FD_OUTPUT)
8246 output_event = group_leader;
8247 if (flags & PERF_FLAG_FD_NO_GROUP)
8248 group_leader = NULL;
8249 }
8250
8251 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8252 task = find_lively_task_by_vpid(pid);
8253 if (IS_ERR(task)) {
8254 err = PTR_ERR(task);
8255 goto err_group_fd;
8256 }
8257 }
8258
8259 if (task && group_leader &&
8260 group_leader->attr.inherit != attr.inherit) {
8261 err = -EINVAL;
8262 goto err_task;
8263 }
8264
8265 get_online_cpus();
8266
8267 if (flags & PERF_FLAG_PID_CGROUP)
8268 cgroup_fd = pid;
8269
8270 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8271 NULL, NULL, cgroup_fd);
8272 if (IS_ERR(event)) {
8273 err = PTR_ERR(event);
8274 goto err_cpus;
8275 }
8276
8277 if (is_sampling_event(event)) {
8278 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8279 err = -ENOTSUPP;
8280 goto err_alloc;
8281 }
8282 }
8283
8284 account_event(event);
8285
8286 /*
8287 * Special case software events and allow them to be part of
8288 * any hardware group.
8289 */
8290 pmu = event->pmu;
8291
8292 if (attr.use_clockid) {
8293 err = perf_event_set_clock(event, attr.clockid);
8294 if (err)
8295 goto err_alloc;
8296 }
8297
8298 if (group_leader &&
8299 (is_software_event(event) != is_software_event(group_leader))) {
8300 if (is_software_event(event)) {
8301 /*
8302 * If event and group_leader are not both a software
8303 * event, and event is, then group leader is not.
8304 *
8305 * Allow the addition of software events to !software
8306 * groups, this is safe because software events never
8307 * fail to schedule.
8308 */
8309 pmu = group_leader->pmu;
8310 } else if (is_software_event(group_leader) &&
8311 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8312 /*
8313 * In case the group is a pure software group, and we
8314 * try to add a hardware event, move the whole group to
8315 * the hardware context.
8316 */
8317 move_group = 1;
8318 }
8319 }
8320
8321 /*
8322 * Get the target context (task or percpu):
8323 */
8324 ctx = find_get_context(pmu, task, event);
8325 if (IS_ERR(ctx)) {
8326 err = PTR_ERR(ctx);
8327 goto err_alloc;
8328 }
8329
8330 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8331 err = -EBUSY;
8332 goto err_context;
8333 }
8334
8335 if (task) {
8336 put_task_struct(task);
8337 task = NULL;
8338 }
8339
8340 /*
8341 * Look up the group leader (we will attach this event to it):
8342 */
8343 if (group_leader) {
8344 err = -EINVAL;
8345
8346 /*
8347 * Do not allow a recursive hierarchy (this new sibling
8348 * becoming part of another group-sibling):
8349 */
8350 if (group_leader->group_leader != group_leader)
8351 goto err_context;
8352
8353 /* All events in a group should have the same clock */
8354 if (group_leader->clock != event->clock)
8355 goto err_context;
8356
8357 /*
8358 * Do not allow to attach to a group in a different
8359 * task or CPU context:
8360 */
8361 if (move_group) {
8362 /*
8363 * Make sure we're both on the same task, or both
8364 * per-cpu events.
8365 */
8366 if (group_leader->ctx->task != ctx->task)
8367 goto err_context;
8368
8369 /*
8370 * Make sure we're both events for the same CPU;
8371 * grouping events for different CPUs is broken; since
8372 * you can never concurrently schedule them anyhow.
8373 */
8374 if (group_leader->cpu != event->cpu)
8375 goto err_context;
8376 } else {
8377 if (group_leader->ctx != ctx)
8378 goto err_context;
8379 }
8380
8381 /*
8382 * Only a group leader can be exclusive or pinned
8383 */
8384 if (attr.exclusive || attr.pinned)
8385 goto err_context;
8386 }
8387
8388 if (output_event) {
8389 err = perf_event_set_output(event, output_event);
8390 if (err)
8391 goto err_context;
8392 }
8393
8394 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8395 f_flags);
8396 if (IS_ERR(event_file)) {
8397 err = PTR_ERR(event_file);
8398 goto err_context;
8399 }
8400
8401 if (move_group) {
8402 gctx = group_leader->ctx;
8403 mutex_lock_double(&gctx->mutex, &ctx->mutex);
8404 } else {
8405 mutex_lock(&ctx->mutex);
8406 }
8407
8408 if (!perf_event_validate_size(event)) {
8409 err = -E2BIG;
8410 goto err_locked;
8411 }
8412
8413 /*
8414 * Must be under the same ctx::mutex as perf_install_in_context(),
8415 * because we need to serialize with concurrent event creation.
8416 */
8417 if (!exclusive_event_installable(event, ctx)) {
8418 /* exclusive and group stuff are assumed mutually exclusive */
8419 WARN_ON_ONCE(move_group);
8420
8421 err = -EBUSY;
8422 goto err_locked;
8423 }
8424
8425 WARN_ON_ONCE(ctx->parent_ctx);
8426
8427 if (move_group) {
8428 /*
8429 * See perf_event_ctx_lock() for comments on the details
8430 * of swizzling perf_event::ctx.
8431 */
8432 perf_remove_from_context(group_leader, false);
8433
8434 list_for_each_entry(sibling, &group_leader->sibling_list,
8435 group_entry) {
8436 perf_remove_from_context(sibling, false);
8437 put_ctx(gctx);
8438 }
8439
8440 /*
8441 * Wait for everybody to stop referencing the events through
8442 * the old lists, before installing it on new lists.
8443 */
8444 synchronize_rcu();
8445
8446 /*
8447 * Install the group siblings before the group leader.
8448 *
8449 * Because a group leader will try and install the entire group
8450 * (through the sibling list, which is still in-tact), we can
8451 * end up with siblings installed in the wrong context.
8452 *
8453 * By installing siblings first we NO-OP because they're not
8454 * reachable through the group lists.
8455 */
8456 list_for_each_entry(sibling, &group_leader->sibling_list,
8457 group_entry) {
8458 perf_event__state_init(sibling);
8459 perf_install_in_context(ctx, sibling, sibling->cpu);
8460 get_ctx(ctx);
8461 }
8462
8463 /*
8464 * Removing from the context ends up with disabled
8465 * event. What we want here is event in the initial
8466 * startup state, ready to be add into new context.
8467 */
8468 perf_event__state_init(group_leader);
8469 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8470 get_ctx(ctx);
8471
8472 /*
8473 * Now that all events are installed in @ctx, nothing
8474 * references @gctx anymore, so drop the last reference we have
8475 * on it.
8476 */
8477 put_ctx(gctx);
8478 }
8479
8480 /*
8481 * Precalculate sample_data sizes; do while holding ctx::mutex such
8482 * that we're serialized against further additions and before
8483 * perf_install_in_context() which is the point the event is active and
8484 * can use these values.
8485 */
8486 perf_event__header_size(event);
8487 perf_event__id_header_size(event);
8488
8489 event->owner = current;
8490
8491 perf_install_in_context(ctx, event, event->cpu);
8492 perf_unpin_context(ctx);
8493
8494 if (move_group)
8495 mutex_unlock(&gctx->mutex);
8496 mutex_unlock(&ctx->mutex);
8497
8498 put_online_cpus();
8499
8500 mutex_lock(&current->perf_event_mutex);
8501 list_add_tail(&event->owner_entry, &current->perf_event_list);
8502 mutex_unlock(&current->perf_event_mutex);
8503
8504 /*
8505 * Drop the reference on the group_event after placing the
8506 * new event on the sibling_list. This ensures destruction
8507 * of the group leader will find the pointer to itself in
8508 * perf_group_detach().
8509 */
8510 fdput(group);
8511 fd_install(event_fd, event_file);
8512 return event_fd;
8513
8514 err_locked:
8515 if (move_group)
8516 mutex_unlock(&gctx->mutex);
8517 mutex_unlock(&ctx->mutex);
8518 /* err_file: */
8519 fput(event_file);
8520 err_context:
8521 perf_unpin_context(ctx);
8522 put_ctx(ctx);
8523 err_alloc:
8524 free_event(event);
8525 err_cpus:
8526 put_online_cpus();
8527 err_task:
8528 if (task)
8529 put_task_struct(task);
8530 err_group_fd:
8531 fdput(group);
8532 err_fd:
8533 put_unused_fd(event_fd);
8534 return err;
8535 }
8536
8537 /**
8538 * perf_event_create_kernel_counter
8539 *
8540 * @attr: attributes of the counter to create
8541 * @cpu: cpu in which the counter is bound
8542 * @task: task to profile (NULL for percpu)
8543 */
8544 struct perf_event *
8545 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8546 struct task_struct *task,
8547 perf_overflow_handler_t overflow_handler,
8548 void *context)
8549 {
8550 struct perf_event_context *ctx;
8551 struct perf_event *event;
8552 int err;
8553
8554 /*
8555 * Get the target context (task or percpu):
8556 */
8557
8558 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8559 overflow_handler, context, -1);
8560 if (IS_ERR(event)) {
8561 err = PTR_ERR(event);
8562 goto err;
8563 }
8564
8565 /* Mark owner so we could distinguish it from user events. */
8566 event->owner = TASK_TOMBSTONE;
8567
8568 account_event(event);
8569
8570 ctx = find_get_context(event->pmu, task, event);
8571 if (IS_ERR(ctx)) {
8572 err = PTR_ERR(ctx);
8573 goto err_free;
8574 }
8575
8576 WARN_ON_ONCE(ctx->parent_ctx);
8577 mutex_lock(&ctx->mutex);
8578 if (!exclusive_event_installable(event, ctx)) {
8579 mutex_unlock(&ctx->mutex);
8580 perf_unpin_context(ctx);
8581 put_ctx(ctx);
8582 err = -EBUSY;
8583 goto err_free;
8584 }
8585
8586 perf_install_in_context(ctx, event, cpu);
8587 perf_unpin_context(ctx);
8588 mutex_unlock(&ctx->mutex);
8589
8590 return event;
8591
8592 err_free:
8593 free_event(event);
8594 err:
8595 return ERR_PTR(err);
8596 }
8597 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8598
8599 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8600 {
8601 struct perf_event_context *src_ctx;
8602 struct perf_event_context *dst_ctx;
8603 struct perf_event *event, *tmp;
8604 LIST_HEAD(events);
8605
8606 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8607 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8608
8609 /*
8610 * See perf_event_ctx_lock() for comments on the details
8611 * of swizzling perf_event::ctx.
8612 */
8613 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8614 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8615 event_entry) {
8616 perf_remove_from_context(event, false);
8617 unaccount_event_cpu(event, src_cpu);
8618 put_ctx(src_ctx);
8619 list_add(&event->migrate_entry, &events);
8620 }
8621
8622 /*
8623 * Wait for the events to quiesce before re-instating them.
8624 */
8625 synchronize_rcu();
8626
8627 /*
8628 * Re-instate events in 2 passes.
8629 *
8630 * Skip over group leaders and only install siblings on this first
8631 * pass, siblings will not get enabled without a leader, however a
8632 * leader will enable its siblings, even if those are still on the old
8633 * context.
8634 */
8635 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8636 if (event->group_leader == event)
8637 continue;
8638
8639 list_del(&event->migrate_entry);
8640 if (event->state >= PERF_EVENT_STATE_OFF)
8641 event->state = PERF_EVENT_STATE_INACTIVE;
8642 account_event_cpu(event, dst_cpu);
8643 perf_install_in_context(dst_ctx, event, dst_cpu);
8644 get_ctx(dst_ctx);
8645 }
8646
8647 /*
8648 * Once all the siblings are setup properly, install the group leaders
8649 * to make it go.
8650 */
8651 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8652 list_del(&event->migrate_entry);
8653 if (event->state >= PERF_EVENT_STATE_OFF)
8654 event->state = PERF_EVENT_STATE_INACTIVE;
8655 account_event_cpu(event, dst_cpu);
8656 perf_install_in_context(dst_ctx, event, dst_cpu);
8657 get_ctx(dst_ctx);
8658 }
8659 mutex_unlock(&dst_ctx->mutex);
8660 mutex_unlock(&src_ctx->mutex);
8661 }
8662 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8663
8664 static void sync_child_event(struct perf_event *child_event,
8665 struct task_struct *child)
8666 {
8667 struct perf_event *parent_event = child_event->parent;
8668 u64 child_val;
8669
8670 if (child_event->attr.inherit_stat)
8671 perf_event_read_event(child_event, child);
8672
8673 child_val = perf_event_count(child_event);
8674
8675 /*
8676 * Add back the child's count to the parent's count:
8677 */
8678 atomic64_add(child_val, &parent_event->child_count);
8679 atomic64_add(child_event->total_time_enabled,
8680 &parent_event->child_total_time_enabled);
8681 atomic64_add(child_event->total_time_running,
8682 &parent_event->child_total_time_running);
8683
8684 /*
8685 * Remove this event from the parent's list
8686 */
8687 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8688 mutex_lock(&parent_event->child_mutex);
8689 list_del_init(&child_event->child_list);
8690 mutex_unlock(&parent_event->child_mutex);
8691
8692 /*
8693 * Make sure user/parent get notified, that we just
8694 * lost one event.
8695 */
8696 perf_event_wakeup(parent_event);
8697
8698 /*
8699 * Release the parent event, if this was the last
8700 * reference to it.
8701 */
8702 put_event(parent_event);
8703 }
8704
8705 static void
8706 __perf_event_exit_task(struct perf_event *child_event,
8707 struct perf_event_context *child_ctx,
8708 struct task_struct *child)
8709 {
8710 /*
8711 * Do not destroy the 'original' grouping; because of the context
8712 * switch optimization the original events could've ended up in a
8713 * random child task.
8714 *
8715 * If we were to destroy the original group, all group related
8716 * operations would cease to function properly after this random
8717 * child dies.
8718 *
8719 * Do destroy all inherited groups, we don't care about those
8720 * and being thorough is better.
8721 */
8722 raw_spin_lock_irq(&child_ctx->lock);
8723 WARN_ON_ONCE(child_ctx->is_active);
8724
8725 if (!!child_event->parent)
8726 perf_group_detach(child_event);
8727 list_del_event(child_event, child_ctx);
8728 raw_spin_unlock_irq(&child_ctx->lock);
8729
8730 /*
8731 * It can happen that the parent exits first, and has events
8732 * that are still around due to the child reference. These
8733 * events need to be zapped.
8734 */
8735 if (child_event->parent) {
8736 sync_child_event(child_event, child);
8737 free_event(child_event);
8738 } else {
8739 child_event->state = PERF_EVENT_STATE_EXIT;
8740 perf_event_wakeup(child_event);
8741 }
8742 }
8743
8744 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8745 {
8746 struct perf_event_context *child_ctx, *clone_ctx = NULL;
8747 struct perf_event *child_event, *next;
8748
8749 WARN_ON_ONCE(child != current);
8750
8751 child_ctx = perf_pin_task_context(child, ctxn);
8752 if (!child_ctx)
8753 return;
8754
8755 /*
8756 * In order to reduce the amount of tricky in ctx tear-down, we hold
8757 * ctx::mutex over the entire thing. This serializes against almost
8758 * everything that wants to access the ctx.
8759 *
8760 * The exception is sys_perf_event_open() /
8761 * perf_event_create_kernel_count() which does find_get_context()
8762 * without ctx::mutex (it cannot because of the move_group double mutex
8763 * lock thing). See the comments in perf_install_in_context().
8764 *
8765 * We can recurse on the same lock type through:
8766 *
8767 * __perf_event_exit_task()
8768 * sync_child_event()
8769 * put_event()
8770 * mutex_lock(&ctx->mutex)
8771 *
8772 * But since its the parent context it won't be the same instance.
8773 */
8774 mutex_lock(&child_ctx->mutex);
8775
8776 /*
8777 * In a single ctx::lock section, de-schedule the events and detach the
8778 * context from the task such that we cannot ever get it scheduled back
8779 * in.
8780 */
8781 raw_spin_lock_irq(&child_ctx->lock);
8782 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
8783
8784 /*
8785 * Now that the context is inactive, destroy the task <-> ctx relation
8786 * and mark the context dead.
8787 */
8788 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
8789 put_ctx(child_ctx); /* cannot be last */
8790 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
8791 put_task_struct(current); /* cannot be last */
8792
8793 clone_ctx = unclone_ctx(child_ctx);
8794 raw_spin_unlock_irq(&child_ctx->lock);
8795
8796 if (clone_ctx)
8797 put_ctx(clone_ctx);
8798
8799 /*
8800 * Report the task dead after unscheduling the events so that we
8801 * won't get any samples after PERF_RECORD_EXIT. We can however still
8802 * get a few PERF_RECORD_READ events.
8803 */
8804 perf_event_task(child, child_ctx, 0);
8805
8806 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8807 __perf_event_exit_task(child_event, child_ctx, child);
8808
8809 mutex_unlock(&child_ctx->mutex);
8810
8811 put_ctx(child_ctx);
8812 }
8813
8814 /*
8815 * When a child task exits, feed back event values to parent events.
8816 */
8817 void perf_event_exit_task(struct task_struct *child)
8818 {
8819 struct perf_event *event, *tmp;
8820 int ctxn;
8821
8822 mutex_lock(&child->perf_event_mutex);
8823 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8824 owner_entry) {
8825 list_del_init(&event->owner_entry);
8826
8827 /*
8828 * Ensure the list deletion is visible before we clear
8829 * the owner, closes a race against perf_release() where
8830 * we need to serialize on the owner->perf_event_mutex.
8831 */
8832 smp_wmb();
8833 event->owner = NULL;
8834 }
8835 mutex_unlock(&child->perf_event_mutex);
8836
8837 for_each_task_context_nr(ctxn)
8838 perf_event_exit_task_context(child, ctxn);
8839
8840 /*
8841 * The perf_event_exit_task_context calls perf_event_task
8842 * with child's task_ctx, which generates EXIT events for
8843 * child contexts and sets child->perf_event_ctxp[] to NULL.
8844 * At this point we need to send EXIT events to cpu contexts.
8845 */
8846 perf_event_task(child, NULL, 0);
8847 }
8848
8849 static void perf_free_event(struct perf_event *event,
8850 struct perf_event_context *ctx)
8851 {
8852 struct perf_event *parent = event->parent;
8853
8854 if (WARN_ON_ONCE(!parent))
8855 return;
8856
8857 mutex_lock(&parent->child_mutex);
8858 list_del_init(&event->child_list);
8859 mutex_unlock(&parent->child_mutex);
8860
8861 put_event(parent);
8862
8863 raw_spin_lock_irq(&ctx->lock);
8864 perf_group_detach(event);
8865 list_del_event(event, ctx);
8866 raw_spin_unlock_irq(&ctx->lock);
8867 free_event(event);
8868 }
8869
8870 /*
8871 * Free an unexposed, unused context as created by inheritance by
8872 * perf_event_init_task below, used by fork() in case of fail.
8873 *
8874 * Not all locks are strictly required, but take them anyway to be nice and
8875 * help out with the lockdep assertions.
8876 */
8877 void perf_event_free_task(struct task_struct *task)
8878 {
8879 struct perf_event_context *ctx;
8880 struct perf_event *event, *tmp;
8881 int ctxn;
8882
8883 for_each_task_context_nr(ctxn) {
8884 ctx = task->perf_event_ctxp[ctxn];
8885 if (!ctx)
8886 continue;
8887
8888 mutex_lock(&ctx->mutex);
8889 again:
8890 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8891 group_entry)
8892 perf_free_event(event, ctx);
8893
8894 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8895 group_entry)
8896 perf_free_event(event, ctx);
8897
8898 if (!list_empty(&ctx->pinned_groups) ||
8899 !list_empty(&ctx->flexible_groups))
8900 goto again;
8901
8902 mutex_unlock(&ctx->mutex);
8903
8904 put_ctx(ctx);
8905 }
8906 }
8907
8908 void perf_event_delayed_put(struct task_struct *task)
8909 {
8910 int ctxn;
8911
8912 for_each_task_context_nr(ctxn)
8913 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8914 }
8915
8916 struct file *perf_event_get(unsigned int fd)
8917 {
8918 struct file *file;
8919
8920 file = fget_raw(fd);
8921 if (!file)
8922 return ERR_PTR(-EBADF);
8923
8924 if (file->f_op != &perf_fops) {
8925 fput(file);
8926 return ERR_PTR(-EBADF);
8927 }
8928
8929 return file;
8930 }
8931
8932 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8933 {
8934 if (!event)
8935 return ERR_PTR(-EINVAL);
8936
8937 return &event->attr;
8938 }
8939
8940 /*
8941 * inherit a event from parent task to child task:
8942 */
8943 static struct perf_event *
8944 inherit_event(struct perf_event *parent_event,
8945 struct task_struct *parent,
8946 struct perf_event_context *parent_ctx,
8947 struct task_struct *child,
8948 struct perf_event *group_leader,
8949 struct perf_event_context *child_ctx)
8950 {
8951 enum perf_event_active_state parent_state = parent_event->state;
8952 struct perf_event *child_event;
8953 unsigned long flags;
8954
8955 /*
8956 * Instead of creating recursive hierarchies of events,
8957 * we link inherited events back to the original parent,
8958 * which has a filp for sure, which we use as the reference
8959 * count:
8960 */
8961 if (parent_event->parent)
8962 parent_event = parent_event->parent;
8963
8964 child_event = perf_event_alloc(&parent_event->attr,
8965 parent_event->cpu,
8966 child,
8967 group_leader, parent_event,
8968 NULL, NULL, -1);
8969 if (IS_ERR(child_event))
8970 return child_event;
8971
8972 if (is_orphaned_event(parent_event) ||
8973 !atomic_long_inc_not_zero(&parent_event->refcount)) {
8974 free_event(child_event);
8975 return NULL;
8976 }
8977
8978 get_ctx(child_ctx);
8979
8980 /*
8981 * Make the child state follow the state of the parent event,
8982 * not its attr.disabled bit. We hold the parent's mutex,
8983 * so we won't race with perf_event_{en, dis}able_family.
8984 */
8985 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
8986 child_event->state = PERF_EVENT_STATE_INACTIVE;
8987 else
8988 child_event->state = PERF_EVENT_STATE_OFF;
8989
8990 if (parent_event->attr.freq) {
8991 u64 sample_period = parent_event->hw.sample_period;
8992 struct hw_perf_event *hwc = &child_event->hw;
8993
8994 hwc->sample_period = sample_period;
8995 hwc->last_period = sample_period;
8996
8997 local64_set(&hwc->period_left, sample_period);
8998 }
8999
9000 child_event->ctx = child_ctx;
9001 child_event->overflow_handler = parent_event->overflow_handler;
9002 child_event->overflow_handler_context
9003 = parent_event->overflow_handler_context;
9004
9005 /*
9006 * Precalculate sample_data sizes
9007 */
9008 perf_event__header_size(child_event);
9009 perf_event__id_header_size(child_event);
9010
9011 /*
9012 * Link it up in the child's context:
9013 */
9014 raw_spin_lock_irqsave(&child_ctx->lock, flags);
9015 add_event_to_ctx(child_event, child_ctx);
9016 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9017
9018 /*
9019 * Link this into the parent event's child list
9020 */
9021 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9022 mutex_lock(&parent_event->child_mutex);
9023 list_add_tail(&child_event->child_list, &parent_event->child_list);
9024 mutex_unlock(&parent_event->child_mutex);
9025
9026 return child_event;
9027 }
9028
9029 static int inherit_group(struct perf_event *parent_event,
9030 struct task_struct *parent,
9031 struct perf_event_context *parent_ctx,
9032 struct task_struct *child,
9033 struct perf_event_context *child_ctx)
9034 {
9035 struct perf_event *leader;
9036 struct perf_event *sub;
9037 struct perf_event *child_ctr;
9038
9039 leader = inherit_event(parent_event, parent, parent_ctx,
9040 child, NULL, child_ctx);
9041 if (IS_ERR(leader))
9042 return PTR_ERR(leader);
9043 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9044 child_ctr = inherit_event(sub, parent, parent_ctx,
9045 child, leader, child_ctx);
9046 if (IS_ERR(child_ctr))
9047 return PTR_ERR(child_ctr);
9048 }
9049 return 0;
9050 }
9051
9052 static int
9053 inherit_task_group(struct perf_event *event, struct task_struct *parent,
9054 struct perf_event_context *parent_ctx,
9055 struct task_struct *child, int ctxn,
9056 int *inherited_all)
9057 {
9058 int ret;
9059 struct perf_event_context *child_ctx;
9060
9061 if (!event->attr.inherit) {
9062 *inherited_all = 0;
9063 return 0;
9064 }
9065
9066 child_ctx = child->perf_event_ctxp[ctxn];
9067 if (!child_ctx) {
9068 /*
9069 * This is executed from the parent task context, so
9070 * inherit events that have been marked for cloning.
9071 * First allocate and initialize a context for the
9072 * child.
9073 */
9074
9075 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9076 if (!child_ctx)
9077 return -ENOMEM;
9078
9079 child->perf_event_ctxp[ctxn] = child_ctx;
9080 }
9081
9082 ret = inherit_group(event, parent, parent_ctx,
9083 child, child_ctx);
9084
9085 if (ret)
9086 *inherited_all = 0;
9087
9088 return ret;
9089 }
9090
9091 /*
9092 * Initialize the perf_event context in task_struct
9093 */
9094 static int perf_event_init_context(struct task_struct *child, int ctxn)
9095 {
9096 struct perf_event_context *child_ctx, *parent_ctx;
9097 struct perf_event_context *cloned_ctx;
9098 struct perf_event *event;
9099 struct task_struct *parent = current;
9100 int inherited_all = 1;
9101 unsigned long flags;
9102 int ret = 0;
9103
9104 if (likely(!parent->perf_event_ctxp[ctxn]))
9105 return 0;
9106
9107 /*
9108 * If the parent's context is a clone, pin it so it won't get
9109 * swapped under us.
9110 */
9111 parent_ctx = perf_pin_task_context(parent, ctxn);
9112 if (!parent_ctx)
9113 return 0;
9114
9115 /*
9116 * No need to check if parent_ctx != NULL here; since we saw
9117 * it non-NULL earlier, the only reason for it to become NULL
9118 * is if we exit, and since we're currently in the middle of
9119 * a fork we can't be exiting at the same time.
9120 */
9121
9122 /*
9123 * Lock the parent list. No need to lock the child - not PID
9124 * hashed yet and not running, so nobody can access it.
9125 */
9126 mutex_lock(&parent_ctx->mutex);
9127
9128 /*
9129 * We dont have to disable NMIs - we are only looking at
9130 * the list, not manipulating it:
9131 */
9132 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
9133 ret = inherit_task_group(event, parent, parent_ctx,
9134 child, ctxn, &inherited_all);
9135 if (ret)
9136 break;
9137 }
9138
9139 /*
9140 * We can't hold ctx->lock when iterating the ->flexible_group list due
9141 * to allocations, but we need to prevent rotation because
9142 * rotate_ctx() will change the list from interrupt context.
9143 */
9144 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9145 parent_ctx->rotate_disable = 1;
9146 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9147
9148 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
9149 ret = inherit_task_group(event, parent, parent_ctx,
9150 child, ctxn, &inherited_all);
9151 if (ret)
9152 break;
9153 }
9154
9155 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9156 parent_ctx->rotate_disable = 0;
9157
9158 child_ctx = child->perf_event_ctxp[ctxn];
9159
9160 if (child_ctx && inherited_all) {
9161 /*
9162 * Mark the child context as a clone of the parent
9163 * context, or of whatever the parent is a clone of.
9164 *
9165 * Note that if the parent is a clone, the holding of
9166 * parent_ctx->lock avoids it from being uncloned.
9167 */
9168 cloned_ctx = parent_ctx->parent_ctx;
9169 if (cloned_ctx) {
9170 child_ctx->parent_ctx = cloned_ctx;
9171 child_ctx->parent_gen = parent_ctx->parent_gen;
9172 } else {
9173 child_ctx->parent_ctx = parent_ctx;
9174 child_ctx->parent_gen = parent_ctx->generation;
9175 }
9176 get_ctx(child_ctx->parent_ctx);
9177 }
9178
9179 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9180 mutex_unlock(&parent_ctx->mutex);
9181
9182 perf_unpin_context(parent_ctx);
9183 put_ctx(parent_ctx);
9184
9185 return ret;
9186 }
9187
9188 /*
9189 * Initialize the perf_event context in task_struct
9190 */
9191 int perf_event_init_task(struct task_struct *child)
9192 {
9193 int ctxn, ret;
9194
9195 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9196 mutex_init(&child->perf_event_mutex);
9197 INIT_LIST_HEAD(&child->perf_event_list);
9198
9199 for_each_task_context_nr(ctxn) {
9200 ret = perf_event_init_context(child, ctxn);
9201 if (ret) {
9202 perf_event_free_task(child);
9203 return ret;
9204 }
9205 }
9206
9207 return 0;
9208 }
9209
9210 static void __init perf_event_init_all_cpus(void)
9211 {
9212 struct swevent_htable *swhash;
9213 int cpu;
9214
9215 for_each_possible_cpu(cpu) {
9216 swhash = &per_cpu(swevent_htable, cpu);
9217 mutex_init(&swhash->hlist_mutex);
9218 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9219 }
9220 }
9221
9222 static void perf_event_init_cpu(int cpu)
9223 {
9224 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9225
9226 mutex_lock(&swhash->hlist_mutex);
9227 if (swhash->hlist_refcount > 0) {
9228 struct swevent_hlist *hlist;
9229
9230 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9231 WARN_ON(!hlist);
9232 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9233 }
9234 mutex_unlock(&swhash->hlist_mutex);
9235 }
9236
9237 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
9238 static void __perf_event_exit_context(void *__info)
9239 {
9240 struct perf_event_context *ctx = __info;
9241 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
9242 struct perf_event *event;
9243
9244 raw_spin_lock(&ctx->lock);
9245 list_for_each_entry(event, &ctx->event_list, event_entry)
9246 __perf_remove_from_context(event, cpuctx, ctx, (void *)(unsigned long)true);
9247 raw_spin_unlock(&ctx->lock);
9248 }
9249
9250 static void perf_event_exit_cpu_context(int cpu)
9251 {
9252 struct perf_event_context *ctx;
9253 struct pmu *pmu;
9254 int idx;
9255
9256 idx = srcu_read_lock(&pmus_srcu);
9257 list_for_each_entry_rcu(pmu, &pmus, entry) {
9258 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
9259
9260 mutex_lock(&ctx->mutex);
9261 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9262 mutex_unlock(&ctx->mutex);
9263 }
9264 srcu_read_unlock(&pmus_srcu, idx);
9265 }
9266
9267 static void perf_event_exit_cpu(int cpu)
9268 {
9269 perf_event_exit_cpu_context(cpu);
9270 }
9271 #else
9272 static inline void perf_event_exit_cpu(int cpu) { }
9273 #endif
9274
9275 static int
9276 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9277 {
9278 int cpu;
9279
9280 for_each_online_cpu(cpu)
9281 perf_event_exit_cpu(cpu);
9282
9283 return NOTIFY_OK;
9284 }
9285
9286 /*
9287 * Run the perf reboot notifier at the very last possible moment so that
9288 * the generic watchdog code runs as long as possible.
9289 */
9290 static struct notifier_block perf_reboot_notifier = {
9291 .notifier_call = perf_reboot,
9292 .priority = INT_MIN,
9293 };
9294
9295 static int
9296 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9297 {
9298 unsigned int cpu = (long)hcpu;
9299
9300 switch (action & ~CPU_TASKS_FROZEN) {
9301
9302 case CPU_UP_PREPARE:
9303 case CPU_DOWN_FAILED:
9304 perf_event_init_cpu(cpu);
9305 break;
9306
9307 case CPU_UP_CANCELED:
9308 case CPU_DOWN_PREPARE:
9309 perf_event_exit_cpu(cpu);
9310 break;
9311 default:
9312 break;
9313 }
9314
9315 return NOTIFY_OK;
9316 }
9317
9318 void __init perf_event_init(void)
9319 {
9320 int ret;
9321
9322 idr_init(&pmu_idr);
9323
9324 perf_event_init_all_cpus();
9325 init_srcu_struct(&pmus_srcu);
9326 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9327 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9328 perf_pmu_register(&perf_task_clock, NULL, -1);
9329 perf_tp_register();
9330 perf_cpu_notifier(perf_cpu_notify);
9331 register_reboot_notifier(&perf_reboot_notifier);
9332
9333 ret = init_hw_breakpoint();
9334 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9335
9336 /* do not patch jump label more than once per second */
9337 jump_label_rate_limit(&perf_sched_events, HZ);
9338
9339 /*
9340 * Build time assertion that we keep the data_head at the intended
9341 * location. IOW, validation we got the __reserved[] size right.
9342 */
9343 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9344 != 1024);
9345 }
9346
9347 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9348 char *page)
9349 {
9350 struct perf_pmu_events_attr *pmu_attr =
9351 container_of(attr, struct perf_pmu_events_attr, attr);
9352
9353 if (pmu_attr->event_str)
9354 return sprintf(page, "%s\n", pmu_attr->event_str);
9355
9356 return 0;
9357 }
9358
9359 static int __init perf_event_sysfs_init(void)
9360 {
9361 struct pmu *pmu;
9362 int ret;
9363
9364 mutex_lock(&pmus_lock);
9365
9366 ret = bus_register(&pmu_bus);
9367 if (ret)
9368 goto unlock;
9369
9370 list_for_each_entry(pmu, &pmus, entry) {
9371 if (!pmu->name || pmu->type < 0)
9372 continue;
9373
9374 ret = pmu_dev_alloc(pmu);
9375 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9376 }
9377 pmu_bus_running = 1;
9378 ret = 0;
9379
9380 unlock:
9381 mutex_unlock(&pmus_lock);
9382
9383 return ret;
9384 }
9385 device_initcall(perf_event_sysfs_init);
9386
9387 #ifdef CONFIG_CGROUP_PERF
9388 static struct cgroup_subsys_state *
9389 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9390 {
9391 struct perf_cgroup *jc;
9392
9393 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9394 if (!jc)
9395 return ERR_PTR(-ENOMEM);
9396
9397 jc->info = alloc_percpu(struct perf_cgroup_info);
9398 if (!jc->info) {
9399 kfree(jc);
9400 return ERR_PTR(-ENOMEM);
9401 }
9402
9403 return &jc->css;
9404 }
9405
9406 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9407 {
9408 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9409
9410 free_percpu(jc->info);
9411 kfree(jc);
9412 }
9413
9414 static int __perf_cgroup_move(void *info)
9415 {
9416 struct task_struct *task = info;
9417 rcu_read_lock();
9418 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9419 rcu_read_unlock();
9420 return 0;
9421 }
9422
9423 static void perf_cgroup_attach(struct cgroup_taskset *tset)
9424 {
9425 struct task_struct *task;
9426 struct cgroup_subsys_state *css;
9427
9428 cgroup_taskset_for_each(task, css, tset)
9429 task_function_call(task, __perf_cgroup_move, task);
9430 }
9431
9432 struct cgroup_subsys perf_event_cgrp_subsys = {
9433 .css_alloc = perf_cgroup_css_alloc,
9434 .css_free = perf_cgroup_css_free,
9435 .attach = perf_cgroup_attach,
9436 };
9437 #endif /* CONFIG_CGROUP_PERF */