]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - kernel/events/core.c
Merge tag 'nfs-for-4.5-3' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[mirror_ubuntu-disco-kernel.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47
48 #include "internal.h"
49
50 #include <asm/irq_regs.h>
51
52 typedef int (*remote_function_f)(void *);
53
54 struct remote_function_call {
55 struct task_struct *p;
56 remote_function_f func;
57 void *info;
58 int ret;
59 };
60
61 static void remote_function(void *data)
62 {
63 struct remote_function_call *tfc = data;
64 struct task_struct *p = tfc->p;
65
66 if (p) {
67 tfc->ret = -EAGAIN;
68 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
69 return;
70 }
71
72 tfc->ret = tfc->func(tfc->info);
73 }
74
75 /**
76 * task_function_call - call a function on the cpu on which a task runs
77 * @p: the task to evaluate
78 * @func: the function to be called
79 * @info: the function call argument
80 *
81 * Calls the function @func when the task is currently running. This might
82 * be on the current CPU, which just calls the function directly
83 *
84 * returns: @func return value, or
85 * -ESRCH - when the process isn't running
86 * -EAGAIN - when the process moved away
87 */
88 static int
89 task_function_call(struct task_struct *p, remote_function_f func, void *info)
90 {
91 struct remote_function_call data = {
92 .p = p,
93 .func = func,
94 .info = info,
95 .ret = -ESRCH, /* No such (running) process */
96 };
97
98 if (task_curr(p))
99 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
100
101 return data.ret;
102 }
103
104 /**
105 * cpu_function_call - call a function on the cpu
106 * @func: the function to be called
107 * @info: the function call argument
108 *
109 * Calls the function @func on the remote cpu.
110 *
111 * returns: @func return value or -ENXIO when the cpu is offline
112 */
113 static int cpu_function_call(int cpu, remote_function_f func, void *info)
114 {
115 struct remote_function_call data = {
116 .p = NULL,
117 .func = func,
118 .info = info,
119 .ret = -ENXIO, /* No such CPU */
120 };
121
122 smp_call_function_single(cpu, remote_function, &data, 1);
123
124 return data.ret;
125 }
126
127 static inline struct perf_cpu_context *
128 __get_cpu_context(struct perf_event_context *ctx)
129 {
130 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
131 }
132
133 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
134 struct perf_event_context *ctx)
135 {
136 raw_spin_lock(&cpuctx->ctx.lock);
137 if (ctx)
138 raw_spin_lock(&ctx->lock);
139 }
140
141 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
142 struct perf_event_context *ctx)
143 {
144 if (ctx)
145 raw_spin_unlock(&ctx->lock);
146 raw_spin_unlock(&cpuctx->ctx.lock);
147 }
148
149 #define TASK_TOMBSTONE ((void *)-1L)
150
151 static bool is_kernel_event(struct perf_event *event)
152 {
153 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
154 }
155
156 /*
157 * On task ctx scheduling...
158 *
159 * When !ctx->nr_events a task context will not be scheduled. This means
160 * we can disable the scheduler hooks (for performance) without leaving
161 * pending task ctx state.
162 *
163 * This however results in two special cases:
164 *
165 * - removing the last event from a task ctx; this is relatively straight
166 * forward and is done in __perf_remove_from_context.
167 *
168 * - adding the first event to a task ctx; this is tricky because we cannot
169 * rely on ctx->is_active and therefore cannot use event_function_call().
170 * See perf_install_in_context().
171 *
172 * This is because we need a ctx->lock serialized variable (ctx->is_active)
173 * to reliably determine if a particular task/context is scheduled in. The
174 * task_curr() use in task_function_call() is racy in that a remote context
175 * switch is not a single atomic operation.
176 *
177 * As is, the situation is 'safe' because we set rq->curr before we do the
178 * actual context switch. This means that task_curr() will fail early, but
179 * we'll continue spinning on ctx->is_active until we've passed
180 * perf_event_task_sched_out().
181 *
182 * Without this ctx->lock serialized variable we could have race where we find
183 * the task (and hence the context) would not be active while in fact they are.
184 *
185 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
186 */
187
188 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
189 struct perf_event_context *, void *);
190
191 struct event_function_struct {
192 struct perf_event *event;
193 event_f func;
194 void *data;
195 };
196
197 static int event_function(void *info)
198 {
199 struct event_function_struct *efs = info;
200 struct perf_event *event = efs->event;
201 struct perf_event_context *ctx = event->ctx;
202 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
203 struct perf_event_context *task_ctx = cpuctx->task_ctx;
204 int ret = 0;
205
206 WARN_ON_ONCE(!irqs_disabled());
207
208 perf_ctx_lock(cpuctx, task_ctx);
209 /*
210 * Since we do the IPI call without holding ctx->lock things can have
211 * changed, double check we hit the task we set out to hit.
212 */
213 if (ctx->task) {
214 if (ctx->task != current) {
215 ret = -EAGAIN;
216 goto unlock;
217 }
218
219 /*
220 * We only use event_function_call() on established contexts,
221 * and event_function() is only ever called when active (or
222 * rather, we'll have bailed in task_function_call() or the
223 * above ctx->task != current test), therefore we must have
224 * ctx->is_active here.
225 */
226 WARN_ON_ONCE(!ctx->is_active);
227 /*
228 * And since we have ctx->is_active, cpuctx->task_ctx must
229 * match.
230 */
231 WARN_ON_ONCE(task_ctx != ctx);
232 } else {
233 WARN_ON_ONCE(&cpuctx->ctx != ctx);
234 }
235
236 efs->func(event, cpuctx, ctx, efs->data);
237 unlock:
238 perf_ctx_unlock(cpuctx, task_ctx);
239
240 return ret;
241 }
242
243 static void event_function_local(struct perf_event *event, event_f func, void *data)
244 {
245 struct event_function_struct efs = {
246 .event = event,
247 .func = func,
248 .data = data,
249 };
250
251 int ret = event_function(&efs);
252 WARN_ON_ONCE(ret);
253 }
254
255 static void event_function_call(struct perf_event *event, event_f func, void *data)
256 {
257 struct perf_event_context *ctx = event->ctx;
258 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
259 struct event_function_struct efs = {
260 .event = event,
261 .func = func,
262 .data = data,
263 };
264
265 if (!event->parent) {
266 /*
267 * If this is a !child event, we must hold ctx::mutex to
268 * stabilize the the event->ctx relation. See
269 * perf_event_ctx_lock().
270 */
271 lockdep_assert_held(&ctx->mutex);
272 }
273
274 if (!task) {
275 cpu_function_call(event->cpu, event_function, &efs);
276 return;
277 }
278
279 again:
280 if (task == TASK_TOMBSTONE)
281 return;
282
283 if (!task_function_call(task, event_function, &efs))
284 return;
285
286 raw_spin_lock_irq(&ctx->lock);
287 /*
288 * Reload the task pointer, it might have been changed by
289 * a concurrent perf_event_context_sched_out().
290 */
291 task = ctx->task;
292 if (task != TASK_TOMBSTONE) {
293 if (ctx->is_active) {
294 raw_spin_unlock_irq(&ctx->lock);
295 goto again;
296 }
297 func(event, NULL, ctx, data);
298 }
299 raw_spin_unlock_irq(&ctx->lock);
300 }
301
302 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
303 PERF_FLAG_FD_OUTPUT |\
304 PERF_FLAG_PID_CGROUP |\
305 PERF_FLAG_FD_CLOEXEC)
306
307 /*
308 * branch priv levels that need permission checks
309 */
310 #define PERF_SAMPLE_BRANCH_PERM_PLM \
311 (PERF_SAMPLE_BRANCH_KERNEL |\
312 PERF_SAMPLE_BRANCH_HV)
313
314 enum event_type_t {
315 EVENT_FLEXIBLE = 0x1,
316 EVENT_PINNED = 0x2,
317 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
318 };
319
320 /*
321 * perf_sched_events : >0 events exist
322 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
323 */
324 struct static_key_deferred perf_sched_events __read_mostly;
325 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
326 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
327
328 static atomic_t nr_mmap_events __read_mostly;
329 static atomic_t nr_comm_events __read_mostly;
330 static atomic_t nr_task_events __read_mostly;
331 static atomic_t nr_freq_events __read_mostly;
332 static atomic_t nr_switch_events __read_mostly;
333
334 static LIST_HEAD(pmus);
335 static DEFINE_MUTEX(pmus_lock);
336 static struct srcu_struct pmus_srcu;
337
338 /*
339 * perf event paranoia level:
340 * -1 - not paranoid at all
341 * 0 - disallow raw tracepoint access for unpriv
342 * 1 - disallow cpu events for unpriv
343 * 2 - disallow kernel profiling for unpriv
344 */
345 int sysctl_perf_event_paranoid __read_mostly = 1;
346
347 /* Minimum for 512 kiB + 1 user control page */
348 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
349
350 /*
351 * max perf event sample rate
352 */
353 #define DEFAULT_MAX_SAMPLE_RATE 100000
354 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
355 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
356
357 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
358
359 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
360 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
361
362 static int perf_sample_allowed_ns __read_mostly =
363 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
364
365 static void update_perf_cpu_limits(void)
366 {
367 u64 tmp = perf_sample_period_ns;
368
369 tmp *= sysctl_perf_cpu_time_max_percent;
370 do_div(tmp, 100);
371 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
372 }
373
374 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
375
376 int perf_proc_update_handler(struct ctl_table *table, int write,
377 void __user *buffer, size_t *lenp,
378 loff_t *ppos)
379 {
380 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
381
382 if (ret || !write)
383 return ret;
384
385 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
386 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
387 update_perf_cpu_limits();
388
389 return 0;
390 }
391
392 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
393
394 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
395 void __user *buffer, size_t *lenp,
396 loff_t *ppos)
397 {
398 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
399
400 if (ret || !write)
401 return ret;
402
403 update_perf_cpu_limits();
404
405 return 0;
406 }
407
408 /*
409 * perf samples are done in some very critical code paths (NMIs).
410 * If they take too much CPU time, the system can lock up and not
411 * get any real work done. This will drop the sample rate when
412 * we detect that events are taking too long.
413 */
414 #define NR_ACCUMULATED_SAMPLES 128
415 static DEFINE_PER_CPU(u64, running_sample_length);
416
417 static void perf_duration_warn(struct irq_work *w)
418 {
419 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
420 u64 avg_local_sample_len;
421 u64 local_samples_len;
422
423 local_samples_len = __this_cpu_read(running_sample_length);
424 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
425
426 printk_ratelimited(KERN_WARNING
427 "perf interrupt took too long (%lld > %lld), lowering "
428 "kernel.perf_event_max_sample_rate to %d\n",
429 avg_local_sample_len, allowed_ns >> 1,
430 sysctl_perf_event_sample_rate);
431 }
432
433 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
434
435 void perf_sample_event_took(u64 sample_len_ns)
436 {
437 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
438 u64 avg_local_sample_len;
439 u64 local_samples_len;
440
441 if (allowed_ns == 0)
442 return;
443
444 /* decay the counter by 1 average sample */
445 local_samples_len = __this_cpu_read(running_sample_length);
446 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
447 local_samples_len += sample_len_ns;
448 __this_cpu_write(running_sample_length, local_samples_len);
449
450 /*
451 * note: this will be biased artifically low until we have
452 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
453 * from having to maintain a count.
454 */
455 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
456
457 if (avg_local_sample_len <= allowed_ns)
458 return;
459
460 if (max_samples_per_tick <= 1)
461 return;
462
463 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
464 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
465 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
466
467 update_perf_cpu_limits();
468
469 if (!irq_work_queue(&perf_duration_work)) {
470 early_printk("perf interrupt took too long (%lld > %lld), lowering "
471 "kernel.perf_event_max_sample_rate to %d\n",
472 avg_local_sample_len, allowed_ns >> 1,
473 sysctl_perf_event_sample_rate);
474 }
475 }
476
477 static atomic64_t perf_event_id;
478
479 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
480 enum event_type_t event_type);
481
482 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
483 enum event_type_t event_type,
484 struct task_struct *task);
485
486 static void update_context_time(struct perf_event_context *ctx);
487 static u64 perf_event_time(struct perf_event *event);
488
489 void __weak perf_event_print_debug(void) { }
490
491 extern __weak const char *perf_pmu_name(void)
492 {
493 return "pmu";
494 }
495
496 static inline u64 perf_clock(void)
497 {
498 return local_clock();
499 }
500
501 static inline u64 perf_event_clock(struct perf_event *event)
502 {
503 return event->clock();
504 }
505
506 #ifdef CONFIG_CGROUP_PERF
507
508 static inline bool
509 perf_cgroup_match(struct perf_event *event)
510 {
511 struct perf_event_context *ctx = event->ctx;
512 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
513
514 /* @event doesn't care about cgroup */
515 if (!event->cgrp)
516 return true;
517
518 /* wants specific cgroup scope but @cpuctx isn't associated with any */
519 if (!cpuctx->cgrp)
520 return false;
521
522 /*
523 * Cgroup scoping is recursive. An event enabled for a cgroup is
524 * also enabled for all its descendant cgroups. If @cpuctx's
525 * cgroup is a descendant of @event's (the test covers identity
526 * case), it's a match.
527 */
528 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
529 event->cgrp->css.cgroup);
530 }
531
532 static inline void perf_detach_cgroup(struct perf_event *event)
533 {
534 css_put(&event->cgrp->css);
535 event->cgrp = NULL;
536 }
537
538 static inline int is_cgroup_event(struct perf_event *event)
539 {
540 return event->cgrp != NULL;
541 }
542
543 static inline u64 perf_cgroup_event_time(struct perf_event *event)
544 {
545 struct perf_cgroup_info *t;
546
547 t = per_cpu_ptr(event->cgrp->info, event->cpu);
548 return t->time;
549 }
550
551 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
552 {
553 struct perf_cgroup_info *info;
554 u64 now;
555
556 now = perf_clock();
557
558 info = this_cpu_ptr(cgrp->info);
559
560 info->time += now - info->timestamp;
561 info->timestamp = now;
562 }
563
564 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
565 {
566 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
567 if (cgrp_out)
568 __update_cgrp_time(cgrp_out);
569 }
570
571 static inline void update_cgrp_time_from_event(struct perf_event *event)
572 {
573 struct perf_cgroup *cgrp;
574
575 /*
576 * ensure we access cgroup data only when needed and
577 * when we know the cgroup is pinned (css_get)
578 */
579 if (!is_cgroup_event(event))
580 return;
581
582 cgrp = perf_cgroup_from_task(current, event->ctx);
583 /*
584 * Do not update time when cgroup is not active
585 */
586 if (cgrp == event->cgrp)
587 __update_cgrp_time(event->cgrp);
588 }
589
590 static inline void
591 perf_cgroup_set_timestamp(struct task_struct *task,
592 struct perf_event_context *ctx)
593 {
594 struct perf_cgroup *cgrp;
595 struct perf_cgroup_info *info;
596
597 /*
598 * ctx->lock held by caller
599 * ensure we do not access cgroup data
600 * unless we have the cgroup pinned (css_get)
601 */
602 if (!task || !ctx->nr_cgroups)
603 return;
604
605 cgrp = perf_cgroup_from_task(task, ctx);
606 info = this_cpu_ptr(cgrp->info);
607 info->timestamp = ctx->timestamp;
608 }
609
610 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
611 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
612
613 /*
614 * reschedule events based on the cgroup constraint of task.
615 *
616 * mode SWOUT : schedule out everything
617 * mode SWIN : schedule in based on cgroup for next
618 */
619 static void perf_cgroup_switch(struct task_struct *task, int mode)
620 {
621 struct perf_cpu_context *cpuctx;
622 struct pmu *pmu;
623 unsigned long flags;
624
625 /*
626 * disable interrupts to avoid geting nr_cgroup
627 * changes via __perf_event_disable(). Also
628 * avoids preemption.
629 */
630 local_irq_save(flags);
631
632 /*
633 * we reschedule only in the presence of cgroup
634 * constrained events.
635 */
636
637 list_for_each_entry_rcu(pmu, &pmus, entry) {
638 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
639 if (cpuctx->unique_pmu != pmu)
640 continue; /* ensure we process each cpuctx once */
641
642 /*
643 * perf_cgroup_events says at least one
644 * context on this CPU has cgroup events.
645 *
646 * ctx->nr_cgroups reports the number of cgroup
647 * events for a context.
648 */
649 if (cpuctx->ctx.nr_cgroups > 0) {
650 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
651 perf_pmu_disable(cpuctx->ctx.pmu);
652
653 if (mode & PERF_CGROUP_SWOUT) {
654 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
655 /*
656 * must not be done before ctxswout due
657 * to event_filter_match() in event_sched_out()
658 */
659 cpuctx->cgrp = NULL;
660 }
661
662 if (mode & PERF_CGROUP_SWIN) {
663 WARN_ON_ONCE(cpuctx->cgrp);
664 /*
665 * set cgrp before ctxsw in to allow
666 * event_filter_match() to not have to pass
667 * task around
668 * we pass the cpuctx->ctx to perf_cgroup_from_task()
669 * because cgorup events are only per-cpu
670 */
671 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
672 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
673 }
674 perf_pmu_enable(cpuctx->ctx.pmu);
675 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
676 }
677 }
678
679 local_irq_restore(flags);
680 }
681
682 static inline void perf_cgroup_sched_out(struct task_struct *task,
683 struct task_struct *next)
684 {
685 struct perf_cgroup *cgrp1;
686 struct perf_cgroup *cgrp2 = NULL;
687
688 rcu_read_lock();
689 /*
690 * we come here when we know perf_cgroup_events > 0
691 * we do not need to pass the ctx here because we know
692 * we are holding the rcu lock
693 */
694 cgrp1 = perf_cgroup_from_task(task, NULL);
695 cgrp2 = perf_cgroup_from_task(next, NULL);
696
697 /*
698 * only schedule out current cgroup events if we know
699 * that we are switching to a different cgroup. Otherwise,
700 * do no touch the cgroup events.
701 */
702 if (cgrp1 != cgrp2)
703 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
704
705 rcu_read_unlock();
706 }
707
708 static inline void perf_cgroup_sched_in(struct task_struct *prev,
709 struct task_struct *task)
710 {
711 struct perf_cgroup *cgrp1;
712 struct perf_cgroup *cgrp2 = NULL;
713
714 rcu_read_lock();
715 /*
716 * we come here when we know perf_cgroup_events > 0
717 * we do not need to pass the ctx here because we know
718 * we are holding the rcu lock
719 */
720 cgrp1 = perf_cgroup_from_task(task, NULL);
721 cgrp2 = perf_cgroup_from_task(prev, NULL);
722
723 /*
724 * only need to schedule in cgroup events if we are changing
725 * cgroup during ctxsw. Cgroup events were not scheduled
726 * out of ctxsw out if that was not the case.
727 */
728 if (cgrp1 != cgrp2)
729 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
730
731 rcu_read_unlock();
732 }
733
734 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
735 struct perf_event_attr *attr,
736 struct perf_event *group_leader)
737 {
738 struct perf_cgroup *cgrp;
739 struct cgroup_subsys_state *css;
740 struct fd f = fdget(fd);
741 int ret = 0;
742
743 if (!f.file)
744 return -EBADF;
745
746 css = css_tryget_online_from_dir(f.file->f_path.dentry,
747 &perf_event_cgrp_subsys);
748 if (IS_ERR(css)) {
749 ret = PTR_ERR(css);
750 goto out;
751 }
752
753 cgrp = container_of(css, struct perf_cgroup, css);
754 event->cgrp = cgrp;
755
756 /*
757 * all events in a group must monitor
758 * the same cgroup because a task belongs
759 * to only one perf cgroup at a time
760 */
761 if (group_leader && group_leader->cgrp != cgrp) {
762 perf_detach_cgroup(event);
763 ret = -EINVAL;
764 }
765 out:
766 fdput(f);
767 return ret;
768 }
769
770 static inline void
771 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
772 {
773 struct perf_cgroup_info *t;
774 t = per_cpu_ptr(event->cgrp->info, event->cpu);
775 event->shadow_ctx_time = now - t->timestamp;
776 }
777
778 static inline void
779 perf_cgroup_defer_enabled(struct perf_event *event)
780 {
781 /*
782 * when the current task's perf cgroup does not match
783 * the event's, we need to remember to call the
784 * perf_mark_enable() function the first time a task with
785 * a matching perf cgroup is scheduled in.
786 */
787 if (is_cgroup_event(event) && !perf_cgroup_match(event))
788 event->cgrp_defer_enabled = 1;
789 }
790
791 static inline void
792 perf_cgroup_mark_enabled(struct perf_event *event,
793 struct perf_event_context *ctx)
794 {
795 struct perf_event *sub;
796 u64 tstamp = perf_event_time(event);
797
798 if (!event->cgrp_defer_enabled)
799 return;
800
801 event->cgrp_defer_enabled = 0;
802
803 event->tstamp_enabled = tstamp - event->total_time_enabled;
804 list_for_each_entry(sub, &event->sibling_list, group_entry) {
805 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
806 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
807 sub->cgrp_defer_enabled = 0;
808 }
809 }
810 }
811 #else /* !CONFIG_CGROUP_PERF */
812
813 static inline bool
814 perf_cgroup_match(struct perf_event *event)
815 {
816 return true;
817 }
818
819 static inline void perf_detach_cgroup(struct perf_event *event)
820 {}
821
822 static inline int is_cgroup_event(struct perf_event *event)
823 {
824 return 0;
825 }
826
827 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
828 {
829 return 0;
830 }
831
832 static inline void update_cgrp_time_from_event(struct perf_event *event)
833 {
834 }
835
836 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
837 {
838 }
839
840 static inline void perf_cgroup_sched_out(struct task_struct *task,
841 struct task_struct *next)
842 {
843 }
844
845 static inline void perf_cgroup_sched_in(struct task_struct *prev,
846 struct task_struct *task)
847 {
848 }
849
850 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
851 struct perf_event_attr *attr,
852 struct perf_event *group_leader)
853 {
854 return -EINVAL;
855 }
856
857 static inline void
858 perf_cgroup_set_timestamp(struct task_struct *task,
859 struct perf_event_context *ctx)
860 {
861 }
862
863 void
864 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
865 {
866 }
867
868 static inline void
869 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
870 {
871 }
872
873 static inline u64 perf_cgroup_event_time(struct perf_event *event)
874 {
875 return 0;
876 }
877
878 static inline void
879 perf_cgroup_defer_enabled(struct perf_event *event)
880 {
881 }
882
883 static inline void
884 perf_cgroup_mark_enabled(struct perf_event *event,
885 struct perf_event_context *ctx)
886 {
887 }
888 #endif
889
890 /*
891 * set default to be dependent on timer tick just
892 * like original code
893 */
894 #define PERF_CPU_HRTIMER (1000 / HZ)
895 /*
896 * function must be called with interrupts disbled
897 */
898 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
899 {
900 struct perf_cpu_context *cpuctx;
901 int rotations = 0;
902
903 WARN_ON(!irqs_disabled());
904
905 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
906 rotations = perf_rotate_context(cpuctx);
907
908 raw_spin_lock(&cpuctx->hrtimer_lock);
909 if (rotations)
910 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
911 else
912 cpuctx->hrtimer_active = 0;
913 raw_spin_unlock(&cpuctx->hrtimer_lock);
914
915 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
916 }
917
918 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
919 {
920 struct hrtimer *timer = &cpuctx->hrtimer;
921 struct pmu *pmu = cpuctx->ctx.pmu;
922 u64 interval;
923
924 /* no multiplexing needed for SW PMU */
925 if (pmu->task_ctx_nr == perf_sw_context)
926 return;
927
928 /*
929 * check default is sane, if not set then force to
930 * default interval (1/tick)
931 */
932 interval = pmu->hrtimer_interval_ms;
933 if (interval < 1)
934 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
935
936 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
937
938 raw_spin_lock_init(&cpuctx->hrtimer_lock);
939 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
940 timer->function = perf_mux_hrtimer_handler;
941 }
942
943 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
944 {
945 struct hrtimer *timer = &cpuctx->hrtimer;
946 struct pmu *pmu = cpuctx->ctx.pmu;
947 unsigned long flags;
948
949 /* not for SW PMU */
950 if (pmu->task_ctx_nr == perf_sw_context)
951 return 0;
952
953 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
954 if (!cpuctx->hrtimer_active) {
955 cpuctx->hrtimer_active = 1;
956 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
957 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
958 }
959 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
960
961 return 0;
962 }
963
964 void perf_pmu_disable(struct pmu *pmu)
965 {
966 int *count = this_cpu_ptr(pmu->pmu_disable_count);
967 if (!(*count)++)
968 pmu->pmu_disable(pmu);
969 }
970
971 void perf_pmu_enable(struct pmu *pmu)
972 {
973 int *count = this_cpu_ptr(pmu->pmu_disable_count);
974 if (!--(*count))
975 pmu->pmu_enable(pmu);
976 }
977
978 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
979
980 /*
981 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
982 * perf_event_task_tick() are fully serialized because they're strictly cpu
983 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
984 * disabled, while perf_event_task_tick is called from IRQ context.
985 */
986 static void perf_event_ctx_activate(struct perf_event_context *ctx)
987 {
988 struct list_head *head = this_cpu_ptr(&active_ctx_list);
989
990 WARN_ON(!irqs_disabled());
991
992 WARN_ON(!list_empty(&ctx->active_ctx_list));
993
994 list_add(&ctx->active_ctx_list, head);
995 }
996
997 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
998 {
999 WARN_ON(!irqs_disabled());
1000
1001 WARN_ON(list_empty(&ctx->active_ctx_list));
1002
1003 list_del_init(&ctx->active_ctx_list);
1004 }
1005
1006 static void get_ctx(struct perf_event_context *ctx)
1007 {
1008 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1009 }
1010
1011 static void free_ctx(struct rcu_head *head)
1012 {
1013 struct perf_event_context *ctx;
1014
1015 ctx = container_of(head, struct perf_event_context, rcu_head);
1016 kfree(ctx->task_ctx_data);
1017 kfree(ctx);
1018 }
1019
1020 static void put_ctx(struct perf_event_context *ctx)
1021 {
1022 if (atomic_dec_and_test(&ctx->refcount)) {
1023 if (ctx->parent_ctx)
1024 put_ctx(ctx->parent_ctx);
1025 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1026 put_task_struct(ctx->task);
1027 call_rcu(&ctx->rcu_head, free_ctx);
1028 }
1029 }
1030
1031 /*
1032 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1033 * perf_pmu_migrate_context() we need some magic.
1034 *
1035 * Those places that change perf_event::ctx will hold both
1036 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1037 *
1038 * Lock ordering is by mutex address. There are two other sites where
1039 * perf_event_context::mutex nests and those are:
1040 *
1041 * - perf_event_exit_task_context() [ child , 0 ]
1042 * perf_event_exit_event()
1043 * put_event() [ parent, 1 ]
1044 *
1045 * - perf_event_init_context() [ parent, 0 ]
1046 * inherit_task_group()
1047 * inherit_group()
1048 * inherit_event()
1049 * perf_event_alloc()
1050 * perf_init_event()
1051 * perf_try_init_event() [ child , 1 ]
1052 *
1053 * While it appears there is an obvious deadlock here -- the parent and child
1054 * nesting levels are inverted between the two. This is in fact safe because
1055 * life-time rules separate them. That is an exiting task cannot fork, and a
1056 * spawning task cannot (yet) exit.
1057 *
1058 * But remember that that these are parent<->child context relations, and
1059 * migration does not affect children, therefore these two orderings should not
1060 * interact.
1061 *
1062 * The change in perf_event::ctx does not affect children (as claimed above)
1063 * because the sys_perf_event_open() case will install a new event and break
1064 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1065 * concerned with cpuctx and that doesn't have children.
1066 *
1067 * The places that change perf_event::ctx will issue:
1068 *
1069 * perf_remove_from_context();
1070 * synchronize_rcu();
1071 * perf_install_in_context();
1072 *
1073 * to affect the change. The remove_from_context() + synchronize_rcu() should
1074 * quiesce the event, after which we can install it in the new location. This
1075 * means that only external vectors (perf_fops, prctl) can perturb the event
1076 * while in transit. Therefore all such accessors should also acquire
1077 * perf_event_context::mutex to serialize against this.
1078 *
1079 * However; because event->ctx can change while we're waiting to acquire
1080 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1081 * function.
1082 *
1083 * Lock order:
1084 * task_struct::perf_event_mutex
1085 * perf_event_context::mutex
1086 * perf_event::child_mutex;
1087 * perf_event_context::lock
1088 * perf_event::mmap_mutex
1089 * mmap_sem
1090 */
1091 static struct perf_event_context *
1092 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1093 {
1094 struct perf_event_context *ctx;
1095
1096 again:
1097 rcu_read_lock();
1098 ctx = ACCESS_ONCE(event->ctx);
1099 if (!atomic_inc_not_zero(&ctx->refcount)) {
1100 rcu_read_unlock();
1101 goto again;
1102 }
1103 rcu_read_unlock();
1104
1105 mutex_lock_nested(&ctx->mutex, nesting);
1106 if (event->ctx != ctx) {
1107 mutex_unlock(&ctx->mutex);
1108 put_ctx(ctx);
1109 goto again;
1110 }
1111
1112 return ctx;
1113 }
1114
1115 static inline struct perf_event_context *
1116 perf_event_ctx_lock(struct perf_event *event)
1117 {
1118 return perf_event_ctx_lock_nested(event, 0);
1119 }
1120
1121 static void perf_event_ctx_unlock(struct perf_event *event,
1122 struct perf_event_context *ctx)
1123 {
1124 mutex_unlock(&ctx->mutex);
1125 put_ctx(ctx);
1126 }
1127
1128 /*
1129 * This must be done under the ctx->lock, such as to serialize against
1130 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1131 * calling scheduler related locks and ctx->lock nests inside those.
1132 */
1133 static __must_check struct perf_event_context *
1134 unclone_ctx(struct perf_event_context *ctx)
1135 {
1136 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1137
1138 lockdep_assert_held(&ctx->lock);
1139
1140 if (parent_ctx)
1141 ctx->parent_ctx = NULL;
1142 ctx->generation++;
1143
1144 return parent_ctx;
1145 }
1146
1147 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1148 {
1149 /*
1150 * only top level events have the pid namespace they were created in
1151 */
1152 if (event->parent)
1153 event = event->parent;
1154
1155 return task_tgid_nr_ns(p, event->ns);
1156 }
1157
1158 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1159 {
1160 /*
1161 * only top level events have the pid namespace they were created in
1162 */
1163 if (event->parent)
1164 event = event->parent;
1165
1166 return task_pid_nr_ns(p, event->ns);
1167 }
1168
1169 /*
1170 * If we inherit events we want to return the parent event id
1171 * to userspace.
1172 */
1173 static u64 primary_event_id(struct perf_event *event)
1174 {
1175 u64 id = event->id;
1176
1177 if (event->parent)
1178 id = event->parent->id;
1179
1180 return id;
1181 }
1182
1183 /*
1184 * Get the perf_event_context for a task and lock it.
1185 *
1186 * This has to cope with with the fact that until it is locked,
1187 * the context could get moved to another task.
1188 */
1189 static struct perf_event_context *
1190 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1191 {
1192 struct perf_event_context *ctx;
1193
1194 retry:
1195 /*
1196 * One of the few rules of preemptible RCU is that one cannot do
1197 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1198 * part of the read side critical section was irqs-enabled -- see
1199 * rcu_read_unlock_special().
1200 *
1201 * Since ctx->lock nests under rq->lock we must ensure the entire read
1202 * side critical section has interrupts disabled.
1203 */
1204 local_irq_save(*flags);
1205 rcu_read_lock();
1206 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1207 if (ctx) {
1208 /*
1209 * If this context is a clone of another, it might
1210 * get swapped for another underneath us by
1211 * perf_event_task_sched_out, though the
1212 * rcu_read_lock() protects us from any context
1213 * getting freed. Lock the context and check if it
1214 * got swapped before we could get the lock, and retry
1215 * if so. If we locked the right context, then it
1216 * can't get swapped on us any more.
1217 */
1218 raw_spin_lock(&ctx->lock);
1219 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1220 raw_spin_unlock(&ctx->lock);
1221 rcu_read_unlock();
1222 local_irq_restore(*flags);
1223 goto retry;
1224 }
1225
1226 if (ctx->task == TASK_TOMBSTONE ||
1227 !atomic_inc_not_zero(&ctx->refcount)) {
1228 raw_spin_unlock(&ctx->lock);
1229 ctx = NULL;
1230 } else {
1231 WARN_ON_ONCE(ctx->task != task);
1232 }
1233 }
1234 rcu_read_unlock();
1235 if (!ctx)
1236 local_irq_restore(*flags);
1237 return ctx;
1238 }
1239
1240 /*
1241 * Get the context for a task and increment its pin_count so it
1242 * can't get swapped to another task. This also increments its
1243 * reference count so that the context can't get freed.
1244 */
1245 static struct perf_event_context *
1246 perf_pin_task_context(struct task_struct *task, int ctxn)
1247 {
1248 struct perf_event_context *ctx;
1249 unsigned long flags;
1250
1251 ctx = perf_lock_task_context(task, ctxn, &flags);
1252 if (ctx) {
1253 ++ctx->pin_count;
1254 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1255 }
1256 return ctx;
1257 }
1258
1259 static void perf_unpin_context(struct perf_event_context *ctx)
1260 {
1261 unsigned long flags;
1262
1263 raw_spin_lock_irqsave(&ctx->lock, flags);
1264 --ctx->pin_count;
1265 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1266 }
1267
1268 /*
1269 * Update the record of the current time in a context.
1270 */
1271 static void update_context_time(struct perf_event_context *ctx)
1272 {
1273 u64 now = perf_clock();
1274
1275 ctx->time += now - ctx->timestamp;
1276 ctx->timestamp = now;
1277 }
1278
1279 static u64 perf_event_time(struct perf_event *event)
1280 {
1281 struct perf_event_context *ctx = event->ctx;
1282
1283 if (is_cgroup_event(event))
1284 return perf_cgroup_event_time(event);
1285
1286 return ctx ? ctx->time : 0;
1287 }
1288
1289 /*
1290 * Update the total_time_enabled and total_time_running fields for a event.
1291 * The caller of this function needs to hold the ctx->lock.
1292 */
1293 static void update_event_times(struct perf_event *event)
1294 {
1295 struct perf_event_context *ctx = event->ctx;
1296 u64 run_end;
1297
1298 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1299 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1300 return;
1301 /*
1302 * in cgroup mode, time_enabled represents
1303 * the time the event was enabled AND active
1304 * tasks were in the monitored cgroup. This is
1305 * independent of the activity of the context as
1306 * there may be a mix of cgroup and non-cgroup events.
1307 *
1308 * That is why we treat cgroup events differently
1309 * here.
1310 */
1311 if (is_cgroup_event(event))
1312 run_end = perf_cgroup_event_time(event);
1313 else if (ctx->is_active)
1314 run_end = ctx->time;
1315 else
1316 run_end = event->tstamp_stopped;
1317
1318 event->total_time_enabled = run_end - event->tstamp_enabled;
1319
1320 if (event->state == PERF_EVENT_STATE_INACTIVE)
1321 run_end = event->tstamp_stopped;
1322 else
1323 run_end = perf_event_time(event);
1324
1325 event->total_time_running = run_end - event->tstamp_running;
1326
1327 }
1328
1329 /*
1330 * Update total_time_enabled and total_time_running for all events in a group.
1331 */
1332 static void update_group_times(struct perf_event *leader)
1333 {
1334 struct perf_event *event;
1335
1336 update_event_times(leader);
1337 list_for_each_entry(event, &leader->sibling_list, group_entry)
1338 update_event_times(event);
1339 }
1340
1341 static struct list_head *
1342 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1343 {
1344 if (event->attr.pinned)
1345 return &ctx->pinned_groups;
1346 else
1347 return &ctx->flexible_groups;
1348 }
1349
1350 /*
1351 * Add a event from the lists for its context.
1352 * Must be called with ctx->mutex and ctx->lock held.
1353 */
1354 static void
1355 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1356 {
1357 lockdep_assert_held(&ctx->lock);
1358
1359 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1360 event->attach_state |= PERF_ATTACH_CONTEXT;
1361
1362 /*
1363 * If we're a stand alone event or group leader, we go to the context
1364 * list, group events are kept attached to the group so that
1365 * perf_group_detach can, at all times, locate all siblings.
1366 */
1367 if (event->group_leader == event) {
1368 struct list_head *list;
1369
1370 if (is_software_event(event))
1371 event->group_flags |= PERF_GROUP_SOFTWARE;
1372
1373 list = ctx_group_list(event, ctx);
1374 list_add_tail(&event->group_entry, list);
1375 }
1376
1377 if (is_cgroup_event(event))
1378 ctx->nr_cgroups++;
1379
1380 list_add_rcu(&event->event_entry, &ctx->event_list);
1381 ctx->nr_events++;
1382 if (event->attr.inherit_stat)
1383 ctx->nr_stat++;
1384
1385 ctx->generation++;
1386 }
1387
1388 /*
1389 * Initialize event state based on the perf_event_attr::disabled.
1390 */
1391 static inline void perf_event__state_init(struct perf_event *event)
1392 {
1393 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1394 PERF_EVENT_STATE_INACTIVE;
1395 }
1396
1397 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1398 {
1399 int entry = sizeof(u64); /* value */
1400 int size = 0;
1401 int nr = 1;
1402
1403 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1404 size += sizeof(u64);
1405
1406 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1407 size += sizeof(u64);
1408
1409 if (event->attr.read_format & PERF_FORMAT_ID)
1410 entry += sizeof(u64);
1411
1412 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1413 nr += nr_siblings;
1414 size += sizeof(u64);
1415 }
1416
1417 size += entry * nr;
1418 event->read_size = size;
1419 }
1420
1421 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1422 {
1423 struct perf_sample_data *data;
1424 u16 size = 0;
1425
1426 if (sample_type & PERF_SAMPLE_IP)
1427 size += sizeof(data->ip);
1428
1429 if (sample_type & PERF_SAMPLE_ADDR)
1430 size += sizeof(data->addr);
1431
1432 if (sample_type & PERF_SAMPLE_PERIOD)
1433 size += sizeof(data->period);
1434
1435 if (sample_type & PERF_SAMPLE_WEIGHT)
1436 size += sizeof(data->weight);
1437
1438 if (sample_type & PERF_SAMPLE_READ)
1439 size += event->read_size;
1440
1441 if (sample_type & PERF_SAMPLE_DATA_SRC)
1442 size += sizeof(data->data_src.val);
1443
1444 if (sample_type & PERF_SAMPLE_TRANSACTION)
1445 size += sizeof(data->txn);
1446
1447 event->header_size = size;
1448 }
1449
1450 /*
1451 * Called at perf_event creation and when events are attached/detached from a
1452 * group.
1453 */
1454 static void perf_event__header_size(struct perf_event *event)
1455 {
1456 __perf_event_read_size(event,
1457 event->group_leader->nr_siblings);
1458 __perf_event_header_size(event, event->attr.sample_type);
1459 }
1460
1461 static void perf_event__id_header_size(struct perf_event *event)
1462 {
1463 struct perf_sample_data *data;
1464 u64 sample_type = event->attr.sample_type;
1465 u16 size = 0;
1466
1467 if (sample_type & PERF_SAMPLE_TID)
1468 size += sizeof(data->tid_entry);
1469
1470 if (sample_type & PERF_SAMPLE_TIME)
1471 size += sizeof(data->time);
1472
1473 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1474 size += sizeof(data->id);
1475
1476 if (sample_type & PERF_SAMPLE_ID)
1477 size += sizeof(data->id);
1478
1479 if (sample_type & PERF_SAMPLE_STREAM_ID)
1480 size += sizeof(data->stream_id);
1481
1482 if (sample_type & PERF_SAMPLE_CPU)
1483 size += sizeof(data->cpu_entry);
1484
1485 event->id_header_size = size;
1486 }
1487
1488 static bool perf_event_validate_size(struct perf_event *event)
1489 {
1490 /*
1491 * The values computed here will be over-written when we actually
1492 * attach the event.
1493 */
1494 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1495 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1496 perf_event__id_header_size(event);
1497
1498 /*
1499 * Sum the lot; should not exceed the 64k limit we have on records.
1500 * Conservative limit to allow for callchains and other variable fields.
1501 */
1502 if (event->read_size + event->header_size +
1503 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1504 return false;
1505
1506 return true;
1507 }
1508
1509 static void perf_group_attach(struct perf_event *event)
1510 {
1511 struct perf_event *group_leader = event->group_leader, *pos;
1512
1513 /*
1514 * We can have double attach due to group movement in perf_event_open.
1515 */
1516 if (event->attach_state & PERF_ATTACH_GROUP)
1517 return;
1518
1519 event->attach_state |= PERF_ATTACH_GROUP;
1520
1521 if (group_leader == event)
1522 return;
1523
1524 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1525
1526 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1527 !is_software_event(event))
1528 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1529
1530 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1531 group_leader->nr_siblings++;
1532
1533 perf_event__header_size(group_leader);
1534
1535 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1536 perf_event__header_size(pos);
1537 }
1538
1539 /*
1540 * Remove a event from the lists for its context.
1541 * Must be called with ctx->mutex and ctx->lock held.
1542 */
1543 static void
1544 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1545 {
1546 struct perf_cpu_context *cpuctx;
1547
1548 WARN_ON_ONCE(event->ctx != ctx);
1549 lockdep_assert_held(&ctx->lock);
1550
1551 /*
1552 * We can have double detach due to exit/hot-unplug + close.
1553 */
1554 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1555 return;
1556
1557 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1558
1559 if (is_cgroup_event(event)) {
1560 ctx->nr_cgroups--;
1561 /*
1562 * Because cgroup events are always per-cpu events, this will
1563 * always be called from the right CPU.
1564 */
1565 cpuctx = __get_cpu_context(ctx);
1566 /*
1567 * If there are no more cgroup events then clear cgrp to avoid
1568 * stale pointer in update_cgrp_time_from_cpuctx().
1569 */
1570 if (!ctx->nr_cgroups)
1571 cpuctx->cgrp = NULL;
1572 }
1573
1574 ctx->nr_events--;
1575 if (event->attr.inherit_stat)
1576 ctx->nr_stat--;
1577
1578 list_del_rcu(&event->event_entry);
1579
1580 if (event->group_leader == event)
1581 list_del_init(&event->group_entry);
1582
1583 update_group_times(event);
1584
1585 /*
1586 * If event was in error state, then keep it
1587 * that way, otherwise bogus counts will be
1588 * returned on read(). The only way to get out
1589 * of error state is by explicit re-enabling
1590 * of the event
1591 */
1592 if (event->state > PERF_EVENT_STATE_OFF)
1593 event->state = PERF_EVENT_STATE_OFF;
1594
1595 ctx->generation++;
1596 }
1597
1598 static void perf_group_detach(struct perf_event *event)
1599 {
1600 struct perf_event *sibling, *tmp;
1601 struct list_head *list = NULL;
1602
1603 /*
1604 * We can have double detach due to exit/hot-unplug + close.
1605 */
1606 if (!(event->attach_state & PERF_ATTACH_GROUP))
1607 return;
1608
1609 event->attach_state &= ~PERF_ATTACH_GROUP;
1610
1611 /*
1612 * If this is a sibling, remove it from its group.
1613 */
1614 if (event->group_leader != event) {
1615 list_del_init(&event->group_entry);
1616 event->group_leader->nr_siblings--;
1617 goto out;
1618 }
1619
1620 if (!list_empty(&event->group_entry))
1621 list = &event->group_entry;
1622
1623 /*
1624 * If this was a group event with sibling events then
1625 * upgrade the siblings to singleton events by adding them
1626 * to whatever list we are on.
1627 */
1628 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1629 if (list)
1630 list_move_tail(&sibling->group_entry, list);
1631 sibling->group_leader = sibling;
1632
1633 /* Inherit group flags from the previous leader */
1634 sibling->group_flags = event->group_flags;
1635
1636 WARN_ON_ONCE(sibling->ctx != event->ctx);
1637 }
1638
1639 out:
1640 perf_event__header_size(event->group_leader);
1641
1642 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1643 perf_event__header_size(tmp);
1644 }
1645
1646 static bool is_orphaned_event(struct perf_event *event)
1647 {
1648 return event->state == PERF_EVENT_STATE_EXIT;
1649 }
1650
1651 static inline int pmu_filter_match(struct perf_event *event)
1652 {
1653 struct pmu *pmu = event->pmu;
1654 return pmu->filter_match ? pmu->filter_match(event) : 1;
1655 }
1656
1657 static inline int
1658 event_filter_match(struct perf_event *event)
1659 {
1660 return (event->cpu == -1 || event->cpu == smp_processor_id())
1661 && perf_cgroup_match(event) && pmu_filter_match(event);
1662 }
1663
1664 static void
1665 event_sched_out(struct perf_event *event,
1666 struct perf_cpu_context *cpuctx,
1667 struct perf_event_context *ctx)
1668 {
1669 u64 tstamp = perf_event_time(event);
1670 u64 delta;
1671
1672 WARN_ON_ONCE(event->ctx != ctx);
1673 lockdep_assert_held(&ctx->lock);
1674
1675 /*
1676 * An event which could not be activated because of
1677 * filter mismatch still needs to have its timings
1678 * maintained, otherwise bogus information is return
1679 * via read() for time_enabled, time_running:
1680 */
1681 if (event->state == PERF_EVENT_STATE_INACTIVE
1682 && !event_filter_match(event)) {
1683 delta = tstamp - event->tstamp_stopped;
1684 event->tstamp_running += delta;
1685 event->tstamp_stopped = tstamp;
1686 }
1687
1688 if (event->state != PERF_EVENT_STATE_ACTIVE)
1689 return;
1690
1691 perf_pmu_disable(event->pmu);
1692
1693 event->state = PERF_EVENT_STATE_INACTIVE;
1694 if (event->pending_disable) {
1695 event->pending_disable = 0;
1696 event->state = PERF_EVENT_STATE_OFF;
1697 }
1698 event->tstamp_stopped = tstamp;
1699 event->pmu->del(event, 0);
1700 event->oncpu = -1;
1701
1702 if (!is_software_event(event))
1703 cpuctx->active_oncpu--;
1704 if (!--ctx->nr_active)
1705 perf_event_ctx_deactivate(ctx);
1706 if (event->attr.freq && event->attr.sample_freq)
1707 ctx->nr_freq--;
1708 if (event->attr.exclusive || !cpuctx->active_oncpu)
1709 cpuctx->exclusive = 0;
1710
1711 perf_pmu_enable(event->pmu);
1712 }
1713
1714 static void
1715 group_sched_out(struct perf_event *group_event,
1716 struct perf_cpu_context *cpuctx,
1717 struct perf_event_context *ctx)
1718 {
1719 struct perf_event *event;
1720 int state = group_event->state;
1721
1722 event_sched_out(group_event, cpuctx, ctx);
1723
1724 /*
1725 * Schedule out siblings (if any):
1726 */
1727 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1728 event_sched_out(event, cpuctx, ctx);
1729
1730 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1731 cpuctx->exclusive = 0;
1732 }
1733
1734 #define DETACH_GROUP 0x01UL
1735 #define DETACH_STATE 0x02UL
1736
1737 /*
1738 * Cross CPU call to remove a performance event
1739 *
1740 * We disable the event on the hardware level first. After that we
1741 * remove it from the context list.
1742 */
1743 static void
1744 __perf_remove_from_context(struct perf_event *event,
1745 struct perf_cpu_context *cpuctx,
1746 struct perf_event_context *ctx,
1747 void *info)
1748 {
1749 unsigned long flags = (unsigned long)info;
1750
1751 event_sched_out(event, cpuctx, ctx);
1752 if (flags & DETACH_GROUP)
1753 perf_group_detach(event);
1754 list_del_event(event, ctx);
1755 if (flags & DETACH_STATE)
1756 event->state = PERF_EVENT_STATE_EXIT;
1757
1758 if (!ctx->nr_events && ctx->is_active) {
1759 ctx->is_active = 0;
1760 if (ctx->task) {
1761 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1762 cpuctx->task_ctx = NULL;
1763 }
1764 }
1765 }
1766
1767 /*
1768 * Remove the event from a task's (or a CPU's) list of events.
1769 *
1770 * If event->ctx is a cloned context, callers must make sure that
1771 * every task struct that event->ctx->task could possibly point to
1772 * remains valid. This is OK when called from perf_release since
1773 * that only calls us on the top-level context, which can't be a clone.
1774 * When called from perf_event_exit_task, it's OK because the
1775 * context has been detached from its task.
1776 */
1777 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1778 {
1779 lockdep_assert_held(&event->ctx->mutex);
1780
1781 event_function_call(event, __perf_remove_from_context, (void *)flags);
1782 }
1783
1784 /*
1785 * Cross CPU call to disable a performance event
1786 */
1787 static void __perf_event_disable(struct perf_event *event,
1788 struct perf_cpu_context *cpuctx,
1789 struct perf_event_context *ctx,
1790 void *info)
1791 {
1792 if (event->state < PERF_EVENT_STATE_INACTIVE)
1793 return;
1794
1795 update_context_time(ctx);
1796 update_cgrp_time_from_event(event);
1797 update_group_times(event);
1798 if (event == event->group_leader)
1799 group_sched_out(event, cpuctx, ctx);
1800 else
1801 event_sched_out(event, cpuctx, ctx);
1802 event->state = PERF_EVENT_STATE_OFF;
1803 }
1804
1805 /*
1806 * Disable a event.
1807 *
1808 * If event->ctx is a cloned context, callers must make sure that
1809 * every task struct that event->ctx->task could possibly point to
1810 * remains valid. This condition is satisifed when called through
1811 * perf_event_for_each_child or perf_event_for_each because they
1812 * hold the top-level event's child_mutex, so any descendant that
1813 * goes to exit will block in perf_event_exit_event().
1814 *
1815 * When called from perf_pending_event it's OK because event->ctx
1816 * is the current context on this CPU and preemption is disabled,
1817 * hence we can't get into perf_event_task_sched_out for this context.
1818 */
1819 static void _perf_event_disable(struct perf_event *event)
1820 {
1821 struct perf_event_context *ctx = event->ctx;
1822
1823 raw_spin_lock_irq(&ctx->lock);
1824 if (event->state <= PERF_EVENT_STATE_OFF) {
1825 raw_spin_unlock_irq(&ctx->lock);
1826 return;
1827 }
1828 raw_spin_unlock_irq(&ctx->lock);
1829
1830 event_function_call(event, __perf_event_disable, NULL);
1831 }
1832
1833 void perf_event_disable_local(struct perf_event *event)
1834 {
1835 event_function_local(event, __perf_event_disable, NULL);
1836 }
1837
1838 /*
1839 * Strictly speaking kernel users cannot create groups and therefore this
1840 * interface does not need the perf_event_ctx_lock() magic.
1841 */
1842 void perf_event_disable(struct perf_event *event)
1843 {
1844 struct perf_event_context *ctx;
1845
1846 ctx = perf_event_ctx_lock(event);
1847 _perf_event_disable(event);
1848 perf_event_ctx_unlock(event, ctx);
1849 }
1850 EXPORT_SYMBOL_GPL(perf_event_disable);
1851
1852 static void perf_set_shadow_time(struct perf_event *event,
1853 struct perf_event_context *ctx,
1854 u64 tstamp)
1855 {
1856 /*
1857 * use the correct time source for the time snapshot
1858 *
1859 * We could get by without this by leveraging the
1860 * fact that to get to this function, the caller
1861 * has most likely already called update_context_time()
1862 * and update_cgrp_time_xx() and thus both timestamp
1863 * are identical (or very close). Given that tstamp is,
1864 * already adjusted for cgroup, we could say that:
1865 * tstamp - ctx->timestamp
1866 * is equivalent to
1867 * tstamp - cgrp->timestamp.
1868 *
1869 * Then, in perf_output_read(), the calculation would
1870 * work with no changes because:
1871 * - event is guaranteed scheduled in
1872 * - no scheduled out in between
1873 * - thus the timestamp would be the same
1874 *
1875 * But this is a bit hairy.
1876 *
1877 * So instead, we have an explicit cgroup call to remain
1878 * within the time time source all along. We believe it
1879 * is cleaner and simpler to understand.
1880 */
1881 if (is_cgroup_event(event))
1882 perf_cgroup_set_shadow_time(event, tstamp);
1883 else
1884 event->shadow_ctx_time = tstamp - ctx->timestamp;
1885 }
1886
1887 #define MAX_INTERRUPTS (~0ULL)
1888
1889 static void perf_log_throttle(struct perf_event *event, int enable);
1890 static void perf_log_itrace_start(struct perf_event *event);
1891
1892 static int
1893 event_sched_in(struct perf_event *event,
1894 struct perf_cpu_context *cpuctx,
1895 struct perf_event_context *ctx)
1896 {
1897 u64 tstamp = perf_event_time(event);
1898 int ret = 0;
1899
1900 lockdep_assert_held(&ctx->lock);
1901
1902 if (event->state <= PERF_EVENT_STATE_OFF)
1903 return 0;
1904
1905 event->state = PERF_EVENT_STATE_ACTIVE;
1906 event->oncpu = smp_processor_id();
1907
1908 /*
1909 * Unthrottle events, since we scheduled we might have missed several
1910 * ticks already, also for a heavily scheduling task there is little
1911 * guarantee it'll get a tick in a timely manner.
1912 */
1913 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1914 perf_log_throttle(event, 1);
1915 event->hw.interrupts = 0;
1916 }
1917
1918 /*
1919 * The new state must be visible before we turn it on in the hardware:
1920 */
1921 smp_wmb();
1922
1923 perf_pmu_disable(event->pmu);
1924
1925 perf_set_shadow_time(event, ctx, tstamp);
1926
1927 perf_log_itrace_start(event);
1928
1929 if (event->pmu->add(event, PERF_EF_START)) {
1930 event->state = PERF_EVENT_STATE_INACTIVE;
1931 event->oncpu = -1;
1932 ret = -EAGAIN;
1933 goto out;
1934 }
1935
1936 event->tstamp_running += tstamp - event->tstamp_stopped;
1937
1938 if (!is_software_event(event))
1939 cpuctx->active_oncpu++;
1940 if (!ctx->nr_active++)
1941 perf_event_ctx_activate(ctx);
1942 if (event->attr.freq && event->attr.sample_freq)
1943 ctx->nr_freq++;
1944
1945 if (event->attr.exclusive)
1946 cpuctx->exclusive = 1;
1947
1948 out:
1949 perf_pmu_enable(event->pmu);
1950
1951 return ret;
1952 }
1953
1954 static int
1955 group_sched_in(struct perf_event *group_event,
1956 struct perf_cpu_context *cpuctx,
1957 struct perf_event_context *ctx)
1958 {
1959 struct perf_event *event, *partial_group = NULL;
1960 struct pmu *pmu = ctx->pmu;
1961 u64 now = ctx->time;
1962 bool simulate = false;
1963
1964 if (group_event->state == PERF_EVENT_STATE_OFF)
1965 return 0;
1966
1967 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1968
1969 if (event_sched_in(group_event, cpuctx, ctx)) {
1970 pmu->cancel_txn(pmu);
1971 perf_mux_hrtimer_restart(cpuctx);
1972 return -EAGAIN;
1973 }
1974
1975 /*
1976 * Schedule in siblings as one group (if any):
1977 */
1978 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1979 if (event_sched_in(event, cpuctx, ctx)) {
1980 partial_group = event;
1981 goto group_error;
1982 }
1983 }
1984
1985 if (!pmu->commit_txn(pmu))
1986 return 0;
1987
1988 group_error:
1989 /*
1990 * Groups can be scheduled in as one unit only, so undo any
1991 * partial group before returning:
1992 * The events up to the failed event are scheduled out normally,
1993 * tstamp_stopped will be updated.
1994 *
1995 * The failed events and the remaining siblings need to have
1996 * their timings updated as if they had gone thru event_sched_in()
1997 * and event_sched_out(). This is required to get consistent timings
1998 * across the group. This also takes care of the case where the group
1999 * could never be scheduled by ensuring tstamp_stopped is set to mark
2000 * the time the event was actually stopped, such that time delta
2001 * calculation in update_event_times() is correct.
2002 */
2003 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2004 if (event == partial_group)
2005 simulate = true;
2006
2007 if (simulate) {
2008 event->tstamp_running += now - event->tstamp_stopped;
2009 event->tstamp_stopped = now;
2010 } else {
2011 event_sched_out(event, cpuctx, ctx);
2012 }
2013 }
2014 event_sched_out(group_event, cpuctx, ctx);
2015
2016 pmu->cancel_txn(pmu);
2017
2018 perf_mux_hrtimer_restart(cpuctx);
2019
2020 return -EAGAIN;
2021 }
2022
2023 /*
2024 * Work out whether we can put this event group on the CPU now.
2025 */
2026 static int group_can_go_on(struct perf_event *event,
2027 struct perf_cpu_context *cpuctx,
2028 int can_add_hw)
2029 {
2030 /*
2031 * Groups consisting entirely of software events can always go on.
2032 */
2033 if (event->group_flags & PERF_GROUP_SOFTWARE)
2034 return 1;
2035 /*
2036 * If an exclusive group is already on, no other hardware
2037 * events can go on.
2038 */
2039 if (cpuctx->exclusive)
2040 return 0;
2041 /*
2042 * If this group is exclusive and there are already
2043 * events on the CPU, it can't go on.
2044 */
2045 if (event->attr.exclusive && cpuctx->active_oncpu)
2046 return 0;
2047 /*
2048 * Otherwise, try to add it if all previous groups were able
2049 * to go on.
2050 */
2051 return can_add_hw;
2052 }
2053
2054 static void add_event_to_ctx(struct perf_event *event,
2055 struct perf_event_context *ctx)
2056 {
2057 u64 tstamp = perf_event_time(event);
2058
2059 list_add_event(event, ctx);
2060 perf_group_attach(event);
2061 event->tstamp_enabled = tstamp;
2062 event->tstamp_running = tstamp;
2063 event->tstamp_stopped = tstamp;
2064 }
2065
2066 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2067 struct perf_event_context *ctx);
2068 static void
2069 ctx_sched_in(struct perf_event_context *ctx,
2070 struct perf_cpu_context *cpuctx,
2071 enum event_type_t event_type,
2072 struct task_struct *task);
2073
2074 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2075 struct perf_event_context *ctx,
2076 struct task_struct *task)
2077 {
2078 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2079 if (ctx)
2080 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2081 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2082 if (ctx)
2083 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2084 }
2085
2086 static void ctx_resched(struct perf_cpu_context *cpuctx,
2087 struct perf_event_context *task_ctx)
2088 {
2089 perf_pmu_disable(cpuctx->ctx.pmu);
2090 if (task_ctx)
2091 task_ctx_sched_out(cpuctx, task_ctx);
2092 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2093 perf_event_sched_in(cpuctx, task_ctx, current);
2094 perf_pmu_enable(cpuctx->ctx.pmu);
2095 }
2096
2097 /*
2098 * Cross CPU call to install and enable a performance event
2099 *
2100 * Must be called with ctx->mutex held
2101 */
2102 static int __perf_install_in_context(void *info)
2103 {
2104 struct perf_event_context *ctx = info;
2105 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2106 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2107
2108 raw_spin_lock(&cpuctx->ctx.lock);
2109 if (ctx->task) {
2110 raw_spin_lock(&ctx->lock);
2111 /*
2112 * If we hit the 'wrong' task, we've since scheduled and
2113 * everything should be sorted, nothing to do!
2114 */
2115 task_ctx = ctx;
2116 if (ctx->task != current)
2117 goto unlock;
2118
2119 /*
2120 * If task_ctx is set, it had better be to us.
2121 */
2122 WARN_ON_ONCE(cpuctx->task_ctx != ctx && cpuctx->task_ctx);
2123 } else if (task_ctx) {
2124 raw_spin_lock(&task_ctx->lock);
2125 }
2126
2127 ctx_resched(cpuctx, task_ctx);
2128 unlock:
2129 perf_ctx_unlock(cpuctx, task_ctx);
2130
2131 return 0;
2132 }
2133
2134 /*
2135 * Attach a performance event to a context
2136 */
2137 static void
2138 perf_install_in_context(struct perf_event_context *ctx,
2139 struct perf_event *event,
2140 int cpu)
2141 {
2142 struct task_struct *task = NULL;
2143
2144 lockdep_assert_held(&ctx->mutex);
2145
2146 event->ctx = ctx;
2147 if (event->cpu != -1)
2148 event->cpu = cpu;
2149
2150 /*
2151 * Installing events is tricky because we cannot rely on ctx->is_active
2152 * to be set in case this is the nr_events 0 -> 1 transition.
2153 *
2154 * So what we do is we add the event to the list here, which will allow
2155 * a future context switch to DTRT and then send a racy IPI. If the IPI
2156 * fails to hit the right task, this means a context switch must have
2157 * happened and that will have taken care of business.
2158 */
2159 raw_spin_lock_irq(&ctx->lock);
2160 task = ctx->task;
2161 /*
2162 * Worse, we cannot even rely on the ctx actually existing anymore. If
2163 * between find_get_context() and perf_install_in_context() the task
2164 * went through perf_event_exit_task() its dead and we should not be
2165 * adding new events.
2166 */
2167 if (task == TASK_TOMBSTONE) {
2168 raw_spin_unlock_irq(&ctx->lock);
2169 return;
2170 }
2171 update_context_time(ctx);
2172 /*
2173 * Update cgrp time only if current cgrp matches event->cgrp.
2174 * Must be done before calling add_event_to_ctx().
2175 */
2176 update_cgrp_time_from_event(event);
2177 add_event_to_ctx(event, ctx);
2178 raw_spin_unlock_irq(&ctx->lock);
2179
2180 if (task)
2181 task_function_call(task, __perf_install_in_context, ctx);
2182 else
2183 cpu_function_call(cpu, __perf_install_in_context, ctx);
2184 }
2185
2186 /*
2187 * Put a event into inactive state and update time fields.
2188 * Enabling the leader of a group effectively enables all
2189 * the group members that aren't explicitly disabled, so we
2190 * have to update their ->tstamp_enabled also.
2191 * Note: this works for group members as well as group leaders
2192 * since the non-leader members' sibling_lists will be empty.
2193 */
2194 static void __perf_event_mark_enabled(struct perf_event *event)
2195 {
2196 struct perf_event *sub;
2197 u64 tstamp = perf_event_time(event);
2198
2199 event->state = PERF_EVENT_STATE_INACTIVE;
2200 event->tstamp_enabled = tstamp - event->total_time_enabled;
2201 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2202 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2203 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2204 }
2205 }
2206
2207 /*
2208 * Cross CPU call to enable a performance event
2209 */
2210 static void __perf_event_enable(struct perf_event *event,
2211 struct perf_cpu_context *cpuctx,
2212 struct perf_event_context *ctx,
2213 void *info)
2214 {
2215 struct perf_event *leader = event->group_leader;
2216 struct perf_event_context *task_ctx;
2217
2218 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2219 event->state <= PERF_EVENT_STATE_ERROR)
2220 return;
2221
2222 update_context_time(ctx);
2223 __perf_event_mark_enabled(event);
2224
2225 if (!ctx->is_active)
2226 return;
2227
2228 if (!event_filter_match(event)) {
2229 if (is_cgroup_event(event)) {
2230 perf_cgroup_set_timestamp(current, ctx); // XXX ?
2231 perf_cgroup_defer_enabled(event);
2232 }
2233 return;
2234 }
2235
2236 /*
2237 * If the event is in a group and isn't the group leader,
2238 * then don't put it on unless the group is on.
2239 */
2240 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2241 return;
2242
2243 task_ctx = cpuctx->task_ctx;
2244 if (ctx->task)
2245 WARN_ON_ONCE(task_ctx != ctx);
2246
2247 ctx_resched(cpuctx, task_ctx);
2248 }
2249
2250 /*
2251 * Enable a event.
2252 *
2253 * If event->ctx is a cloned context, callers must make sure that
2254 * every task struct that event->ctx->task could possibly point to
2255 * remains valid. This condition is satisfied when called through
2256 * perf_event_for_each_child or perf_event_for_each as described
2257 * for perf_event_disable.
2258 */
2259 static void _perf_event_enable(struct perf_event *event)
2260 {
2261 struct perf_event_context *ctx = event->ctx;
2262
2263 raw_spin_lock_irq(&ctx->lock);
2264 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2265 event->state < PERF_EVENT_STATE_ERROR) {
2266 raw_spin_unlock_irq(&ctx->lock);
2267 return;
2268 }
2269
2270 /*
2271 * If the event is in error state, clear that first.
2272 *
2273 * That way, if we see the event in error state below, we know that it
2274 * has gone back into error state, as distinct from the task having
2275 * been scheduled away before the cross-call arrived.
2276 */
2277 if (event->state == PERF_EVENT_STATE_ERROR)
2278 event->state = PERF_EVENT_STATE_OFF;
2279 raw_spin_unlock_irq(&ctx->lock);
2280
2281 event_function_call(event, __perf_event_enable, NULL);
2282 }
2283
2284 /*
2285 * See perf_event_disable();
2286 */
2287 void perf_event_enable(struct perf_event *event)
2288 {
2289 struct perf_event_context *ctx;
2290
2291 ctx = perf_event_ctx_lock(event);
2292 _perf_event_enable(event);
2293 perf_event_ctx_unlock(event, ctx);
2294 }
2295 EXPORT_SYMBOL_GPL(perf_event_enable);
2296
2297 static int _perf_event_refresh(struct perf_event *event, int refresh)
2298 {
2299 /*
2300 * not supported on inherited events
2301 */
2302 if (event->attr.inherit || !is_sampling_event(event))
2303 return -EINVAL;
2304
2305 atomic_add(refresh, &event->event_limit);
2306 _perf_event_enable(event);
2307
2308 return 0;
2309 }
2310
2311 /*
2312 * See perf_event_disable()
2313 */
2314 int perf_event_refresh(struct perf_event *event, int refresh)
2315 {
2316 struct perf_event_context *ctx;
2317 int ret;
2318
2319 ctx = perf_event_ctx_lock(event);
2320 ret = _perf_event_refresh(event, refresh);
2321 perf_event_ctx_unlock(event, ctx);
2322
2323 return ret;
2324 }
2325 EXPORT_SYMBOL_GPL(perf_event_refresh);
2326
2327 static void ctx_sched_out(struct perf_event_context *ctx,
2328 struct perf_cpu_context *cpuctx,
2329 enum event_type_t event_type)
2330 {
2331 int is_active = ctx->is_active;
2332 struct perf_event *event;
2333
2334 lockdep_assert_held(&ctx->lock);
2335
2336 if (likely(!ctx->nr_events)) {
2337 /*
2338 * See __perf_remove_from_context().
2339 */
2340 WARN_ON_ONCE(ctx->is_active);
2341 if (ctx->task)
2342 WARN_ON_ONCE(cpuctx->task_ctx);
2343 return;
2344 }
2345
2346 ctx->is_active &= ~event_type;
2347 if (ctx->task) {
2348 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2349 if (!ctx->is_active)
2350 cpuctx->task_ctx = NULL;
2351 }
2352
2353 update_context_time(ctx);
2354 update_cgrp_time_from_cpuctx(cpuctx);
2355 if (!ctx->nr_active)
2356 return;
2357
2358 perf_pmu_disable(ctx->pmu);
2359 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2360 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2361 group_sched_out(event, cpuctx, ctx);
2362 }
2363
2364 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2365 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2366 group_sched_out(event, cpuctx, ctx);
2367 }
2368 perf_pmu_enable(ctx->pmu);
2369 }
2370
2371 /*
2372 * Test whether two contexts are equivalent, i.e. whether they have both been
2373 * cloned from the same version of the same context.
2374 *
2375 * Equivalence is measured using a generation number in the context that is
2376 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2377 * and list_del_event().
2378 */
2379 static int context_equiv(struct perf_event_context *ctx1,
2380 struct perf_event_context *ctx2)
2381 {
2382 lockdep_assert_held(&ctx1->lock);
2383 lockdep_assert_held(&ctx2->lock);
2384
2385 /* Pinning disables the swap optimization */
2386 if (ctx1->pin_count || ctx2->pin_count)
2387 return 0;
2388
2389 /* If ctx1 is the parent of ctx2 */
2390 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2391 return 1;
2392
2393 /* If ctx2 is the parent of ctx1 */
2394 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2395 return 1;
2396
2397 /*
2398 * If ctx1 and ctx2 have the same parent; we flatten the parent
2399 * hierarchy, see perf_event_init_context().
2400 */
2401 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2402 ctx1->parent_gen == ctx2->parent_gen)
2403 return 1;
2404
2405 /* Unmatched */
2406 return 0;
2407 }
2408
2409 static void __perf_event_sync_stat(struct perf_event *event,
2410 struct perf_event *next_event)
2411 {
2412 u64 value;
2413
2414 if (!event->attr.inherit_stat)
2415 return;
2416
2417 /*
2418 * Update the event value, we cannot use perf_event_read()
2419 * because we're in the middle of a context switch and have IRQs
2420 * disabled, which upsets smp_call_function_single(), however
2421 * we know the event must be on the current CPU, therefore we
2422 * don't need to use it.
2423 */
2424 switch (event->state) {
2425 case PERF_EVENT_STATE_ACTIVE:
2426 event->pmu->read(event);
2427 /* fall-through */
2428
2429 case PERF_EVENT_STATE_INACTIVE:
2430 update_event_times(event);
2431 break;
2432
2433 default:
2434 break;
2435 }
2436
2437 /*
2438 * In order to keep per-task stats reliable we need to flip the event
2439 * values when we flip the contexts.
2440 */
2441 value = local64_read(&next_event->count);
2442 value = local64_xchg(&event->count, value);
2443 local64_set(&next_event->count, value);
2444
2445 swap(event->total_time_enabled, next_event->total_time_enabled);
2446 swap(event->total_time_running, next_event->total_time_running);
2447
2448 /*
2449 * Since we swizzled the values, update the user visible data too.
2450 */
2451 perf_event_update_userpage(event);
2452 perf_event_update_userpage(next_event);
2453 }
2454
2455 static void perf_event_sync_stat(struct perf_event_context *ctx,
2456 struct perf_event_context *next_ctx)
2457 {
2458 struct perf_event *event, *next_event;
2459
2460 if (!ctx->nr_stat)
2461 return;
2462
2463 update_context_time(ctx);
2464
2465 event = list_first_entry(&ctx->event_list,
2466 struct perf_event, event_entry);
2467
2468 next_event = list_first_entry(&next_ctx->event_list,
2469 struct perf_event, event_entry);
2470
2471 while (&event->event_entry != &ctx->event_list &&
2472 &next_event->event_entry != &next_ctx->event_list) {
2473
2474 __perf_event_sync_stat(event, next_event);
2475
2476 event = list_next_entry(event, event_entry);
2477 next_event = list_next_entry(next_event, event_entry);
2478 }
2479 }
2480
2481 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2482 struct task_struct *next)
2483 {
2484 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2485 struct perf_event_context *next_ctx;
2486 struct perf_event_context *parent, *next_parent;
2487 struct perf_cpu_context *cpuctx;
2488 int do_switch = 1;
2489
2490 if (likely(!ctx))
2491 return;
2492
2493 cpuctx = __get_cpu_context(ctx);
2494 if (!cpuctx->task_ctx)
2495 return;
2496
2497 rcu_read_lock();
2498 next_ctx = next->perf_event_ctxp[ctxn];
2499 if (!next_ctx)
2500 goto unlock;
2501
2502 parent = rcu_dereference(ctx->parent_ctx);
2503 next_parent = rcu_dereference(next_ctx->parent_ctx);
2504
2505 /* If neither context have a parent context; they cannot be clones. */
2506 if (!parent && !next_parent)
2507 goto unlock;
2508
2509 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2510 /*
2511 * Looks like the two contexts are clones, so we might be
2512 * able to optimize the context switch. We lock both
2513 * contexts and check that they are clones under the
2514 * lock (including re-checking that neither has been
2515 * uncloned in the meantime). It doesn't matter which
2516 * order we take the locks because no other cpu could
2517 * be trying to lock both of these tasks.
2518 */
2519 raw_spin_lock(&ctx->lock);
2520 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2521 if (context_equiv(ctx, next_ctx)) {
2522 WRITE_ONCE(ctx->task, next);
2523 WRITE_ONCE(next_ctx->task, task);
2524
2525 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2526
2527 /*
2528 * RCU_INIT_POINTER here is safe because we've not
2529 * modified the ctx and the above modification of
2530 * ctx->task and ctx->task_ctx_data are immaterial
2531 * since those values are always verified under
2532 * ctx->lock which we're now holding.
2533 */
2534 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2535 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2536
2537 do_switch = 0;
2538
2539 perf_event_sync_stat(ctx, next_ctx);
2540 }
2541 raw_spin_unlock(&next_ctx->lock);
2542 raw_spin_unlock(&ctx->lock);
2543 }
2544 unlock:
2545 rcu_read_unlock();
2546
2547 if (do_switch) {
2548 raw_spin_lock(&ctx->lock);
2549 task_ctx_sched_out(cpuctx, ctx);
2550 raw_spin_unlock(&ctx->lock);
2551 }
2552 }
2553
2554 void perf_sched_cb_dec(struct pmu *pmu)
2555 {
2556 this_cpu_dec(perf_sched_cb_usages);
2557 }
2558
2559 void perf_sched_cb_inc(struct pmu *pmu)
2560 {
2561 this_cpu_inc(perf_sched_cb_usages);
2562 }
2563
2564 /*
2565 * This function provides the context switch callback to the lower code
2566 * layer. It is invoked ONLY when the context switch callback is enabled.
2567 */
2568 static void perf_pmu_sched_task(struct task_struct *prev,
2569 struct task_struct *next,
2570 bool sched_in)
2571 {
2572 struct perf_cpu_context *cpuctx;
2573 struct pmu *pmu;
2574 unsigned long flags;
2575
2576 if (prev == next)
2577 return;
2578
2579 local_irq_save(flags);
2580
2581 rcu_read_lock();
2582
2583 list_for_each_entry_rcu(pmu, &pmus, entry) {
2584 if (pmu->sched_task) {
2585 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2586
2587 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2588
2589 perf_pmu_disable(pmu);
2590
2591 pmu->sched_task(cpuctx->task_ctx, sched_in);
2592
2593 perf_pmu_enable(pmu);
2594
2595 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2596 }
2597 }
2598
2599 rcu_read_unlock();
2600
2601 local_irq_restore(flags);
2602 }
2603
2604 static void perf_event_switch(struct task_struct *task,
2605 struct task_struct *next_prev, bool sched_in);
2606
2607 #define for_each_task_context_nr(ctxn) \
2608 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2609
2610 /*
2611 * Called from scheduler to remove the events of the current task,
2612 * with interrupts disabled.
2613 *
2614 * We stop each event and update the event value in event->count.
2615 *
2616 * This does not protect us against NMI, but disable()
2617 * sets the disabled bit in the control field of event _before_
2618 * accessing the event control register. If a NMI hits, then it will
2619 * not restart the event.
2620 */
2621 void __perf_event_task_sched_out(struct task_struct *task,
2622 struct task_struct *next)
2623 {
2624 int ctxn;
2625
2626 if (__this_cpu_read(perf_sched_cb_usages))
2627 perf_pmu_sched_task(task, next, false);
2628
2629 if (atomic_read(&nr_switch_events))
2630 perf_event_switch(task, next, false);
2631
2632 for_each_task_context_nr(ctxn)
2633 perf_event_context_sched_out(task, ctxn, next);
2634
2635 /*
2636 * if cgroup events exist on this CPU, then we need
2637 * to check if we have to switch out PMU state.
2638 * cgroup event are system-wide mode only
2639 */
2640 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2641 perf_cgroup_sched_out(task, next);
2642 }
2643
2644 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2645 struct perf_event_context *ctx)
2646 {
2647 if (!cpuctx->task_ctx)
2648 return;
2649
2650 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2651 return;
2652
2653 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2654 }
2655
2656 /*
2657 * Called with IRQs disabled
2658 */
2659 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2660 enum event_type_t event_type)
2661 {
2662 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2663 }
2664
2665 static void
2666 ctx_pinned_sched_in(struct perf_event_context *ctx,
2667 struct perf_cpu_context *cpuctx)
2668 {
2669 struct perf_event *event;
2670
2671 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2672 if (event->state <= PERF_EVENT_STATE_OFF)
2673 continue;
2674 if (!event_filter_match(event))
2675 continue;
2676
2677 /* may need to reset tstamp_enabled */
2678 if (is_cgroup_event(event))
2679 perf_cgroup_mark_enabled(event, ctx);
2680
2681 if (group_can_go_on(event, cpuctx, 1))
2682 group_sched_in(event, cpuctx, ctx);
2683
2684 /*
2685 * If this pinned group hasn't been scheduled,
2686 * put it in error state.
2687 */
2688 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2689 update_group_times(event);
2690 event->state = PERF_EVENT_STATE_ERROR;
2691 }
2692 }
2693 }
2694
2695 static void
2696 ctx_flexible_sched_in(struct perf_event_context *ctx,
2697 struct perf_cpu_context *cpuctx)
2698 {
2699 struct perf_event *event;
2700 int can_add_hw = 1;
2701
2702 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2703 /* Ignore events in OFF or ERROR state */
2704 if (event->state <= PERF_EVENT_STATE_OFF)
2705 continue;
2706 /*
2707 * Listen to the 'cpu' scheduling filter constraint
2708 * of events:
2709 */
2710 if (!event_filter_match(event))
2711 continue;
2712
2713 /* may need to reset tstamp_enabled */
2714 if (is_cgroup_event(event))
2715 perf_cgroup_mark_enabled(event, ctx);
2716
2717 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2718 if (group_sched_in(event, cpuctx, ctx))
2719 can_add_hw = 0;
2720 }
2721 }
2722 }
2723
2724 static void
2725 ctx_sched_in(struct perf_event_context *ctx,
2726 struct perf_cpu_context *cpuctx,
2727 enum event_type_t event_type,
2728 struct task_struct *task)
2729 {
2730 int is_active = ctx->is_active;
2731 u64 now;
2732
2733 lockdep_assert_held(&ctx->lock);
2734
2735 if (likely(!ctx->nr_events))
2736 return;
2737
2738 ctx->is_active |= event_type;
2739 if (ctx->task) {
2740 if (!is_active)
2741 cpuctx->task_ctx = ctx;
2742 else
2743 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2744 }
2745
2746 now = perf_clock();
2747 ctx->timestamp = now;
2748 perf_cgroup_set_timestamp(task, ctx);
2749 /*
2750 * First go through the list and put on any pinned groups
2751 * in order to give them the best chance of going on.
2752 */
2753 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2754 ctx_pinned_sched_in(ctx, cpuctx);
2755
2756 /* Then walk through the lower prio flexible groups */
2757 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2758 ctx_flexible_sched_in(ctx, cpuctx);
2759 }
2760
2761 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2762 enum event_type_t event_type,
2763 struct task_struct *task)
2764 {
2765 struct perf_event_context *ctx = &cpuctx->ctx;
2766
2767 ctx_sched_in(ctx, cpuctx, event_type, task);
2768 }
2769
2770 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2771 struct task_struct *task)
2772 {
2773 struct perf_cpu_context *cpuctx;
2774
2775 cpuctx = __get_cpu_context(ctx);
2776 if (cpuctx->task_ctx == ctx)
2777 return;
2778
2779 perf_ctx_lock(cpuctx, ctx);
2780 perf_pmu_disable(ctx->pmu);
2781 /*
2782 * We want to keep the following priority order:
2783 * cpu pinned (that don't need to move), task pinned,
2784 * cpu flexible, task flexible.
2785 */
2786 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2787 perf_event_sched_in(cpuctx, ctx, task);
2788 perf_pmu_enable(ctx->pmu);
2789 perf_ctx_unlock(cpuctx, ctx);
2790 }
2791
2792 /*
2793 * Called from scheduler to add the events of the current task
2794 * with interrupts disabled.
2795 *
2796 * We restore the event value and then enable it.
2797 *
2798 * This does not protect us against NMI, but enable()
2799 * sets the enabled bit in the control field of event _before_
2800 * accessing the event control register. If a NMI hits, then it will
2801 * keep the event running.
2802 */
2803 void __perf_event_task_sched_in(struct task_struct *prev,
2804 struct task_struct *task)
2805 {
2806 struct perf_event_context *ctx;
2807 int ctxn;
2808
2809 /*
2810 * If cgroup events exist on this CPU, then we need to check if we have
2811 * to switch in PMU state; cgroup event are system-wide mode only.
2812 *
2813 * Since cgroup events are CPU events, we must schedule these in before
2814 * we schedule in the task events.
2815 */
2816 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2817 perf_cgroup_sched_in(prev, task);
2818
2819 for_each_task_context_nr(ctxn) {
2820 ctx = task->perf_event_ctxp[ctxn];
2821 if (likely(!ctx))
2822 continue;
2823
2824 perf_event_context_sched_in(ctx, task);
2825 }
2826
2827 if (atomic_read(&nr_switch_events))
2828 perf_event_switch(task, prev, true);
2829
2830 if (__this_cpu_read(perf_sched_cb_usages))
2831 perf_pmu_sched_task(prev, task, true);
2832 }
2833
2834 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2835 {
2836 u64 frequency = event->attr.sample_freq;
2837 u64 sec = NSEC_PER_SEC;
2838 u64 divisor, dividend;
2839
2840 int count_fls, nsec_fls, frequency_fls, sec_fls;
2841
2842 count_fls = fls64(count);
2843 nsec_fls = fls64(nsec);
2844 frequency_fls = fls64(frequency);
2845 sec_fls = 30;
2846
2847 /*
2848 * We got @count in @nsec, with a target of sample_freq HZ
2849 * the target period becomes:
2850 *
2851 * @count * 10^9
2852 * period = -------------------
2853 * @nsec * sample_freq
2854 *
2855 */
2856
2857 /*
2858 * Reduce accuracy by one bit such that @a and @b converge
2859 * to a similar magnitude.
2860 */
2861 #define REDUCE_FLS(a, b) \
2862 do { \
2863 if (a##_fls > b##_fls) { \
2864 a >>= 1; \
2865 a##_fls--; \
2866 } else { \
2867 b >>= 1; \
2868 b##_fls--; \
2869 } \
2870 } while (0)
2871
2872 /*
2873 * Reduce accuracy until either term fits in a u64, then proceed with
2874 * the other, so that finally we can do a u64/u64 division.
2875 */
2876 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2877 REDUCE_FLS(nsec, frequency);
2878 REDUCE_FLS(sec, count);
2879 }
2880
2881 if (count_fls + sec_fls > 64) {
2882 divisor = nsec * frequency;
2883
2884 while (count_fls + sec_fls > 64) {
2885 REDUCE_FLS(count, sec);
2886 divisor >>= 1;
2887 }
2888
2889 dividend = count * sec;
2890 } else {
2891 dividend = count * sec;
2892
2893 while (nsec_fls + frequency_fls > 64) {
2894 REDUCE_FLS(nsec, frequency);
2895 dividend >>= 1;
2896 }
2897
2898 divisor = nsec * frequency;
2899 }
2900
2901 if (!divisor)
2902 return dividend;
2903
2904 return div64_u64(dividend, divisor);
2905 }
2906
2907 static DEFINE_PER_CPU(int, perf_throttled_count);
2908 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2909
2910 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2911 {
2912 struct hw_perf_event *hwc = &event->hw;
2913 s64 period, sample_period;
2914 s64 delta;
2915
2916 period = perf_calculate_period(event, nsec, count);
2917
2918 delta = (s64)(period - hwc->sample_period);
2919 delta = (delta + 7) / 8; /* low pass filter */
2920
2921 sample_period = hwc->sample_period + delta;
2922
2923 if (!sample_period)
2924 sample_period = 1;
2925
2926 hwc->sample_period = sample_period;
2927
2928 if (local64_read(&hwc->period_left) > 8*sample_period) {
2929 if (disable)
2930 event->pmu->stop(event, PERF_EF_UPDATE);
2931
2932 local64_set(&hwc->period_left, 0);
2933
2934 if (disable)
2935 event->pmu->start(event, PERF_EF_RELOAD);
2936 }
2937 }
2938
2939 /*
2940 * combine freq adjustment with unthrottling to avoid two passes over the
2941 * events. At the same time, make sure, having freq events does not change
2942 * the rate of unthrottling as that would introduce bias.
2943 */
2944 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2945 int needs_unthr)
2946 {
2947 struct perf_event *event;
2948 struct hw_perf_event *hwc;
2949 u64 now, period = TICK_NSEC;
2950 s64 delta;
2951
2952 /*
2953 * only need to iterate over all events iff:
2954 * - context have events in frequency mode (needs freq adjust)
2955 * - there are events to unthrottle on this cpu
2956 */
2957 if (!(ctx->nr_freq || needs_unthr))
2958 return;
2959
2960 raw_spin_lock(&ctx->lock);
2961 perf_pmu_disable(ctx->pmu);
2962
2963 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2964 if (event->state != PERF_EVENT_STATE_ACTIVE)
2965 continue;
2966
2967 if (!event_filter_match(event))
2968 continue;
2969
2970 perf_pmu_disable(event->pmu);
2971
2972 hwc = &event->hw;
2973
2974 if (hwc->interrupts == MAX_INTERRUPTS) {
2975 hwc->interrupts = 0;
2976 perf_log_throttle(event, 1);
2977 event->pmu->start(event, 0);
2978 }
2979
2980 if (!event->attr.freq || !event->attr.sample_freq)
2981 goto next;
2982
2983 /*
2984 * stop the event and update event->count
2985 */
2986 event->pmu->stop(event, PERF_EF_UPDATE);
2987
2988 now = local64_read(&event->count);
2989 delta = now - hwc->freq_count_stamp;
2990 hwc->freq_count_stamp = now;
2991
2992 /*
2993 * restart the event
2994 * reload only if value has changed
2995 * we have stopped the event so tell that
2996 * to perf_adjust_period() to avoid stopping it
2997 * twice.
2998 */
2999 if (delta > 0)
3000 perf_adjust_period(event, period, delta, false);
3001
3002 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3003 next:
3004 perf_pmu_enable(event->pmu);
3005 }
3006
3007 perf_pmu_enable(ctx->pmu);
3008 raw_spin_unlock(&ctx->lock);
3009 }
3010
3011 /*
3012 * Round-robin a context's events:
3013 */
3014 static void rotate_ctx(struct perf_event_context *ctx)
3015 {
3016 /*
3017 * Rotate the first entry last of non-pinned groups. Rotation might be
3018 * disabled by the inheritance code.
3019 */
3020 if (!ctx->rotate_disable)
3021 list_rotate_left(&ctx->flexible_groups);
3022 }
3023
3024 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3025 {
3026 struct perf_event_context *ctx = NULL;
3027 int rotate = 0;
3028
3029 if (cpuctx->ctx.nr_events) {
3030 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3031 rotate = 1;
3032 }
3033
3034 ctx = cpuctx->task_ctx;
3035 if (ctx && ctx->nr_events) {
3036 if (ctx->nr_events != ctx->nr_active)
3037 rotate = 1;
3038 }
3039
3040 if (!rotate)
3041 goto done;
3042
3043 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3044 perf_pmu_disable(cpuctx->ctx.pmu);
3045
3046 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3047 if (ctx)
3048 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3049
3050 rotate_ctx(&cpuctx->ctx);
3051 if (ctx)
3052 rotate_ctx(ctx);
3053
3054 perf_event_sched_in(cpuctx, ctx, current);
3055
3056 perf_pmu_enable(cpuctx->ctx.pmu);
3057 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3058 done:
3059
3060 return rotate;
3061 }
3062
3063 #ifdef CONFIG_NO_HZ_FULL
3064 bool perf_event_can_stop_tick(void)
3065 {
3066 if (atomic_read(&nr_freq_events) ||
3067 __this_cpu_read(perf_throttled_count))
3068 return false;
3069 else
3070 return true;
3071 }
3072 #endif
3073
3074 void perf_event_task_tick(void)
3075 {
3076 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3077 struct perf_event_context *ctx, *tmp;
3078 int throttled;
3079
3080 WARN_ON(!irqs_disabled());
3081
3082 __this_cpu_inc(perf_throttled_seq);
3083 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3084
3085 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3086 perf_adjust_freq_unthr_context(ctx, throttled);
3087 }
3088
3089 static int event_enable_on_exec(struct perf_event *event,
3090 struct perf_event_context *ctx)
3091 {
3092 if (!event->attr.enable_on_exec)
3093 return 0;
3094
3095 event->attr.enable_on_exec = 0;
3096 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3097 return 0;
3098
3099 __perf_event_mark_enabled(event);
3100
3101 return 1;
3102 }
3103
3104 /*
3105 * Enable all of a task's events that have been marked enable-on-exec.
3106 * This expects task == current.
3107 */
3108 static void perf_event_enable_on_exec(int ctxn)
3109 {
3110 struct perf_event_context *ctx, *clone_ctx = NULL;
3111 struct perf_cpu_context *cpuctx;
3112 struct perf_event *event;
3113 unsigned long flags;
3114 int enabled = 0;
3115
3116 local_irq_save(flags);
3117 ctx = current->perf_event_ctxp[ctxn];
3118 if (!ctx || !ctx->nr_events)
3119 goto out;
3120
3121 cpuctx = __get_cpu_context(ctx);
3122 perf_ctx_lock(cpuctx, ctx);
3123 list_for_each_entry(event, &ctx->event_list, event_entry)
3124 enabled |= event_enable_on_exec(event, ctx);
3125
3126 /*
3127 * Unclone and reschedule this context if we enabled any event.
3128 */
3129 if (enabled) {
3130 clone_ctx = unclone_ctx(ctx);
3131 ctx_resched(cpuctx, ctx);
3132 }
3133 perf_ctx_unlock(cpuctx, ctx);
3134
3135 out:
3136 local_irq_restore(flags);
3137
3138 if (clone_ctx)
3139 put_ctx(clone_ctx);
3140 }
3141
3142 void perf_event_exec(void)
3143 {
3144 int ctxn;
3145
3146 rcu_read_lock();
3147 for_each_task_context_nr(ctxn)
3148 perf_event_enable_on_exec(ctxn);
3149 rcu_read_unlock();
3150 }
3151
3152 struct perf_read_data {
3153 struct perf_event *event;
3154 bool group;
3155 int ret;
3156 };
3157
3158 /*
3159 * Cross CPU call to read the hardware event
3160 */
3161 static void __perf_event_read(void *info)
3162 {
3163 struct perf_read_data *data = info;
3164 struct perf_event *sub, *event = data->event;
3165 struct perf_event_context *ctx = event->ctx;
3166 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3167 struct pmu *pmu = event->pmu;
3168
3169 /*
3170 * If this is a task context, we need to check whether it is
3171 * the current task context of this cpu. If not it has been
3172 * scheduled out before the smp call arrived. In that case
3173 * event->count would have been updated to a recent sample
3174 * when the event was scheduled out.
3175 */
3176 if (ctx->task && cpuctx->task_ctx != ctx)
3177 return;
3178
3179 raw_spin_lock(&ctx->lock);
3180 if (ctx->is_active) {
3181 update_context_time(ctx);
3182 update_cgrp_time_from_event(event);
3183 }
3184
3185 update_event_times(event);
3186 if (event->state != PERF_EVENT_STATE_ACTIVE)
3187 goto unlock;
3188
3189 if (!data->group) {
3190 pmu->read(event);
3191 data->ret = 0;
3192 goto unlock;
3193 }
3194
3195 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3196
3197 pmu->read(event);
3198
3199 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3200 update_event_times(sub);
3201 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3202 /*
3203 * Use sibling's PMU rather than @event's since
3204 * sibling could be on different (eg: software) PMU.
3205 */
3206 sub->pmu->read(sub);
3207 }
3208 }
3209
3210 data->ret = pmu->commit_txn(pmu);
3211
3212 unlock:
3213 raw_spin_unlock(&ctx->lock);
3214 }
3215
3216 static inline u64 perf_event_count(struct perf_event *event)
3217 {
3218 if (event->pmu->count)
3219 return event->pmu->count(event);
3220
3221 return __perf_event_count(event);
3222 }
3223
3224 /*
3225 * NMI-safe method to read a local event, that is an event that
3226 * is:
3227 * - either for the current task, or for this CPU
3228 * - does not have inherit set, for inherited task events
3229 * will not be local and we cannot read them atomically
3230 * - must not have a pmu::count method
3231 */
3232 u64 perf_event_read_local(struct perf_event *event)
3233 {
3234 unsigned long flags;
3235 u64 val;
3236
3237 /*
3238 * Disabling interrupts avoids all counter scheduling (context
3239 * switches, timer based rotation and IPIs).
3240 */
3241 local_irq_save(flags);
3242
3243 /* If this is a per-task event, it must be for current */
3244 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3245 event->hw.target != current);
3246
3247 /* If this is a per-CPU event, it must be for this CPU */
3248 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3249 event->cpu != smp_processor_id());
3250
3251 /*
3252 * It must not be an event with inherit set, we cannot read
3253 * all child counters from atomic context.
3254 */
3255 WARN_ON_ONCE(event->attr.inherit);
3256
3257 /*
3258 * It must not have a pmu::count method, those are not
3259 * NMI safe.
3260 */
3261 WARN_ON_ONCE(event->pmu->count);
3262
3263 /*
3264 * If the event is currently on this CPU, its either a per-task event,
3265 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3266 * oncpu == -1).
3267 */
3268 if (event->oncpu == smp_processor_id())
3269 event->pmu->read(event);
3270
3271 val = local64_read(&event->count);
3272 local_irq_restore(flags);
3273
3274 return val;
3275 }
3276
3277 static int perf_event_read(struct perf_event *event, bool group)
3278 {
3279 int ret = 0;
3280
3281 /*
3282 * If event is enabled and currently active on a CPU, update the
3283 * value in the event structure:
3284 */
3285 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3286 struct perf_read_data data = {
3287 .event = event,
3288 .group = group,
3289 .ret = 0,
3290 };
3291 smp_call_function_single(event->oncpu,
3292 __perf_event_read, &data, 1);
3293 ret = data.ret;
3294 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3295 struct perf_event_context *ctx = event->ctx;
3296 unsigned long flags;
3297
3298 raw_spin_lock_irqsave(&ctx->lock, flags);
3299 /*
3300 * may read while context is not active
3301 * (e.g., thread is blocked), in that case
3302 * we cannot update context time
3303 */
3304 if (ctx->is_active) {
3305 update_context_time(ctx);
3306 update_cgrp_time_from_event(event);
3307 }
3308 if (group)
3309 update_group_times(event);
3310 else
3311 update_event_times(event);
3312 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3313 }
3314
3315 return ret;
3316 }
3317
3318 /*
3319 * Initialize the perf_event context in a task_struct:
3320 */
3321 static void __perf_event_init_context(struct perf_event_context *ctx)
3322 {
3323 raw_spin_lock_init(&ctx->lock);
3324 mutex_init(&ctx->mutex);
3325 INIT_LIST_HEAD(&ctx->active_ctx_list);
3326 INIT_LIST_HEAD(&ctx->pinned_groups);
3327 INIT_LIST_HEAD(&ctx->flexible_groups);
3328 INIT_LIST_HEAD(&ctx->event_list);
3329 atomic_set(&ctx->refcount, 1);
3330 }
3331
3332 static struct perf_event_context *
3333 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3334 {
3335 struct perf_event_context *ctx;
3336
3337 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3338 if (!ctx)
3339 return NULL;
3340
3341 __perf_event_init_context(ctx);
3342 if (task) {
3343 ctx->task = task;
3344 get_task_struct(task);
3345 }
3346 ctx->pmu = pmu;
3347
3348 return ctx;
3349 }
3350
3351 static struct task_struct *
3352 find_lively_task_by_vpid(pid_t vpid)
3353 {
3354 struct task_struct *task;
3355 int err;
3356
3357 rcu_read_lock();
3358 if (!vpid)
3359 task = current;
3360 else
3361 task = find_task_by_vpid(vpid);
3362 if (task)
3363 get_task_struct(task);
3364 rcu_read_unlock();
3365
3366 if (!task)
3367 return ERR_PTR(-ESRCH);
3368
3369 /* Reuse ptrace permission checks for now. */
3370 err = -EACCES;
3371 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
3372 goto errout;
3373
3374 return task;
3375 errout:
3376 put_task_struct(task);
3377 return ERR_PTR(err);
3378
3379 }
3380
3381 /*
3382 * Returns a matching context with refcount and pincount.
3383 */
3384 static struct perf_event_context *
3385 find_get_context(struct pmu *pmu, struct task_struct *task,
3386 struct perf_event *event)
3387 {
3388 struct perf_event_context *ctx, *clone_ctx = NULL;
3389 struct perf_cpu_context *cpuctx;
3390 void *task_ctx_data = NULL;
3391 unsigned long flags;
3392 int ctxn, err;
3393 int cpu = event->cpu;
3394
3395 if (!task) {
3396 /* Must be root to operate on a CPU event: */
3397 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3398 return ERR_PTR(-EACCES);
3399
3400 /*
3401 * We could be clever and allow to attach a event to an
3402 * offline CPU and activate it when the CPU comes up, but
3403 * that's for later.
3404 */
3405 if (!cpu_online(cpu))
3406 return ERR_PTR(-ENODEV);
3407
3408 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3409 ctx = &cpuctx->ctx;
3410 get_ctx(ctx);
3411 ++ctx->pin_count;
3412
3413 return ctx;
3414 }
3415
3416 err = -EINVAL;
3417 ctxn = pmu->task_ctx_nr;
3418 if (ctxn < 0)
3419 goto errout;
3420
3421 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3422 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3423 if (!task_ctx_data) {
3424 err = -ENOMEM;
3425 goto errout;
3426 }
3427 }
3428
3429 retry:
3430 ctx = perf_lock_task_context(task, ctxn, &flags);
3431 if (ctx) {
3432 clone_ctx = unclone_ctx(ctx);
3433 ++ctx->pin_count;
3434
3435 if (task_ctx_data && !ctx->task_ctx_data) {
3436 ctx->task_ctx_data = task_ctx_data;
3437 task_ctx_data = NULL;
3438 }
3439 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3440
3441 if (clone_ctx)
3442 put_ctx(clone_ctx);
3443 } else {
3444 ctx = alloc_perf_context(pmu, task);
3445 err = -ENOMEM;
3446 if (!ctx)
3447 goto errout;
3448
3449 if (task_ctx_data) {
3450 ctx->task_ctx_data = task_ctx_data;
3451 task_ctx_data = NULL;
3452 }
3453
3454 err = 0;
3455 mutex_lock(&task->perf_event_mutex);
3456 /*
3457 * If it has already passed perf_event_exit_task().
3458 * we must see PF_EXITING, it takes this mutex too.
3459 */
3460 if (task->flags & PF_EXITING)
3461 err = -ESRCH;
3462 else if (task->perf_event_ctxp[ctxn])
3463 err = -EAGAIN;
3464 else {
3465 get_ctx(ctx);
3466 ++ctx->pin_count;
3467 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3468 }
3469 mutex_unlock(&task->perf_event_mutex);
3470
3471 if (unlikely(err)) {
3472 put_ctx(ctx);
3473
3474 if (err == -EAGAIN)
3475 goto retry;
3476 goto errout;
3477 }
3478 }
3479
3480 kfree(task_ctx_data);
3481 return ctx;
3482
3483 errout:
3484 kfree(task_ctx_data);
3485 return ERR_PTR(err);
3486 }
3487
3488 static void perf_event_free_filter(struct perf_event *event);
3489 static void perf_event_free_bpf_prog(struct perf_event *event);
3490
3491 static void free_event_rcu(struct rcu_head *head)
3492 {
3493 struct perf_event *event;
3494
3495 event = container_of(head, struct perf_event, rcu_head);
3496 if (event->ns)
3497 put_pid_ns(event->ns);
3498 perf_event_free_filter(event);
3499 kfree(event);
3500 }
3501
3502 static void ring_buffer_attach(struct perf_event *event,
3503 struct ring_buffer *rb);
3504
3505 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3506 {
3507 if (event->parent)
3508 return;
3509
3510 if (is_cgroup_event(event))
3511 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3512 }
3513
3514 static void unaccount_event(struct perf_event *event)
3515 {
3516 bool dec = false;
3517
3518 if (event->parent)
3519 return;
3520
3521 if (event->attach_state & PERF_ATTACH_TASK)
3522 dec = true;
3523 if (event->attr.mmap || event->attr.mmap_data)
3524 atomic_dec(&nr_mmap_events);
3525 if (event->attr.comm)
3526 atomic_dec(&nr_comm_events);
3527 if (event->attr.task)
3528 atomic_dec(&nr_task_events);
3529 if (event->attr.freq)
3530 atomic_dec(&nr_freq_events);
3531 if (event->attr.context_switch) {
3532 dec = true;
3533 atomic_dec(&nr_switch_events);
3534 }
3535 if (is_cgroup_event(event))
3536 dec = true;
3537 if (has_branch_stack(event))
3538 dec = true;
3539
3540 if (dec)
3541 static_key_slow_dec_deferred(&perf_sched_events);
3542
3543 unaccount_event_cpu(event, event->cpu);
3544 }
3545
3546 /*
3547 * The following implement mutual exclusion of events on "exclusive" pmus
3548 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3549 * at a time, so we disallow creating events that might conflict, namely:
3550 *
3551 * 1) cpu-wide events in the presence of per-task events,
3552 * 2) per-task events in the presence of cpu-wide events,
3553 * 3) two matching events on the same context.
3554 *
3555 * The former two cases are handled in the allocation path (perf_event_alloc(),
3556 * _free_event()), the latter -- before the first perf_install_in_context().
3557 */
3558 static int exclusive_event_init(struct perf_event *event)
3559 {
3560 struct pmu *pmu = event->pmu;
3561
3562 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3563 return 0;
3564
3565 /*
3566 * Prevent co-existence of per-task and cpu-wide events on the
3567 * same exclusive pmu.
3568 *
3569 * Negative pmu::exclusive_cnt means there are cpu-wide
3570 * events on this "exclusive" pmu, positive means there are
3571 * per-task events.
3572 *
3573 * Since this is called in perf_event_alloc() path, event::ctx
3574 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3575 * to mean "per-task event", because unlike other attach states it
3576 * never gets cleared.
3577 */
3578 if (event->attach_state & PERF_ATTACH_TASK) {
3579 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3580 return -EBUSY;
3581 } else {
3582 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3583 return -EBUSY;
3584 }
3585
3586 return 0;
3587 }
3588
3589 static void exclusive_event_destroy(struct perf_event *event)
3590 {
3591 struct pmu *pmu = event->pmu;
3592
3593 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3594 return;
3595
3596 /* see comment in exclusive_event_init() */
3597 if (event->attach_state & PERF_ATTACH_TASK)
3598 atomic_dec(&pmu->exclusive_cnt);
3599 else
3600 atomic_inc(&pmu->exclusive_cnt);
3601 }
3602
3603 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3604 {
3605 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3606 (e1->cpu == e2->cpu ||
3607 e1->cpu == -1 ||
3608 e2->cpu == -1))
3609 return true;
3610 return false;
3611 }
3612
3613 /* Called under the same ctx::mutex as perf_install_in_context() */
3614 static bool exclusive_event_installable(struct perf_event *event,
3615 struct perf_event_context *ctx)
3616 {
3617 struct perf_event *iter_event;
3618 struct pmu *pmu = event->pmu;
3619
3620 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3621 return true;
3622
3623 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3624 if (exclusive_event_match(iter_event, event))
3625 return false;
3626 }
3627
3628 return true;
3629 }
3630
3631 static void _free_event(struct perf_event *event)
3632 {
3633 irq_work_sync(&event->pending);
3634
3635 unaccount_event(event);
3636
3637 if (event->rb) {
3638 /*
3639 * Can happen when we close an event with re-directed output.
3640 *
3641 * Since we have a 0 refcount, perf_mmap_close() will skip
3642 * over us; possibly making our ring_buffer_put() the last.
3643 */
3644 mutex_lock(&event->mmap_mutex);
3645 ring_buffer_attach(event, NULL);
3646 mutex_unlock(&event->mmap_mutex);
3647 }
3648
3649 if (is_cgroup_event(event))
3650 perf_detach_cgroup(event);
3651
3652 if (!event->parent) {
3653 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3654 put_callchain_buffers();
3655 }
3656
3657 perf_event_free_bpf_prog(event);
3658
3659 if (event->destroy)
3660 event->destroy(event);
3661
3662 if (event->ctx)
3663 put_ctx(event->ctx);
3664
3665 if (event->pmu) {
3666 exclusive_event_destroy(event);
3667 module_put(event->pmu->module);
3668 }
3669
3670 call_rcu(&event->rcu_head, free_event_rcu);
3671 }
3672
3673 /*
3674 * Used to free events which have a known refcount of 1, such as in error paths
3675 * where the event isn't exposed yet and inherited events.
3676 */
3677 static void free_event(struct perf_event *event)
3678 {
3679 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3680 "unexpected event refcount: %ld; ptr=%p\n",
3681 atomic_long_read(&event->refcount), event)) {
3682 /* leak to avoid use-after-free */
3683 return;
3684 }
3685
3686 _free_event(event);
3687 }
3688
3689 /*
3690 * Remove user event from the owner task.
3691 */
3692 static void perf_remove_from_owner(struct perf_event *event)
3693 {
3694 struct task_struct *owner;
3695
3696 rcu_read_lock();
3697 /*
3698 * Matches the smp_store_release() in perf_event_exit_task(). If we
3699 * observe !owner it means the list deletion is complete and we can
3700 * indeed free this event, otherwise we need to serialize on
3701 * owner->perf_event_mutex.
3702 */
3703 owner = lockless_dereference(event->owner);
3704 if (owner) {
3705 /*
3706 * Since delayed_put_task_struct() also drops the last
3707 * task reference we can safely take a new reference
3708 * while holding the rcu_read_lock().
3709 */
3710 get_task_struct(owner);
3711 }
3712 rcu_read_unlock();
3713
3714 if (owner) {
3715 /*
3716 * If we're here through perf_event_exit_task() we're already
3717 * holding ctx->mutex which would be an inversion wrt. the
3718 * normal lock order.
3719 *
3720 * However we can safely take this lock because its the child
3721 * ctx->mutex.
3722 */
3723 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3724
3725 /*
3726 * We have to re-check the event->owner field, if it is cleared
3727 * we raced with perf_event_exit_task(), acquiring the mutex
3728 * ensured they're done, and we can proceed with freeing the
3729 * event.
3730 */
3731 if (event->owner) {
3732 list_del_init(&event->owner_entry);
3733 smp_store_release(&event->owner, NULL);
3734 }
3735 mutex_unlock(&owner->perf_event_mutex);
3736 put_task_struct(owner);
3737 }
3738 }
3739
3740 static void put_event(struct perf_event *event)
3741 {
3742 if (!atomic_long_dec_and_test(&event->refcount))
3743 return;
3744
3745 _free_event(event);
3746 }
3747
3748 /*
3749 * Kill an event dead; while event:refcount will preserve the event
3750 * object, it will not preserve its functionality. Once the last 'user'
3751 * gives up the object, we'll destroy the thing.
3752 */
3753 int perf_event_release_kernel(struct perf_event *event)
3754 {
3755 struct perf_event_context *ctx;
3756 struct perf_event *child, *tmp;
3757
3758 if (!is_kernel_event(event))
3759 perf_remove_from_owner(event);
3760
3761 ctx = perf_event_ctx_lock(event);
3762 WARN_ON_ONCE(ctx->parent_ctx);
3763 perf_remove_from_context(event, DETACH_GROUP | DETACH_STATE);
3764 perf_event_ctx_unlock(event, ctx);
3765
3766 /*
3767 * At this point we must have event->state == PERF_EVENT_STATE_EXIT,
3768 * either from the above perf_remove_from_context() or through
3769 * perf_event_exit_event().
3770 *
3771 * Therefore, anybody acquiring event->child_mutex after the below
3772 * loop _must_ also see this, most importantly inherit_event() which
3773 * will avoid placing more children on the list.
3774 *
3775 * Thus this guarantees that we will in fact observe and kill _ALL_
3776 * child events.
3777 */
3778 WARN_ON_ONCE(event->state != PERF_EVENT_STATE_EXIT);
3779
3780 again:
3781 mutex_lock(&event->child_mutex);
3782 list_for_each_entry(child, &event->child_list, child_list) {
3783
3784 /*
3785 * Cannot change, child events are not migrated, see the
3786 * comment with perf_event_ctx_lock_nested().
3787 */
3788 ctx = lockless_dereference(child->ctx);
3789 /*
3790 * Since child_mutex nests inside ctx::mutex, we must jump
3791 * through hoops. We start by grabbing a reference on the ctx.
3792 *
3793 * Since the event cannot get freed while we hold the
3794 * child_mutex, the context must also exist and have a !0
3795 * reference count.
3796 */
3797 get_ctx(ctx);
3798
3799 /*
3800 * Now that we have a ctx ref, we can drop child_mutex, and
3801 * acquire ctx::mutex without fear of it going away. Then we
3802 * can re-acquire child_mutex.
3803 */
3804 mutex_unlock(&event->child_mutex);
3805 mutex_lock(&ctx->mutex);
3806 mutex_lock(&event->child_mutex);
3807
3808 /*
3809 * Now that we hold ctx::mutex and child_mutex, revalidate our
3810 * state, if child is still the first entry, it didn't get freed
3811 * and we can continue doing so.
3812 */
3813 tmp = list_first_entry_or_null(&event->child_list,
3814 struct perf_event, child_list);
3815 if (tmp == child) {
3816 perf_remove_from_context(child, DETACH_GROUP);
3817 list_del(&child->child_list);
3818 free_event(child);
3819 /*
3820 * This matches the refcount bump in inherit_event();
3821 * this can't be the last reference.
3822 */
3823 put_event(event);
3824 }
3825
3826 mutex_unlock(&event->child_mutex);
3827 mutex_unlock(&ctx->mutex);
3828 put_ctx(ctx);
3829 goto again;
3830 }
3831 mutex_unlock(&event->child_mutex);
3832
3833 /* Must be the last reference */
3834 put_event(event);
3835 return 0;
3836 }
3837 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3838
3839 /*
3840 * Called when the last reference to the file is gone.
3841 */
3842 static int perf_release(struct inode *inode, struct file *file)
3843 {
3844 perf_event_release_kernel(file->private_data);
3845 return 0;
3846 }
3847
3848 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3849 {
3850 struct perf_event *child;
3851 u64 total = 0;
3852
3853 *enabled = 0;
3854 *running = 0;
3855
3856 mutex_lock(&event->child_mutex);
3857
3858 (void)perf_event_read(event, false);
3859 total += perf_event_count(event);
3860
3861 *enabled += event->total_time_enabled +
3862 atomic64_read(&event->child_total_time_enabled);
3863 *running += event->total_time_running +
3864 atomic64_read(&event->child_total_time_running);
3865
3866 list_for_each_entry(child, &event->child_list, child_list) {
3867 (void)perf_event_read(child, false);
3868 total += perf_event_count(child);
3869 *enabled += child->total_time_enabled;
3870 *running += child->total_time_running;
3871 }
3872 mutex_unlock(&event->child_mutex);
3873
3874 return total;
3875 }
3876 EXPORT_SYMBOL_GPL(perf_event_read_value);
3877
3878 static int __perf_read_group_add(struct perf_event *leader,
3879 u64 read_format, u64 *values)
3880 {
3881 struct perf_event *sub;
3882 int n = 1; /* skip @nr */
3883 int ret;
3884
3885 ret = perf_event_read(leader, true);
3886 if (ret)
3887 return ret;
3888
3889 /*
3890 * Since we co-schedule groups, {enabled,running} times of siblings
3891 * will be identical to those of the leader, so we only publish one
3892 * set.
3893 */
3894 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3895 values[n++] += leader->total_time_enabled +
3896 atomic64_read(&leader->child_total_time_enabled);
3897 }
3898
3899 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3900 values[n++] += leader->total_time_running +
3901 atomic64_read(&leader->child_total_time_running);
3902 }
3903
3904 /*
3905 * Write {count,id} tuples for every sibling.
3906 */
3907 values[n++] += perf_event_count(leader);
3908 if (read_format & PERF_FORMAT_ID)
3909 values[n++] = primary_event_id(leader);
3910
3911 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3912 values[n++] += perf_event_count(sub);
3913 if (read_format & PERF_FORMAT_ID)
3914 values[n++] = primary_event_id(sub);
3915 }
3916
3917 return 0;
3918 }
3919
3920 static int perf_read_group(struct perf_event *event,
3921 u64 read_format, char __user *buf)
3922 {
3923 struct perf_event *leader = event->group_leader, *child;
3924 struct perf_event_context *ctx = leader->ctx;
3925 int ret;
3926 u64 *values;
3927
3928 lockdep_assert_held(&ctx->mutex);
3929
3930 values = kzalloc(event->read_size, GFP_KERNEL);
3931 if (!values)
3932 return -ENOMEM;
3933
3934 values[0] = 1 + leader->nr_siblings;
3935
3936 /*
3937 * By locking the child_mutex of the leader we effectively
3938 * lock the child list of all siblings.. XXX explain how.
3939 */
3940 mutex_lock(&leader->child_mutex);
3941
3942 ret = __perf_read_group_add(leader, read_format, values);
3943 if (ret)
3944 goto unlock;
3945
3946 list_for_each_entry(child, &leader->child_list, child_list) {
3947 ret = __perf_read_group_add(child, read_format, values);
3948 if (ret)
3949 goto unlock;
3950 }
3951
3952 mutex_unlock(&leader->child_mutex);
3953
3954 ret = event->read_size;
3955 if (copy_to_user(buf, values, event->read_size))
3956 ret = -EFAULT;
3957 goto out;
3958
3959 unlock:
3960 mutex_unlock(&leader->child_mutex);
3961 out:
3962 kfree(values);
3963 return ret;
3964 }
3965
3966 static int perf_read_one(struct perf_event *event,
3967 u64 read_format, char __user *buf)
3968 {
3969 u64 enabled, running;
3970 u64 values[4];
3971 int n = 0;
3972
3973 values[n++] = perf_event_read_value(event, &enabled, &running);
3974 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3975 values[n++] = enabled;
3976 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3977 values[n++] = running;
3978 if (read_format & PERF_FORMAT_ID)
3979 values[n++] = primary_event_id(event);
3980
3981 if (copy_to_user(buf, values, n * sizeof(u64)))
3982 return -EFAULT;
3983
3984 return n * sizeof(u64);
3985 }
3986
3987 static bool is_event_hup(struct perf_event *event)
3988 {
3989 bool no_children;
3990
3991 if (event->state != PERF_EVENT_STATE_EXIT)
3992 return false;
3993
3994 mutex_lock(&event->child_mutex);
3995 no_children = list_empty(&event->child_list);
3996 mutex_unlock(&event->child_mutex);
3997 return no_children;
3998 }
3999
4000 /*
4001 * Read the performance event - simple non blocking version for now
4002 */
4003 static ssize_t
4004 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4005 {
4006 u64 read_format = event->attr.read_format;
4007 int ret;
4008
4009 /*
4010 * Return end-of-file for a read on a event that is in
4011 * error state (i.e. because it was pinned but it couldn't be
4012 * scheduled on to the CPU at some point).
4013 */
4014 if (event->state == PERF_EVENT_STATE_ERROR)
4015 return 0;
4016
4017 if (count < event->read_size)
4018 return -ENOSPC;
4019
4020 WARN_ON_ONCE(event->ctx->parent_ctx);
4021 if (read_format & PERF_FORMAT_GROUP)
4022 ret = perf_read_group(event, read_format, buf);
4023 else
4024 ret = perf_read_one(event, read_format, buf);
4025
4026 return ret;
4027 }
4028
4029 static ssize_t
4030 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4031 {
4032 struct perf_event *event = file->private_data;
4033 struct perf_event_context *ctx;
4034 int ret;
4035
4036 ctx = perf_event_ctx_lock(event);
4037 ret = __perf_read(event, buf, count);
4038 perf_event_ctx_unlock(event, ctx);
4039
4040 return ret;
4041 }
4042
4043 static unsigned int perf_poll(struct file *file, poll_table *wait)
4044 {
4045 struct perf_event *event = file->private_data;
4046 struct ring_buffer *rb;
4047 unsigned int events = POLLHUP;
4048
4049 poll_wait(file, &event->waitq, wait);
4050
4051 if (is_event_hup(event))
4052 return events;
4053
4054 /*
4055 * Pin the event->rb by taking event->mmap_mutex; otherwise
4056 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4057 */
4058 mutex_lock(&event->mmap_mutex);
4059 rb = event->rb;
4060 if (rb)
4061 events = atomic_xchg(&rb->poll, 0);
4062 mutex_unlock(&event->mmap_mutex);
4063 return events;
4064 }
4065
4066 static void _perf_event_reset(struct perf_event *event)
4067 {
4068 (void)perf_event_read(event, false);
4069 local64_set(&event->count, 0);
4070 perf_event_update_userpage(event);
4071 }
4072
4073 /*
4074 * Holding the top-level event's child_mutex means that any
4075 * descendant process that has inherited this event will block
4076 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4077 * task existence requirements of perf_event_enable/disable.
4078 */
4079 static void perf_event_for_each_child(struct perf_event *event,
4080 void (*func)(struct perf_event *))
4081 {
4082 struct perf_event *child;
4083
4084 WARN_ON_ONCE(event->ctx->parent_ctx);
4085
4086 mutex_lock(&event->child_mutex);
4087 func(event);
4088 list_for_each_entry(child, &event->child_list, child_list)
4089 func(child);
4090 mutex_unlock(&event->child_mutex);
4091 }
4092
4093 static void perf_event_for_each(struct perf_event *event,
4094 void (*func)(struct perf_event *))
4095 {
4096 struct perf_event_context *ctx = event->ctx;
4097 struct perf_event *sibling;
4098
4099 lockdep_assert_held(&ctx->mutex);
4100
4101 event = event->group_leader;
4102
4103 perf_event_for_each_child(event, func);
4104 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4105 perf_event_for_each_child(sibling, func);
4106 }
4107
4108 static void __perf_event_period(struct perf_event *event,
4109 struct perf_cpu_context *cpuctx,
4110 struct perf_event_context *ctx,
4111 void *info)
4112 {
4113 u64 value = *((u64 *)info);
4114 bool active;
4115
4116 if (event->attr.freq) {
4117 event->attr.sample_freq = value;
4118 } else {
4119 event->attr.sample_period = value;
4120 event->hw.sample_period = value;
4121 }
4122
4123 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4124 if (active) {
4125 perf_pmu_disable(ctx->pmu);
4126 event->pmu->stop(event, PERF_EF_UPDATE);
4127 }
4128
4129 local64_set(&event->hw.period_left, 0);
4130
4131 if (active) {
4132 event->pmu->start(event, PERF_EF_RELOAD);
4133 perf_pmu_enable(ctx->pmu);
4134 }
4135 }
4136
4137 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4138 {
4139 u64 value;
4140
4141 if (!is_sampling_event(event))
4142 return -EINVAL;
4143
4144 if (copy_from_user(&value, arg, sizeof(value)))
4145 return -EFAULT;
4146
4147 if (!value)
4148 return -EINVAL;
4149
4150 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4151 return -EINVAL;
4152
4153 event_function_call(event, __perf_event_period, &value);
4154
4155 return 0;
4156 }
4157
4158 static const struct file_operations perf_fops;
4159
4160 static inline int perf_fget_light(int fd, struct fd *p)
4161 {
4162 struct fd f = fdget(fd);
4163 if (!f.file)
4164 return -EBADF;
4165
4166 if (f.file->f_op != &perf_fops) {
4167 fdput(f);
4168 return -EBADF;
4169 }
4170 *p = f;
4171 return 0;
4172 }
4173
4174 static int perf_event_set_output(struct perf_event *event,
4175 struct perf_event *output_event);
4176 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4177 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4178
4179 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4180 {
4181 void (*func)(struct perf_event *);
4182 u32 flags = arg;
4183
4184 switch (cmd) {
4185 case PERF_EVENT_IOC_ENABLE:
4186 func = _perf_event_enable;
4187 break;
4188 case PERF_EVENT_IOC_DISABLE:
4189 func = _perf_event_disable;
4190 break;
4191 case PERF_EVENT_IOC_RESET:
4192 func = _perf_event_reset;
4193 break;
4194
4195 case PERF_EVENT_IOC_REFRESH:
4196 return _perf_event_refresh(event, arg);
4197
4198 case PERF_EVENT_IOC_PERIOD:
4199 return perf_event_period(event, (u64 __user *)arg);
4200
4201 case PERF_EVENT_IOC_ID:
4202 {
4203 u64 id = primary_event_id(event);
4204
4205 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4206 return -EFAULT;
4207 return 0;
4208 }
4209
4210 case PERF_EVENT_IOC_SET_OUTPUT:
4211 {
4212 int ret;
4213 if (arg != -1) {
4214 struct perf_event *output_event;
4215 struct fd output;
4216 ret = perf_fget_light(arg, &output);
4217 if (ret)
4218 return ret;
4219 output_event = output.file->private_data;
4220 ret = perf_event_set_output(event, output_event);
4221 fdput(output);
4222 } else {
4223 ret = perf_event_set_output(event, NULL);
4224 }
4225 return ret;
4226 }
4227
4228 case PERF_EVENT_IOC_SET_FILTER:
4229 return perf_event_set_filter(event, (void __user *)arg);
4230
4231 case PERF_EVENT_IOC_SET_BPF:
4232 return perf_event_set_bpf_prog(event, arg);
4233
4234 default:
4235 return -ENOTTY;
4236 }
4237
4238 if (flags & PERF_IOC_FLAG_GROUP)
4239 perf_event_for_each(event, func);
4240 else
4241 perf_event_for_each_child(event, func);
4242
4243 return 0;
4244 }
4245
4246 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4247 {
4248 struct perf_event *event = file->private_data;
4249 struct perf_event_context *ctx;
4250 long ret;
4251
4252 ctx = perf_event_ctx_lock(event);
4253 ret = _perf_ioctl(event, cmd, arg);
4254 perf_event_ctx_unlock(event, ctx);
4255
4256 return ret;
4257 }
4258
4259 #ifdef CONFIG_COMPAT
4260 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4261 unsigned long arg)
4262 {
4263 switch (_IOC_NR(cmd)) {
4264 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4265 case _IOC_NR(PERF_EVENT_IOC_ID):
4266 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4267 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4268 cmd &= ~IOCSIZE_MASK;
4269 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4270 }
4271 break;
4272 }
4273 return perf_ioctl(file, cmd, arg);
4274 }
4275 #else
4276 # define perf_compat_ioctl NULL
4277 #endif
4278
4279 int perf_event_task_enable(void)
4280 {
4281 struct perf_event_context *ctx;
4282 struct perf_event *event;
4283
4284 mutex_lock(&current->perf_event_mutex);
4285 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4286 ctx = perf_event_ctx_lock(event);
4287 perf_event_for_each_child(event, _perf_event_enable);
4288 perf_event_ctx_unlock(event, ctx);
4289 }
4290 mutex_unlock(&current->perf_event_mutex);
4291
4292 return 0;
4293 }
4294
4295 int perf_event_task_disable(void)
4296 {
4297 struct perf_event_context *ctx;
4298 struct perf_event *event;
4299
4300 mutex_lock(&current->perf_event_mutex);
4301 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4302 ctx = perf_event_ctx_lock(event);
4303 perf_event_for_each_child(event, _perf_event_disable);
4304 perf_event_ctx_unlock(event, ctx);
4305 }
4306 mutex_unlock(&current->perf_event_mutex);
4307
4308 return 0;
4309 }
4310
4311 static int perf_event_index(struct perf_event *event)
4312 {
4313 if (event->hw.state & PERF_HES_STOPPED)
4314 return 0;
4315
4316 if (event->state != PERF_EVENT_STATE_ACTIVE)
4317 return 0;
4318
4319 return event->pmu->event_idx(event);
4320 }
4321
4322 static void calc_timer_values(struct perf_event *event,
4323 u64 *now,
4324 u64 *enabled,
4325 u64 *running)
4326 {
4327 u64 ctx_time;
4328
4329 *now = perf_clock();
4330 ctx_time = event->shadow_ctx_time + *now;
4331 *enabled = ctx_time - event->tstamp_enabled;
4332 *running = ctx_time - event->tstamp_running;
4333 }
4334
4335 static void perf_event_init_userpage(struct perf_event *event)
4336 {
4337 struct perf_event_mmap_page *userpg;
4338 struct ring_buffer *rb;
4339
4340 rcu_read_lock();
4341 rb = rcu_dereference(event->rb);
4342 if (!rb)
4343 goto unlock;
4344
4345 userpg = rb->user_page;
4346
4347 /* Allow new userspace to detect that bit 0 is deprecated */
4348 userpg->cap_bit0_is_deprecated = 1;
4349 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4350 userpg->data_offset = PAGE_SIZE;
4351 userpg->data_size = perf_data_size(rb);
4352
4353 unlock:
4354 rcu_read_unlock();
4355 }
4356
4357 void __weak arch_perf_update_userpage(
4358 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4359 {
4360 }
4361
4362 /*
4363 * Callers need to ensure there can be no nesting of this function, otherwise
4364 * the seqlock logic goes bad. We can not serialize this because the arch
4365 * code calls this from NMI context.
4366 */
4367 void perf_event_update_userpage(struct perf_event *event)
4368 {
4369 struct perf_event_mmap_page *userpg;
4370 struct ring_buffer *rb;
4371 u64 enabled, running, now;
4372
4373 rcu_read_lock();
4374 rb = rcu_dereference(event->rb);
4375 if (!rb)
4376 goto unlock;
4377
4378 /*
4379 * compute total_time_enabled, total_time_running
4380 * based on snapshot values taken when the event
4381 * was last scheduled in.
4382 *
4383 * we cannot simply called update_context_time()
4384 * because of locking issue as we can be called in
4385 * NMI context
4386 */
4387 calc_timer_values(event, &now, &enabled, &running);
4388
4389 userpg = rb->user_page;
4390 /*
4391 * Disable preemption so as to not let the corresponding user-space
4392 * spin too long if we get preempted.
4393 */
4394 preempt_disable();
4395 ++userpg->lock;
4396 barrier();
4397 userpg->index = perf_event_index(event);
4398 userpg->offset = perf_event_count(event);
4399 if (userpg->index)
4400 userpg->offset -= local64_read(&event->hw.prev_count);
4401
4402 userpg->time_enabled = enabled +
4403 atomic64_read(&event->child_total_time_enabled);
4404
4405 userpg->time_running = running +
4406 atomic64_read(&event->child_total_time_running);
4407
4408 arch_perf_update_userpage(event, userpg, now);
4409
4410 barrier();
4411 ++userpg->lock;
4412 preempt_enable();
4413 unlock:
4414 rcu_read_unlock();
4415 }
4416
4417 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4418 {
4419 struct perf_event *event = vma->vm_file->private_data;
4420 struct ring_buffer *rb;
4421 int ret = VM_FAULT_SIGBUS;
4422
4423 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4424 if (vmf->pgoff == 0)
4425 ret = 0;
4426 return ret;
4427 }
4428
4429 rcu_read_lock();
4430 rb = rcu_dereference(event->rb);
4431 if (!rb)
4432 goto unlock;
4433
4434 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4435 goto unlock;
4436
4437 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4438 if (!vmf->page)
4439 goto unlock;
4440
4441 get_page(vmf->page);
4442 vmf->page->mapping = vma->vm_file->f_mapping;
4443 vmf->page->index = vmf->pgoff;
4444
4445 ret = 0;
4446 unlock:
4447 rcu_read_unlock();
4448
4449 return ret;
4450 }
4451
4452 static void ring_buffer_attach(struct perf_event *event,
4453 struct ring_buffer *rb)
4454 {
4455 struct ring_buffer *old_rb = NULL;
4456 unsigned long flags;
4457
4458 if (event->rb) {
4459 /*
4460 * Should be impossible, we set this when removing
4461 * event->rb_entry and wait/clear when adding event->rb_entry.
4462 */
4463 WARN_ON_ONCE(event->rcu_pending);
4464
4465 old_rb = event->rb;
4466 spin_lock_irqsave(&old_rb->event_lock, flags);
4467 list_del_rcu(&event->rb_entry);
4468 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4469
4470 event->rcu_batches = get_state_synchronize_rcu();
4471 event->rcu_pending = 1;
4472 }
4473
4474 if (rb) {
4475 if (event->rcu_pending) {
4476 cond_synchronize_rcu(event->rcu_batches);
4477 event->rcu_pending = 0;
4478 }
4479
4480 spin_lock_irqsave(&rb->event_lock, flags);
4481 list_add_rcu(&event->rb_entry, &rb->event_list);
4482 spin_unlock_irqrestore(&rb->event_lock, flags);
4483 }
4484
4485 rcu_assign_pointer(event->rb, rb);
4486
4487 if (old_rb) {
4488 ring_buffer_put(old_rb);
4489 /*
4490 * Since we detached before setting the new rb, so that we
4491 * could attach the new rb, we could have missed a wakeup.
4492 * Provide it now.
4493 */
4494 wake_up_all(&event->waitq);
4495 }
4496 }
4497
4498 static void ring_buffer_wakeup(struct perf_event *event)
4499 {
4500 struct ring_buffer *rb;
4501
4502 rcu_read_lock();
4503 rb = rcu_dereference(event->rb);
4504 if (rb) {
4505 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4506 wake_up_all(&event->waitq);
4507 }
4508 rcu_read_unlock();
4509 }
4510
4511 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4512 {
4513 struct ring_buffer *rb;
4514
4515 rcu_read_lock();
4516 rb = rcu_dereference(event->rb);
4517 if (rb) {
4518 if (!atomic_inc_not_zero(&rb->refcount))
4519 rb = NULL;
4520 }
4521 rcu_read_unlock();
4522
4523 return rb;
4524 }
4525
4526 void ring_buffer_put(struct ring_buffer *rb)
4527 {
4528 if (!atomic_dec_and_test(&rb->refcount))
4529 return;
4530
4531 WARN_ON_ONCE(!list_empty(&rb->event_list));
4532
4533 call_rcu(&rb->rcu_head, rb_free_rcu);
4534 }
4535
4536 static void perf_mmap_open(struct vm_area_struct *vma)
4537 {
4538 struct perf_event *event = vma->vm_file->private_data;
4539
4540 atomic_inc(&event->mmap_count);
4541 atomic_inc(&event->rb->mmap_count);
4542
4543 if (vma->vm_pgoff)
4544 atomic_inc(&event->rb->aux_mmap_count);
4545
4546 if (event->pmu->event_mapped)
4547 event->pmu->event_mapped(event);
4548 }
4549
4550 /*
4551 * A buffer can be mmap()ed multiple times; either directly through the same
4552 * event, or through other events by use of perf_event_set_output().
4553 *
4554 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4555 * the buffer here, where we still have a VM context. This means we need
4556 * to detach all events redirecting to us.
4557 */
4558 static void perf_mmap_close(struct vm_area_struct *vma)
4559 {
4560 struct perf_event *event = vma->vm_file->private_data;
4561
4562 struct ring_buffer *rb = ring_buffer_get(event);
4563 struct user_struct *mmap_user = rb->mmap_user;
4564 int mmap_locked = rb->mmap_locked;
4565 unsigned long size = perf_data_size(rb);
4566
4567 if (event->pmu->event_unmapped)
4568 event->pmu->event_unmapped(event);
4569
4570 /*
4571 * rb->aux_mmap_count will always drop before rb->mmap_count and
4572 * event->mmap_count, so it is ok to use event->mmap_mutex to
4573 * serialize with perf_mmap here.
4574 */
4575 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4576 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4577 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4578 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4579
4580 rb_free_aux(rb);
4581 mutex_unlock(&event->mmap_mutex);
4582 }
4583
4584 atomic_dec(&rb->mmap_count);
4585
4586 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4587 goto out_put;
4588
4589 ring_buffer_attach(event, NULL);
4590 mutex_unlock(&event->mmap_mutex);
4591
4592 /* If there's still other mmap()s of this buffer, we're done. */
4593 if (atomic_read(&rb->mmap_count))
4594 goto out_put;
4595
4596 /*
4597 * No other mmap()s, detach from all other events that might redirect
4598 * into the now unreachable buffer. Somewhat complicated by the
4599 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4600 */
4601 again:
4602 rcu_read_lock();
4603 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4604 if (!atomic_long_inc_not_zero(&event->refcount)) {
4605 /*
4606 * This event is en-route to free_event() which will
4607 * detach it and remove it from the list.
4608 */
4609 continue;
4610 }
4611 rcu_read_unlock();
4612
4613 mutex_lock(&event->mmap_mutex);
4614 /*
4615 * Check we didn't race with perf_event_set_output() which can
4616 * swizzle the rb from under us while we were waiting to
4617 * acquire mmap_mutex.
4618 *
4619 * If we find a different rb; ignore this event, a next
4620 * iteration will no longer find it on the list. We have to
4621 * still restart the iteration to make sure we're not now
4622 * iterating the wrong list.
4623 */
4624 if (event->rb == rb)
4625 ring_buffer_attach(event, NULL);
4626
4627 mutex_unlock(&event->mmap_mutex);
4628 put_event(event);
4629
4630 /*
4631 * Restart the iteration; either we're on the wrong list or
4632 * destroyed its integrity by doing a deletion.
4633 */
4634 goto again;
4635 }
4636 rcu_read_unlock();
4637
4638 /*
4639 * It could be there's still a few 0-ref events on the list; they'll
4640 * get cleaned up by free_event() -- they'll also still have their
4641 * ref on the rb and will free it whenever they are done with it.
4642 *
4643 * Aside from that, this buffer is 'fully' detached and unmapped,
4644 * undo the VM accounting.
4645 */
4646
4647 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4648 vma->vm_mm->pinned_vm -= mmap_locked;
4649 free_uid(mmap_user);
4650
4651 out_put:
4652 ring_buffer_put(rb); /* could be last */
4653 }
4654
4655 static const struct vm_operations_struct perf_mmap_vmops = {
4656 .open = perf_mmap_open,
4657 .close = perf_mmap_close, /* non mergable */
4658 .fault = perf_mmap_fault,
4659 .page_mkwrite = perf_mmap_fault,
4660 };
4661
4662 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4663 {
4664 struct perf_event *event = file->private_data;
4665 unsigned long user_locked, user_lock_limit;
4666 struct user_struct *user = current_user();
4667 unsigned long locked, lock_limit;
4668 struct ring_buffer *rb = NULL;
4669 unsigned long vma_size;
4670 unsigned long nr_pages;
4671 long user_extra = 0, extra = 0;
4672 int ret = 0, flags = 0;
4673
4674 /*
4675 * Don't allow mmap() of inherited per-task counters. This would
4676 * create a performance issue due to all children writing to the
4677 * same rb.
4678 */
4679 if (event->cpu == -1 && event->attr.inherit)
4680 return -EINVAL;
4681
4682 if (!(vma->vm_flags & VM_SHARED))
4683 return -EINVAL;
4684
4685 vma_size = vma->vm_end - vma->vm_start;
4686
4687 if (vma->vm_pgoff == 0) {
4688 nr_pages = (vma_size / PAGE_SIZE) - 1;
4689 } else {
4690 /*
4691 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4692 * mapped, all subsequent mappings should have the same size
4693 * and offset. Must be above the normal perf buffer.
4694 */
4695 u64 aux_offset, aux_size;
4696
4697 if (!event->rb)
4698 return -EINVAL;
4699
4700 nr_pages = vma_size / PAGE_SIZE;
4701
4702 mutex_lock(&event->mmap_mutex);
4703 ret = -EINVAL;
4704
4705 rb = event->rb;
4706 if (!rb)
4707 goto aux_unlock;
4708
4709 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4710 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4711
4712 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4713 goto aux_unlock;
4714
4715 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4716 goto aux_unlock;
4717
4718 /* already mapped with a different offset */
4719 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4720 goto aux_unlock;
4721
4722 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4723 goto aux_unlock;
4724
4725 /* already mapped with a different size */
4726 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4727 goto aux_unlock;
4728
4729 if (!is_power_of_2(nr_pages))
4730 goto aux_unlock;
4731
4732 if (!atomic_inc_not_zero(&rb->mmap_count))
4733 goto aux_unlock;
4734
4735 if (rb_has_aux(rb)) {
4736 atomic_inc(&rb->aux_mmap_count);
4737 ret = 0;
4738 goto unlock;
4739 }
4740
4741 atomic_set(&rb->aux_mmap_count, 1);
4742 user_extra = nr_pages;
4743
4744 goto accounting;
4745 }
4746
4747 /*
4748 * If we have rb pages ensure they're a power-of-two number, so we
4749 * can do bitmasks instead of modulo.
4750 */
4751 if (nr_pages != 0 && !is_power_of_2(nr_pages))
4752 return -EINVAL;
4753
4754 if (vma_size != PAGE_SIZE * (1 + nr_pages))
4755 return -EINVAL;
4756
4757 WARN_ON_ONCE(event->ctx->parent_ctx);
4758 again:
4759 mutex_lock(&event->mmap_mutex);
4760 if (event->rb) {
4761 if (event->rb->nr_pages != nr_pages) {
4762 ret = -EINVAL;
4763 goto unlock;
4764 }
4765
4766 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4767 /*
4768 * Raced against perf_mmap_close() through
4769 * perf_event_set_output(). Try again, hope for better
4770 * luck.
4771 */
4772 mutex_unlock(&event->mmap_mutex);
4773 goto again;
4774 }
4775
4776 goto unlock;
4777 }
4778
4779 user_extra = nr_pages + 1;
4780
4781 accounting:
4782 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4783
4784 /*
4785 * Increase the limit linearly with more CPUs:
4786 */
4787 user_lock_limit *= num_online_cpus();
4788
4789 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4790
4791 if (user_locked > user_lock_limit)
4792 extra = user_locked - user_lock_limit;
4793
4794 lock_limit = rlimit(RLIMIT_MEMLOCK);
4795 lock_limit >>= PAGE_SHIFT;
4796 locked = vma->vm_mm->pinned_vm + extra;
4797
4798 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4799 !capable(CAP_IPC_LOCK)) {
4800 ret = -EPERM;
4801 goto unlock;
4802 }
4803
4804 WARN_ON(!rb && event->rb);
4805
4806 if (vma->vm_flags & VM_WRITE)
4807 flags |= RING_BUFFER_WRITABLE;
4808
4809 if (!rb) {
4810 rb = rb_alloc(nr_pages,
4811 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4812 event->cpu, flags);
4813
4814 if (!rb) {
4815 ret = -ENOMEM;
4816 goto unlock;
4817 }
4818
4819 atomic_set(&rb->mmap_count, 1);
4820 rb->mmap_user = get_current_user();
4821 rb->mmap_locked = extra;
4822
4823 ring_buffer_attach(event, rb);
4824
4825 perf_event_init_userpage(event);
4826 perf_event_update_userpage(event);
4827 } else {
4828 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4829 event->attr.aux_watermark, flags);
4830 if (!ret)
4831 rb->aux_mmap_locked = extra;
4832 }
4833
4834 unlock:
4835 if (!ret) {
4836 atomic_long_add(user_extra, &user->locked_vm);
4837 vma->vm_mm->pinned_vm += extra;
4838
4839 atomic_inc(&event->mmap_count);
4840 } else if (rb) {
4841 atomic_dec(&rb->mmap_count);
4842 }
4843 aux_unlock:
4844 mutex_unlock(&event->mmap_mutex);
4845
4846 /*
4847 * Since pinned accounting is per vm we cannot allow fork() to copy our
4848 * vma.
4849 */
4850 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4851 vma->vm_ops = &perf_mmap_vmops;
4852
4853 if (event->pmu->event_mapped)
4854 event->pmu->event_mapped(event);
4855
4856 return ret;
4857 }
4858
4859 static int perf_fasync(int fd, struct file *filp, int on)
4860 {
4861 struct inode *inode = file_inode(filp);
4862 struct perf_event *event = filp->private_data;
4863 int retval;
4864
4865 inode_lock(inode);
4866 retval = fasync_helper(fd, filp, on, &event->fasync);
4867 inode_unlock(inode);
4868
4869 if (retval < 0)
4870 return retval;
4871
4872 return 0;
4873 }
4874
4875 static const struct file_operations perf_fops = {
4876 .llseek = no_llseek,
4877 .release = perf_release,
4878 .read = perf_read,
4879 .poll = perf_poll,
4880 .unlocked_ioctl = perf_ioctl,
4881 .compat_ioctl = perf_compat_ioctl,
4882 .mmap = perf_mmap,
4883 .fasync = perf_fasync,
4884 };
4885
4886 /*
4887 * Perf event wakeup
4888 *
4889 * If there's data, ensure we set the poll() state and publish everything
4890 * to user-space before waking everybody up.
4891 */
4892
4893 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4894 {
4895 /* only the parent has fasync state */
4896 if (event->parent)
4897 event = event->parent;
4898 return &event->fasync;
4899 }
4900
4901 void perf_event_wakeup(struct perf_event *event)
4902 {
4903 ring_buffer_wakeup(event);
4904
4905 if (event->pending_kill) {
4906 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4907 event->pending_kill = 0;
4908 }
4909 }
4910
4911 static void perf_pending_event(struct irq_work *entry)
4912 {
4913 struct perf_event *event = container_of(entry,
4914 struct perf_event, pending);
4915 int rctx;
4916
4917 rctx = perf_swevent_get_recursion_context();
4918 /*
4919 * If we 'fail' here, that's OK, it means recursion is already disabled
4920 * and we won't recurse 'further'.
4921 */
4922
4923 if (event->pending_disable) {
4924 event->pending_disable = 0;
4925 perf_event_disable_local(event);
4926 }
4927
4928 if (event->pending_wakeup) {
4929 event->pending_wakeup = 0;
4930 perf_event_wakeup(event);
4931 }
4932
4933 if (rctx >= 0)
4934 perf_swevent_put_recursion_context(rctx);
4935 }
4936
4937 /*
4938 * We assume there is only KVM supporting the callbacks.
4939 * Later on, we might change it to a list if there is
4940 * another virtualization implementation supporting the callbacks.
4941 */
4942 struct perf_guest_info_callbacks *perf_guest_cbs;
4943
4944 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4945 {
4946 perf_guest_cbs = cbs;
4947 return 0;
4948 }
4949 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4950
4951 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4952 {
4953 perf_guest_cbs = NULL;
4954 return 0;
4955 }
4956 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4957
4958 static void
4959 perf_output_sample_regs(struct perf_output_handle *handle,
4960 struct pt_regs *regs, u64 mask)
4961 {
4962 int bit;
4963
4964 for_each_set_bit(bit, (const unsigned long *) &mask,
4965 sizeof(mask) * BITS_PER_BYTE) {
4966 u64 val;
4967
4968 val = perf_reg_value(regs, bit);
4969 perf_output_put(handle, val);
4970 }
4971 }
4972
4973 static void perf_sample_regs_user(struct perf_regs *regs_user,
4974 struct pt_regs *regs,
4975 struct pt_regs *regs_user_copy)
4976 {
4977 if (user_mode(regs)) {
4978 regs_user->abi = perf_reg_abi(current);
4979 regs_user->regs = regs;
4980 } else if (current->mm) {
4981 perf_get_regs_user(regs_user, regs, regs_user_copy);
4982 } else {
4983 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4984 regs_user->regs = NULL;
4985 }
4986 }
4987
4988 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4989 struct pt_regs *regs)
4990 {
4991 regs_intr->regs = regs;
4992 regs_intr->abi = perf_reg_abi(current);
4993 }
4994
4995
4996 /*
4997 * Get remaining task size from user stack pointer.
4998 *
4999 * It'd be better to take stack vma map and limit this more
5000 * precisly, but there's no way to get it safely under interrupt,
5001 * so using TASK_SIZE as limit.
5002 */
5003 static u64 perf_ustack_task_size(struct pt_regs *regs)
5004 {
5005 unsigned long addr = perf_user_stack_pointer(regs);
5006
5007 if (!addr || addr >= TASK_SIZE)
5008 return 0;
5009
5010 return TASK_SIZE - addr;
5011 }
5012
5013 static u16
5014 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5015 struct pt_regs *regs)
5016 {
5017 u64 task_size;
5018
5019 /* No regs, no stack pointer, no dump. */
5020 if (!regs)
5021 return 0;
5022
5023 /*
5024 * Check if we fit in with the requested stack size into the:
5025 * - TASK_SIZE
5026 * If we don't, we limit the size to the TASK_SIZE.
5027 *
5028 * - remaining sample size
5029 * If we don't, we customize the stack size to
5030 * fit in to the remaining sample size.
5031 */
5032
5033 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5034 stack_size = min(stack_size, (u16) task_size);
5035
5036 /* Current header size plus static size and dynamic size. */
5037 header_size += 2 * sizeof(u64);
5038
5039 /* Do we fit in with the current stack dump size? */
5040 if ((u16) (header_size + stack_size) < header_size) {
5041 /*
5042 * If we overflow the maximum size for the sample,
5043 * we customize the stack dump size to fit in.
5044 */
5045 stack_size = USHRT_MAX - header_size - sizeof(u64);
5046 stack_size = round_up(stack_size, sizeof(u64));
5047 }
5048
5049 return stack_size;
5050 }
5051
5052 static void
5053 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5054 struct pt_regs *regs)
5055 {
5056 /* Case of a kernel thread, nothing to dump */
5057 if (!regs) {
5058 u64 size = 0;
5059 perf_output_put(handle, size);
5060 } else {
5061 unsigned long sp;
5062 unsigned int rem;
5063 u64 dyn_size;
5064
5065 /*
5066 * We dump:
5067 * static size
5068 * - the size requested by user or the best one we can fit
5069 * in to the sample max size
5070 * data
5071 * - user stack dump data
5072 * dynamic size
5073 * - the actual dumped size
5074 */
5075
5076 /* Static size. */
5077 perf_output_put(handle, dump_size);
5078
5079 /* Data. */
5080 sp = perf_user_stack_pointer(regs);
5081 rem = __output_copy_user(handle, (void *) sp, dump_size);
5082 dyn_size = dump_size - rem;
5083
5084 perf_output_skip(handle, rem);
5085
5086 /* Dynamic size. */
5087 perf_output_put(handle, dyn_size);
5088 }
5089 }
5090
5091 static void __perf_event_header__init_id(struct perf_event_header *header,
5092 struct perf_sample_data *data,
5093 struct perf_event *event)
5094 {
5095 u64 sample_type = event->attr.sample_type;
5096
5097 data->type = sample_type;
5098 header->size += event->id_header_size;
5099
5100 if (sample_type & PERF_SAMPLE_TID) {
5101 /* namespace issues */
5102 data->tid_entry.pid = perf_event_pid(event, current);
5103 data->tid_entry.tid = perf_event_tid(event, current);
5104 }
5105
5106 if (sample_type & PERF_SAMPLE_TIME)
5107 data->time = perf_event_clock(event);
5108
5109 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5110 data->id = primary_event_id(event);
5111
5112 if (sample_type & PERF_SAMPLE_STREAM_ID)
5113 data->stream_id = event->id;
5114
5115 if (sample_type & PERF_SAMPLE_CPU) {
5116 data->cpu_entry.cpu = raw_smp_processor_id();
5117 data->cpu_entry.reserved = 0;
5118 }
5119 }
5120
5121 void perf_event_header__init_id(struct perf_event_header *header,
5122 struct perf_sample_data *data,
5123 struct perf_event *event)
5124 {
5125 if (event->attr.sample_id_all)
5126 __perf_event_header__init_id(header, data, event);
5127 }
5128
5129 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5130 struct perf_sample_data *data)
5131 {
5132 u64 sample_type = data->type;
5133
5134 if (sample_type & PERF_SAMPLE_TID)
5135 perf_output_put(handle, data->tid_entry);
5136
5137 if (sample_type & PERF_SAMPLE_TIME)
5138 perf_output_put(handle, data->time);
5139
5140 if (sample_type & PERF_SAMPLE_ID)
5141 perf_output_put(handle, data->id);
5142
5143 if (sample_type & PERF_SAMPLE_STREAM_ID)
5144 perf_output_put(handle, data->stream_id);
5145
5146 if (sample_type & PERF_SAMPLE_CPU)
5147 perf_output_put(handle, data->cpu_entry);
5148
5149 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5150 perf_output_put(handle, data->id);
5151 }
5152
5153 void perf_event__output_id_sample(struct perf_event *event,
5154 struct perf_output_handle *handle,
5155 struct perf_sample_data *sample)
5156 {
5157 if (event->attr.sample_id_all)
5158 __perf_event__output_id_sample(handle, sample);
5159 }
5160
5161 static void perf_output_read_one(struct perf_output_handle *handle,
5162 struct perf_event *event,
5163 u64 enabled, u64 running)
5164 {
5165 u64 read_format = event->attr.read_format;
5166 u64 values[4];
5167 int n = 0;
5168
5169 values[n++] = perf_event_count(event);
5170 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5171 values[n++] = enabled +
5172 atomic64_read(&event->child_total_time_enabled);
5173 }
5174 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5175 values[n++] = running +
5176 atomic64_read(&event->child_total_time_running);
5177 }
5178 if (read_format & PERF_FORMAT_ID)
5179 values[n++] = primary_event_id(event);
5180
5181 __output_copy(handle, values, n * sizeof(u64));
5182 }
5183
5184 /*
5185 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5186 */
5187 static void perf_output_read_group(struct perf_output_handle *handle,
5188 struct perf_event *event,
5189 u64 enabled, u64 running)
5190 {
5191 struct perf_event *leader = event->group_leader, *sub;
5192 u64 read_format = event->attr.read_format;
5193 u64 values[5];
5194 int n = 0;
5195
5196 values[n++] = 1 + leader->nr_siblings;
5197
5198 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5199 values[n++] = enabled;
5200
5201 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5202 values[n++] = running;
5203
5204 if (leader != event)
5205 leader->pmu->read(leader);
5206
5207 values[n++] = perf_event_count(leader);
5208 if (read_format & PERF_FORMAT_ID)
5209 values[n++] = primary_event_id(leader);
5210
5211 __output_copy(handle, values, n * sizeof(u64));
5212
5213 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5214 n = 0;
5215
5216 if ((sub != event) &&
5217 (sub->state == PERF_EVENT_STATE_ACTIVE))
5218 sub->pmu->read(sub);
5219
5220 values[n++] = perf_event_count(sub);
5221 if (read_format & PERF_FORMAT_ID)
5222 values[n++] = primary_event_id(sub);
5223
5224 __output_copy(handle, values, n * sizeof(u64));
5225 }
5226 }
5227
5228 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5229 PERF_FORMAT_TOTAL_TIME_RUNNING)
5230
5231 static void perf_output_read(struct perf_output_handle *handle,
5232 struct perf_event *event)
5233 {
5234 u64 enabled = 0, running = 0, now;
5235 u64 read_format = event->attr.read_format;
5236
5237 /*
5238 * compute total_time_enabled, total_time_running
5239 * based on snapshot values taken when the event
5240 * was last scheduled in.
5241 *
5242 * we cannot simply called update_context_time()
5243 * because of locking issue as we are called in
5244 * NMI context
5245 */
5246 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5247 calc_timer_values(event, &now, &enabled, &running);
5248
5249 if (event->attr.read_format & PERF_FORMAT_GROUP)
5250 perf_output_read_group(handle, event, enabled, running);
5251 else
5252 perf_output_read_one(handle, event, enabled, running);
5253 }
5254
5255 void perf_output_sample(struct perf_output_handle *handle,
5256 struct perf_event_header *header,
5257 struct perf_sample_data *data,
5258 struct perf_event *event)
5259 {
5260 u64 sample_type = data->type;
5261
5262 perf_output_put(handle, *header);
5263
5264 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5265 perf_output_put(handle, data->id);
5266
5267 if (sample_type & PERF_SAMPLE_IP)
5268 perf_output_put(handle, data->ip);
5269
5270 if (sample_type & PERF_SAMPLE_TID)
5271 perf_output_put(handle, data->tid_entry);
5272
5273 if (sample_type & PERF_SAMPLE_TIME)
5274 perf_output_put(handle, data->time);
5275
5276 if (sample_type & PERF_SAMPLE_ADDR)
5277 perf_output_put(handle, data->addr);
5278
5279 if (sample_type & PERF_SAMPLE_ID)
5280 perf_output_put(handle, data->id);
5281
5282 if (sample_type & PERF_SAMPLE_STREAM_ID)
5283 perf_output_put(handle, data->stream_id);
5284
5285 if (sample_type & PERF_SAMPLE_CPU)
5286 perf_output_put(handle, data->cpu_entry);
5287
5288 if (sample_type & PERF_SAMPLE_PERIOD)
5289 perf_output_put(handle, data->period);
5290
5291 if (sample_type & PERF_SAMPLE_READ)
5292 perf_output_read(handle, event);
5293
5294 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5295 if (data->callchain) {
5296 int size = 1;
5297
5298 if (data->callchain)
5299 size += data->callchain->nr;
5300
5301 size *= sizeof(u64);
5302
5303 __output_copy(handle, data->callchain, size);
5304 } else {
5305 u64 nr = 0;
5306 perf_output_put(handle, nr);
5307 }
5308 }
5309
5310 if (sample_type & PERF_SAMPLE_RAW) {
5311 if (data->raw) {
5312 u32 raw_size = data->raw->size;
5313 u32 real_size = round_up(raw_size + sizeof(u32),
5314 sizeof(u64)) - sizeof(u32);
5315 u64 zero = 0;
5316
5317 perf_output_put(handle, real_size);
5318 __output_copy(handle, data->raw->data, raw_size);
5319 if (real_size - raw_size)
5320 __output_copy(handle, &zero, real_size - raw_size);
5321 } else {
5322 struct {
5323 u32 size;
5324 u32 data;
5325 } raw = {
5326 .size = sizeof(u32),
5327 .data = 0,
5328 };
5329 perf_output_put(handle, raw);
5330 }
5331 }
5332
5333 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5334 if (data->br_stack) {
5335 size_t size;
5336
5337 size = data->br_stack->nr
5338 * sizeof(struct perf_branch_entry);
5339
5340 perf_output_put(handle, data->br_stack->nr);
5341 perf_output_copy(handle, data->br_stack->entries, size);
5342 } else {
5343 /*
5344 * we always store at least the value of nr
5345 */
5346 u64 nr = 0;
5347 perf_output_put(handle, nr);
5348 }
5349 }
5350
5351 if (sample_type & PERF_SAMPLE_REGS_USER) {
5352 u64 abi = data->regs_user.abi;
5353
5354 /*
5355 * If there are no regs to dump, notice it through
5356 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5357 */
5358 perf_output_put(handle, abi);
5359
5360 if (abi) {
5361 u64 mask = event->attr.sample_regs_user;
5362 perf_output_sample_regs(handle,
5363 data->regs_user.regs,
5364 mask);
5365 }
5366 }
5367
5368 if (sample_type & PERF_SAMPLE_STACK_USER) {
5369 perf_output_sample_ustack(handle,
5370 data->stack_user_size,
5371 data->regs_user.regs);
5372 }
5373
5374 if (sample_type & PERF_SAMPLE_WEIGHT)
5375 perf_output_put(handle, data->weight);
5376
5377 if (sample_type & PERF_SAMPLE_DATA_SRC)
5378 perf_output_put(handle, data->data_src.val);
5379
5380 if (sample_type & PERF_SAMPLE_TRANSACTION)
5381 perf_output_put(handle, data->txn);
5382
5383 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5384 u64 abi = data->regs_intr.abi;
5385 /*
5386 * If there are no regs to dump, notice it through
5387 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5388 */
5389 perf_output_put(handle, abi);
5390
5391 if (abi) {
5392 u64 mask = event->attr.sample_regs_intr;
5393
5394 perf_output_sample_regs(handle,
5395 data->regs_intr.regs,
5396 mask);
5397 }
5398 }
5399
5400 if (!event->attr.watermark) {
5401 int wakeup_events = event->attr.wakeup_events;
5402
5403 if (wakeup_events) {
5404 struct ring_buffer *rb = handle->rb;
5405 int events = local_inc_return(&rb->events);
5406
5407 if (events >= wakeup_events) {
5408 local_sub(wakeup_events, &rb->events);
5409 local_inc(&rb->wakeup);
5410 }
5411 }
5412 }
5413 }
5414
5415 void perf_prepare_sample(struct perf_event_header *header,
5416 struct perf_sample_data *data,
5417 struct perf_event *event,
5418 struct pt_regs *regs)
5419 {
5420 u64 sample_type = event->attr.sample_type;
5421
5422 header->type = PERF_RECORD_SAMPLE;
5423 header->size = sizeof(*header) + event->header_size;
5424
5425 header->misc = 0;
5426 header->misc |= perf_misc_flags(regs);
5427
5428 __perf_event_header__init_id(header, data, event);
5429
5430 if (sample_type & PERF_SAMPLE_IP)
5431 data->ip = perf_instruction_pointer(regs);
5432
5433 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5434 int size = 1;
5435
5436 data->callchain = perf_callchain(event, regs);
5437
5438 if (data->callchain)
5439 size += data->callchain->nr;
5440
5441 header->size += size * sizeof(u64);
5442 }
5443
5444 if (sample_type & PERF_SAMPLE_RAW) {
5445 int size = sizeof(u32);
5446
5447 if (data->raw)
5448 size += data->raw->size;
5449 else
5450 size += sizeof(u32);
5451
5452 header->size += round_up(size, sizeof(u64));
5453 }
5454
5455 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5456 int size = sizeof(u64); /* nr */
5457 if (data->br_stack) {
5458 size += data->br_stack->nr
5459 * sizeof(struct perf_branch_entry);
5460 }
5461 header->size += size;
5462 }
5463
5464 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5465 perf_sample_regs_user(&data->regs_user, regs,
5466 &data->regs_user_copy);
5467
5468 if (sample_type & PERF_SAMPLE_REGS_USER) {
5469 /* regs dump ABI info */
5470 int size = sizeof(u64);
5471
5472 if (data->regs_user.regs) {
5473 u64 mask = event->attr.sample_regs_user;
5474 size += hweight64(mask) * sizeof(u64);
5475 }
5476
5477 header->size += size;
5478 }
5479
5480 if (sample_type & PERF_SAMPLE_STACK_USER) {
5481 /*
5482 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5483 * processed as the last one or have additional check added
5484 * in case new sample type is added, because we could eat
5485 * up the rest of the sample size.
5486 */
5487 u16 stack_size = event->attr.sample_stack_user;
5488 u16 size = sizeof(u64);
5489
5490 stack_size = perf_sample_ustack_size(stack_size, header->size,
5491 data->regs_user.regs);
5492
5493 /*
5494 * If there is something to dump, add space for the dump
5495 * itself and for the field that tells the dynamic size,
5496 * which is how many have been actually dumped.
5497 */
5498 if (stack_size)
5499 size += sizeof(u64) + stack_size;
5500
5501 data->stack_user_size = stack_size;
5502 header->size += size;
5503 }
5504
5505 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5506 /* regs dump ABI info */
5507 int size = sizeof(u64);
5508
5509 perf_sample_regs_intr(&data->regs_intr, regs);
5510
5511 if (data->regs_intr.regs) {
5512 u64 mask = event->attr.sample_regs_intr;
5513
5514 size += hweight64(mask) * sizeof(u64);
5515 }
5516
5517 header->size += size;
5518 }
5519 }
5520
5521 void perf_event_output(struct perf_event *event,
5522 struct perf_sample_data *data,
5523 struct pt_regs *regs)
5524 {
5525 struct perf_output_handle handle;
5526 struct perf_event_header header;
5527
5528 /* protect the callchain buffers */
5529 rcu_read_lock();
5530
5531 perf_prepare_sample(&header, data, event, regs);
5532
5533 if (perf_output_begin(&handle, event, header.size))
5534 goto exit;
5535
5536 perf_output_sample(&handle, &header, data, event);
5537
5538 perf_output_end(&handle);
5539
5540 exit:
5541 rcu_read_unlock();
5542 }
5543
5544 /*
5545 * read event_id
5546 */
5547
5548 struct perf_read_event {
5549 struct perf_event_header header;
5550
5551 u32 pid;
5552 u32 tid;
5553 };
5554
5555 static void
5556 perf_event_read_event(struct perf_event *event,
5557 struct task_struct *task)
5558 {
5559 struct perf_output_handle handle;
5560 struct perf_sample_data sample;
5561 struct perf_read_event read_event = {
5562 .header = {
5563 .type = PERF_RECORD_READ,
5564 .misc = 0,
5565 .size = sizeof(read_event) + event->read_size,
5566 },
5567 .pid = perf_event_pid(event, task),
5568 .tid = perf_event_tid(event, task),
5569 };
5570 int ret;
5571
5572 perf_event_header__init_id(&read_event.header, &sample, event);
5573 ret = perf_output_begin(&handle, event, read_event.header.size);
5574 if (ret)
5575 return;
5576
5577 perf_output_put(&handle, read_event);
5578 perf_output_read(&handle, event);
5579 perf_event__output_id_sample(event, &handle, &sample);
5580
5581 perf_output_end(&handle);
5582 }
5583
5584 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5585
5586 static void
5587 perf_event_aux_ctx(struct perf_event_context *ctx,
5588 perf_event_aux_output_cb output,
5589 void *data)
5590 {
5591 struct perf_event *event;
5592
5593 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5594 if (event->state < PERF_EVENT_STATE_INACTIVE)
5595 continue;
5596 if (!event_filter_match(event))
5597 continue;
5598 output(event, data);
5599 }
5600 }
5601
5602 static void
5603 perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5604 struct perf_event_context *task_ctx)
5605 {
5606 rcu_read_lock();
5607 preempt_disable();
5608 perf_event_aux_ctx(task_ctx, output, data);
5609 preempt_enable();
5610 rcu_read_unlock();
5611 }
5612
5613 static void
5614 perf_event_aux(perf_event_aux_output_cb output, void *data,
5615 struct perf_event_context *task_ctx)
5616 {
5617 struct perf_cpu_context *cpuctx;
5618 struct perf_event_context *ctx;
5619 struct pmu *pmu;
5620 int ctxn;
5621
5622 /*
5623 * If we have task_ctx != NULL we only notify
5624 * the task context itself. The task_ctx is set
5625 * only for EXIT events before releasing task
5626 * context.
5627 */
5628 if (task_ctx) {
5629 perf_event_aux_task_ctx(output, data, task_ctx);
5630 return;
5631 }
5632
5633 rcu_read_lock();
5634 list_for_each_entry_rcu(pmu, &pmus, entry) {
5635 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5636 if (cpuctx->unique_pmu != pmu)
5637 goto next;
5638 perf_event_aux_ctx(&cpuctx->ctx, output, data);
5639 ctxn = pmu->task_ctx_nr;
5640 if (ctxn < 0)
5641 goto next;
5642 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5643 if (ctx)
5644 perf_event_aux_ctx(ctx, output, data);
5645 next:
5646 put_cpu_ptr(pmu->pmu_cpu_context);
5647 }
5648 rcu_read_unlock();
5649 }
5650
5651 /*
5652 * task tracking -- fork/exit
5653 *
5654 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5655 */
5656
5657 struct perf_task_event {
5658 struct task_struct *task;
5659 struct perf_event_context *task_ctx;
5660
5661 struct {
5662 struct perf_event_header header;
5663
5664 u32 pid;
5665 u32 ppid;
5666 u32 tid;
5667 u32 ptid;
5668 u64 time;
5669 } event_id;
5670 };
5671
5672 static int perf_event_task_match(struct perf_event *event)
5673 {
5674 return event->attr.comm || event->attr.mmap ||
5675 event->attr.mmap2 || event->attr.mmap_data ||
5676 event->attr.task;
5677 }
5678
5679 static void perf_event_task_output(struct perf_event *event,
5680 void *data)
5681 {
5682 struct perf_task_event *task_event = data;
5683 struct perf_output_handle handle;
5684 struct perf_sample_data sample;
5685 struct task_struct *task = task_event->task;
5686 int ret, size = task_event->event_id.header.size;
5687
5688 if (!perf_event_task_match(event))
5689 return;
5690
5691 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5692
5693 ret = perf_output_begin(&handle, event,
5694 task_event->event_id.header.size);
5695 if (ret)
5696 goto out;
5697
5698 task_event->event_id.pid = perf_event_pid(event, task);
5699 task_event->event_id.ppid = perf_event_pid(event, current);
5700
5701 task_event->event_id.tid = perf_event_tid(event, task);
5702 task_event->event_id.ptid = perf_event_tid(event, current);
5703
5704 task_event->event_id.time = perf_event_clock(event);
5705
5706 perf_output_put(&handle, task_event->event_id);
5707
5708 perf_event__output_id_sample(event, &handle, &sample);
5709
5710 perf_output_end(&handle);
5711 out:
5712 task_event->event_id.header.size = size;
5713 }
5714
5715 static void perf_event_task(struct task_struct *task,
5716 struct perf_event_context *task_ctx,
5717 int new)
5718 {
5719 struct perf_task_event task_event;
5720
5721 if (!atomic_read(&nr_comm_events) &&
5722 !atomic_read(&nr_mmap_events) &&
5723 !atomic_read(&nr_task_events))
5724 return;
5725
5726 task_event = (struct perf_task_event){
5727 .task = task,
5728 .task_ctx = task_ctx,
5729 .event_id = {
5730 .header = {
5731 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5732 .misc = 0,
5733 .size = sizeof(task_event.event_id),
5734 },
5735 /* .pid */
5736 /* .ppid */
5737 /* .tid */
5738 /* .ptid */
5739 /* .time */
5740 },
5741 };
5742
5743 perf_event_aux(perf_event_task_output,
5744 &task_event,
5745 task_ctx);
5746 }
5747
5748 void perf_event_fork(struct task_struct *task)
5749 {
5750 perf_event_task(task, NULL, 1);
5751 }
5752
5753 /*
5754 * comm tracking
5755 */
5756
5757 struct perf_comm_event {
5758 struct task_struct *task;
5759 char *comm;
5760 int comm_size;
5761
5762 struct {
5763 struct perf_event_header header;
5764
5765 u32 pid;
5766 u32 tid;
5767 } event_id;
5768 };
5769
5770 static int perf_event_comm_match(struct perf_event *event)
5771 {
5772 return event->attr.comm;
5773 }
5774
5775 static void perf_event_comm_output(struct perf_event *event,
5776 void *data)
5777 {
5778 struct perf_comm_event *comm_event = data;
5779 struct perf_output_handle handle;
5780 struct perf_sample_data sample;
5781 int size = comm_event->event_id.header.size;
5782 int ret;
5783
5784 if (!perf_event_comm_match(event))
5785 return;
5786
5787 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5788 ret = perf_output_begin(&handle, event,
5789 comm_event->event_id.header.size);
5790
5791 if (ret)
5792 goto out;
5793
5794 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5795 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5796
5797 perf_output_put(&handle, comm_event->event_id);
5798 __output_copy(&handle, comm_event->comm,
5799 comm_event->comm_size);
5800
5801 perf_event__output_id_sample(event, &handle, &sample);
5802
5803 perf_output_end(&handle);
5804 out:
5805 comm_event->event_id.header.size = size;
5806 }
5807
5808 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5809 {
5810 char comm[TASK_COMM_LEN];
5811 unsigned int size;
5812
5813 memset(comm, 0, sizeof(comm));
5814 strlcpy(comm, comm_event->task->comm, sizeof(comm));
5815 size = ALIGN(strlen(comm)+1, sizeof(u64));
5816
5817 comm_event->comm = comm;
5818 comm_event->comm_size = size;
5819
5820 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5821
5822 perf_event_aux(perf_event_comm_output,
5823 comm_event,
5824 NULL);
5825 }
5826
5827 void perf_event_comm(struct task_struct *task, bool exec)
5828 {
5829 struct perf_comm_event comm_event;
5830
5831 if (!atomic_read(&nr_comm_events))
5832 return;
5833
5834 comm_event = (struct perf_comm_event){
5835 .task = task,
5836 /* .comm */
5837 /* .comm_size */
5838 .event_id = {
5839 .header = {
5840 .type = PERF_RECORD_COMM,
5841 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5842 /* .size */
5843 },
5844 /* .pid */
5845 /* .tid */
5846 },
5847 };
5848
5849 perf_event_comm_event(&comm_event);
5850 }
5851
5852 /*
5853 * mmap tracking
5854 */
5855
5856 struct perf_mmap_event {
5857 struct vm_area_struct *vma;
5858
5859 const char *file_name;
5860 int file_size;
5861 int maj, min;
5862 u64 ino;
5863 u64 ino_generation;
5864 u32 prot, flags;
5865
5866 struct {
5867 struct perf_event_header header;
5868
5869 u32 pid;
5870 u32 tid;
5871 u64 start;
5872 u64 len;
5873 u64 pgoff;
5874 } event_id;
5875 };
5876
5877 static int perf_event_mmap_match(struct perf_event *event,
5878 void *data)
5879 {
5880 struct perf_mmap_event *mmap_event = data;
5881 struct vm_area_struct *vma = mmap_event->vma;
5882 int executable = vma->vm_flags & VM_EXEC;
5883
5884 return (!executable && event->attr.mmap_data) ||
5885 (executable && (event->attr.mmap || event->attr.mmap2));
5886 }
5887
5888 static void perf_event_mmap_output(struct perf_event *event,
5889 void *data)
5890 {
5891 struct perf_mmap_event *mmap_event = data;
5892 struct perf_output_handle handle;
5893 struct perf_sample_data sample;
5894 int size = mmap_event->event_id.header.size;
5895 int ret;
5896
5897 if (!perf_event_mmap_match(event, data))
5898 return;
5899
5900 if (event->attr.mmap2) {
5901 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5902 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5903 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5904 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5905 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5906 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5907 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5908 }
5909
5910 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5911 ret = perf_output_begin(&handle, event,
5912 mmap_event->event_id.header.size);
5913 if (ret)
5914 goto out;
5915
5916 mmap_event->event_id.pid = perf_event_pid(event, current);
5917 mmap_event->event_id.tid = perf_event_tid(event, current);
5918
5919 perf_output_put(&handle, mmap_event->event_id);
5920
5921 if (event->attr.mmap2) {
5922 perf_output_put(&handle, mmap_event->maj);
5923 perf_output_put(&handle, mmap_event->min);
5924 perf_output_put(&handle, mmap_event->ino);
5925 perf_output_put(&handle, mmap_event->ino_generation);
5926 perf_output_put(&handle, mmap_event->prot);
5927 perf_output_put(&handle, mmap_event->flags);
5928 }
5929
5930 __output_copy(&handle, mmap_event->file_name,
5931 mmap_event->file_size);
5932
5933 perf_event__output_id_sample(event, &handle, &sample);
5934
5935 perf_output_end(&handle);
5936 out:
5937 mmap_event->event_id.header.size = size;
5938 }
5939
5940 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5941 {
5942 struct vm_area_struct *vma = mmap_event->vma;
5943 struct file *file = vma->vm_file;
5944 int maj = 0, min = 0;
5945 u64 ino = 0, gen = 0;
5946 u32 prot = 0, flags = 0;
5947 unsigned int size;
5948 char tmp[16];
5949 char *buf = NULL;
5950 char *name;
5951
5952 if (file) {
5953 struct inode *inode;
5954 dev_t dev;
5955
5956 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5957 if (!buf) {
5958 name = "//enomem";
5959 goto cpy_name;
5960 }
5961 /*
5962 * d_path() works from the end of the rb backwards, so we
5963 * need to add enough zero bytes after the string to handle
5964 * the 64bit alignment we do later.
5965 */
5966 name = file_path(file, buf, PATH_MAX - sizeof(u64));
5967 if (IS_ERR(name)) {
5968 name = "//toolong";
5969 goto cpy_name;
5970 }
5971 inode = file_inode(vma->vm_file);
5972 dev = inode->i_sb->s_dev;
5973 ino = inode->i_ino;
5974 gen = inode->i_generation;
5975 maj = MAJOR(dev);
5976 min = MINOR(dev);
5977
5978 if (vma->vm_flags & VM_READ)
5979 prot |= PROT_READ;
5980 if (vma->vm_flags & VM_WRITE)
5981 prot |= PROT_WRITE;
5982 if (vma->vm_flags & VM_EXEC)
5983 prot |= PROT_EXEC;
5984
5985 if (vma->vm_flags & VM_MAYSHARE)
5986 flags = MAP_SHARED;
5987 else
5988 flags = MAP_PRIVATE;
5989
5990 if (vma->vm_flags & VM_DENYWRITE)
5991 flags |= MAP_DENYWRITE;
5992 if (vma->vm_flags & VM_MAYEXEC)
5993 flags |= MAP_EXECUTABLE;
5994 if (vma->vm_flags & VM_LOCKED)
5995 flags |= MAP_LOCKED;
5996 if (vma->vm_flags & VM_HUGETLB)
5997 flags |= MAP_HUGETLB;
5998
5999 goto got_name;
6000 } else {
6001 if (vma->vm_ops && vma->vm_ops->name) {
6002 name = (char *) vma->vm_ops->name(vma);
6003 if (name)
6004 goto cpy_name;
6005 }
6006
6007 name = (char *)arch_vma_name(vma);
6008 if (name)
6009 goto cpy_name;
6010
6011 if (vma->vm_start <= vma->vm_mm->start_brk &&
6012 vma->vm_end >= vma->vm_mm->brk) {
6013 name = "[heap]";
6014 goto cpy_name;
6015 }
6016 if (vma->vm_start <= vma->vm_mm->start_stack &&
6017 vma->vm_end >= vma->vm_mm->start_stack) {
6018 name = "[stack]";
6019 goto cpy_name;
6020 }
6021
6022 name = "//anon";
6023 goto cpy_name;
6024 }
6025
6026 cpy_name:
6027 strlcpy(tmp, name, sizeof(tmp));
6028 name = tmp;
6029 got_name:
6030 /*
6031 * Since our buffer works in 8 byte units we need to align our string
6032 * size to a multiple of 8. However, we must guarantee the tail end is
6033 * zero'd out to avoid leaking random bits to userspace.
6034 */
6035 size = strlen(name)+1;
6036 while (!IS_ALIGNED(size, sizeof(u64)))
6037 name[size++] = '\0';
6038
6039 mmap_event->file_name = name;
6040 mmap_event->file_size = size;
6041 mmap_event->maj = maj;
6042 mmap_event->min = min;
6043 mmap_event->ino = ino;
6044 mmap_event->ino_generation = gen;
6045 mmap_event->prot = prot;
6046 mmap_event->flags = flags;
6047
6048 if (!(vma->vm_flags & VM_EXEC))
6049 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6050
6051 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6052
6053 perf_event_aux(perf_event_mmap_output,
6054 mmap_event,
6055 NULL);
6056
6057 kfree(buf);
6058 }
6059
6060 void perf_event_mmap(struct vm_area_struct *vma)
6061 {
6062 struct perf_mmap_event mmap_event;
6063
6064 if (!atomic_read(&nr_mmap_events))
6065 return;
6066
6067 mmap_event = (struct perf_mmap_event){
6068 .vma = vma,
6069 /* .file_name */
6070 /* .file_size */
6071 .event_id = {
6072 .header = {
6073 .type = PERF_RECORD_MMAP,
6074 .misc = PERF_RECORD_MISC_USER,
6075 /* .size */
6076 },
6077 /* .pid */
6078 /* .tid */
6079 .start = vma->vm_start,
6080 .len = vma->vm_end - vma->vm_start,
6081 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
6082 },
6083 /* .maj (attr_mmap2 only) */
6084 /* .min (attr_mmap2 only) */
6085 /* .ino (attr_mmap2 only) */
6086 /* .ino_generation (attr_mmap2 only) */
6087 /* .prot (attr_mmap2 only) */
6088 /* .flags (attr_mmap2 only) */
6089 };
6090
6091 perf_event_mmap_event(&mmap_event);
6092 }
6093
6094 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6095 unsigned long size, u64 flags)
6096 {
6097 struct perf_output_handle handle;
6098 struct perf_sample_data sample;
6099 struct perf_aux_event {
6100 struct perf_event_header header;
6101 u64 offset;
6102 u64 size;
6103 u64 flags;
6104 } rec = {
6105 .header = {
6106 .type = PERF_RECORD_AUX,
6107 .misc = 0,
6108 .size = sizeof(rec),
6109 },
6110 .offset = head,
6111 .size = size,
6112 .flags = flags,
6113 };
6114 int ret;
6115
6116 perf_event_header__init_id(&rec.header, &sample, event);
6117 ret = perf_output_begin(&handle, event, rec.header.size);
6118
6119 if (ret)
6120 return;
6121
6122 perf_output_put(&handle, rec);
6123 perf_event__output_id_sample(event, &handle, &sample);
6124
6125 perf_output_end(&handle);
6126 }
6127
6128 /*
6129 * Lost/dropped samples logging
6130 */
6131 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6132 {
6133 struct perf_output_handle handle;
6134 struct perf_sample_data sample;
6135 int ret;
6136
6137 struct {
6138 struct perf_event_header header;
6139 u64 lost;
6140 } lost_samples_event = {
6141 .header = {
6142 .type = PERF_RECORD_LOST_SAMPLES,
6143 .misc = 0,
6144 .size = sizeof(lost_samples_event),
6145 },
6146 .lost = lost,
6147 };
6148
6149 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6150
6151 ret = perf_output_begin(&handle, event,
6152 lost_samples_event.header.size);
6153 if (ret)
6154 return;
6155
6156 perf_output_put(&handle, lost_samples_event);
6157 perf_event__output_id_sample(event, &handle, &sample);
6158 perf_output_end(&handle);
6159 }
6160
6161 /*
6162 * context_switch tracking
6163 */
6164
6165 struct perf_switch_event {
6166 struct task_struct *task;
6167 struct task_struct *next_prev;
6168
6169 struct {
6170 struct perf_event_header header;
6171 u32 next_prev_pid;
6172 u32 next_prev_tid;
6173 } event_id;
6174 };
6175
6176 static int perf_event_switch_match(struct perf_event *event)
6177 {
6178 return event->attr.context_switch;
6179 }
6180
6181 static void perf_event_switch_output(struct perf_event *event, void *data)
6182 {
6183 struct perf_switch_event *se = data;
6184 struct perf_output_handle handle;
6185 struct perf_sample_data sample;
6186 int ret;
6187
6188 if (!perf_event_switch_match(event))
6189 return;
6190
6191 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6192 if (event->ctx->task) {
6193 se->event_id.header.type = PERF_RECORD_SWITCH;
6194 se->event_id.header.size = sizeof(se->event_id.header);
6195 } else {
6196 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6197 se->event_id.header.size = sizeof(se->event_id);
6198 se->event_id.next_prev_pid =
6199 perf_event_pid(event, se->next_prev);
6200 se->event_id.next_prev_tid =
6201 perf_event_tid(event, se->next_prev);
6202 }
6203
6204 perf_event_header__init_id(&se->event_id.header, &sample, event);
6205
6206 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6207 if (ret)
6208 return;
6209
6210 if (event->ctx->task)
6211 perf_output_put(&handle, se->event_id.header);
6212 else
6213 perf_output_put(&handle, se->event_id);
6214
6215 perf_event__output_id_sample(event, &handle, &sample);
6216
6217 perf_output_end(&handle);
6218 }
6219
6220 static void perf_event_switch(struct task_struct *task,
6221 struct task_struct *next_prev, bool sched_in)
6222 {
6223 struct perf_switch_event switch_event;
6224
6225 /* N.B. caller checks nr_switch_events != 0 */
6226
6227 switch_event = (struct perf_switch_event){
6228 .task = task,
6229 .next_prev = next_prev,
6230 .event_id = {
6231 .header = {
6232 /* .type */
6233 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6234 /* .size */
6235 },
6236 /* .next_prev_pid */
6237 /* .next_prev_tid */
6238 },
6239 };
6240
6241 perf_event_aux(perf_event_switch_output,
6242 &switch_event,
6243 NULL);
6244 }
6245
6246 /*
6247 * IRQ throttle logging
6248 */
6249
6250 static void perf_log_throttle(struct perf_event *event, int enable)
6251 {
6252 struct perf_output_handle handle;
6253 struct perf_sample_data sample;
6254 int ret;
6255
6256 struct {
6257 struct perf_event_header header;
6258 u64 time;
6259 u64 id;
6260 u64 stream_id;
6261 } throttle_event = {
6262 .header = {
6263 .type = PERF_RECORD_THROTTLE,
6264 .misc = 0,
6265 .size = sizeof(throttle_event),
6266 },
6267 .time = perf_event_clock(event),
6268 .id = primary_event_id(event),
6269 .stream_id = event->id,
6270 };
6271
6272 if (enable)
6273 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6274
6275 perf_event_header__init_id(&throttle_event.header, &sample, event);
6276
6277 ret = perf_output_begin(&handle, event,
6278 throttle_event.header.size);
6279 if (ret)
6280 return;
6281
6282 perf_output_put(&handle, throttle_event);
6283 perf_event__output_id_sample(event, &handle, &sample);
6284 perf_output_end(&handle);
6285 }
6286
6287 static void perf_log_itrace_start(struct perf_event *event)
6288 {
6289 struct perf_output_handle handle;
6290 struct perf_sample_data sample;
6291 struct perf_aux_event {
6292 struct perf_event_header header;
6293 u32 pid;
6294 u32 tid;
6295 } rec;
6296 int ret;
6297
6298 if (event->parent)
6299 event = event->parent;
6300
6301 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6302 event->hw.itrace_started)
6303 return;
6304
6305 rec.header.type = PERF_RECORD_ITRACE_START;
6306 rec.header.misc = 0;
6307 rec.header.size = sizeof(rec);
6308 rec.pid = perf_event_pid(event, current);
6309 rec.tid = perf_event_tid(event, current);
6310
6311 perf_event_header__init_id(&rec.header, &sample, event);
6312 ret = perf_output_begin(&handle, event, rec.header.size);
6313
6314 if (ret)
6315 return;
6316
6317 perf_output_put(&handle, rec);
6318 perf_event__output_id_sample(event, &handle, &sample);
6319
6320 perf_output_end(&handle);
6321 }
6322
6323 /*
6324 * Generic event overflow handling, sampling.
6325 */
6326
6327 static int __perf_event_overflow(struct perf_event *event,
6328 int throttle, struct perf_sample_data *data,
6329 struct pt_regs *regs)
6330 {
6331 int events = atomic_read(&event->event_limit);
6332 struct hw_perf_event *hwc = &event->hw;
6333 u64 seq;
6334 int ret = 0;
6335
6336 /*
6337 * Non-sampling counters might still use the PMI to fold short
6338 * hardware counters, ignore those.
6339 */
6340 if (unlikely(!is_sampling_event(event)))
6341 return 0;
6342
6343 seq = __this_cpu_read(perf_throttled_seq);
6344 if (seq != hwc->interrupts_seq) {
6345 hwc->interrupts_seq = seq;
6346 hwc->interrupts = 1;
6347 } else {
6348 hwc->interrupts++;
6349 if (unlikely(throttle
6350 && hwc->interrupts >= max_samples_per_tick)) {
6351 __this_cpu_inc(perf_throttled_count);
6352 hwc->interrupts = MAX_INTERRUPTS;
6353 perf_log_throttle(event, 0);
6354 tick_nohz_full_kick();
6355 ret = 1;
6356 }
6357 }
6358
6359 if (event->attr.freq) {
6360 u64 now = perf_clock();
6361 s64 delta = now - hwc->freq_time_stamp;
6362
6363 hwc->freq_time_stamp = now;
6364
6365 if (delta > 0 && delta < 2*TICK_NSEC)
6366 perf_adjust_period(event, delta, hwc->last_period, true);
6367 }
6368
6369 /*
6370 * XXX event_limit might not quite work as expected on inherited
6371 * events
6372 */
6373
6374 event->pending_kill = POLL_IN;
6375 if (events && atomic_dec_and_test(&event->event_limit)) {
6376 ret = 1;
6377 event->pending_kill = POLL_HUP;
6378 event->pending_disable = 1;
6379 irq_work_queue(&event->pending);
6380 }
6381
6382 if (event->overflow_handler)
6383 event->overflow_handler(event, data, regs);
6384 else
6385 perf_event_output(event, data, regs);
6386
6387 if (*perf_event_fasync(event) && event->pending_kill) {
6388 event->pending_wakeup = 1;
6389 irq_work_queue(&event->pending);
6390 }
6391
6392 return ret;
6393 }
6394
6395 int perf_event_overflow(struct perf_event *event,
6396 struct perf_sample_data *data,
6397 struct pt_regs *regs)
6398 {
6399 return __perf_event_overflow(event, 1, data, regs);
6400 }
6401
6402 /*
6403 * Generic software event infrastructure
6404 */
6405
6406 struct swevent_htable {
6407 struct swevent_hlist *swevent_hlist;
6408 struct mutex hlist_mutex;
6409 int hlist_refcount;
6410
6411 /* Recursion avoidance in each contexts */
6412 int recursion[PERF_NR_CONTEXTS];
6413 };
6414
6415 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6416
6417 /*
6418 * We directly increment event->count and keep a second value in
6419 * event->hw.period_left to count intervals. This period event
6420 * is kept in the range [-sample_period, 0] so that we can use the
6421 * sign as trigger.
6422 */
6423
6424 u64 perf_swevent_set_period(struct perf_event *event)
6425 {
6426 struct hw_perf_event *hwc = &event->hw;
6427 u64 period = hwc->last_period;
6428 u64 nr, offset;
6429 s64 old, val;
6430
6431 hwc->last_period = hwc->sample_period;
6432
6433 again:
6434 old = val = local64_read(&hwc->period_left);
6435 if (val < 0)
6436 return 0;
6437
6438 nr = div64_u64(period + val, period);
6439 offset = nr * period;
6440 val -= offset;
6441 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6442 goto again;
6443
6444 return nr;
6445 }
6446
6447 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6448 struct perf_sample_data *data,
6449 struct pt_regs *regs)
6450 {
6451 struct hw_perf_event *hwc = &event->hw;
6452 int throttle = 0;
6453
6454 if (!overflow)
6455 overflow = perf_swevent_set_period(event);
6456
6457 if (hwc->interrupts == MAX_INTERRUPTS)
6458 return;
6459
6460 for (; overflow; overflow--) {
6461 if (__perf_event_overflow(event, throttle,
6462 data, regs)) {
6463 /*
6464 * We inhibit the overflow from happening when
6465 * hwc->interrupts == MAX_INTERRUPTS.
6466 */
6467 break;
6468 }
6469 throttle = 1;
6470 }
6471 }
6472
6473 static void perf_swevent_event(struct perf_event *event, u64 nr,
6474 struct perf_sample_data *data,
6475 struct pt_regs *regs)
6476 {
6477 struct hw_perf_event *hwc = &event->hw;
6478
6479 local64_add(nr, &event->count);
6480
6481 if (!regs)
6482 return;
6483
6484 if (!is_sampling_event(event))
6485 return;
6486
6487 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6488 data->period = nr;
6489 return perf_swevent_overflow(event, 1, data, regs);
6490 } else
6491 data->period = event->hw.last_period;
6492
6493 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6494 return perf_swevent_overflow(event, 1, data, regs);
6495
6496 if (local64_add_negative(nr, &hwc->period_left))
6497 return;
6498
6499 perf_swevent_overflow(event, 0, data, regs);
6500 }
6501
6502 static int perf_exclude_event(struct perf_event *event,
6503 struct pt_regs *regs)
6504 {
6505 if (event->hw.state & PERF_HES_STOPPED)
6506 return 1;
6507
6508 if (regs) {
6509 if (event->attr.exclude_user && user_mode(regs))
6510 return 1;
6511
6512 if (event->attr.exclude_kernel && !user_mode(regs))
6513 return 1;
6514 }
6515
6516 return 0;
6517 }
6518
6519 static int perf_swevent_match(struct perf_event *event,
6520 enum perf_type_id type,
6521 u32 event_id,
6522 struct perf_sample_data *data,
6523 struct pt_regs *regs)
6524 {
6525 if (event->attr.type != type)
6526 return 0;
6527
6528 if (event->attr.config != event_id)
6529 return 0;
6530
6531 if (perf_exclude_event(event, regs))
6532 return 0;
6533
6534 return 1;
6535 }
6536
6537 static inline u64 swevent_hash(u64 type, u32 event_id)
6538 {
6539 u64 val = event_id | (type << 32);
6540
6541 return hash_64(val, SWEVENT_HLIST_BITS);
6542 }
6543
6544 static inline struct hlist_head *
6545 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6546 {
6547 u64 hash = swevent_hash(type, event_id);
6548
6549 return &hlist->heads[hash];
6550 }
6551
6552 /* For the read side: events when they trigger */
6553 static inline struct hlist_head *
6554 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6555 {
6556 struct swevent_hlist *hlist;
6557
6558 hlist = rcu_dereference(swhash->swevent_hlist);
6559 if (!hlist)
6560 return NULL;
6561
6562 return __find_swevent_head(hlist, type, event_id);
6563 }
6564
6565 /* For the event head insertion and removal in the hlist */
6566 static inline struct hlist_head *
6567 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6568 {
6569 struct swevent_hlist *hlist;
6570 u32 event_id = event->attr.config;
6571 u64 type = event->attr.type;
6572
6573 /*
6574 * Event scheduling is always serialized against hlist allocation
6575 * and release. Which makes the protected version suitable here.
6576 * The context lock guarantees that.
6577 */
6578 hlist = rcu_dereference_protected(swhash->swevent_hlist,
6579 lockdep_is_held(&event->ctx->lock));
6580 if (!hlist)
6581 return NULL;
6582
6583 return __find_swevent_head(hlist, type, event_id);
6584 }
6585
6586 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6587 u64 nr,
6588 struct perf_sample_data *data,
6589 struct pt_regs *regs)
6590 {
6591 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6592 struct perf_event *event;
6593 struct hlist_head *head;
6594
6595 rcu_read_lock();
6596 head = find_swevent_head_rcu(swhash, type, event_id);
6597 if (!head)
6598 goto end;
6599
6600 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6601 if (perf_swevent_match(event, type, event_id, data, regs))
6602 perf_swevent_event(event, nr, data, regs);
6603 }
6604 end:
6605 rcu_read_unlock();
6606 }
6607
6608 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6609
6610 int perf_swevent_get_recursion_context(void)
6611 {
6612 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6613
6614 return get_recursion_context(swhash->recursion);
6615 }
6616 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6617
6618 inline void perf_swevent_put_recursion_context(int rctx)
6619 {
6620 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6621
6622 put_recursion_context(swhash->recursion, rctx);
6623 }
6624
6625 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6626 {
6627 struct perf_sample_data data;
6628
6629 if (WARN_ON_ONCE(!regs))
6630 return;
6631
6632 perf_sample_data_init(&data, addr, 0);
6633 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6634 }
6635
6636 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6637 {
6638 int rctx;
6639
6640 preempt_disable_notrace();
6641 rctx = perf_swevent_get_recursion_context();
6642 if (unlikely(rctx < 0))
6643 goto fail;
6644
6645 ___perf_sw_event(event_id, nr, regs, addr);
6646
6647 perf_swevent_put_recursion_context(rctx);
6648 fail:
6649 preempt_enable_notrace();
6650 }
6651
6652 static void perf_swevent_read(struct perf_event *event)
6653 {
6654 }
6655
6656 static int perf_swevent_add(struct perf_event *event, int flags)
6657 {
6658 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6659 struct hw_perf_event *hwc = &event->hw;
6660 struct hlist_head *head;
6661
6662 if (is_sampling_event(event)) {
6663 hwc->last_period = hwc->sample_period;
6664 perf_swevent_set_period(event);
6665 }
6666
6667 hwc->state = !(flags & PERF_EF_START);
6668
6669 head = find_swevent_head(swhash, event);
6670 if (WARN_ON_ONCE(!head))
6671 return -EINVAL;
6672
6673 hlist_add_head_rcu(&event->hlist_entry, head);
6674 perf_event_update_userpage(event);
6675
6676 return 0;
6677 }
6678
6679 static void perf_swevent_del(struct perf_event *event, int flags)
6680 {
6681 hlist_del_rcu(&event->hlist_entry);
6682 }
6683
6684 static void perf_swevent_start(struct perf_event *event, int flags)
6685 {
6686 event->hw.state = 0;
6687 }
6688
6689 static void perf_swevent_stop(struct perf_event *event, int flags)
6690 {
6691 event->hw.state = PERF_HES_STOPPED;
6692 }
6693
6694 /* Deref the hlist from the update side */
6695 static inline struct swevent_hlist *
6696 swevent_hlist_deref(struct swevent_htable *swhash)
6697 {
6698 return rcu_dereference_protected(swhash->swevent_hlist,
6699 lockdep_is_held(&swhash->hlist_mutex));
6700 }
6701
6702 static void swevent_hlist_release(struct swevent_htable *swhash)
6703 {
6704 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6705
6706 if (!hlist)
6707 return;
6708
6709 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6710 kfree_rcu(hlist, rcu_head);
6711 }
6712
6713 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6714 {
6715 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6716
6717 mutex_lock(&swhash->hlist_mutex);
6718
6719 if (!--swhash->hlist_refcount)
6720 swevent_hlist_release(swhash);
6721
6722 mutex_unlock(&swhash->hlist_mutex);
6723 }
6724
6725 static void swevent_hlist_put(struct perf_event *event)
6726 {
6727 int cpu;
6728
6729 for_each_possible_cpu(cpu)
6730 swevent_hlist_put_cpu(event, cpu);
6731 }
6732
6733 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6734 {
6735 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6736 int err = 0;
6737
6738 mutex_lock(&swhash->hlist_mutex);
6739 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6740 struct swevent_hlist *hlist;
6741
6742 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6743 if (!hlist) {
6744 err = -ENOMEM;
6745 goto exit;
6746 }
6747 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6748 }
6749 swhash->hlist_refcount++;
6750 exit:
6751 mutex_unlock(&swhash->hlist_mutex);
6752
6753 return err;
6754 }
6755
6756 static int swevent_hlist_get(struct perf_event *event)
6757 {
6758 int err;
6759 int cpu, failed_cpu;
6760
6761 get_online_cpus();
6762 for_each_possible_cpu(cpu) {
6763 err = swevent_hlist_get_cpu(event, cpu);
6764 if (err) {
6765 failed_cpu = cpu;
6766 goto fail;
6767 }
6768 }
6769 put_online_cpus();
6770
6771 return 0;
6772 fail:
6773 for_each_possible_cpu(cpu) {
6774 if (cpu == failed_cpu)
6775 break;
6776 swevent_hlist_put_cpu(event, cpu);
6777 }
6778
6779 put_online_cpus();
6780 return err;
6781 }
6782
6783 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6784
6785 static void sw_perf_event_destroy(struct perf_event *event)
6786 {
6787 u64 event_id = event->attr.config;
6788
6789 WARN_ON(event->parent);
6790
6791 static_key_slow_dec(&perf_swevent_enabled[event_id]);
6792 swevent_hlist_put(event);
6793 }
6794
6795 static int perf_swevent_init(struct perf_event *event)
6796 {
6797 u64 event_id = event->attr.config;
6798
6799 if (event->attr.type != PERF_TYPE_SOFTWARE)
6800 return -ENOENT;
6801
6802 /*
6803 * no branch sampling for software events
6804 */
6805 if (has_branch_stack(event))
6806 return -EOPNOTSUPP;
6807
6808 switch (event_id) {
6809 case PERF_COUNT_SW_CPU_CLOCK:
6810 case PERF_COUNT_SW_TASK_CLOCK:
6811 return -ENOENT;
6812
6813 default:
6814 break;
6815 }
6816
6817 if (event_id >= PERF_COUNT_SW_MAX)
6818 return -ENOENT;
6819
6820 if (!event->parent) {
6821 int err;
6822
6823 err = swevent_hlist_get(event);
6824 if (err)
6825 return err;
6826
6827 static_key_slow_inc(&perf_swevent_enabled[event_id]);
6828 event->destroy = sw_perf_event_destroy;
6829 }
6830
6831 return 0;
6832 }
6833
6834 static struct pmu perf_swevent = {
6835 .task_ctx_nr = perf_sw_context,
6836
6837 .capabilities = PERF_PMU_CAP_NO_NMI,
6838
6839 .event_init = perf_swevent_init,
6840 .add = perf_swevent_add,
6841 .del = perf_swevent_del,
6842 .start = perf_swevent_start,
6843 .stop = perf_swevent_stop,
6844 .read = perf_swevent_read,
6845 };
6846
6847 #ifdef CONFIG_EVENT_TRACING
6848
6849 static int perf_tp_filter_match(struct perf_event *event,
6850 struct perf_sample_data *data)
6851 {
6852 void *record = data->raw->data;
6853
6854 /* only top level events have filters set */
6855 if (event->parent)
6856 event = event->parent;
6857
6858 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6859 return 1;
6860 return 0;
6861 }
6862
6863 static int perf_tp_event_match(struct perf_event *event,
6864 struct perf_sample_data *data,
6865 struct pt_regs *regs)
6866 {
6867 if (event->hw.state & PERF_HES_STOPPED)
6868 return 0;
6869 /*
6870 * All tracepoints are from kernel-space.
6871 */
6872 if (event->attr.exclude_kernel)
6873 return 0;
6874
6875 if (!perf_tp_filter_match(event, data))
6876 return 0;
6877
6878 return 1;
6879 }
6880
6881 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6882 struct pt_regs *regs, struct hlist_head *head, int rctx,
6883 struct task_struct *task)
6884 {
6885 struct perf_sample_data data;
6886 struct perf_event *event;
6887
6888 struct perf_raw_record raw = {
6889 .size = entry_size,
6890 .data = record,
6891 };
6892
6893 perf_sample_data_init(&data, addr, 0);
6894 data.raw = &raw;
6895
6896 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6897 if (perf_tp_event_match(event, &data, regs))
6898 perf_swevent_event(event, count, &data, regs);
6899 }
6900
6901 /*
6902 * If we got specified a target task, also iterate its context and
6903 * deliver this event there too.
6904 */
6905 if (task && task != current) {
6906 struct perf_event_context *ctx;
6907 struct trace_entry *entry = record;
6908
6909 rcu_read_lock();
6910 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6911 if (!ctx)
6912 goto unlock;
6913
6914 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6915 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6916 continue;
6917 if (event->attr.config != entry->type)
6918 continue;
6919 if (perf_tp_event_match(event, &data, regs))
6920 perf_swevent_event(event, count, &data, regs);
6921 }
6922 unlock:
6923 rcu_read_unlock();
6924 }
6925
6926 perf_swevent_put_recursion_context(rctx);
6927 }
6928 EXPORT_SYMBOL_GPL(perf_tp_event);
6929
6930 static void tp_perf_event_destroy(struct perf_event *event)
6931 {
6932 perf_trace_destroy(event);
6933 }
6934
6935 static int perf_tp_event_init(struct perf_event *event)
6936 {
6937 int err;
6938
6939 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6940 return -ENOENT;
6941
6942 /*
6943 * no branch sampling for tracepoint events
6944 */
6945 if (has_branch_stack(event))
6946 return -EOPNOTSUPP;
6947
6948 err = perf_trace_init(event);
6949 if (err)
6950 return err;
6951
6952 event->destroy = tp_perf_event_destroy;
6953
6954 return 0;
6955 }
6956
6957 static struct pmu perf_tracepoint = {
6958 .task_ctx_nr = perf_sw_context,
6959
6960 .event_init = perf_tp_event_init,
6961 .add = perf_trace_add,
6962 .del = perf_trace_del,
6963 .start = perf_swevent_start,
6964 .stop = perf_swevent_stop,
6965 .read = perf_swevent_read,
6966 };
6967
6968 static inline void perf_tp_register(void)
6969 {
6970 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6971 }
6972
6973 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6974 {
6975 char *filter_str;
6976 int ret;
6977
6978 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6979 return -EINVAL;
6980
6981 filter_str = strndup_user(arg, PAGE_SIZE);
6982 if (IS_ERR(filter_str))
6983 return PTR_ERR(filter_str);
6984
6985 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6986
6987 kfree(filter_str);
6988 return ret;
6989 }
6990
6991 static void perf_event_free_filter(struct perf_event *event)
6992 {
6993 ftrace_profile_free_filter(event);
6994 }
6995
6996 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6997 {
6998 struct bpf_prog *prog;
6999
7000 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7001 return -EINVAL;
7002
7003 if (event->tp_event->prog)
7004 return -EEXIST;
7005
7006 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7007 /* bpf programs can only be attached to u/kprobes */
7008 return -EINVAL;
7009
7010 prog = bpf_prog_get(prog_fd);
7011 if (IS_ERR(prog))
7012 return PTR_ERR(prog);
7013
7014 if (prog->type != BPF_PROG_TYPE_KPROBE) {
7015 /* valid fd, but invalid bpf program type */
7016 bpf_prog_put(prog);
7017 return -EINVAL;
7018 }
7019
7020 event->tp_event->prog = prog;
7021
7022 return 0;
7023 }
7024
7025 static void perf_event_free_bpf_prog(struct perf_event *event)
7026 {
7027 struct bpf_prog *prog;
7028
7029 if (!event->tp_event)
7030 return;
7031
7032 prog = event->tp_event->prog;
7033 if (prog) {
7034 event->tp_event->prog = NULL;
7035 bpf_prog_put(prog);
7036 }
7037 }
7038
7039 #else
7040
7041 static inline void perf_tp_register(void)
7042 {
7043 }
7044
7045 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7046 {
7047 return -ENOENT;
7048 }
7049
7050 static void perf_event_free_filter(struct perf_event *event)
7051 {
7052 }
7053
7054 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7055 {
7056 return -ENOENT;
7057 }
7058
7059 static void perf_event_free_bpf_prog(struct perf_event *event)
7060 {
7061 }
7062 #endif /* CONFIG_EVENT_TRACING */
7063
7064 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7065 void perf_bp_event(struct perf_event *bp, void *data)
7066 {
7067 struct perf_sample_data sample;
7068 struct pt_regs *regs = data;
7069
7070 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7071
7072 if (!bp->hw.state && !perf_exclude_event(bp, regs))
7073 perf_swevent_event(bp, 1, &sample, regs);
7074 }
7075 #endif
7076
7077 /*
7078 * hrtimer based swevent callback
7079 */
7080
7081 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7082 {
7083 enum hrtimer_restart ret = HRTIMER_RESTART;
7084 struct perf_sample_data data;
7085 struct pt_regs *regs;
7086 struct perf_event *event;
7087 u64 period;
7088
7089 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7090
7091 if (event->state != PERF_EVENT_STATE_ACTIVE)
7092 return HRTIMER_NORESTART;
7093
7094 event->pmu->read(event);
7095
7096 perf_sample_data_init(&data, 0, event->hw.last_period);
7097 regs = get_irq_regs();
7098
7099 if (regs && !perf_exclude_event(event, regs)) {
7100 if (!(event->attr.exclude_idle && is_idle_task(current)))
7101 if (__perf_event_overflow(event, 1, &data, regs))
7102 ret = HRTIMER_NORESTART;
7103 }
7104
7105 period = max_t(u64, 10000, event->hw.sample_period);
7106 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7107
7108 return ret;
7109 }
7110
7111 static void perf_swevent_start_hrtimer(struct perf_event *event)
7112 {
7113 struct hw_perf_event *hwc = &event->hw;
7114 s64 period;
7115
7116 if (!is_sampling_event(event))
7117 return;
7118
7119 period = local64_read(&hwc->period_left);
7120 if (period) {
7121 if (period < 0)
7122 period = 10000;
7123
7124 local64_set(&hwc->period_left, 0);
7125 } else {
7126 period = max_t(u64, 10000, hwc->sample_period);
7127 }
7128 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7129 HRTIMER_MODE_REL_PINNED);
7130 }
7131
7132 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7133 {
7134 struct hw_perf_event *hwc = &event->hw;
7135
7136 if (is_sampling_event(event)) {
7137 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
7138 local64_set(&hwc->period_left, ktime_to_ns(remaining));
7139
7140 hrtimer_cancel(&hwc->hrtimer);
7141 }
7142 }
7143
7144 static void perf_swevent_init_hrtimer(struct perf_event *event)
7145 {
7146 struct hw_perf_event *hwc = &event->hw;
7147
7148 if (!is_sampling_event(event))
7149 return;
7150
7151 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7152 hwc->hrtimer.function = perf_swevent_hrtimer;
7153
7154 /*
7155 * Since hrtimers have a fixed rate, we can do a static freq->period
7156 * mapping and avoid the whole period adjust feedback stuff.
7157 */
7158 if (event->attr.freq) {
7159 long freq = event->attr.sample_freq;
7160
7161 event->attr.sample_period = NSEC_PER_SEC / freq;
7162 hwc->sample_period = event->attr.sample_period;
7163 local64_set(&hwc->period_left, hwc->sample_period);
7164 hwc->last_period = hwc->sample_period;
7165 event->attr.freq = 0;
7166 }
7167 }
7168
7169 /*
7170 * Software event: cpu wall time clock
7171 */
7172
7173 static void cpu_clock_event_update(struct perf_event *event)
7174 {
7175 s64 prev;
7176 u64 now;
7177
7178 now = local_clock();
7179 prev = local64_xchg(&event->hw.prev_count, now);
7180 local64_add(now - prev, &event->count);
7181 }
7182
7183 static void cpu_clock_event_start(struct perf_event *event, int flags)
7184 {
7185 local64_set(&event->hw.prev_count, local_clock());
7186 perf_swevent_start_hrtimer(event);
7187 }
7188
7189 static void cpu_clock_event_stop(struct perf_event *event, int flags)
7190 {
7191 perf_swevent_cancel_hrtimer(event);
7192 cpu_clock_event_update(event);
7193 }
7194
7195 static int cpu_clock_event_add(struct perf_event *event, int flags)
7196 {
7197 if (flags & PERF_EF_START)
7198 cpu_clock_event_start(event, flags);
7199 perf_event_update_userpage(event);
7200
7201 return 0;
7202 }
7203
7204 static void cpu_clock_event_del(struct perf_event *event, int flags)
7205 {
7206 cpu_clock_event_stop(event, flags);
7207 }
7208
7209 static void cpu_clock_event_read(struct perf_event *event)
7210 {
7211 cpu_clock_event_update(event);
7212 }
7213
7214 static int cpu_clock_event_init(struct perf_event *event)
7215 {
7216 if (event->attr.type != PERF_TYPE_SOFTWARE)
7217 return -ENOENT;
7218
7219 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7220 return -ENOENT;
7221
7222 /*
7223 * no branch sampling for software events
7224 */
7225 if (has_branch_stack(event))
7226 return -EOPNOTSUPP;
7227
7228 perf_swevent_init_hrtimer(event);
7229
7230 return 0;
7231 }
7232
7233 static struct pmu perf_cpu_clock = {
7234 .task_ctx_nr = perf_sw_context,
7235
7236 .capabilities = PERF_PMU_CAP_NO_NMI,
7237
7238 .event_init = cpu_clock_event_init,
7239 .add = cpu_clock_event_add,
7240 .del = cpu_clock_event_del,
7241 .start = cpu_clock_event_start,
7242 .stop = cpu_clock_event_stop,
7243 .read = cpu_clock_event_read,
7244 };
7245
7246 /*
7247 * Software event: task time clock
7248 */
7249
7250 static void task_clock_event_update(struct perf_event *event, u64 now)
7251 {
7252 u64 prev;
7253 s64 delta;
7254
7255 prev = local64_xchg(&event->hw.prev_count, now);
7256 delta = now - prev;
7257 local64_add(delta, &event->count);
7258 }
7259
7260 static void task_clock_event_start(struct perf_event *event, int flags)
7261 {
7262 local64_set(&event->hw.prev_count, event->ctx->time);
7263 perf_swevent_start_hrtimer(event);
7264 }
7265
7266 static void task_clock_event_stop(struct perf_event *event, int flags)
7267 {
7268 perf_swevent_cancel_hrtimer(event);
7269 task_clock_event_update(event, event->ctx->time);
7270 }
7271
7272 static int task_clock_event_add(struct perf_event *event, int flags)
7273 {
7274 if (flags & PERF_EF_START)
7275 task_clock_event_start(event, flags);
7276 perf_event_update_userpage(event);
7277
7278 return 0;
7279 }
7280
7281 static void task_clock_event_del(struct perf_event *event, int flags)
7282 {
7283 task_clock_event_stop(event, PERF_EF_UPDATE);
7284 }
7285
7286 static void task_clock_event_read(struct perf_event *event)
7287 {
7288 u64 now = perf_clock();
7289 u64 delta = now - event->ctx->timestamp;
7290 u64 time = event->ctx->time + delta;
7291
7292 task_clock_event_update(event, time);
7293 }
7294
7295 static int task_clock_event_init(struct perf_event *event)
7296 {
7297 if (event->attr.type != PERF_TYPE_SOFTWARE)
7298 return -ENOENT;
7299
7300 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7301 return -ENOENT;
7302
7303 /*
7304 * no branch sampling for software events
7305 */
7306 if (has_branch_stack(event))
7307 return -EOPNOTSUPP;
7308
7309 perf_swevent_init_hrtimer(event);
7310
7311 return 0;
7312 }
7313
7314 static struct pmu perf_task_clock = {
7315 .task_ctx_nr = perf_sw_context,
7316
7317 .capabilities = PERF_PMU_CAP_NO_NMI,
7318
7319 .event_init = task_clock_event_init,
7320 .add = task_clock_event_add,
7321 .del = task_clock_event_del,
7322 .start = task_clock_event_start,
7323 .stop = task_clock_event_stop,
7324 .read = task_clock_event_read,
7325 };
7326
7327 static void perf_pmu_nop_void(struct pmu *pmu)
7328 {
7329 }
7330
7331 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7332 {
7333 }
7334
7335 static int perf_pmu_nop_int(struct pmu *pmu)
7336 {
7337 return 0;
7338 }
7339
7340 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7341
7342 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
7343 {
7344 __this_cpu_write(nop_txn_flags, flags);
7345
7346 if (flags & ~PERF_PMU_TXN_ADD)
7347 return;
7348
7349 perf_pmu_disable(pmu);
7350 }
7351
7352 static int perf_pmu_commit_txn(struct pmu *pmu)
7353 {
7354 unsigned int flags = __this_cpu_read(nop_txn_flags);
7355
7356 __this_cpu_write(nop_txn_flags, 0);
7357
7358 if (flags & ~PERF_PMU_TXN_ADD)
7359 return 0;
7360
7361 perf_pmu_enable(pmu);
7362 return 0;
7363 }
7364
7365 static void perf_pmu_cancel_txn(struct pmu *pmu)
7366 {
7367 unsigned int flags = __this_cpu_read(nop_txn_flags);
7368
7369 __this_cpu_write(nop_txn_flags, 0);
7370
7371 if (flags & ~PERF_PMU_TXN_ADD)
7372 return;
7373
7374 perf_pmu_enable(pmu);
7375 }
7376
7377 static int perf_event_idx_default(struct perf_event *event)
7378 {
7379 return 0;
7380 }
7381
7382 /*
7383 * Ensures all contexts with the same task_ctx_nr have the same
7384 * pmu_cpu_context too.
7385 */
7386 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7387 {
7388 struct pmu *pmu;
7389
7390 if (ctxn < 0)
7391 return NULL;
7392
7393 list_for_each_entry(pmu, &pmus, entry) {
7394 if (pmu->task_ctx_nr == ctxn)
7395 return pmu->pmu_cpu_context;
7396 }
7397
7398 return NULL;
7399 }
7400
7401 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7402 {
7403 int cpu;
7404
7405 for_each_possible_cpu(cpu) {
7406 struct perf_cpu_context *cpuctx;
7407
7408 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7409
7410 if (cpuctx->unique_pmu == old_pmu)
7411 cpuctx->unique_pmu = pmu;
7412 }
7413 }
7414
7415 static void free_pmu_context(struct pmu *pmu)
7416 {
7417 struct pmu *i;
7418
7419 mutex_lock(&pmus_lock);
7420 /*
7421 * Like a real lame refcount.
7422 */
7423 list_for_each_entry(i, &pmus, entry) {
7424 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7425 update_pmu_context(i, pmu);
7426 goto out;
7427 }
7428 }
7429
7430 free_percpu(pmu->pmu_cpu_context);
7431 out:
7432 mutex_unlock(&pmus_lock);
7433 }
7434 static struct idr pmu_idr;
7435
7436 static ssize_t
7437 type_show(struct device *dev, struct device_attribute *attr, char *page)
7438 {
7439 struct pmu *pmu = dev_get_drvdata(dev);
7440
7441 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7442 }
7443 static DEVICE_ATTR_RO(type);
7444
7445 static ssize_t
7446 perf_event_mux_interval_ms_show(struct device *dev,
7447 struct device_attribute *attr,
7448 char *page)
7449 {
7450 struct pmu *pmu = dev_get_drvdata(dev);
7451
7452 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7453 }
7454
7455 static DEFINE_MUTEX(mux_interval_mutex);
7456
7457 static ssize_t
7458 perf_event_mux_interval_ms_store(struct device *dev,
7459 struct device_attribute *attr,
7460 const char *buf, size_t count)
7461 {
7462 struct pmu *pmu = dev_get_drvdata(dev);
7463 int timer, cpu, ret;
7464
7465 ret = kstrtoint(buf, 0, &timer);
7466 if (ret)
7467 return ret;
7468
7469 if (timer < 1)
7470 return -EINVAL;
7471
7472 /* same value, noting to do */
7473 if (timer == pmu->hrtimer_interval_ms)
7474 return count;
7475
7476 mutex_lock(&mux_interval_mutex);
7477 pmu->hrtimer_interval_ms = timer;
7478
7479 /* update all cpuctx for this PMU */
7480 get_online_cpus();
7481 for_each_online_cpu(cpu) {
7482 struct perf_cpu_context *cpuctx;
7483 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7484 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7485
7486 cpu_function_call(cpu,
7487 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7488 }
7489 put_online_cpus();
7490 mutex_unlock(&mux_interval_mutex);
7491
7492 return count;
7493 }
7494 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7495
7496 static struct attribute *pmu_dev_attrs[] = {
7497 &dev_attr_type.attr,
7498 &dev_attr_perf_event_mux_interval_ms.attr,
7499 NULL,
7500 };
7501 ATTRIBUTE_GROUPS(pmu_dev);
7502
7503 static int pmu_bus_running;
7504 static struct bus_type pmu_bus = {
7505 .name = "event_source",
7506 .dev_groups = pmu_dev_groups,
7507 };
7508
7509 static void pmu_dev_release(struct device *dev)
7510 {
7511 kfree(dev);
7512 }
7513
7514 static int pmu_dev_alloc(struct pmu *pmu)
7515 {
7516 int ret = -ENOMEM;
7517
7518 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7519 if (!pmu->dev)
7520 goto out;
7521
7522 pmu->dev->groups = pmu->attr_groups;
7523 device_initialize(pmu->dev);
7524 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7525 if (ret)
7526 goto free_dev;
7527
7528 dev_set_drvdata(pmu->dev, pmu);
7529 pmu->dev->bus = &pmu_bus;
7530 pmu->dev->release = pmu_dev_release;
7531 ret = device_add(pmu->dev);
7532 if (ret)
7533 goto free_dev;
7534
7535 out:
7536 return ret;
7537
7538 free_dev:
7539 put_device(pmu->dev);
7540 goto out;
7541 }
7542
7543 static struct lock_class_key cpuctx_mutex;
7544 static struct lock_class_key cpuctx_lock;
7545
7546 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7547 {
7548 int cpu, ret;
7549
7550 mutex_lock(&pmus_lock);
7551 ret = -ENOMEM;
7552 pmu->pmu_disable_count = alloc_percpu(int);
7553 if (!pmu->pmu_disable_count)
7554 goto unlock;
7555
7556 pmu->type = -1;
7557 if (!name)
7558 goto skip_type;
7559 pmu->name = name;
7560
7561 if (type < 0) {
7562 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7563 if (type < 0) {
7564 ret = type;
7565 goto free_pdc;
7566 }
7567 }
7568 pmu->type = type;
7569
7570 if (pmu_bus_running) {
7571 ret = pmu_dev_alloc(pmu);
7572 if (ret)
7573 goto free_idr;
7574 }
7575
7576 skip_type:
7577 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7578 if (pmu->pmu_cpu_context)
7579 goto got_cpu_context;
7580
7581 ret = -ENOMEM;
7582 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7583 if (!pmu->pmu_cpu_context)
7584 goto free_dev;
7585
7586 for_each_possible_cpu(cpu) {
7587 struct perf_cpu_context *cpuctx;
7588
7589 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7590 __perf_event_init_context(&cpuctx->ctx);
7591 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7592 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7593 cpuctx->ctx.pmu = pmu;
7594
7595 __perf_mux_hrtimer_init(cpuctx, cpu);
7596
7597 cpuctx->unique_pmu = pmu;
7598 }
7599
7600 got_cpu_context:
7601 if (!pmu->start_txn) {
7602 if (pmu->pmu_enable) {
7603 /*
7604 * If we have pmu_enable/pmu_disable calls, install
7605 * transaction stubs that use that to try and batch
7606 * hardware accesses.
7607 */
7608 pmu->start_txn = perf_pmu_start_txn;
7609 pmu->commit_txn = perf_pmu_commit_txn;
7610 pmu->cancel_txn = perf_pmu_cancel_txn;
7611 } else {
7612 pmu->start_txn = perf_pmu_nop_txn;
7613 pmu->commit_txn = perf_pmu_nop_int;
7614 pmu->cancel_txn = perf_pmu_nop_void;
7615 }
7616 }
7617
7618 if (!pmu->pmu_enable) {
7619 pmu->pmu_enable = perf_pmu_nop_void;
7620 pmu->pmu_disable = perf_pmu_nop_void;
7621 }
7622
7623 if (!pmu->event_idx)
7624 pmu->event_idx = perf_event_idx_default;
7625
7626 list_add_rcu(&pmu->entry, &pmus);
7627 atomic_set(&pmu->exclusive_cnt, 0);
7628 ret = 0;
7629 unlock:
7630 mutex_unlock(&pmus_lock);
7631
7632 return ret;
7633
7634 free_dev:
7635 device_del(pmu->dev);
7636 put_device(pmu->dev);
7637
7638 free_idr:
7639 if (pmu->type >= PERF_TYPE_MAX)
7640 idr_remove(&pmu_idr, pmu->type);
7641
7642 free_pdc:
7643 free_percpu(pmu->pmu_disable_count);
7644 goto unlock;
7645 }
7646 EXPORT_SYMBOL_GPL(perf_pmu_register);
7647
7648 void perf_pmu_unregister(struct pmu *pmu)
7649 {
7650 mutex_lock(&pmus_lock);
7651 list_del_rcu(&pmu->entry);
7652 mutex_unlock(&pmus_lock);
7653
7654 /*
7655 * We dereference the pmu list under both SRCU and regular RCU, so
7656 * synchronize against both of those.
7657 */
7658 synchronize_srcu(&pmus_srcu);
7659 synchronize_rcu();
7660
7661 free_percpu(pmu->pmu_disable_count);
7662 if (pmu->type >= PERF_TYPE_MAX)
7663 idr_remove(&pmu_idr, pmu->type);
7664 device_del(pmu->dev);
7665 put_device(pmu->dev);
7666 free_pmu_context(pmu);
7667 }
7668 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7669
7670 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7671 {
7672 struct perf_event_context *ctx = NULL;
7673 int ret;
7674
7675 if (!try_module_get(pmu->module))
7676 return -ENODEV;
7677
7678 if (event->group_leader != event) {
7679 /*
7680 * This ctx->mutex can nest when we're called through
7681 * inheritance. See the perf_event_ctx_lock_nested() comment.
7682 */
7683 ctx = perf_event_ctx_lock_nested(event->group_leader,
7684 SINGLE_DEPTH_NESTING);
7685 BUG_ON(!ctx);
7686 }
7687
7688 event->pmu = pmu;
7689 ret = pmu->event_init(event);
7690
7691 if (ctx)
7692 perf_event_ctx_unlock(event->group_leader, ctx);
7693
7694 if (ret)
7695 module_put(pmu->module);
7696
7697 return ret;
7698 }
7699
7700 static struct pmu *perf_init_event(struct perf_event *event)
7701 {
7702 struct pmu *pmu = NULL;
7703 int idx;
7704 int ret;
7705
7706 idx = srcu_read_lock(&pmus_srcu);
7707
7708 rcu_read_lock();
7709 pmu = idr_find(&pmu_idr, event->attr.type);
7710 rcu_read_unlock();
7711 if (pmu) {
7712 ret = perf_try_init_event(pmu, event);
7713 if (ret)
7714 pmu = ERR_PTR(ret);
7715 goto unlock;
7716 }
7717
7718 list_for_each_entry_rcu(pmu, &pmus, entry) {
7719 ret = perf_try_init_event(pmu, event);
7720 if (!ret)
7721 goto unlock;
7722
7723 if (ret != -ENOENT) {
7724 pmu = ERR_PTR(ret);
7725 goto unlock;
7726 }
7727 }
7728 pmu = ERR_PTR(-ENOENT);
7729 unlock:
7730 srcu_read_unlock(&pmus_srcu, idx);
7731
7732 return pmu;
7733 }
7734
7735 static void account_event_cpu(struct perf_event *event, int cpu)
7736 {
7737 if (event->parent)
7738 return;
7739
7740 if (is_cgroup_event(event))
7741 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7742 }
7743
7744 static void account_event(struct perf_event *event)
7745 {
7746 bool inc = false;
7747
7748 if (event->parent)
7749 return;
7750
7751 if (event->attach_state & PERF_ATTACH_TASK)
7752 inc = true;
7753 if (event->attr.mmap || event->attr.mmap_data)
7754 atomic_inc(&nr_mmap_events);
7755 if (event->attr.comm)
7756 atomic_inc(&nr_comm_events);
7757 if (event->attr.task)
7758 atomic_inc(&nr_task_events);
7759 if (event->attr.freq) {
7760 if (atomic_inc_return(&nr_freq_events) == 1)
7761 tick_nohz_full_kick_all();
7762 }
7763 if (event->attr.context_switch) {
7764 atomic_inc(&nr_switch_events);
7765 inc = true;
7766 }
7767 if (has_branch_stack(event))
7768 inc = true;
7769 if (is_cgroup_event(event))
7770 inc = true;
7771
7772 if (inc)
7773 static_key_slow_inc(&perf_sched_events.key);
7774
7775 account_event_cpu(event, event->cpu);
7776 }
7777
7778 /*
7779 * Allocate and initialize a event structure
7780 */
7781 static struct perf_event *
7782 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7783 struct task_struct *task,
7784 struct perf_event *group_leader,
7785 struct perf_event *parent_event,
7786 perf_overflow_handler_t overflow_handler,
7787 void *context, int cgroup_fd)
7788 {
7789 struct pmu *pmu;
7790 struct perf_event *event;
7791 struct hw_perf_event *hwc;
7792 long err = -EINVAL;
7793
7794 if ((unsigned)cpu >= nr_cpu_ids) {
7795 if (!task || cpu != -1)
7796 return ERR_PTR(-EINVAL);
7797 }
7798
7799 event = kzalloc(sizeof(*event), GFP_KERNEL);
7800 if (!event)
7801 return ERR_PTR(-ENOMEM);
7802
7803 /*
7804 * Single events are their own group leaders, with an
7805 * empty sibling list:
7806 */
7807 if (!group_leader)
7808 group_leader = event;
7809
7810 mutex_init(&event->child_mutex);
7811 INIT_LIST_HEAD(&event->child_list);
7812
7813 INIT_LIST_HEAD(&event->group_entry);
7814 INIT_LIST_HEAD(&event->event_entry);
7815 INIT_LIST_HEAD(&event->sibling_list);
7816 INIT_LIST_HEAD(&event->rb_entry);
7817 INIT_LIST_HEAD(&event->active_entry);
7818 INIT_HLIST_NODE(&event->hlist_entry);
7819
7820
7821 init_waitqueue_head(&event->waitq);
7822 init_irq_work(&event->pending, perf_pending_event);
7823
7824 mutex_init(&event->mmap_mutex);
7825
7826 atomic_long_set(&event->refcount, 1);
7827 event->cpu = cpu;
7828 event->attr = *attr;
7829 event->group_leader = group_leader;
7830 event->pmu = NULL;
7831 event->oncpu = -1;
7832
7833 event->parent = parent_event;
7834
7835 event->ns = get_pid_ns(task_active_pid_ns(current));
7836 event->id = atomic64_inc_return(&perf_event_id);
7837
7838 event->state = PERF_EVENT_STATE_INACTIVE;
7839
7840 if (task) {
7841 event->attach_state = PERF_ATTACH_TASK;
7842 /*
7843 * XXX pmu::event_init needs to know what task to account to
7844 * and we cannot use the ctx information because we need the
7845 * pmu before we get a ctx.
7846 */
7847 event->hw.target = task;
7848 }
7849
7850 event->clock = &local_clock;
7851 if (parent_event)
7852 event->clock = parent_event->clock;
7853
7854 if (!overflow_handler && parent_event) {
7855 overflow_handler = parent_event->overflow_handler;
7856 context = parent_event->overflow_handler_context;
7857 }
7858
7859 event->overflow_handler = overflow_handler;
7860 event->overflow_handler_context = context;
7861
7862 perf_event__state_init(event);
7863
7864 pmu = NULL;
7865
7866 hwc = &event->hw;
7867 hwc->sample_period = attr->sample_period;
7868 if (attr->freq && attr->sample_freq)
7869 hwc->sample_period = 1;
7870 hwc->last_period = hwc->sample_period;
7871
7872 local64_set(&hwc->period_left, hwc->sample_period);
7873
7874 /*
7875 * we currently do not support PERF_FORMAT_GROUP on inherited events
7876 */
7877 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7878 goto err_ns;
7879
7880 if (!has_branch_stack(event))
7881 event->attr.branch_sample_type = 0;
7882
7883 if (cgroup_fd != -1) {
7884 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7885 if (err)
7886 goto err_ns;
7887 }
7888
7889 pmu = perf_init_event(event);
7890 if (!pmu)
7891 goto err_ns;
7892 else if (IS_ERR(pmu)) {
7893 err = PTR_ERR(pmu);
7894 goto err_ns;
7895 }
7896
7897 err = exclusive_event_init(event);
7898 if (err)
7899 goto err_pmu;
7900
7901 if (!event->parent) {
7902 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7903 err = get_callchain_buffers();
7904 if (err)
7905 goto err_per_task;
7906 }
7907 }
7908
7909 return event;
7910
7911 err_per_task:
7912 exclusive_event_destroy(event);
7913
7914 err_pmu:
7915 if (event->destroy)
7916 event->destroy(event);
7917 module_put(pmu->module);
7918 err_ns:
7919 if (is_cgroup_event(event))
7920 perf_detach_cgroup(event);
7921 if (event->ns)
7922 put_pid_ns(event->ns);
7923 kfree(event);
7924
7925 return ERR_PTR(err);
7926 }
7927
7928 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7929 struct perf_event_attr *attr)
7930 {
7931 u32 size;
7932 int ret;
7933
7934 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7935 return -EFAULT;
7936
7937 /*
7938 * zero the full structure, so that a short copy will be nice.
7939 */
7940 memset(attr, 0, sizeof(*attr));
7941
7942 ret = get_user(size, &uattr->size);
7943 if (ret)
7944 return ret;
7945
7946 if (size > PAGE_SIZE) /* silly large */
7947 goto err_size;
7948
7949 if (!size) /* abi compat */
7950 size = PERF_ATTR_SIZE_VER0;
7951
7952 if (size < PERF_ATTR_SIZE_VER0)
7953 goto err_size;
7954
7955 /*
7956 * If we're handed a bigger struct than we know of,
7957 * ensure all the unknown bits are 0 - i.e. new
7958 * user-space does not rely on any kernel feature
7959 * extensions we dont know about yet.
7960 */
7961 if (size > sizeof(*attr)) {
7962 unsigned char __user *addr;
7963 unsigned char __user *end;
7964 unsigned char val;
7965
7966 addr = (void __user *)uattr + sizeof(*attr);
7967 end = (void __user *)uattr + size;
7968
7969 for (; addr < end; addr++) {
7970 ret = get_user(val, addr);
7971 if (ret)
7972 return ret;
7973 if (val)
7974 goto err_size;
7975 }
7976 size = sizeof(*attr);
7977 }
7978
7979 ret = copy_from_user(attr, uattr, size);
7980 if (ret)
7981 return -EFAULT;
7982
7983 if (attr->__reserved_1)
7984 return -EINVAL;
7985
7986 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7987 return -EINVAL;
7988
7989 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7990 return -EINVAL;
7991
7992 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7993 u64 mask = attr->branch_sample_type;
7994
7995 /* only using defined bits */
7996 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7997 return -EINVAL;
7998
7999 /* at least one branch bit must be set */
8000 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8001 return -EINVAL;
8002
8003 /* propagate priv level, when not set for branch */
8004 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8005
8006 /* exclude_kernel checked on syscall entry */
8007 if (!attr->exclude_kernel)
8008 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8009
8010 if (!attr->exclude_user)
8011 mask |= PERF_SAMPLE_BRANCH_USER;
8012
8013 if (!attr->exclude_hv)
8014 mask |= PERF_SAMPLE_BRANCH_HV;
8015 /*
8016 * adjust user setting (for HW filter setup)
8017 */
8018 attr->branch_sample_type = mask;
8019 }
8020 /* privileged levels capture (kernel, hv): check permissions */
8021 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8022 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8023 return -EACCES;
8024 }
8025
8026 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8027 ret = perf_reg_validate(attr->sample_regs_user);
8028 if (ret)
8029 return ret;
8030 }
8031
8032 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8033 if (!arch_perf_have_user_stack_dump())
8034 return -ENOSYS;
8035
8036 /*
8037 * We have __u32 type for the size, but so far
8038 * we can only use __u16 as maximum due to the
8039 * __u16 sample size limit.
8040 */
8041 if (attr->sample_stack_user >= USHRT_MAX)
8042 ret = -EINVAL;
8043 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8044 ret = -EINVAL;
8045 }
8046
8047 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8048 ret = perf_reg_validate(attr->sample_regs_intr);
8049 out:
8050 return ret;
8051
8052 err_size:
8053 put_user(sizeof(*attr), &uattr->size);
8054 ret = -E2BIG;
8055 goto out;
8056 }
8057
8058 static int
8059 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8060 {
8061 struct ring_buffer *rb = NULL;
8062 int ret = -EINVAL;
8063
8064 if (!output_event)
8065 goto set;
8066
8067 /* don't allow circular references */
8068 if (event == output_event)
8069 goto out;
8070
8071 /*
8072 * Don't allow cross-cpu buffers
8073 */
8074 if (output_event->cpu != event->cpu)
8075 goto out;
8076
8077 /*
8078 * If its not a per-cpu rb, it must be the same task.
8079 */
8080 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8081 goto out;
8082
8083 /*
8084 * Mixing clocks in the same buffer is trouble you don't need.
8085 */
8086 if (output_event->clock != event->clock)
8087 goto out;
8088
8089 /*
8090 * If both events generate aux data, they must be on the same PMU
8091 */
8092 if (has_aux(event) && has_aux(output_event) &&
8093 event->pmu != output_event->pmu)
8094 goto out;
8095
8096 set:
8097 mutex_lock(&event->mmap_mutex);
8098 /* Can't redirect output if we've got an active mmap() */
8099 if (atomic_read(&event->mmap_count))
8100 goto unlock;
8101
8102 if (output_event) {
8103 /* get the rb we want to redirect to */
8104 rb = ring_buffer_get(output_event);
8105 if (!rb)
8106 goto unlock;
8107 }
8108
8109 ring_buffer_attach(event, rb);
8110
8111 ret = 0;
8112 unlock:
8113 mutex_unlock(&event->mmap_mutex);
8114
8115 out:
8116 return ret;
8117 }
8118
8119 static void mutex_lock_double(struct mutex *a, struct mutex *b)
8120 {
8121 if (b < a)
8122 swap(a, b);
8123
8124 mutex_lock(a);
8125 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8126 }
8127
8128 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8129 {
8130 bool nmi_safe = false;
8131
8132 switch (clk_id) {
8133 case CLOCK_MONOTONIC:
8134 event->clock = &ktime_get_mono_fast_ns;
8135 nmi_safe = true;
8136 break;
8137
8138 case CLOCK_MONOTONIC_RAW:
8139 event->clock = &ktime_get_raw_fast_ns;
8140 nmi_safe = true;
8141 break;
8142
8143 case CLOCK_REALTIME:
8144 event->clock = &ktime_get_real_ns;
8145 break;
8146
8147 case CLOCK_BOOTTIME:
8148 event->clock = &ktime_get_boot_ns;
8149 break;
8150
8151 case CLOCK_TAI:
8152 event->clock = &ktime_get_tai_ns;
8153 break;
8154
8155 default:
8156 return -EINVAL;
8157 }
8158
8159 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8160 return -EINVAL;
8161
8162 return 0;
8163 }
8164
8165 /**
8166 * sys_perf_event_open - open a performance event, associate it to a task/cpu
8167 *
8168 * @attr_uptr: event_id type attributes for monitoring/sampling
8169 * @pid: target pid
8170 * @cpu: target cpu
8171 * @group_fd: group leader event fd
8172 */
8173 SYSCALL_DEFINE5(perf_event_open,
8174 struct perf_event_attr __user *, attr_uptr,
8175 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
8176 {
8177 struct perf_event *group_leader = NULL, *output_event = NULL;
8178 struct perf_event *event, *sibling;
8179 struct perf_event_attr attr;
8180 struct perf_event_context *ctx, *uninitialized_var(gctx);
8181 struct file *event_file = NULL;
8182 struct fd group = {NULL, 0};
8183 struct task_struct *task = NULL;
8184 struct pmu *pmu;
8185 int event_fd;
8186 int move_group = 0;
8187 int err;
8188 int f_flags = O_RDWR;
8189 int cgroup_fd = -1;
8190
8191 /* for future expandability... */
8192 if (flags & ~PERF_FLAG_ALL)
8193 return -EINVAL;
8194
8195 err = perf_copy_attr(attr_uptr, &attr);
8196 if (err)
8197 return err;
8198
8199 if (!attr.exclude_kernel) {
8200 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8201 return -EACCES;
8202 }
8203
8204 if (attr.freq) {
8205 if (attr.sample_freq > sysctl_perf_event_sample_rate)
8206 return -EINVAL;
8207 } else {
8208 if (attr.sample_period & (1ULL << 63))
8209 return -EINVAL;
8210 }
8211
8212 /*
8213 * In cgroup mode, the pid argument is used to pass the fd
8214 * opened to the cgroup directory in cgroupfs. The cpu argument
8215 * designates the cpu on which to monitor threads from that
8216 * cgroup.
8217 */
8218 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8219 return -EINVAL;
8220
8221 if (flags & PERF_FLAG_FD_CLOEXEC)
8222 f_flags |= O_CLOEXEC;
8223
8224 event_fd = get_unused_fd_flags(f_flags);
8225 if (event_fd < 0)
8226 return event_fd;
8227
8228 if (group_fd != -1) {
8229 err = perf_fget_light(group_fd, &group);
8230 if (err)
8231 goto err_fd;
8232 group_leader = group.file->private_data;
8233 if (flags & PERF_FLAG_FD_OUTPUT)
8234 output_event = group_leader;
8235 if (flags & PERF_FLAG_FD_NO_GROUP)
8236 group_leader = NULL;
8237 }
8238
8239 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8240 task = find_lively_task_by_vpid(pid);
8241 if (IS_ERR(task)) {
8242 err = PTR_ERR(task);
8243 goto err_group_fd;
8244 }
8245 }
8246
8247 if (task && group_leader &&
8248 group_leader->attr.inherit != attr.inherit) {
8249 err = -EINVAL;
8250 goto err_task;
8251 }
8252
8253 get_online_cpus();
8254
8255 if (flags & PERF_FLAG_PID_CGROUP)
8256 cgroup_fd = pid;
8257
8258 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8259 NULL, NULL, cgroup_fd);
8260 if (IS_ERR(event)) {
8261 err = PTR_ERR(event);
8262 goto err_cpus;
8263 }
8264
8265 if (is_sampling_event(event)) {
8266 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8267 err = -ENOTSUPP;
8268 goto err_alloc;
8269 }
8270 }
8271
8272 account_event(event);
8273
8274 /*
8275 * Special case software events and allow them to be part of
8276 * any hardware group.
8277 */
8278 pmu = event->pmu;
8279
8280 if (attr.use_clockid) {
8281 err = perf_event_set_clock(event, attr.clockid);
8282 if (err)
8283 goto err_alloc;
8284 }
8285
8286 if (group_leader &&
8287 (is_software_event(event) != is_software_event(group_leader))) {
8288 if (is_software_event(event)) {
8289 /*
8290 * If event and group_leader are not both a software
8291 * event, and event is, then group leader is not.
8292 *
8293 * Allow the addition of software events to !software
8294 * groups, this is safe because software events never
8295 * fail to schedule.
8296 */
8297 pmu = group_leader->pmu;
8298 } else if (is_software_event(group_leader) &&
8299 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8300 /*
8301 * In case the group is a pure software group, and we
8302 * try to add a hardware event, move the whole group to
8303 * the hardware context.
8304 */
8305 move_group = 1;
8306 }
8307 }
8308
8309 /*
8310 * Get the target context (task or percpu):
8311 */
8312 ctx = find_get_context(pmu, task, event);
8313 if (IS_ERR(ctx)) {
8314 err = PTR_ERR(ctx);
8315 goto err_alloc;
8316 }
8317
8318 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8319 err = -EBUSY;
8320 goto err_context;
8321 }
8322
8323 if (task) {
8324 put_task_struct(task);
8325 task = NULL;
8326 }
8327
8328 /*
8329 * Look up the group leader (we will attach this event to it):
8330 */
8331 if (group_leader) {
8332 err = -EINVAL;
8333
8334 /*
8335 * Do not allow a recursive hierarchy (this new sibling
8336 * becoming part of another group-sibling):
8337 */
8338 if (group_leader->group_leader != group_leader)
8339 goto err_context;
8340
8341 /* All events in a group should have the same clock */
8342 if (group_leader->clock != event->clock)
8343 goto err_context;
8344
8345 /*
8346 * Do not allow to attach to a group in a different
8347 * task or CPU context:
8348 */
8349 if (move_group) {
8350 /*
8351 * Make sure we're both on the same task, or both
8352 * per-cpu events.
8353 */
8354 if (group_leader->ctx->task != ctx->task)
8355 goto err_context;
8356
8357 /*
8358 * Make sure we're both events for the same CPU;
8359 * grouping events for different CPUs is broken; since
8360 * you can never concurrently schedule them anyhow.
8361 */
8362 if (group_leader->cpu != event->cpu)
8363 goto err_context;
8364 } else {
8365 if (group_leader->ctx != ctx)
8366 goto err_context;
8367 }
8368
8369 /*
8370 * Only a group leader can be exclusive or pinned
8371 */
8372 if (attr.exclusive || attr.pinned)
8373 goto err_context;
8374 }
8375
8376 if (output_event) {
8377 err = perf_event_set_output(event, output_event);
8378 if (err)
8379 goto err_context;
8380 }
8381
8382 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8383 f_flags);
8384 if (IS_ERR(event_file)) {
8385 err = PTR_ERR(event_file);
8386 goto err_context;
8387 }
8388
8389 if (move_group) {
8390 gctx = group_leader->ctx;
8391 mutex_lock_double(&gctx->mutex, &ctx->mutex);
8392 } else {
8393 mutex_lock(&ctx->mutex);
8394 }
8395
8396 if (!perf_event_validate_size(event)) {
8397 err = -E2BIG;
8398 goto err_locked;
8399 }
8400
8401 /*
8402 * Must be under the same ctx::mutex as perf_install_in_context(),
8403 * because we need to serialize with concurrent event creation.
8404 */
8405 if (!exclusive_event_installable(event, ctx)) {
8406 /* exclusive and group stuff are assumed mutually exclusive */
8407 WARN_ON_ONCE(move_group);
8408
8409 err = -EBUSY;
8410 goto err_locked;
8411 }
8412
8413 WARN_ON_ONCE(ctx->parent_ctx);
8414
8415 if (move_group) {
8416 /*
8417 * See perf_event_ctx_lock() for comments on the details
8418 * of swizzling perf_event::ctx.
8419 */
8420 perf_remove_from_context(group_leader, 0);
8421
8422 list_for_each_entry(sibling, &group_leader->sibling_list,
8423 group_entry) {
8424 perf_remove_from_context(sibling, 0);
8425 put_ctx(gctx);
8426 }
8427
8428 /*
8429 * Wait for everybody to stop referencing the events through
8430 * the old lists, before installing it on new lists.
8431 */
8432 synchronize_rcu();
8433
8434 /*
8435 * Install the group siblings before the group leader.
8436 *
8437 * Because a group leader will try and install the entire group
8438 * (through the sibling list, which is still in-tact), we can
8439 * end up with siblings installed in the wrong context.
8440 *
8441 * By installing siblings first we NO-OP because they're not
8442 * reachable through the group lists.
8443 */
8444 list_for_each_entry(sibling, &group_leader->sibling_list,
8445 group_entry) {
8446 perf_event__state_init(sibling);
8447 perf_install_in_context(ctx, sibling, sibling->cpu);
8448 get_ctx(ctx);
8449 }
8450
8451 /*
8452 * Removing from the context ends up with disabled
8453 * event. What we want here is event in the initial
8454 * startup state, ready to be add into new context.
8455 */
8456 perf_event__state_init(group_leader);
8457 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8458 get_ctx(ctx);
8459
8460 /*
8461 * Now that all events are installed in @ctx, nothing
8462 * references @gctx anymore, so drop the last reference we have
8463 * on it.
8464 */
8465 put_ctx(gctx);
8466 }
8467
8468 /*
8469 * Precalculate sample_data sizes; do while holding ctx::mutex such
8470 * that we're serialized against further additions and before
8471 * perf_install_in_context() which is the point the event is active and
8472 * can use these values.
8473 */
8474 perf_event__header_size(event);
8475 perf_event__id_header_size(event);
8476
8477 event->owner = current;
8478
8479 perf_install_in_context(ctx, event, event->cpu);
8480 perf_unpin_context(ctx);
8481
8482 if (move_group)
8483 mutex_unlock(&gctx->mutex);
8484 mutex_unlock(&ctx->mutex);
8485
8486 put_online_cpus();
8487
8488 mutex_lock(&current->perf_event_mutex);
8489 list_add_tail(&event->owner_entry, &current->perf_event_list);
8490 mutex_unlock(&current->perf_event_mutex);
8491
8492 /*
8493 * Drop the reference on the group_event after placing the
8494 * new event on the sibling_list. This ensures destruction
8495 * of the group leader will find the pointer to itself in
8496 * perf_group_detach().
8497 */
8498 fdput(group);
8499 fd_install(event_fd, event_file);
8500 return event_fd;
8501
8502 err_locked:
8503 if (move_group)
8504 mutex_unlock(&gctx->mutex);
8505 mutex_unlock(&ctx->mutex);
8506 /* err_file: */
8507 fput(event_file);
8508 err_context:
8509 perf_unpin_context(ctx);
8510 put_ctx(ctx);
8511 err_alloc:
8512 free_event(event);
8513 err_cpus:
8514 put_online_cpus();
8515 err_task:
8516 if (task)
8517 put_task_struct(task);
8518 err_group_fd:
8519 fdput(group);
8520 err_fd:
8521 put_unused_fd(event_fd);
8522 return err;
8523 }
8524
8525 /**
8526 * perf_event_create_kernel_counter
8527 *
8528 * @attr: attributes of the counter to create
8529 * @cpu: cpu in which the counter is bound
8530 * @task: task to profile (NULL for percpu)
8531 */
8532 struct perf_event *
8533 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8534 struct task_struct *task,
8535 perf_overflow_handler_t overflow_handler,
8536 void *context)
8537 {
8538 struct perf_event_context *ctx;
8539 struct perf_event *event;
8540 int err;
8541
8542 /*
8543 * Get the target context (task or percpu):
8544 */
8545
8546 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8547 overflow_handler, context, -1);
8548 if (IS_ERR(event)) {
8549 err = PTR_ERR(event);
8550 goto err;
8551 }
8552
8553 /* Mark owner so we could distinguish it from user events. */
8554 event->owner = TASK_TOMBSTONE;
8555
8556 account_event(event);
8557
8558 ctx = find_get_context(event->pmu, task, event);
8559 if (IS_ERR(ctx)) {
8560 err = PTR_ERR(ctx);
8561 goto err_free;
8562 }
8563
8564 WARN_ON_ONCE(ctx->parent_ctx);
8565 mutex_lock(&ctx->mutex);
8566 if (!exclusive_event_installable(event, ctx)) {
8567 mutex_unlock(&ctx->mutex);
8568 perf_unpin_context(ctx);
8569 put_ctx(ctx);
8570 err = -EBUSY;
8571 goto err_free;
8572 }
8573
8574 perf_install_in_context(ctx, event, cpu);
8575 perf_unpin_context(ctx);
8576 mutex_unlock(&ctx->mutex);
8577
8578 return event;
8579
8580 err_free:
8581 free_event(event);
8582 err:
8583 return ERR_PTR(err);
8584 }
8585 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8586
8587 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8588 {
8589 struct perf_event_context *src_ctx;
8590 struct perf_event_context *dst_ctx;
8591 struct perf_event *event, *tmp;
8592 LIST_HEAD(events);
8593
8594 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8595 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8596
8597 /*
8598 * See perf_event_ctx_lock() for comments on the details
8599 * of swizzling perf_event::ctx.
8600 */
8601 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8602 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8603 event_entry) {
8604 perf_remove_from_context(event, 0);
8605 unaccount_event_cpu(event, src_cpu);
8606 put_ctx(src_ctx);
8607 list_add(&event->migrate_entry, &events);
8608 }
8609
8610 /*
8611 * Wait for the events to quiesce before re-instating them.
8612 */
8613 synchronize_rcu();
8614
8615 /*
8616 * Re-instate events in 2 passes.
8617 *
8618 * Skip over group leaders and only install siblings on this first
8619 * pass, siblings will not get enabled without a leader, however a
8620 * leader will enable its siblings, even if those are still on the old
8621 * context.
8622 */
8623 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8624 if (event->group_leader == event)
8625 continue;
8626
8627 list_del(&event->migrate_entry);
8628 if (event->state >= PERF_EVENT_STATE_OFF)
8629 event->state = PERF_EVENT_STATE_INACTIVE;
8630 account_event_cpu(event, dst_cpu);
8631 perf_install_in_context(dst_ctx, event, dst_cpu);
8632 get_ctx(dst_ctx);
8633 }
8634
8635 /*
8636 * Once all the siblings are setup properly, install the group leaders
8637 * to make it go.
8638 */
8639 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8640 list_del(&event->migrate_entry);
8641 if (event->state >= PERF_EVENT_STATE_OFF)
8642 event->state = PERF_EVENT_STATE_INACTIVE;
8643 account_event_cpu(event, dst_cpu);
8644 perf_install_in_context(dst_ctx, event, dst_cpu);
8645 get_ctx(dst_ctx);
8646 }
8647 mutex_unlock(&dst_ctx->mutex);
8648 mutex_unlock(&src_ctx->mutex);
8649 }
8650 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8651
8652 static void sync_child_event(struct perf_event *child_event,
8653 struct task_struct *child)
8654 {
8655 struct perf_event *parent_event = child_event->parent;
8656 u64 child_val;
8657
8658 if (child_event->attr.inherit_stat)
8659 perf_event_read_event(child_event, child);
8660
8661 child_val = perf_event_count(child_event);
8662
8663 /*
8664 * Add back the child's count to the parent's count:
8665 */
8666 atomic64_add(child_val, &parent_event->child_count);
8667 atomic64_add(child_event->total_time_enabled,
8668 &parent_event->child_total_time_enabled);
8669 atomic64_add(child_event->total_time_running,
8670 &parent_event->child_total_time_running);
8671 }
8672
8673 static void
8674 perf_event_exit_event(struct perf_event *child_event,
8675 struct perf_event_context *child_ctx,
8676 struct task_struct *child)
8677 {
8678 struct perf_event *parent_event = child_event->parent;
8679
8680 /*
8681 * Do not destroy the 'original' grouping; because of the context
8682 * switch optimization the original events could've ended up in a
8683 * random child task.
8684 *
8685 * If we were to destroy the original group, all group related
8686 * operations would cease to function properly after this random
8687 * child dies.
8688 *
8689 * Do destroy all inherited groups, we don't care about those
8690 * and being thorough is better.
8691 */
8692 raw_spin_lock_irq(&child_ctx->lock);
8693 WARN_ON_ONCE(child_ctx->is_active);
8694
8695 if (parent_event)
8696 perf_group_detach(child_event);
8697 list_del_event(child_event, child_ctx);
8698 child_event->state = PERF_EVENT_STATE_EXIT; /* see perf_event_release_kernel() */
8699 raw_spin_unlock_irq(&child_ctx->lock);
8700
8701 /*
8702 * Parent events are governed by their filedesc, retain them.
8703 */
8704 if (!parent_event) {
8705 perf_event_wakeup(child_event);
8706 return;
8707 }
8708 /*
8709 * Child events can be cleaned up.
8710 */
8711
8712 sync_child_event(child_event, child);
8713
8714 /*
8715 * Remove this event from the parent's list
8716 */
8717 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8718 mutex_lock(&parent_event->child_mutex);
8719 list_del_init(&child_event->child_list);
8720 mutex_unlock(&parent_event->child_mutex);
8721
8722 /*
8723 * Kick perf_poll() for is_event_hup().
8724 */
8725 perf_event_wakeup(parent_event);
8726 free_event(child_event);
8727 put_event(parent_event);
8728 }
8729
8730 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8731 {
8732 struct perf_event_context *child_ctx, *clone_ctx = NULL;
8733 struct perf_event *child_event, *next;
8734
8735 WARN_ON_ONCE(child != current);
8736
8737 child_ctx = perf_pin_task_context(child, ctxn);
8738 if (!child_ctx)
8739 return;
8740
8741 /*
8742 * In order to reduce the amount of tricky in ctx tear-down, we hold
8743 * ctx::mutex over the entire thing. This serializes against almost
8744 * everything that wants to access the ctx.
8745 *
8746 * The exception is sys_perf_event_open() /
8747 * perf_event_create_kernel_count() which does find_get_context()
8748 * without ctx::mutex (it cannot because of the move_group double mutex
8749 * lock thing). See the comments in perf_install_in_context().
8750 */
8751 mutex_lock(&child_ctx->mutex);
8752
8753 /*
8754 * In a single ctx::lock section, de-schedule the events and detach the
8755 * context from the task such that we cannot ever get it scheduled back
8756 * in.
8757 */
8758 raw_spin_lock_irq(&child_ctx->lock);
8759 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
8760
8761 /*
8762 * Now that the context is inactive, destroy the task <-> ctx relation
8763 * and mark the context dead.
8764 */
8765 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
8766 put_ctx(child_ctx); /* cannot be last */
8767 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
8768 put_task_struct(current); /* cannot be last */
8769
8770 clone_ctx = unclone_ctx(child_ctx);
8771 raw_spin_unlock_irq(&child_ctx->lock);
8772
8773 if (clone_ctx)
8774 put_ctx(clone_ctx);
8775
8776 /*
8777 * Report the task dead after unscheduling the events so that we
8778 * won't get any samples after PERF_RECORD_EXIT. We can however still
8779 * get a few PERF_RECORD_READ events.
8780 */
8781 perf_event_task(child, child_ctx, 0);
8782
8783 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8784 perf_event_exit_event(child_event, child_ctx, child);
8785
8786 mutex_unlock(&child_ctx->mutex);
8787
8788 put_ctx(child_ctx);
8789 }
8790
8791 /*
8792 * When a child task exits, feed back event values to parent events.
8793 */
8794 void perf_event_exit_task(struct task_struct *child)
8795 {
8796 struct perf_event *event, *tmp;
8797 int ctxn;
8798
8799 mutex_lock(&child->perf_event_mutex);
8800 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8801 owner_entry) {
8802 list_del_init(&event->owner_entry);
8803
8804 /*
8805 * Ensure the list deletion is visible before we clear
8806 * the owner, closes a race against perf_release() where
8807 * we need to serialize on the owner->perf_event_mutex.
8808 */
8809 smp_store_release(&event->owner, NULL);
8810 }
8811 mutex_unlock(&child->perf_event_mutex);
8812
8813 for_each_task_context_nr(ctxn)
8814 perf_event_exit_task_context(child, ctxn);
8815
8816 /*
8817 * The perf_event_exit_task_context calls perf_event_task
8818 * with child's task_ctx, which generates EXIT events for
8819 * child contexts and sets child->perf_event_ctxp[] to NULL.
8820 * At this point we need to send EXIT events to cpu contexts.
8821 */
8822 perf_event_task(child, NULL, 0);
8823 }
8824
8825 static void perf_free_event(struct perf_event *event,
8826 struct perf_event_context *ctx)
8827 {
8828 struct perf_event *parent = event->parent;
8829
8830 if (WARN_ON_ONCE(!parent))
8831 return;
8832
8833 mutex_lock(&parent->child_mutex);
8834 list_del_init(&event->child_list);
8835 mutex_unlock(&parent->child_mutex);
8836
8837 put_event(parent);
8838
8839 raw_spin_lock_irq(&ctx->lock);
8840 perf_group_detach(event);
8841 list_del_event(event, ctx);
8842 raw_spin_unlock_irq(&ctx->lock);
8843 free_event(event);
8844 }
8845
8846 /*
8847 * Free an unexposed, unused context as created by inheritance by
8848 * perf_event_init_task below, used by fork() in case of fail.
8849 *
8850 * Not all locks are strictly required, but take them anyway to be nice and
8851 * help out with the lockdep assertions.
8852 */
8853 void perf_event_free_task(struct task_struct *task)
8854 {
8855 struct perf_event_context *ctx;
8856 struct perf_event *event, *tmp;
8857 int ctxn;
8858
8859 for_each_task_context_nr(ctxn) {
8860 ctx = task->perf_event_ctxp[ctxn];
8861 if (!ctx)
8862 continue;
8863
8864 mutex_lock(&ctx->mutex);
8865 again:
8866 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8867 group_entry)
8868 perf_free_event(event, ctx);
8869
8870 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8871 group_entry)
8872 perf_free_event(event, ctx);
8873
8874 if (!list_empty(&ctx->pinned_groups) ||
8875 !list_empty(&ctx->flexible_groups))
8876 goto again;
8877
8878 mutex_unlock(&ctx->mutex);
8879
8880 put_ctx(ctx);
8881 }
8882 }
8883
8884 void perf_event_delayed_put(struct task_struct *task)
8885 {
8886 int ctxn;
8887
8888 for_each_task_context_nr(ctxn)
8889 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8890 }
8891
8892 struct file *perf_event_get(unsigned int fd)
8893 {
8894 struct file *file;
8895
8896 file = fget_raw(fd);
8897 if (!file)
8898 return ERR_PTR(-EBADF);
8899
8900 if (file->f_op != &perf_fops) {
8901 fput(file);
8902 return ERR_PTR(-EBADF);
8903 }
8904
8905 return file;
8906 }
8907
8908 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8909 {
8910 if (!event)
8911 return ERR_PTR(-EINVAL);
8912
8913 return &event->attr;
8914 }
8915
8916 /*
8917 * inherit a event from parent task to child task:
8918 */
8919 static struct perf_event *
8920 inherit_event(struct perf_event *parent_event,
8921 struct task_struct *parent,
8922 struct perf_event_context *parent_ctx,
8923 struct task_struct *child,
8924 struct perf_event *group_leader,
8925 struct perf_event_context *child_ctx)
8926 {
8927 enum perf_event_active_state parent_state = parent_event->state;
8928 struct perf_event *child_event;
8929 unsigned long flags;
8930
8931 /*
8932 * Instead of creating recursive hierarchies of events,
8933 * we link inherited events back to the original parent,
8934 * which has a filp for sure, which we use as the reference
8935 * count:
8936 */
8937 if (parent_event->parent)
8938 parent_event = parent_event->parent;
8939
8940 child_event = perf_event_alloc(&parent_event->attr,
8941 parent_event->cpu,
8942 child,
8943 group_leader, parent_event,
8944 NULL, NULL, -1);
8945 if (IS_ERR(child_event))
8946 return child_event;
8947
8948 /*
8949 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
8950 * must be under the same lock in order to serialize against
8951 * perf_event_release_kernel(), such that either we must observe
8952 * is_orphaned_event() or they will observe us on the child_list.
8953 */
8954 mutex_lock(&parent_event->child_mutex);
8955 if (is_orphaned_event(parent_event) ||
8956 !atomic_long_inc_not_zero(&parent_event->refcount)) {
8957 mutex_unlock(&parent_event->child_mutex);
8958 free_event(child_event);
8959 return NULL;
8960 }
8961
8962 get_ctx(child_ctx);
8963
8964 /*
8965 * Make the child state follow the state of the parent event,
8966 * not its attr.disabled bit. We hold the parent's mutex,
8967 * so we won't race with perf_event_{en, dis}able_family.
8968 */
8969 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
8970 child_event->state = PERF_EVENT_STATE_INACTIVE;
8971 else
8972 child_event->state = PERF_EVENT_STATE_OFF;
8973
8974 if (parent_event->attr.freq) {
8975 u64 sample_period = parent_event->hw.sample_period;
8976 struct hw_perf_event *hwc = &child_event->hw;
8977
8978 hwc->sample_period = sample_period;
8979 hwc->last_period = sample_period;
8980
8981 local64_set(&hwc->period_left, sample_period);
8982 }
8983
8984 child_event->ctx = child_ctx;
8985 child_event->overflow_handler = parent_event->overflow_handler;
8986 child_event->overflow_handler_context
8987 = parent_event->overflow_handler_context;
8988
8989 /*
8990 * Precalculate sample_data sizes
8991 */
8992 perf_event__header_size(child_event);
8993 perf_event__id_header_size(child_event);
8994
8995 /*
8996 * Link it up in the child's context:
8997 */
8998 raw_spin_lock_irqsave(&child_ctx->lock, flags);
8999 add_event_to_ctx(child_event, child_ctx);
9000 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9001
9002 /*
9003 * Link this into the parent event's child list
9004 */
9005 list_add_tail(&child_event->child_list, &parent_event->child_list);
9006 mutex_unlock(&parent_event->child_mutex);
9007
9008 return child_event;
9009 }
9010
9011 static int inherit_group(struct perf_event *parent_event,
9012 struct task_struct *parent,
9013 struct perf_event_context *parent_ctx,
9014 struct task_struct *child,
9015 struct perf_event_context *child_ctx)
9016 {
9017 struct perf_event *leader;
9018 struct perf_event *sub;
9019 struct perf_event *child_ctr;
9020
9021 leader = inherit_event(parent_event, parent, parent_ctx,
9022 child, NULL, child_ctx);
9023 if (IS_ERR(leader))
9024 return PTR_ERR(leader);
9025 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9026 child_ctr = inherit_event(sub, parent, parent_ctx,
9027 child, leader, child_ctx);
9028 if (IS_ERR(child_ctr))
9029 return PTR_ERR(child_ctr);
9030 }
9031 return 0;
9032 }
9033
9034 static int
9035 inherit_task_group(struct perf_event *event, struct task_struct *parent,
9036 struct perf_event_context *parent_ctx,
9037 struct task_struct *child, int ctxn,
9038 int *inherited_all)
9039 {
9040 int ret;
9041 struct perf_event_context *child_ctx;
9042
9043 if (!event->attr.inherit) {
9044 *inherited_all = 0;
9045 return 0;
9046 }
9047
9048 child_ctx = child->perf_event_ctxp[ctxn];
9049 if (!child_ctx) {
9050 /*
9051 * This is executed from the parent task context, so
9052 * inherit events that have been marked for cloning.
9053 * First allocate and initialize a context for the
9054 * child.
9055 */
9056
9057 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9058 if (!child_ctx)
9059 return -ENOMEM;
9060
9061 child->perf_event_ctxp[ctxn] = child_ctx;
9062 }
9063
9064 ret = inherit_group(event, parent, parent_ctx,
9065 child, child_ctx);
9066
9067 if (ret)
9068 *inherited_all = 0;
9069
9070 return ret;
9071 }
9072
9073 /*
9074 * Initialize the perf_event context in task_struct
9075 */
9076 static int perf_event_init_context(struct task_struct *child, int ctxn)
9077 {
9078 struct perf_event_context *child_ctx, *parent_ctx;
9079 struct perf_event_context *cloned_ctx;
9080 struct perf_event *event;
9081 struct task_struct *parent = current;
9082 int inherited_all = 1;
9083 unsigned long flags;
9084 int ret = 0;
9085
9086 if (likely(!parent->perf_event_ctxp[ctxn]))
9087 return 0;
9088
9089 /*
9090 * If the parent's context is a clone, pin it so it won't get
9091 * swapped under us.
9092 */
9093 parent_ctx = perf_pin_task_context(parent, ctxn);
9094 if (!parent_ctx)
9095 return 0;
9096
9097 /*
9098 * No need to check if parent_ctx != NULL here; since we saw
9099 * it non-NULL earlier, the only reason for it to become NULL
9100 * is if we exit, and since we're currently in the middle of
9101 * a fork we can't be exiting at the same time.
9102 */
9103
9104 /*
9105 * Lock the parent list. No need to lock the child - not PID
9106 * hashed yet and not running, so nobody can access it.
9107 */
9108 mutex_lock(&parent_ctx->mutex);
9109
9110 /*
9111 * We dont have to disable NMIs - we are only looking at
9112 * the list, not manipulating it:
9113 */
9114 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
9115 ret = inherit_task_group(event, parent, parent_ctx,
9116 child, ctxn, &inherited_all);
9117 if (ret)
9118 break;
9119 }
9120
9121 /*
9122 * We can't hold ctx->lock when iterating the ->flexible_group list due
9123 * to allocations, but we need to prevent rotation because
9124 * rotate_ctx() will change the list from interrupt context.
9125 */
9126 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9127 parent_ctx->rotate_disable = 1;
9128 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9129
9130 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
9131 ret = inherit_task_group(event, parent, parent_ctx,
9132 child, ctxn, &inherited_all);
9133 if (ret)
9134 break;
9135 }
9136
9137 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9138 parent_ctx->rotate_disable = 0;
9139
9140 child_ctx = child->perf_event_ctxp[ctxn];
9141
9142 if (child_ctx && inherited_all) {
9143 /*
9144 * Mark the child context as a clone of the parent
9145 * context, or of whatever the parent is a clone of.
9146 *
9147 * Note that if the parent is a clone, the holding of
9148 * parent_ctx->lock avoids it from being uncloned.
9149 */
9150 cloned_ctx = parent_ctx->parent_ctx;
9151 if (cloned_ctx) {
9152 child_ctx->parent_ctx = cloned_ctx;
9153 child_ctx->parent_gen = parent_ctx->parent_gen;
9154 } else {
9155 child_ctx->parent_ctx = parent_ctx;
9156 child_ctx->parent_gen = parent_ctx->generation;
9157 }
9158 get_ctx(child_ctx->parent_ctx);
9159 }
9160
9161 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9162 mutex_unlock(&parent_ctx->mutex);
9163
9164 perf_unpin_context(parent_ctx);
9165 put_ctx(parent_ctx);
9166
9167 return ret;
9168 }
9169
9170 /*
9171 * Initialize the perf_event context in task_struct
9172 */
9173 int perf_event_init_task(struct task_struct *child)
9174 {
9175 int ctxn, ret;
9176
9177 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9178 mutex_init(&child->perf_event_mutex);
9179 INIT_LIST_HEAD(&child->perf_event_list);
9180
9181 for_each_task_context_nr(ctxn) {
9182 ret = perf_event_init_context(child, ctxn);
9183 if (ret) {
9184 perf_event_free_task(child);
9185 return ret;
9186 }
9187 }
9188
9189 return 0;
9190 }
9191
9192 static void __init perf_event_init_all_cpus(void)
9193 {
9194 struct swevent_htable *swhash;
9195 int cpu;
9196
9197 for_each_possible_cpu(cpu) {
9198 swhash = &per_cpu(swevent_htable, cpu);
9199 mutex_init(&swhash->hlist_mutex);
9200 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9201 }
9202 }
9203
9204 static void perf_event_init_cpu(int cpu)
9205 {
9206 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9207
9208 mutex_lock(&swhash->hlist_mutex);
9209 if (swhash->hlist_refcount > 0) {
9210 struct swevent_hlist *hlist;
9211
9212 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9213 WARN_ON(!hlist);
9214 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9215 }
9216 mutex_unlock(&swhash->hlist_mutex);
9217 }
9218
9219 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
9220 static void __perf_event_exit_context(void *__info)
9221 {
9222 struct perf_event_context *ctx = __info;
9223 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
9224 struct perf_event *event;
9225
9226 raw_spin_lock(&ctx->lock);
9227 list_for_each_entry(event, &ctx->event_list, event_entry)
9228 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
9229 raw_spin_unlock(&ctx->lock);
9230 }
9231
9232 static void perf_event_exit_cpu_context(int cpu)
9233 {
9234 struct perf_event_context *ctx;
9235 struct pmu *pmu;
9236 int idx;
9237
9238 idx = srcu_read_lock(&pmus_srcu);
9239 list_for_each_entry_rcu(pmu, &pmus, entry) {
9240 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
9241
9242 mutex_lock(&ctx->mutex);
9243 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9244 mutex_unlock(&ctx->mutex);
9245 }
9246 srcu_read_unlock(&pmus_srcu, idx);
9247 }
9248
9249 static void perf_event_exit_cpu(int cpu)
9250 {
9251 perf_event_exit_cpu_context(cpu);
9252 }
9253 #else
9254 static inline void perf_event_exit_cpu(int cpu) { }
9255 #endif
9256
9257 static int
9258 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9259 {
9260 int cpu;
9261
9262 for_each_online_cpu(cpu)
9263 perf_event_exit_cpu(cpu);
9264
9265 return NOTIFY_OK;
9266 }
9267
9268 /*
9269 * Run the perf reboot notifier at the very last possible moment so that
9270 * the generic watchdog code runs as long as possible.
9271 */
9272 static struct notifier_block perf_reboot_notifier = {
9273 .notifier_call = perf_reboot,
9274 .priority = INT_MIN,
9275 };
9276
9277 static int
9278 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9279 {
9280 unsigned int cpu = (long)hcpu;
9281
9282 switch (action & ~CPU_TASKS_FROZEN) {
9283
9284 case CPU_UP_PREPARE:
9285 case CPU_DOWN_FAILED:
9286 perf_event_init_cpu(cpu);
9287 break;
9288
9289 case CPU_UP_CANCELED:
9290 case CPU_DOWN_PREPARE:
9291 perf_event_exit_cpu(cpu);
9292 break;
9293 default:
9294 break;
9295 }
9296
9297 return NOTIFY_OK;
9298 }
9299
9300 void __init perf_event_init(void)
9301 {
9302 int ret;
9303
9304 idr_init(&pmu_idr);
9305
9306 perf_event_init_all_cpus();
9307 init_srcu_struct(&pmus_srcu);
9308 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9309 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9310 perf_pmu_register(&perf_task_clock, NULL, -1);
9311 perf_tp_register();
9312 perf_cpu_notifier(perf_cpu_notify);
9313 register_reboot_notifier(&perf_reboot_notifier);
9314
9315 ret = init_hw_breakpoint();
9316 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9317
9318 /* do not patch jump label more than once per second */
9319 jump_label_rate_limit(&perf_sched_events, HZ);
9320
9321 /*
9322 * Build time assertion that we keep the data_head at the intended
9323 * location. IOW, validation we got the __reserved[] size right.
9324 */
9325 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9326 != 1024);
9327 }
9328
9329 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9330 char *page)
9331 {
9332 struct perf_pmu_events_attr *pmu_attr =
9333 container_of(attr, struct perf_pmu_events_attr, attr);
9334
9335 if (pmu_attr->event_str)
9336 return sprintf(page, "%s\n", pmu_attr->event_str);
9337
9338 return 0;
9339 }
9340
9341 static int __init perf_event_sysfs_init(void)
9342 {
9343 struct pmu *pmu;
9344 int ret;
9345
9346 mutex_lock(&pmus_lock);
9347
9348 ret = bus_register(&pmu_bus);
9349 if (ret)
9350 goto unlock;
9351
9352 list_for_each_entry(pmu, &pmus, entry) {
9353 if (!pmu->name || pmu->type < 0)
9354 continue;
9355
9356 ret = pmu_dev_alloc(pmu);
9357 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9358 }
9359 pmu_bus_running = 1;
9360 ret = 0;
9361
9362 unlock:
9363 mutex_unlock(&pmus_lock);
9364
9365 return ret;
9366 }
9367 device_initcall(perf_event_sysfs_init);
9368
9369 #ifdef CONFIG_CGROUP_PERF
9370 static struct cgroup_subsys_state *
9371 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9372 {
9373 struct perf_cgroup *jc;
9374
9375 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9376 if (!jc)
9377 return ERR_PTR(-ENOMEM);
9378
9379 jc->info = alloc_percpu(struct perf_cgroup_info);
9380 if (!jc->info) {
9381 kfree(jc);
9382 return ERR_PTR(-ENOMEM);
9383 }
9384
9385 return &jc->css;
9386 }
9387
9388 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9389 {
9390 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9391
9392 free_percpu(jc->info);
9393 kfree(jc);
9394 }
9395
9396 static int __perf_cgroup_move(void *info)
9397 {
9398 struct task_struct *task = info;
9399 rcu_read_lock();
9400 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9401 rcu_read_unlock();
9402 return 0;
9403 }
9404
9405 static void perf_cgroup_attach(struct cgroup_taskset *tset)
9406 {
9407 struct task_struct *task;
9408 struct cgroup_subsys_state *css;
9409
9410 cgroup_taskset_for_each(task, css, tset)
9411 task_function_call(task, __perf_cgroup_move, task);
9412 }
9413
9414 struct cgroup_subsys perf_event_cgrp_subsys = {
9415 .css_alloc = perf_cgroup_css_alloc,
9416 .css_free = perf_cgroup_css_free,
9417 .attach = perf_cgroup_attach,
9418 };
9419 #endif /* CONFIG_CGROUP_PERF */