]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - kernel/futex.c
Remove 'type' argument from access_ok() function
[mirror_ubuntu-disco-kernel.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47 #include <linux/compat.h>
48 #include <linux/slab.h>
49 #include <linux/poll.h>
50 #include <linux/fs.h>
51 #include <linux/file.h>
52 #include <linux/jhash.h>
53 #include <linux/init.h>
54 #include <linux/futex.h>
55 #include <linux/mount.h>
56 #include <linux/pagemap.h>
57 #include <linux/syscalls.h>
58 #include <linux/signal.h>
59 #include <linux/export.h>
60 #include <linux/magic.h>
61 #include <linux/pid.h>
62 #include <linux/nsproxy.h>
63 #include <linux/ptrace.h>
64 #include <linux/sched/rt.h>
65 #include <linux/sched/wake_q.h>
66 #include <linux/sched/mm.h>
67 #include <linux/hugetlb.h>
68 #include <linux/freezer.h>
69 #include <linux/memblock.h>
70 #include <linux/fault-inject.h>
71
72 #include <asm/futex.h>
73
74 #include "locking/rtmutex_common.h"
75
76 /*
77 * READ this before attempting to hack on futexes!
78 *
79 * Basic futex operation and ordering guarantees
80 * =============================================
81 *
82 * The waiter reads the futex value in user space and calls
83 * futex_wait(). This function computes the hash bucket and acquires
84 * the hash bucket lock. After that it reads the futex user space value
85 * again and verifies that the data has not changed. If it has not changed
86 * it enqueues itself into the hash bucket, releases the hash bucket lock
87 * and schedules.
88 *
89 * The waker side modifies the user space value of the futex and calls
90 * futex_wake(). This function computes the hash bucket and acquires the
91 * hash bucket lock. Then it looks for waiters on that futex in the hash
92 * bucket and wakes them.
93 *
94 * In futex wake up scenarios where no tasks are blocked on a futex, taking
95 * the hb spinlock can be avoided and simply return. In order for this
96 * optimization to work, ordering guarantees must exist so that the waiter
97 * being added to the list is acknowledged when the list is concurrently being
98 * checked by the waker, avoiding scenarios like the following:
99 *
100 * CPU 0 CPU 1
101 * val = *futex;
102 * sys_futex(WAIT, futex, val);
103 * futex_wait(futex, val);
104 * uval = *futex;
105 * *futex = newval;
106 * sys_futex(WAKE, futex);
107 * futex_wake(futex);
108 * if (queue_empty())
109 * return;
110 * if (uval == val)
111 * lock(hash_bucket(futex));
112 * queue();
113 * unlock(hash_bucket(futex));
114 * schedule();
115 *
116 * This would cause the waiter on CPU 0 to wait forever because it
117 * missed the transition of the user space value from val to newval
118 * and the waker did not find the waiter in the hash bucket queue.
119 *
120 * The correct serialization ensures that a waiter either observes
121 * the changed user space value before blocking or is woken by a
122 * concurrent waker:
123 *
124 * CPU 0 CPU 1
125 * val = *futex;
126 * sys_futex(WAIT, futex, val);
127 * futex_wait(futex, val);
128 *
129 * waiters++; (a)
130 * smp_mb(); (A) <-- paired with -.
131 * |
132 * lock(hash_bucket(futex)); |
133 * |
134 * uval = *futex; |
135 * | *futex = newval;
136 * | sys_futex(WAKE, futex);
137 * | futex_wake(futex);
138 * |
139 * `--------> smp_mb(); (B)
140 * if (uval == val)
141 * queue();
142 * unlock(hash_bucket(futex));
143 * schedule(); if (waiters)
144 * lock(hash_bucket(futex));
145 * else wake_waiters(futex);
146 * waiters--; (b) unlock(hash_bucket(futex));
147 *
148 * Where (A) orders the waiters increment and the futex value read through
149 * atomic operations (see hb_waiters_inc) and where (B) orders the write
150 * to futex and the waiters read -- this is done by the barriers for both
151 * shared and private futexes in get_futex_key_refs().
152 *
153 * This yields the following case (where X:=waiters, Y:=futex):
154 *
155 * X = Y = 0
156 *
157 * w[X]=1 w[Y]=1
158 * MB MB
159 * r[Y]=y r[X]=x
160 *
161 * Which guarantees that x==0 && y==0 is impossible; which translates back into
162 * the guarantee that we cannot both miss the futex variable change and the
163 * enqueue.
164 *
165 * Note that a new waiter is accounted for in (a) even when it is possible that
166 * the wait call can return error, in which case we backtrack from it in (b).
167 * Refer to the comment in queue_lock().
168 *
169 * Similarly, in order to account for waiters being requeued on another
170 * address we always increment the waiters for the destination bucket before
171 * acquiring the lock. It then decrements them again after releasing it -
172 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
173 * will do the additional required waiter count housekeeping. This is done for
174 * double_lock_hb() and double_unlock_hb(), respectively.
175 */
176
177 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
178 #define futex_cmpxchg_enabled 1
179 #else
180 static int __read_mostly futex_cmpxchg_enabled;
181 #endif
182
183 /*
184 * Futex flags used to encode options to functions and preserve them across
185 * restarts.
186 */
187 #ifdef CONFIG_MMU
188 # define FLAGS_SHARED 0x01
189 #else
190 /*
191 * NOMMU does not have per process address space. Let the compiler optimize
192 * code away.
193 */
194 # define FLAGS_SHARED 0x00
195 #endif
196 #define FLAGS_CLOCKRT 0x02
197 #define FLAGS_HAS_TIMEOUT 0x04
198
199 /*
200 * Priority Inheritance state:
201 */
202 struct futex_pi_state {
203 /*
204 * list of 'owned' pi_state instances - these have to be
205 * cleaned up in do_exit() if the task exits prematurely:
206 */
207 struct list_head list;
208
209 /*
210 * The PI object:
211 */
212 struct rt_mutex pi_mutex;
213
214 struct task_struct *owner;
215 atomic_t refcount;
216
217 union futex_key key;
218 } __randomize_layout;
219
220 /**
221 * struct futex_q - The hashed futex queue entry, one per waiting task
222 * @list: priority-sorted list of tasks waiting on this futex
223 * @task: the task waiting on the futex
224 * @lock_ptr: the hash bucket lock
225 * @key: the key the futex is hashed on
226 * @pi_state: optional priority inheritance state
227 * @rt_waiter: rt_waiter storage for use with requeue_pi
228 * @requeue_pi_key: the requeue_pi target futex key
229 * @bitset: bitset for the optional bitmasked wakeup
230 *
231 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
232 * we can wake only the relevant ones (hashed queues may be shared).
233 *
234 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
235 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
236 * The order of wakeup is always to make the first condition true, then
237 * the second.
238 *
239 * PI futexes are typically woken before they are removed from the hash list via
240 * the rt_mutex code. See unqueue_me_pi().
241 */
242 struct futex_q {
243 struct plist_node list;
244
245 struct task_struct *task;
246 spinlock_t *lock_ptr;
247 union futex_key key;
248 struct futex_pi_state *pi_state;
249 struct rt_mutex_waiter *rt_waiter;
250 union futex_key *requeue_pi_key;
251 u32 bitset;
252 } __randomize_layout;
253
254 static const struct futex_q futex_q_init = {
255 /* list gets initialized in queue_me()*/
256 .key = FUTEX_KEY_INIT,
257 .bitset = FUTEX_BITSET_MATCH_ANY
258 };
259
260 /*
261 * Hash buckets are shared by all the futex_keys that hash to the same
262 * location. Each key may have multiple futex_q structures, one for each task
263 * waiting on a futex.
264 */
265 struct futex_hash_bucket {
266 atomic_t waiters;
267 spinlock_t lock;
268 struct plist_head chain;
269 } ____cacheline_aligned_in_smp;
270
271 /*
272 * The base of the bucket array and its size are always used together
273 * (after initialization only in hash_futex()), so ensure that they
274 * reside in the same cacheline.
275 */
276 static struct {
277 struct futex_hash_bucket *queues;
278 unsigned long hashsize;
279 } __futex_data __read_mostly __aligned(2*sizeof(long));
280 #define futex_queues (__futex_data.queues)
281 #define futex_hashsize (__futex_data.hashsize)
282
283
284 /*
285 * Fault injections for futexes.
286 */
287 #ifdef CONFIG_FAIL_FUTEX
288
289 static struct {
290 struct fault_attr attr;
291
292 bool ignore_private;
293 } fail_futex = {
294 .attr = FAULT_ATTR_INITIALIZER,
295 .ignore_private = false,
296 };
297
298 static int __init setup_fail_futex(char *str)
299 {
300 return setup_fault_attr(&fail_futex.attr, str);
301 }
302 __setup("fail_futex=", setup_fail_futex);
303
304 static bool should_fail_futex(bool fshared)
305 {
306 if (fail_futex.ignore_private && !fshared)
307 return false;
308
309 return should_fail(&fail_futex.attr, 1);
310 }
311
312 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
313
314 static int __init fail_futex_debugfs(void)
315 {
316 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
317 struct dentry *dir;
318
319 dir = fault_create_debugfs_attr("fail_futex", NULL,
320 &fail_futex.attr);
321 if (IS_ERR(dir))
322 return PTR_ERR(dir);
323
324 if (!debugfs_create_bool("ignore-private", mode, dir,
325 &fail_futex.ignore_private)) {
326 debugfs_remove_recursive(dir);
327 return -ENOMEM;
328 }
329
330 return 0;
331 }
332
333 late_initcall(fail_futex_debugfs);
334
335 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
336
337 #else
338 static inline bool should_fail_futex(bool fshared)
339 {
340 return false;
341 }
342 #endif /* CONFIG_FAIL_FUTEX */
343
344 static inline void futex_get_mm(union futex_key *key)
345 {
346 mmgrab(key->private.mm);
347 /*
348 * Ensure futex_get_mm() implies a full barrier such that
349 * get_futex_key() implies a full barrier. This is relied upon
350 * as smp_mb(); (B), see the ordering comment above.
351 */
352 smp_mb__after_atomic();
353 }
354
355 /*
356 * Reflects a new waiter being added to the waitqueue.
357 */
358 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
359 {
360 #ifdef CONFIG_SMP
361 atomic_inc(&hb->waiters);
362 /*
363 * Full barrier (A), see the ordering comment above.
364 */
365 smp_mb__after_atomic();
366 #endif
367 }
368
369 /*
370 * Reflects a waiter being removed from the waitqueue by wakeup
371 * paths.
372 */
373 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
374 {
375 #ifdef CONFIG_SMP
376 atomic_dec(&hb->waiters);
377 #endif
378 }
379
380 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
381 {
382 #ifdef CONFIG_SMP
383 return atomic_read(&hb->waiters);
384 #else
385 return 1;
386 #endif
387 }
388
389 /**
390 * hash_futex - Return the hash bucket in the global hash
391 * @key: Pointer to the futex key for which the hash is calculated
392 *
393 * We hash on the keys returned from get_futex_key (see below) and return the
394 * corresponding hash bucket in the global hash.
395 */
396 static struct futex_hash_bucket *hash_futex(union futex_key *key)
397 {
398 u32 hash = jhash2((u32*)&key->both.word,
399 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
400 key->both.offset);
401 return &futex_queues[hash & (futex_hashsize - 1)];
402 }
403
404
405 /**
406 * match_futex - Check whether two futex keys are equal
407 * @key1: Pointer to key1
408 * @key2: Pointer to key2
409 *
410 * Return 1 if two futex_keys are equal, 0 otherwise.
411 */
412 static inline int match_futex(union futex_key *key1, union futex_key *key2)
413 {
414 return (key1 && key2
415 && key1->both.word == key2->both.word
416 && key1->both.ptr == key2->both.ptr
417 && key1->both.offset == key2->both.offset);
418 }
419
420 /*
421 * Take a reference to the resource addressed by a key.
422 * Can be called while holding spinlocks.
423 *
424 */
425 static void get_futex_key_refs(union futex_key *key)
426 {
427 if (!key->both.ptr)
428 return;
429
430 /*
431 * On MMU less systems futexes are always "private" as there is no per
432 * process address space. We need the smp wmb nevertheless - yes,
433 * arch/blackfin has MMU less SMP ...
434 */
435 if (!IS_ENABLED(CONFIG_MMU)) {
436 smp_mb(); /* explicit smp_mb(); (B) */
437 return;
438 }
439
440 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
441 case FUT_OFF_INODE:
442 ihold(key->shared.inode); /* implies smp_mb(); (B) */
443 break;
444 case FUT_OFF_MMSHARED:
445 futex_get_mm(key); /* implies smp_mb(); (B) */
446 break;
447 default:
448 /*
449 * Private futexes do not hold reference on an inode or
450 * mm, therefore the only purpose of calling get_futex_key_refs
451 * is because we need the barrier for the lockless waiter check.
452 */
453 smp_mb(); /* explicit smp_mb(); (B) */
454 }
455 }
456
457 /*
458 * Drop a reference to the resource addressed by a key.
459 * The hash bucket spinlock must not be held. This is
460 * a no-op for private futexes, see comment in the get
461 * counterpart.
462 */
463 static void drop_futex_key_refs(union futex_key *key)
464 {
465 if (!key->both.ptr) {
466 /* If we're here then we tried to put a key we failed to get */
467 WARN_ON_ONCE(1);
468 return;
469 }
470
471 if (!IS_ENABLED(CONFIG_MMU))
472 return;
473
474 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
475 case FUT_OFF_INODE:
476 iput(key->shared.inode);
477 break;
478 case FUT_OFF_MMSHARED:
479 mmdrop(key->private.mm);
480 break;
481 }
482 }
483
484 enum futex_access {
485 FUTEX_READ,
486 FUTEX_WRITE
487 };
488
489 /**
490 * get_futex_key() - Get parameters which are the keys for a futex
491 * @uaddr: virtual address of the futex
492 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
493 * @key: address where result is stored.
494 * @rw: mapping needs to be read/write (values: FUTEX_READ,
495 * FUTEX_WRITE)
496 *
497 * Return: a negative error code or 0
498 *
499 * The key words are stored in @key on success.
500 *
501 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
502 * offset_within_page). For private mappings, it's (uaddr, current->mm).
503 * We can usually work out the index without swapping in the page.
504 *
505 * lock_page() might sleep, the caller should not hold a spinlock.
506 */
507 static int
508 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, enum futex_access rw)
509 {
510 unsigned long address = (unsigned long)uaddr;
511 struct mm_struct *mm = current->mm;
512 struct page *page, *tail;
513 struct address_space *mapping;
514 int err, ro = 0;
515
516 /*
517 * The futex address must be "naturally" aligned.
518 */
519 key->both.offset = address % PAGE_SIZE;
520 if (unlikely((address % sizeof(u32)) != 0))
521 return -EINVAL;
522 address -= key->both.offset;
523
524 if (unlikely(!access_ok(uaddr, sizeof(u32))))
525 return -EFAULT;
526
527 if (unlikely(should_fail_futex(fshared)))
528 return -EFAULT;
529
530 /*
531 * PROCESS_PRIVATE futexes are fast.
532 * As the mm cannot disappear under us and the 'key' only needs
533 * virtual address, we dont even have to find the underlying vma.
534 * Note : We do have to check 'uaddr' is a valid user address,
535 * but access_ok() should be faster than find_vma()
536 */
537 if (!fshared) {
538 key->private.mm = mm;
539 key->private.address = address;
540 get_futex_key_refs(key); /* implies smp_mb(); (B) */
541 return 0;
542 }
543
544 again:
545 /* Ignore any VERIFY_READ mapping (futex common case) */
546 if (unlikely(should_fail_futex(fshared)))
547 return -EFAULT;
548
549 err = get_user_pages_fast(address, 1, 1, &page);
550 /*
551 * If write access is not required (eg. FUTEX_WAIT), try
552 * and get read-only access.
553 */
554 if (err == -EFAULT && rw == FUTEX_READ) {
555 err = get_user_pages_fast(address, 1, 0, &page);
556 ro = 1;
557 }
558 if (err < 0)
559 return err;
560 else
561 err = 0;
562
563 /*
564 * The treatment of mapping from this point on is critical. The page
565 * lock protects many things but in this context the page lock
566 * stabilizes mapping, prevents inode freeing in the shared
567 * file-backed region case and guards against movement to swap cache.
568 *
569 * Strictly speaking the page lock is not needed in all cases being
570 * considered here and page lock forces unnecessarily serialization
571 * From this point on, mapping will be re-verified if necessary and
572 * page lock will be acquired only if it is unavoidable
573 *
574 * Mapping checks require the head page for any compound page so the
575 * head page and mapping is looked up now. For anonymous pages, it
576 * does not matter if the page splits in the future as the key is
577 * based on the address. For filesystem-backed pages, the tail is
578 * required as the index of the page determines the key. For
579 * base pages, there is no tail page and tail == page.
580 */
581 tail = page;
582 page = compound_head(page);
583 mapping = READ_ONCE(page->mapping);
584
585 /*
586 * If page->mapping is NULL, then it cannot be a PageAnon
587 * page; but it might be the ZERO_PAGE or in the gate area or
588 * in a special mapping (all cases which we are happy to fail);
589 * or it may have been a good file page when get_user_pages_fast
590 * found it, but truncated or holepunched or subjected to
591 * invalidate_complete_page2 before we got the page lock (also
592 * cases which we are happy to fail). And we hold a reference,
593 * so refcount care in invalidate_complete_page's remove_mapping
594 * prevents drop_caches from setting mapping to NULL beneath us.
595 *
596 * The case we do have to guard against is when memory pressure made
597 * shmem_writepage move it from filecache to swapcache beneath us:
598 * an unlikely race, but we do need to retry for page->mapping.
599 */
600 if (unlikely(!mapping)) {
601 int shmem_swizzled;
602
603 /*
604 * Page lock is required to identify which special case above
605 * applies. If this is really a shmem page then the page lock
606 * will prevent unexpected transitions.
607 */
608 lock_page(page);
609 shmem_swizzled = PageSwapCache(page) || page->mapping;
610 unlock_page(page);
611 put_page(page);
612
613 if (shmem_swizzled)
614 goto again;
615
616 return -EFAULT;
617 }
618
619 /*
620 * Private mappings are handled in a simple way.
621 *
622 * If the futex key is stored on an anonymous page, then the associated
623 * object is the mm which is implicitly pinned by the calling process.
624 *
625 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
626 * it's a read-only handle, it's expected that futexes attach to
627 * the object not the particular process.
628 */
629 if (PageAnon(page)) {
630 /*
631 * A RO anonymous page will never change and thus doesn't make
632 * sense for futex operations.
633 */
634 if (unlikely(should_fail_futex(fshared)) || ro) {
635 err = -EFAULT;
636 goto out;
637 }
638
639 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
640 key->private.mm = mm;
641 key->private.address = address;
642
643 get_futex_key_refs(key); /* implies smp_mb(); (B) */
644
645 } else {
646 struct inode *inode;
647
648 /*
649 * The associated futex object in this case is the inode and
650 * the page->mapping must be traversed. Ordinarily this should
651 * be stabilised under page lock but it's not strictly
652 * necessary in this case as we just want to pin the inode, not
653 * update the radix tree or anything like that.
654 *
655 * The RCU read lock is taken as the inode is finally freed
656 * under RCU. If the mapping still matches expectations then the
657 * mapping->host can be safely accessed as being a valid inode.
658 */
659 rcu_read_lock();
660
661 if (READ_ONCE(page->mapping) != mapping) {
662 rcu_read_unlock();
663 put_page(page);
664
665 goto again;
666 }
667
668 inode = READ_ONCE(mapping->host);
669 if (!inode) {
670 rcu_read_unlock();
671 put_page(page);
672
673 goto again;
674 }
675
676 /*
677 * Take a reference unless it is about to be freed. Previously
678 * this reference was taken by ihold under the page lock
679 * pinning the inode in place so i_lock was unnecessary. The
680 * only way for this check to fail is if the inode was
681 * truncated in parallel which is almost certainly an
682 * application bug. In such a case, just retry.
683 *
684 * We are not calling into get_futex_key_refs() in file-backed
685 * cases, therefore a successful atomic_inc return below will
686 * guarantee that get_futex_key() will still imply smp_mb(); (B).
687 */
688 if (!atomic_inc_not_zero(&inode->i_count)) {
689 rcu_read_unlock();
690 put_page(page);
691
692 goto again;
693 }
694
695 /* Should be impossible but lets be paranoid for now */
696 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
697 err = -EFAULT;
698 rcu_read_unlock();
699 iput(inode);
700
701 goto out;
702 }
703
704 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
705 key->shared.inode = inode;
706 key->shared.pgoff = basepage_index(tail);
707 rcu_read_unlock();
708 }
709
710 out:
711 put_page(page);
712 return err;
713 }
714
715 static inline void put_futex_key(union futex_key *key)
716 {
717 drop_futex_key_refs(key);
718 }
719
720 /**
721 * fault_in_user_writeable() - Fault in user address and verify RW access
722 * @uaddr: pointer to faulting user space address
723 *
724 * Slow path to fixup the fault we just took in the atomic write
725 * access to @uaddr.
726 *
727 * We have no generic implementation of a non-destructive write to the
728 * user address. We know that we faulted in the atomic pagefault
729 * disabled section so we can as well avoid the #PF overhead by
730 * calling get_user_pages() right away.
731 */
732 static int fault_in_user_writeable(u32 __user *uaddr)
733 {
734 struct mm_struct *mm = current->mm;
735 int ret;
736
737 down_read(&mm->mmap_sem);
738 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
739 FAULT_FLAG_WRITE, NULL);
740 up_read(&mm->mmap_sem);
741
742 return ret < 0 ? ret : 0;
743 }
744
745 /**
746 * futex_top_waiter() - Return the highest priority waiter on a futex
747 * @hb: the hash bucket the futex_q's reside in
748 * @key: the futex key (to distinguish it from other futex futex_q's)
749 *
750 * Must be called with the hb lock held.
751 */
752 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
753 union futex_key *key)
754 {
755 struct futex_q *this;
756
757 plist_for_each_entry(this, &hb->chain, list) {
758 if (match_futex(&this->key, key))
759 return this;
760 }
761 return NULL;
762 }
763
764 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
765 u32 uval, u32 newval)
766 {
767 int ret;
768
769 pagefault_disable();
770 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
771 pagefault_enable();
772
773 return ret;
774 }
775
776 static int get_futex_value_locked(u32 *dest, u32 __user *from)
777 {
778 int ret;
779
780 pagefault_disable();
781 ret = __get_user(*dest, from);
782 pagefault_enable();
783
784 return ret ? -EFAULT : 0;
785 }
786
787
788 /*
789 * PI code:
790 */
791 static int refill_pi_state_cache(void)
792 {
793 struct futex_pi_state *pi_state;
794
795 if (likely(current->pi_state_cache))
796 return 0;
797
798 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
799
800 if (!pi_state)
801 return -ENOMEM;
802
803 INIT_LIST_HEAD(&pi_state->list);
804 /* pi_mutex gets initialized later */
805 pi_state->owner = NULL;
806 atomic_set(&pi_state->refcount, 1);
807 pi_state->key = FUTEX_KEY_INIT;
808
809 current->pi_state_cache = pi_state;
810
811 return 0;
812 }
813
814 static struct futex_pi_state *alloc_pi_state(void)
815 {
816 struct futex_pi_state *pi_state = current->pi_state_cache;
817
818 WARN_ON(!pi_state);
819 current->pi_state_cache = NULL;
820
821 return pi_state;
822 }
823
824 static void get_pi_state(struct futex_pi_state *pi_state)
825 {
826 WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
827 }
828
829 /*
830 * Drops a reference to the pi_state object and frees or caches it
831 * when the last reference is gone.
832 */
833 static void put_pi_state(struct futex_pi_state *pi_state)
834 {
835 if (!pi_state)
836 return;
837
838 if (!atomic_dec_and_test(&pi_state->refcount))
839 return;
840
841 /*
842 * If pi_state->owner is NULL, the owner is most probably dying
843 * and has cleaned up the pi_state already
844 */
845 if (pi_state->owner) {
846 struct task_struct *owner;
847
848 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
849 owner = pi_state->owner;
850 if (owner) {
851 raw_spin_lock(&owner->pi_lock);
852 list_del_init(&pi_state->list);
853 raw_spin_unlock(&owner->pi_lock);
854 }
855 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
856 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
857 }
858
859 if (current->pi_state_cache) {
860 kfree(pi_state);
861 } else {
862 /*
863 * pi_state->list is already empty.
864 * clear pi_state->owner.
865 * refcount is at 0 - put it back to 1.
866 */
867 pi_state->owner = NULL;
868 atomic_set(&pi_state->refcount, 1);
869 current->pi_state_cache = pi_state;
870 }
871 }
872
873 #ifdef CONFIG_FUTEX_PI
874
875 /*
876 * This task is holding PI mutexes at exit time => bad.
877 * Kernel cleans up PI-state, but userspace is likely hosed.
878 * (Robust-futex cleanup is separate and might save the day for userspace.)
879 */
880 void exit_pi_state_list(struct task_struct *curr)
881 {
882 struct list_head *next, *head = &curr->pi_state_list;
883 struct futex_pi_state *pi_state;
884 struct futex_hash_bucket *hb;
885 union futex_key key = FUTEX_KEY_INIT;
886
887 if (!futex_cmpxchg_enabled)
888 return;
889 /*
890 * We are a ZOMBIE and nobody can enqueue itself on
891 * pi_state_list anymore, but we have to be careful
892 * versus waiters unqueueing themselves:
893 */
894 raw_spin_lock_irq(&curr->pi_lock);
895 while (!list_empty(head)) {
896 next = head->next;
897 pi_state = list_entry(next, struct futex_pi_state, list);
898 key = pi_state->key;
899 hb = hash_futex(&key);
900
901 /*
902 * We can race against put_pi_state() removing itself from the
903 * list (a waiter going away). put_pi_state() will first
904 * decrement the reference count and then modify the list, so
905 * its possible to see the list entry but fail this reference
906 * acquire.
907 *
908 * In that case; drop the locks to let put_pi_state() make
909 * progress and retry the loop.
910 */
911 if (!atomic_inc_not_zero(&pi_state->refcount)) {
912 raw_spin_unlock_irq(&curr->pi_lock);
913 cpu_relax();
914 raw_spin_lock_irq(&curr->pi_lock);
915 continue;
916 }
917 raw_spin_unlock_irq(&curr->pi_lock);
918
919 spin_lock(&hb->lock);
920 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
921 raw_spin_lock(&curr->pi_lock);
922 /*
923 * We dropped the pi-lock, so re-check whether this
924 * task still owns the PI-state:
925 */
926 if (head->next != next) {
927 /* retain curr->pi_lock for the loop invariant */
928 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
929 spin_unlock(&hb->lock);
930 put_pi_state(pi_state);
931 continue;
932 }
933
934 WARN_ON(pi_state->owner != curr);
935 WARN_ON(list_empty(&pi_state->list));
936 list_del_init(&pi_state->list);
937 pi_state->owner = NULL;
938
939 raw_spin_unlock(&curr->pi_lock);
940 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
941 spin_unlock(&hb->lock);
942
943 rt_mutex_futex_unlock(&pi_state->pi_mutex);
944 put_pi_state(pi_state);
945
946 raw_spin_lock_irq(&curr->pi_lock);
947 }
948 raw_spin_unlock_irq(&curr->pi_lock);
949 }
950
951 #endif
952
953 /*
954 * We need to check the following states:
955 *
956 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
957 *
958 * [1] NULL | --- | --- | 0 | 0/1 | Valid
959 * [2] NULL | --- | --- | >0 | 0/1 | Valid
960 *
961 * [3] Found | NULL | -- | Any | 0/1 | Invalid
962 *
963 * [4] Found | Found | NULL | 0 | 1 | Valid
964 * [5] Found | Found | NULL | >0 | 1 | Invalid
965 *
966 * [6] Found | Found | task | 0 | 1 | Valid
967 *
968 * [7] Found | Found | NULL | Any | 0 | Invalid
969 *
970 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
971 * [9] Found | Found | task | 0 | 0 | Invalid
972 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
973 *
974 * [1] Indicates that the kernel can acquire the futex atomically. We
975 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
976 *
977 * [2] Valid, if TID does not belong to a kernel thread. If no matching
978 * thread is found then it indicates that the owner TID has died.
979 *
980 * [3] Invalid. The waiter is queued on a non PI futex
981 *
982 * [4] Valid state after exit_robust_list(), which sets the user space
983 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
984 *
985 * [5] The user space value got manipulated between exit_robust_list()
986 * and exit_pi_state_list()
987 *
988 * [6] Valid state after exit_pi_state_list() which sets the new owner in
989 * the pi_state but cannot access the user space value.
990 *
991 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
992 *
993 * [8] Owner and user space value match
994 *
995 * [9] There is no transient state which sets the user space TID to 0
996 * except exit_robust_list(), but this is indicated by the
997 * FUTEX_OWNER_DIED bit. See [4]
998 *
999 * [10] There is no transient state which leaves owner and user space
1000 * TID out of sync.
1001 *
1002 *
1003 * Serialization and lifetime rules:
1004 *
1005 * hb->lock:
1006 *
1007 * hb -> futex_q, relation
1008 * futex_q -> pi_state, relation
1009 *
1010 * (cannot be raw because hb can contain arbitrary amount
1011 * of futex_q's)
1012 *
1013 * pi_mutex->wait_lock:
1014 *
1015 * {uval, pi_state}
1016 *
1017 * (and pi_mutex 'obviously')
1018 *
1019 * p->pi_lock:
1020 *
1021 * p->pi_state_list -> pi_state->list, relation
1022 *
1023 * pi_state->refcount:
1024 *
1025 * pi_state lifetime
1026 *
1027 *
1028 * Lock order:
1029 *
1030 * hb->lock
1031 * pi_mutex->wait_lock
1032 * p->pi_lock
1033 *
1034 */
1035
1036 /*
1037 * Validate that the existing waiter has a pi_state and sanity check
1038 * the pi_state against the user space value. If correct, attach to
1039 * it.
1040 */
1041 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1042 struct futex_pi_state *pi_state,
1043 struct futex_pi_state **ps)
1044 {
1045 pid_t pid = uval & FUTEX_TID_MASK;
1046 u32 uval2;
1047 int ret;
1048
1049 /*
1050 * Userspace might have messed up non-PI and PI futexes [3]
1051 */
1052 if (unlikely(!pi_state))
1053 return -EINVAL;
1054
1055 /*
1056 * We get here with hb->lock held, and having found a
1057 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1058 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1059 * which in turn means that futex_lock_pi() still has a reference on
1060 * our pi_state.
1061 *
1062 * The waiter holding a reference on @pi_state also protects against
1063 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1064 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1065 * free pi_state before we can take a reference ourselves.
1066 */
1067 WARN_ON(!atomic_read(&pi_state->refcount));
1068
1069 /*
1070 * Now that we have a pi_state, we can acquire wait_lock
1071 * and do the state validation.
1072 */
1073 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1074
1075 /*
1076 * Since {uval, pi_state} is serialized by wait_lock, and our current
1077 * uval was read without holding it, it can have changed. Verify it
1078 * still is what we expect it to be, otherwise retry the entire
1079 * operation.
1080 */
1081 if (get_futex_value_locked(&uval2, uaddr))
1082 goto out_efault;
1083
1084 if (uval != uval2)
1085 goto out_eagain;
1086
1087 /*
1088 * Handle the owner died case:
1089 */
1090 if (uval & FUTEX_OWNER_DIED) {
1091 /*
1092 * exit_pi_state_list sets owner to NULL and wakes the
1093 * topmost waiter. The task which acquires the
1094 * pi_state->rt_mutex will fixup owner.
1095 */
1096 if (!pi_state->owner) {
1097 /*
1098 * No pi state owner, but the user space TID
1099 * is not 0. Inconsistent state. [5]
1100 */
1101 if (pid)
1102 goto out_einval;
1103 /*
1104 * Take a ref on the state and return success. [4]
1105 */
1106 goto out_attach;
1107 }
1108
1109 /*
1110 * If TID is 0, then either the dying owner has not
1111 * yet executed exit_pi_state_list() or some waiter
1112 * acquired the rtmutex in the pi state, but did not
1113 * yet fixup the TID in user space.
1114 *
1115 * Take a ref on the state and return success. [6]
1116 */
1117 if (!pid)
1118 goto out_attach;
1119 } else {
1120 /*
1121 * If the owner died bit is not set, then the pi_state
1122 * must have an owner. [7]
1123 */
1124 if (!pi_state->owner)
1125 goto out_einval;
1126 }
1127
1128 /*
1129 * Bail out if user space manipulated the futex value. If pi
1130 * state exists then the owner TID must be the same as the
1131 * user space TID. [9/10]
1132 */
1133 if (pid != task_pid_vnr(pi_state->owner))
1134 goto out_einval;
1135
1136 out_attach:
1137 get_pi_state(pi_state);
1138 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1139 *ps = pi_state;
1140 return 0;
1141
1142 out_einval:
1143 ret = -EINVAL;
1144 goto out_error;
1145
1146 out_eagain:
1147 ret = -EAGAIN;
1148 goto out_error;
1149
1150 out_efault:
1151 ret = -EFAULT;
1152 goto out_error;
1153
1154 out_error:
1155 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1156 return ret;
1157 }
1158
1159 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1160 struct task_struct *tsk)
1161 {
1162 u32 uval2;
1163
1164 /*
1165 * If PF_EXITPIDONE is not yet set, then try again.
1166 */
1167 if (tsk && !(tsk->flags & PF_EXITPIDONE))
1168 return -EAGAIN;
1169
1170 /*
1171 * Reread the user space value to handle the following situation:
1172 *
1173 * CPU0 CPU1
1174 *
1175 * sys_exit() sys_futex()
1176 * do_exit() futex_lock_pi()
1177 * futex_lock_pi_atomic()
1178 * exit_signals(tsk) No waiters:
1179 * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID
1180 * mm_release(tsk) Set waiter bit
1181 * exit_robust_list(tsk) { *uaddr = 0x80000PID;
1182 * Set owner died attach_to_pi_owner() {
1183 * *uaddr = 0xC0000000; tsk = get_task(PID);
1184 * } if (!tsk->flags & PF_EXITING) {
1185 * ... attach();
1186 * tsk->flags |= PF_EXITPIDONE; } else {
1187 * if (!(tsk->flags & PF_EXITPIDONE))
1188 * return -EAGAIN;
1189 * return -ESRCH; <--- FAIL
1190 * }
1191 *
1192 * Returning ESRCH unconditionally is wrong here because the
1193 * user space value has been changed by the exiting task.
1194 *
1195 * The same logic applies to the case where the exiting task is
1196 * already gone.
1197 */
1198 if (get_futex_value_locked(&uval2, uaddr))
1199 return -EFAULT;
1200
1201 /* If the user space value has changed, try again. */
1202 if (uval2 != uval)
1203 return -EAGAIN;
1204
1205 /*
1206 * The exiting task did not have a robust list, the robust list was
1207 * corrupted or the user space value in *uaddr is simply bogus.
1208 * Give up and tell user space.
1209 */
1210 return -ESRCH;
1211 }
1212
1213 /*
1214 * Lookup the task for the TID provided from user space and attach to
1215 * it after doing proper sanity checks.
1216 */
1217 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1218 struct futex_pi_state **ps)
1219 {
1220 pid_t pid = uval & FUTEX_TID_MASK;
1221 struct futex_pi_state *pi_state;
1222 struct task_struct *p;
1223
1224 /*
1225 * We are the first waiter - try to look up the real owner and attach
1226 * the new pi_state to it, but bail out when TID = 0 [1]
1227 *
1228 * The !pid check is paranoid. None of the call sites should end up
1229 * with pid == 0, but better safe than sorry. Let the caller retry
1230 */
1231 if (!pid)
1232 return -EAGAIN;
1233 p = find_get_task_by_vpid(pid);
1234 if (!p)
1235 return handle_exit_race(uaddr, uval, NULL);
1236
1237 if (unlikely(p->flags & PF_KTHREAD)) {
1238 put_task_struct(p);
1239 return -EPERM;
1240 }
1241
1242 /*
1243 * We need to look at the task state flags to figure out,
1244 * whether the task is exiting. To protect against the do_exit
1245 * change of the task flags, we do this protected by
1246 * p->pi_lock:
1247 */
1248 raw_spin_lock_irq(&p->pi_lock);
1249 if (unlikely(p->flags & PF_EXITING)) {
1250 /*
1251 * The task is on the way out. When PF_EXITPIDONE is
1252 * set, we know that the task has finished the
1253 * cleanup:
1254 */
1255 int ret = handle_exit_race(uaddr, uval, p);
1256
1257 raw_spin_unlock_irq(&p->pi_lock);
1258 put_task_struct(p);
1259 return ret;
1260 }
1261
1262 /*
1263 * No existing pi state. First waiter. [2]
1264 *
1265 * This creates pi_state, we have hb->lock held, this means nothing can
1266 * observe this state, wait_lock is irrelevant.
1267 */
1268 pi_state = alloc_pi_state();
1269
1270 /*
1271 * Initialize the pi_mutex in locked state and make @p
1272 * the owner of it:
1273 */
1274 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1275
1276 /* Store the key for possible exit cleanups: */
1277 pi_state->key = *key;
1278
1279 WARN_ON(!list_empty(&pi_state->list));
1280 list_add(&pi_state->list, &p->pi_state_list);
1281 /*
1282 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1283 * because there is no concurrency as the object is not published yet.
1284 */
1285 pi_state->owner = p;
1286 raw_spin_unlock_irq(&p->pi_lock);
1287
1288 put_task_struct(p);
1289
1290 *ps = pi_state;
1291
1292 return 0;
1293 }
1294
1295 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1296 struct futex_hash_bucket *hb,
1297 union futex_key *key, struct futex_pi_state **ps)
1298 {
1299 struct futex_q *top_waiter = futex_top_waiter(hb, key);
1300
1301 /*
1302 * If there is a waiter on that futex, validate it and
1303 * attach to the pi_state when the validation succeeds.
1304 */
1305 if (top_waiter)
1306 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1307
1308 /*
1309 * We are the first waiter - try to look up the owner based on
1310 * @uval and attach to it.
1311 */
1312 return attach_to_pi_owner(uaddr, uval, key, ps);
1313 }
1314
1315 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1316 {
1317 u32 uninitialized_var(curval);
1318
1319 if (unlikely(should_fail_futex(true)))
1320 return -EFAULT;
1321
1322 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1323 return -EFAULT;
1324
1325 /* If user space value changed, let the caller retry */
1326 return curval != uval ? -EAGAIN : 0;
1327 }
1328
1329 /**
1330 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1331 * @uaddr: the pi futex user address
1332 * @hb: the pi futex hash bucket
1333 * @key: the futex key associated with uaddr and hb
1334 * @ps: the pi_state pointer where we store the result of the
1335 * lookup
1336 * @task: the task to perform the atomic lock work for. This will
1337 * be "current" except in the case of requeue pi.
1338 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1339 *
1340 * Return:
1341 * - 0 - ready to wait;
1342 * - 1 - acquired the lock;
1343 * - <0 - error
1344 *
1345 * The hb->lock and futex_key refs shall be held by the caller.
1346 */
1347 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1348 union futex_key *key,
1349 struct futex_pi_state **ps,
1350 struct task_struct *task, int set_waiters)
1351 {
1352 u32 uval, newval, vpid = task_pid_vnr(task);
1353 struct futex_q *top_waiter;
1354 int ret;
1355
1356 /*
1357 * Read the user space value first so we can validate a few
1358 * things before proceeding further.
1359 */
1360 if (get_futex_value_locked(&uval, uaddr))
1361 return -EFAULT;
1362
1363 if (unlikely(should_fail_futex(true)))
1364 return -EFAULT;
1365
1366 /*
1367 * Detect deadlocks.
1368 */
1369 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1370 return -EDEADLK;
1371
1372 if ((unlikely(should_fail_futex(true))))
1373 return -EDEADLK;
1374
1375 /*
1376 * Lookup existing state first. If it exists, try to attach to
1377 * its pi_state.
1378 */
1379 top_waiter = futex_top_waiter(hb, key);
1380 if (top_waiter)
1381 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1382
1383 /*
1384 * No waiter and user TID is 0. We are here because the
1385 * waiters or the owner died bit is set or called from
1386 * requeue_cmp_pi or for whatever reason something took the
1387 * syscall.
1388 */
1389 if (!(uval & FUTEX_TID_MASK)) {
1390 /*
1391 * We take over the futex. No other waiters and the user space
1392 * TID is 0. We preserve the owner died bit.
1393 */
1394 newval = uval & FUTEX_OWNER_DIED;
1395 newval |= vpid;
1396
1397 /* The futex requeue_pi code can enforce the waiters bit */
1398 if (set_waiters)
1399 newval |= FUTEX_WAITERS;
1400
1401 ret = lock_pi_update_atomic(uaddr, uval, newval);
1402 /* If the take over worked, return 1 */
1403 return ret < 0 ? ret : 1;
1404 }
1405
1406 /*
1407 * First waiter. Set the waiters bit before attaching ourself to
1408 * the owner. If owner tries to unlock, it will be forced into
1409 * the kernel and blocked on hb->lock.
1410 */
1411 newval = uval | FUTEX_WAITERS;
1412 ret = lock_pi_update_atomic(uaddr, uval, newval);
1413 if (ret)
1414 return ret;
1415 /*
1416 * If the update of the user space value succeeded, we try to
1417 * attach to the owner. If that fails, no harm done, we only
1418 * set the FUTEX_WAITERS bit in the user space variable.
1419 */
1420 return attach_to_pi_owner(uaddr, newval, key, ps);
1421 }
1422
1423 /**
1424 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1425 * @q: The futex_q to unqueue
1426 *
1427 * The q->lock_ptr must not be NULL and must be held by the caller.
1428 */
1429 static void __unqueue_futex(struct futex_q *q)
1430 {
1431 struct futex_hash_bucket *hb;
1432
1433 if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1434 return;
1435 lockdep_assert_held(q->lock_ptr);
1436
1437 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1438 plist_del(&q->list, &hb->chain);
1439 hb_waiters_dec(hb);
1440 }
1441
1442 /*
1443 * The hash bucket lock must be held when this is called.
1444 * Afterwards, the futex_q must not be accessed. Callers
1445 * must ensure to later call wake_up_q() for the actual
1446 * wakeups to occur.
1447 */
1448 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1449 {
1450 struct task_struct *p = q->task;
1451
1452 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1453 return;
1454
1455 /*
1456 * Queue the task for later wakeup for after we've released
1457 * the hb->lock. wake_q_add() grabs reference to p.
1458 */
1459 wake_q_add(wake_q, p);
1460 __unqueue_futex(q);
1461 /*
1462 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1463 * is written, without taking any locks. This is possible in the event
1464 * of a spurious wakeup, for example. A memory barrier is required here
1465 * to prevent the following store to lock_ptr from getting ahead of the
1466 * plist_del in __unqueue_futex().
1467 */
1468 smp_store_release(&q->lock_ptr, NULL);
1469 }
1470
1471 /*
1472 * Caller must hold a reference on @pi_state.
1473 */
1474 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1475 {
1476 u32 uninitialized_var(curval), newval;
1477 struct task_struct *new_owner;
1478 bool postunlock = false;
1479 DEFINE_WAKE_Q(wake_q);
1480 int ret = 0;
1481
1482 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1483 if (WARN_ON_ONCE(!new_owner)) {
1484 /*
1485 * As per the comment in futex_unlock_pi() this should not happen.
1486 *
1487 * When this happens, give up our locks and try again, giving
1488 * the futex_lock_pi() instance time to complete, either by
1489 * waiting on the rtmutex or removing itself from the futex
1490 * queue.
1491 */
1492 ret = -EAGAIN;
1493 goto out_unlock;
1494 }
1495
1496 /*
1497 * We pass it to the next owner. The WAITERS bit is always kept
1498 * enabled while there is PI state around. We cleanup the owner
1499 * died bit, because we are the owner.
1500 */
1501 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1502
1503 if (unlikely(should_fail_futex(true)))
1504 ret = -EFAULT;
1505
1506 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1507 ret = -EFAULT;
1508
1509 } else if (curval != uval) {
1510 /*
1511 * If a unconditional UNLOCK_PI operation (user space did not
1512 * try the TID->0 transition) raced with a waiter setting the
1513 * FUTEX_WAITERS flag between get_user() and locking the hash
1514 * bucket lock, retry the operation.
1515 */
1516 if ((FUTEX_TID_MASK & curval) == uval)
1517 ret = -EAGAIN;
1518 else
1519 ret = -EINVAL;
1520 }
1521
1522 if (ret)
1523 goto out_unlock;
1524
1525 /*
1526 * This is a point of no return; once we modify the uval there is no
1527 * going back and subsequent operations must not fail.
1528 */
1529
1530 raw_spin_lock(&pi_state->owner->pi_lock);
1531 WARN_ON(list_empty(&pi_state->list));
1532 list_del_init(&pi_state->list);
1533 raw_spin_unlock(&pi_state->owner->pi_lock);
1534
1535 raw_spin_lock(&new_owner->pi_lock);
1536 WARN_ON(!list_empty(&pi_state->list));
1537 list_add(&pi_state->list, &new_owner->pi_state_list);
1538 pi_state->owner = new_owner;
1539 raw_spin_unlock(&new_owner->pi_lock);
1540
1541 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1542
1543 out_unlock:
1544 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1545
1546 if (postunlock)
1547 rt_mutex_postunlock(&wake_q);
1548
1549 return ret;
1550 }
1551
1552 /*
1553 * Express the locking dependencies for lockdep:
1554 */
1555 static inline void
1556 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1557 {
1558 if (hb1 <= hb2) {
1559 spin_lock(&hb1->lock);
1560 if (hb1 < hb2)
1561 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1562 } else { /* hb1 > hb2 */
1563 spin_lock(&hb2->lock);
1564 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1565 }
1566 }
1567
1568 static inline void
1569 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1570 {
1571 spin_unlock(&hb1->lock);
1572 if (hb1 != hb2)
1573 spin_unlock(&hb2->lock);
1574 }
1575
1576 /*
1577 * Wake up waiters matching bitset queued on this futex (uaddr).
1578 */
1579 static int
1580 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1581 {
1582 struct futex_hash_bucket *hb;
1583 struct futex_q *this, *next;
1584 union futex_key key = FUTEX_KEY_INIT;
1585 int ret;
1586 DEFINE_WAKE_Q(wake_q);
1587
1588 if (!bitset)
1589 return -EINVAL;
1590
1591 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1592 if (unlikely(ret != 0))
1593 goto out;
1594
1595 hb = hash_futex(&key);
1596
1597 /* Make sure we really have tasks to wakeup */
1598 if (!hb_waiters_pending(hb))
1599 goto out_put_key;
1600
1601 spin_lock(&hb->lock);
1602
1603 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1604 if (match_futex (&this->key, &key)) {
1605 if (this->pi_state || this->rt_waiter) {
1606 ret = -EINVAL;
1607 break;
1608 }
1609
1610 /* Check if one of the bits is set in both bitsets */
1611 if (!(this->bitset & bitset))
1612 continue;
1613
1614 mark_wake_futex(&wake_q, this);
1615 if (++ret >= nr_wake)
1616 break;
1617 }
1618 }
1619
1620 spin_unlock(&hb->lock);
1621 wake_up_q(&wake_q);
1622 out_put_key:
1623 put_futex_key(&key);
1624 out:
1625 return ret;
1626 }
1627
1628 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1629 {
1630 unsigned int op = (encoded_op & 0x70000000) >> 28;
1631 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
1632 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1633 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1634 int oldval, ret;
1635
1636 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1637 if (oparg < 0 || oparg > 31) {
1638 char comm[sizeof(current->comm)];
1639 /*
1640 * kill this print and return -EINVAL when userspace
1641 * is sane again
1642 */
1643 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1644 get_task_comm(comm, current), oparg);
1645 oparg &= 31;
1646 }
1647 oparg = 1 << oparg;
1648 }
1649
1650 if (!access_ok(uaddr, sizeof(u32)))
1651 return -EFAULT;
1652
1653 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1654 if (ret)
1655 return ret;
1656
1657 switch (cmp) {
1658 case FUTEX_OP_CMP_EQ:
1659 return oldval == cmparg;
1660 case FUTEX_OP_CMP_NE:
1661 return oldval != cmparg;
1662 case FUTEX_OP_CMP_LT:
1663 return oldval < cmparg;
1664 case FUTEX_OP_CMP_GE:
1665 return oldval >= cmparg;
1666 case FUTEX_OP_CMP_LE:
1667 return oldval <= cmparg;
1668 case FUTEX_OP_CMP_GT:
1669 return oldval > cmparg;
1670 default:
1671 return -ENOSYS;
1672 }
1673 }
1674
1675 /*
1676 * Wake up all waiters hashed on the physical page that is mapped
1677 * to this virtual address:
1678 */
1679 static int
1680 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1681 int nr_wake, int nr_wake2, int op)
1682 {
1683 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1684 struct futex_hash_bucket *hb1, *hb2;
1685 struct futex_q *this, *next;
1686 int ret, op_ret;
1687 DEFINE_WAKE_Q(wake_q);
1688
1689 retry:
1690 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1691 if (unlikely(ret != 0))
1692 goto out;
1693 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1694 if (unlikely(ret != 0))
1695 goto out_put_key1;
1696
1697 hb1 = hash_futex(&key1);
1698 hb2 = hash_futex(&key2);
1699
1700 retry_private:
1701 double_lock_hb(hb1, hb2);
1702 op_ret = futex_atomic_op_inuser(op, uaddr2);
1703 if (unlikely(op_ret < 0)) {
1704
1705 double_unlock_hb(hb1, hb2);
1706
1707 #ifndef CONFIG_MMU
1708 /*
1709 * we don't get EFAULT from MMU faults if we don't have an MMU,
1710 * but we might get them from range checking
1711 */
1712 ret = op_ret;
1713 goto out_put_keys;
1714 #endif
1715
1716 if (unlikely(op_ret != -EFAULT)) {
1717 ret = op_ret;
1718 goto out_put_keys;
1719 }
1720
1721 ret = fault_in_user_writeable(uaddr2);
1722 if (ret)
1723 goto out_put_keys;
1724
1725 if (!(flags & FLAGS_SHARED))
1726 goto retry_private;
1727
1728 put_futex_key(&key2);
1729 put_futex_key(&key1);
1730 goto retry;
1731 }
1732
1733 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1734 if (match_futex (&this->key, &key1)) {
1735 if (this->pi_state || this->rt_waiter) {
1736 ret = -EINVAL;
1737 goto out_unlock;
1738 }
1739 mark_wake_futex(&wake_q, this);
1740 if (++ret >= nr_wake)
1741 break;
1742 }
1743 }
1744
1745 if (op_ret > 0) {
1746 op_ret = 0;
1747 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1748 if (match_futex (&this->key, &key2)) {
1749 if (this->pi_state || this->rt_waiter) {
1750 ret = -EINVAL;
1751 goto out_unlock;
1752 }
1753 mark_wake_futex(&wake_q, this);
1754 if (++op_ret >= nr_wake2)
1755 break;
1756 }
1757 }
1758 ret += op_ret;
1759 }
1760
1761 out_unlock:
1762 double_unlock_hb(hb1, hb2);
1763 wake_up_q(&wake_q);
1764 out_put_keys:
1765 put_futex_key(&key2);
1766 out_put_key1:
1767 put_futex_key(&key1);
1768 out:
1769 return ret;
1770 }
1771
1772 /**
1773 * requeue_futex() - Requeue a futex_q from one hb to another
1774 * @q: the futex_q to requeue
1775 * @hb1: the source hash_bucket
1776 * @hb2: the target hash_bucket
1777 * @key2: the new key for the requeued futex_q
1778 */
1779 static inline
1780 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1781 struct futex_hash_bucket *hb2, union futex_key *key2)
1782 {
1783
1784 /*
1785 * If key1 and key2 hash to the same bucket, no need to
1786 * requeue.
1787 */
1788 if (likely(&hb1->chain != &hb2->chain)) {
1789 plist_del(&q->list, &hb1->chain);
1790 hb_waiters_dec(hb1);
1791 hb_waiters_inc(hb2);
1792 plist_add(&q->list, &hb2->chain);
1793 q->lock_ptr = &hb2->lock;
1794 }
1795 get_futex_key_refs(key2);
1796 q->key = *key2;
1797 }
1798
1799 /**
1800 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1801 * @q: the futex_q
1802 * @key: the key of the requeue target futex
1803 * @hb: the hash_bucket of the requeue target futex
1804 *
1805 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1806 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1807 * to the requeue target futex so the waiter can detect the wakeup on the right
1808 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1809 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1810 * to protect access to the pi_state to fixup the owner later. Must be called
1811 * with both q->lock_ptr and hb->lock held.
1812 */
1813 static inline
1814 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1815 struct futex_hash_bucket *hb)
1816 {
1817 get_futex_key_refs(key);
1818 q->key = *key;
1819
1820 __unqueue_futex(q);
1821
1822 WARN_ON(!q->rt_waiter);
1823 q->rt_waiter = NULL;
1824
1825 q->lock_ptr = &hb->lock;
1826
1827 wake_up_state(q->task, TASK_NORMAL);
1828 }
1829
1830 /**
1831 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1832 * @pifutex: the user address of the to futex
1833 * @hb1: the from futex hash bucket, must be locked by the caller
1834 * @hb2: the to futex hash bucket, must be locked by the caller
1835 * @key1: the from futex key
1836 * @key2: the to futex key
1837 * @ps: address to store the pi_state pointer
1838 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1839 *
1840 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1841 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1842 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1843 * hb1 and hb2 must be held by the caller.
1844 *
1845 * Return:
1846 * - 0 - failed to acquire the lock atomically;
1847 * - >0 - acquired the lock, return value is vpid of the top_waiter
1848 * - <0 - error
1849 */
1850 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1851 struct futex_hash_bucket *hb1,
1852 struct futex_hash_bucket *hb2,
1853 union futex_key *key1, union futex_key *key2,
1854 struct futex_pi_state **ps, int set_waiters)
1855 {
1856 struct futex_q *top_waiter = NULL;
1857 u32 curval;
1858 int ret, vpid;
1859
1860 if (get_futex_value_locked(&curval, pifutex))
1861 return -EFAULT;
1862
1863 if (unlikely(should_fail_futex(true)))
1864 return -EFAULT;
1865
1866 /*
1867 * Find the top_waiter and determine if there are additional waiters.
1868 * If the caller intends to requeue more than 1 waiter to pifutex,
1869 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1870 * as we have means to handle the possible fault. If not, don't set
1871 * the bit unecessarily as it will force the subsequent unlock to enter
1872 * the kernel.
1873 */
1874 top_waiter = futex_top_waiter(hb1, key1);
1875
1876 /* There are no waiters, nothing for us to do. */
1877 if (!top_waiter)
1878 return 0;
1879
1880 /* Ensure we requeue to the expected futex. */
1881 if (!match_futex(top_waiter->requeue_pi_key, key2))
1882 return -EINVAL;
1883
1884 /*
1885 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1886 * the contended case or if set_waiters is 1. The pi_state is returned
1887 * in ps in contended cases.
1888 */
1889 vpid = task_pid_vnr(top_waiter->task);
1890 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1891 set_waiters);
1892 if (ret == 1) {
1893 requeue_pi_wake_futex(top_waiter, key2, hb2);
1894 return vpid;
1895 }
1896 return ret;
1897 }
1898
1899 /**
1900 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1901 * @uaddr1: source futex user address
1902 * @flags: futex flags (FLAGS_SHARED, etc.)
1903 * @uaddr2: target futex user address
1904 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1905 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1906 * @cmpval: @uaddr1 expected value (or %NULL)
1907 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1908 * pi futex (pi to pi requeue is not supported)
1909 *
1910 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1911 * uaddr2 atomically on behalf of the top waiter.
1912 *
1913 * Return:
1914 * - >=0 - on success, the number of tasks requeued or woken;
1915 * - <0 - on error
1916 */
1917 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1918 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1919 u32 *cmpval, int requeue_pi)
1920 {
1921 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1922 int drop_count = 0, task_count = 0, ret;
1923 struct futex_pi_state *pi_state = NULL;
1924 struct futex_hash_bucket *hb1, *hb2;
1925 struct futex_q *this, *next;
1926 DEFINE_WAKE_Q(wake_q);
1927
1928 if (nr_wake < 0 || nr_requeue < 0)
1929 return -EINVAL;
1930
1931 /*
1932 * When PI not supported: return -ENOSYS if requeue_pi is true,
1933 * consequently the compiler knows requeue_pi is always false past
1934 * this point which will optimize away all the conditional code
1935 * further down.
1936 */
1937 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1938 return -ENOSYS;
1939
1940 if (requeue_pi) {
1941 /*
1942 * Requeue PI only works on two distinct uaddrs. This
1943 * check is only valid for private futexes. See below.
1944 */
1945 if (uaddr1 == uaddr2)
1946 return -EINVAL;
1947
1948 /*
1949 * requeue_pi requires a pi_state, try to allocate it now
1950 * without any locks in case it fails.
1951 */
1952 if (refill_pi_state_cache())
1953 return -ENOMEM;
1954 /*
1955 * requeue_pi must wake as many tasks as it can, up to nr_wake
1956 * + nr_requeue, since it acquires the rt_mutex prior to
1957 * returning to userspace, so as to not leave the rt_mutex with
1958 * waiters and no owner. However, second and third wake-ups
1959 * cannot be predicted as they involve race conditions with the
1960 * first wake and a fault while looking up the pi_state. Both
1961 * pthread_cond_signal() and pthread_cond_broadcast() should
1962 * use nr_wake=1.
1963 */
1964 if (nr_wake != 1)
1965 return -EINVAL;
1966 }
1967
1968 retry:
1969 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1970 if (unlikely(ret != 0))
1971 goto out;
1972 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1973 requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1974 if (unlikely(ret != 0))
1975 goto out_put_key1;
1976
1977 /*
1978 * The check above which compares uaddrs is not sufficient for
1979 * shared futexes. We need to compare the keys:
1980 */
1981 if (requeue_pi && match_futex(&key1, &key2)) {
1982 ret = -EINVAL;
1983 goto out_put_keys;
1984 }
1985
1986 hb1 = hash_futex(&key1);
1987 hb2 = hash_futex(&key2);
1988
1989 retry_private:
1990 hb_waiters_inc(hb2);
1991 double_lock_hb(hb1, hb2);
1992
1993 if (likely(cmpval != NULL)) {
1994 u32 curval;
1995
1996 ret = get_futex_value_locked(&curval, uaddr1);
1997
1998 if (unlikely(ret)) {
1999 double_unlock_hb(hb1, hb2);
2000 hb_waiters_dec(hb2);
2001
2002 ret = get_user(curval, uaddr1);
2003 if (ret)
2004 goto out_put_keys;
2005
2006 if (!(flags & FLAGS_SHARED))
2007 goto retry_private;
2008
2009 put_futex_key(&key2);
2010 put_futex_key(&key1);
2011 goto retry;
2012 }
2013 if (curval != *cmpval) {
2014 ret = -EAGAIN;
2015 goto out_unlock;
2016 }
2017 }
2018
2019 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2020 /*
2021 * Attempt to acquire uaddr2 and wake the top waiter. If we
2022 * intend to requeue waiters, force setting the FUTEX_WAITERS
2023 * bit. We force this here where we are able to easily handle
2024 * faults rather in the requeue loop below.
2025 */
2026 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2027 &key2, &pi_state, nr_requeue);
2028
2029 /*
2030 * At this point the top_waiter has either taken uaddr2 or is
2031 * waiting on it. If the former, then the pi_state will not
2032 * exist yet, look it up one more time to ensure we have a
2033 * reference to it. If the lock was taken, ret contains the
2034 * vpid of the top waiter task.
2035 * If the lock was not taken, we have pi_state and an initial
2036 * refcount on it. In case of an error we have nothing.
2037 */
2038 if (ret > 0) {
2039 WARN_ON(pi_state);
2040 drop_count++;
2041 task_count++;
2042 /*
2043 * If we acquired the lock, then the user space value
2044 * of uaddr2 should be vpid. It cannot be changed by
2045 * the top waiter as it is blocked on hb2 lock if it
2046 * tries to do so. If something fiddled with it behind
2047 * our back the pi state lookup might unearth it. So
2048 * we rather use the known value than rereading and
2049 * handing potential crap to lookup_pi_state.
2050 *
2051 * If that call succeeds then we have pi_state and an
2052 * initial refcount on it.
2053 */
2054 ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
2055 }
2056
2057 switch (ret) {
2058 case 0:
2059 /* We hold a reference on the pi state. */
2060 break;
2061
2062 /* If the above failed, then pi_state is NULL */
2063 case -EFAULT:
2064 double_unlock_hb(hb1, hb2);
2065 hb_waiters_dec(hb2);
2066 put_futex_key(&key2);
2067 put_futex_key(&key1);
2068 ret = fault_in_user_writeable(uaddr2);
2069 if (!ret)
2070 goto retry;
2071 goto out;
2072 case -EAGAIN:
2073 /*
2074 * Two reasons for this:
2075 * - Owner is exiting and we just wait for the
2076 * exit to complete.
2077 * - The user space value changed.
2078 */
2079 double_unlock_hb(hb1, hb2);
2080 hb_waiters_dec(hb2);
2081 put_futex_key(&key2);
2082 put_futex_key(&key1);
2083 cond_resched();
2084 goto retry;
2085 default:
2086 goto out_unlock;
2087 }
2088 }
2089
2090 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2091 if (task_count - nr_wake >= nr_requeue)
2092 break;
2093
2094 if (!match_futex(&this->key, &key1))
2095 continue;
2096
2097 /*
2098 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2099 * be paired with each other and no other futex ops.
2100 *
2101 * We should never be requeueing a futex_q with a pi_state,
2102 * which is awaiting a futex_unlock_pi().
2103 */
2104 if ((requeue_pi && !this->rt_waiter) ||
2105 (!requeue_pi && this->rt_waiter) ||
2106 this->pi_state) {
2107 ret = -EINVAL;
2108 break;
2109 }
2110
2111 /*
2112 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2113 * lock, we already woke the top_waiter. If not, it will be
2114 * woken by futex_unlock_pi().
2115 */
2116 if (++task_count <= nr_wake && !requeue_pi) {
2117 mark_wake_futex(&wake_q, this);
2118 continue;
2119 }
2120
2121 /* Ensure we requeue to the expected futex for requeue_pi. */
2122 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2123 ret = -EINVAL;
2124 break;
2125 }
2126
2127 /*
2128 * Requeue nr_requeue waiters and possibly one more in the case
2129 * of requeue_pi if we couldn't acquire the lock atomically.
2130 */
2131 if (requeue_pi) {
2132 /*
2133 * Prepare the waiter to take the rt_mutex. Take a
2134 * refcount on the pi_state and store the pointer in
2135 * the futex_q object of the waiter.
2136 */
2137 get_pi_state(pi_state);
2138 this->pi_state = pi_state;
2139 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2140 this->rt_waiter,
2141 this->task);
2142 if (ret == 1) {
2143 /*
2144 * We got the lock. We do neither drop the
2145 * refcount on pi_state nor clear
2146 * this->pi_state because the waiter needs the
2147 * pi_state for cleaning up the user space
2148 * value. It will drop the refcount after
2149 * doing so.
2150 */
2151 requeue_pi_wake_futex(this, &key2, hb2);
2152 drop_count++;
2153 continue;
2154 } else if (ret) {
2155 /*
2156 * rt_mutex_start_proxy_lock() detected a
2157 * potential deadlock when we tried to queue
2158 * that waiter. Drop the pi_state reference
2159 * which we took above and remove the pointer
2160 * to the state from the waiters futex_q
2161 * object.
2162 */
2163 this->pi_state = NULL;
2164 put_pi_state(pi_state);
2165 /*
2166 * We stop queueing more waiters and let user
2167 * space deal with the mess.
2168 */
2169 break;
2170 }
2171 }
2172 requeue_futex(this, hb1, hb2, &key2);
2173 drop_count++;
2174 }
2175
2176 /*
2177 * We took an extra initial reference to the pi_state either
2178 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2179 * need to drop it here again.
2180 */
2181 put_pi_state(pi_state);
2182
2183 out_unlock:
2184 double_unlock_hb(hb1, hb2);
2185 wake_up_q(&wake_q);
2186 hb_waiters_dec(hb2);
2187
2188 /*
2189 * drop_futex_key_refs() must be called outside the spinlocks. During
2190 * the requeue we moved futex_q's from the hash bucket at key1 to the
2191 * one at key2 and updated their key pointer. We no longer need to
2192 * hold the references to key1.
2193 */
2194 while (--drop_count >= 0)
2195 drop_futex_key_refs(&key1);
2196
2197 out_put_keys:
2198 put_futex_key(&key2);
2199 out_put_key1:
2200 put_futex_key(&key1);
2201 out:
2202 return ret ? ret : task_count;
2203 }
2204
2205 /* The key must be already stored in q->key. */
2206 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2207 __acquires(&hb->lock)
2208 {
2209 struct futex_hash_bucket *hb;
2210
2211 hb = hash_futex(&q->key);
2212
2213 /*
2214 * Increment the counter before taking the lock so that
2215 * a potential waker won't miss a to-be-slept task that is
2216 * waiting for the spinlock. This is safe as all queue_lock()
2217 * users end up calling queue_me(). Similarly, for housekeeping,
2218 * decrement the counter at queue_unlock() when some error has
2219 * occurred and we don't end up adding the task to the list.
2220 */
2221 hb_waiters_inc(hb);
2222
2223 q->lock_ptr = &hb->lock;
2224
2225 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2226 return hb;
2227 }
2228
2229 static inline void
2230 queue_unlock(struct futex_hash_bucket *hb)
2231 __releases(&hb->lock)
2232 {
2233 spin_unlock(&hb->lock);
2234 hb_waiters_dec(hb);
2235 }
2236
2237 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2238 {
2239 int prio;
2240
2241 /*
2242 * The priority used to register this element is
2243 * - either the real thread-priority for the real-time threads
2244 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2245 * - or MAX_RT_PRIO for non-RT threads.
2246 * Thus, all RT-threads are woken first in priority order, and
2247 * the others are woken last, in FIFO order.
2248 */
2249 prio = min(current->normal_prio, MAX_RT_PRIO);
2250
2251 plist_node_init(&q->list, prio);
2252 plist_add(&q->list, &hb->chain);
2253 q->task = current;
2254 }
2255
2256 /**
2257 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2258 * @q: The futex_q to enqueue
2259 * @hb: The destination hash bucket
2260 *
2261 * The hb->lock must be held by the caller, and is released here. A call to
2262 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2263 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2264 * or nothing if the unqueue is done as part of the wake process and the unqueue
2265 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2266 * an example).
2267 */
2268 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2269 __releases(&hb->lock)
2270 {
2271 __queue_me(q, hb);
2272 spin_unlock(&hb->lock);
2273 }
2274
2275 /**
2276 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2277 * @q: The futex_q to unqueue
2278 *
2279 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2280 * be paired with exactly one earlier call to queue_me().
2281 *
2282 * Return:
2283 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2284 * - 0 - if the futex_q was already removed by the waking thread
2285 */
2286 static int unqueue_me(struct futex_q *q)
2287 {
2288 spinlock_t *lock_ptr;
2289 int ret = 0;
2290
2291 /* In the common case we don't take the spinlock, which is nice. */
2292 retry:
2293 /*
2294 * q->lock_ptr can change between this read and the following spin_lock.
2295 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2296 * optimizing lock_ptr out of the logic below.
2297 */
2298 lock_ptr = READ_ONCE(q->lock_ptr);
2299 if (lock_ptr != NULL) {
2300 spin_lock(lock_ptr);
2301 /*
2302 * q->lock_ptr can change between reading it and
2303 * spin_lock(), causing us to take the wrong lock. This
2304 * corrects the race condition.
2305 *
2306 * Reasoning goes like this: if we have the wrong lock,
2307 * q->lock_ptr must have changed (maybe several times)
2308 * between reading it and the spin_lock(). It can
2309 * change again after the spin_lock() but only if it was
2310 * already changed before the spin_lock(). It cannot,
2311 * however, change back to the original value. Therefore
2312 * we can detect whether we acquired the correct lock.
2313 */
2314 if (unlikely(lock_ptr != q->lock_ptr)) {
2315 spin_unlock(lock_ptr);
2316 goto retry;
2317 }
2318 __unqueue_futex(q);
2319
2320 BUG_ON(q->pi_state);
2321
2322 spin_unlock(lock_ptr);
2323 ret = 1;
2324 }
2325
2326 drop_futex_key_refs(&q->key);
2327 return ret;
2328 }
2329
2330 /*
2331 * PI futexes can not be requeued and must remove themself from the
2332 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2333 * and dropped here.
2334 */
2335 static void unqueue_me_pi(struct futex_q *q)
2336 __releases(q->lock_ptr)
2337 {
2338 __unqueue_futex(q);
2339
2340 BUG_ON(!q->pi_state);
2341 put_pi_state(q->pi_state);
2342 q->pi_state = NULL;
2343
2344 spin_unlock(q->lock_ptr);
2345 }
2346
2347 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2348 struct task_struct *argowner)
2349 {
2350 struct futex_pi_state *pi_state = q->pi_state;
2351 u32 uval, uninitialized_var(curval), newval;
2352 struct task_struct *oldowner, *newowner;
2353 u32 newtid;
2354 int ret;
2355
2356 lockdep_assert_held(q->lock_ptr);
2357
2358 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2359
2360 oldowner = pi_state->owner;
2361
2362 /*
2363 * We are here because either:
2364 *
2365 * - we stole the lock and pi_state->owner needs updating to reflect
2366 * that (@argowner == current),
2367 *
2368 * or:
2369 *
2370 * - someone stole our lock and we need to fix things to point to the
2371 * new owner (@argowner == NULL).
2372 *
2373 * Either way, we have to replace the TID in the user space variable.
2374 * This must be atomic as we have to preserve the owner died bit here.
2375 *
2376 * Note: We write the user space value _before_ changing the pi_state
2377 * because we can fault here. Imagine swapped out pages or a fork
2378 * that marked all the anonymous memory readonly for cow.
2379 *
2380 * Modifying pi_state _before_ the user space value would leave the
2381 * pi_state in an inconsistent state when we fault here, because we
2382 * need to drop the locks to handle the fault. This might be observed
2383 * in the PID check in lookup_pi_state.
2384 */
2385 retry:
2386 if (!argowner) {
2387 if (oldowner != current) {
2388 /*
2389 * We raced against a concurrent self; things are
2390 * already fixed up. Nothing to do.
2391 */
2392 ret = 0;
2393 goto out_unlock;
2394 }
2395
2396 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2397 /* We got the lock after all, nothing to fix. */
2398 ret = 0;
2399 goto out_unlock;
2400 }
2401
2402 /*
2403 * Since we just failed the trylock; there must be an owner.
2404 */
2405 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2406 BUG_ON(!newowner);
2407 } else {
2408 WARN_ON_ONCE(argowner != current);
2409 if (oldowner == current) {
2410 /*
2411 * We raced against a concurrent self; things are
2412 * already fixed up. Nothing to do.
2413 */
2414 ret = 0;
2415 goto out_unlock;
2416 }
2417 newowner = argowner;
2418 }
2419
2420 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2421 /* Owner died? */
2422 if (!pi_state->owner)
2423 newtid |= FUTEX_OWNER_DIED;
2424
2425 if (get_futex_value_locked(&uval, uaddr))
2426 goto handle_fault;
2427
2428 for (;;) {
2429 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2430
2431 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2432 goto handle_fault;
2433 if (curval == uval)
2434 break;
2435 uval = curval;
2436 }
2437
2438 /*
2439 * We fixed up user space. Now we need to fix the pi_state
2440 * itself.
2441 */
2442 if (pi_state->owner != NULL) {
2443 raw_spin_lock(&pi_state->owner->pi_lock);
2444 WARN_ON(list_empty(&pi_state->list));
2445 list_del_init(&pi_state->list);
2446 raw_spin_unlock(&pi_state->owner->pi_lock);
2447 }
2448
2449 pi_state->owner = newowner;
2450
2451 raw_spin_lock(&newowner->pi_lock);
2452 WARN_ON(!list_empty(&pi_state->list));
2453 list_add(&pi_state->list, &newowner->pi_state_list);
2454 raw_spin_unlock(&newowner->pi_lock);
2455 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2456
2457 return 0;
2458
2459 /*
2460 * To handle the page fault we need to drop the locks here. That gives
2461 * the other task (either the highest priority waiter itself or the
2462 * task which stole the rtmutex) the chance to try the fixup of the
2463 * pi_state. So once we are back from handling the fault we need to
2464 * check the pi_state after reacquiring the locks and before trying to
2465 * do another fixup. When the fixup has been done already we simply
2466 * return.
2467 *
2468 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2469 * drop hb->lock since the caller owns the hb -> futex_q relation.
2470 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2471 */
2472 handle_fault:
2473 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2474 spin_unlock(q->lock_ptr);
2475
2476 ret = fault_in_user_writeable(uaddr);
2477
2478 spin_lock(q->lock_ptr);
2479 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2480
2481 /*
2482 * Check if someone else fixed it for us:
2483 */
2484 if (pi_state->owner != oldowner) {
2485 ret = 0;
2486 goto out_unlock;
2487 }
2488
2489 if (ret)
2490 goto out_unlock;
2491
2492 goto retry;
2493
2494 out_unlock:
2495 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2496 return ret;
2497 }
2498
2499 static long futex_wait_restart(struct restart_block *restart);
2500
2501 /**
2502 * fixup_owner() - Post lock pi_state and corner case management
2503 * @uaddr: user address of the futex
2504 * @q: futex_q (contains pi_state and access to the rt_mutex)
2505 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2506 *
2507 * After attempting to lock an rt_mutex, this function is called to cleanup
2508 * the pi_state owner as well as handle race conditions that may allow us to
2509 * acquire the lock. Must be called with the hb lock held.
2510 *
2511 * Return:
2512 * - 1 - success, lock taken;
2513 * - 0 - success, lock not taken;
2514 * - <0 - on error (-EFAULT)
2515 */
2516 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2517 {
2518 int ret = 0;
2519
2520 if (locked) {
2521 /*
2522 * Got the lock. We might not be the anticipated owner if we
2523 * did a lock-steal - fix up the PI-state in that case:
2524 *
2525 * Speculative pi_state->owner read (we don't hold wait_lock);
2526 * since we own the lock pi_state->owner == current is the
2527 * stable state, anything else needs more attention.
2528 */
2529 if (q->pi_state->owner != current)
2530 ret = fixup_pi_state_owner(uaddr, q, current);
2531 goto out;
2532 }
2533
2534 /*
2535 * If we didn't get the lock; check if anybody stole it from us. In
2536 * that case, we need to fix up the uval to point to them instead of
2537 * us, otherwise bad things happen. [10]
2538 *
2539 * Another speculative read; pi_state->owner == current is unstable
2540 * but needs our attention.
2541 */
2542 if (q->pi_state->owner == current) {
2543 ret = fixup_pi_state_owner(uaddr, q, NULL);
2544 goto out;
2545 }
2546
2547 /*
2548 * Paranoia check. If we did not take the lock, then we should not be
2549 * the owner of the rt_mutex.
2550 */
2551 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2552 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2553 "pi-state %p\n", ret,
2554 q->pi_state->pi_mutex.owner,
2555 q->pi_state->owner);
2556 }
2557
2558 out:
2559 return ret ? ret : locked;
2560 }
2561
2562 /**
2563 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2564 * @hb: the futex hash bucket, must be locked by the caller
2565 * @q: the futex_q to queue up on
2566 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2567 */
2568 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2569 struct hrtimer_sleeper *timeout)
2570 {
2571 /*
2572 * The task state is guaranteed to be set before another task can
2573 * wake it. set_current_state() is implemented using smp_store_mb() and
2574 * queue_me() calls spin_unlock() upon completion, both serializing
2575 * access to the hash list and forcing another memory barrier.
2576 */
2577 set_current_state(TASK_INTERRUPTIBLE);
2578 queue_me(q, hb);
2579
2580 /* Arm the timer */
2581 if (timeout)
2582 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2583
2584 /*
2585 * If we have been removed from the hash list, then another task
2586 * has tried to wake us, and we can skip the call to schedule().
2587 */
2588 if (likely(!plist_node_empty(&q->list))) {
2589 /*
2590 * If the timer has already expired, current will already be
2591 * flagged for rescheduling. Only call schedule if there
2592 * is no timeout, or if it has yet to expire.
2593 */
2594 if (!timeout || timeout->task)
2595 freezable_schedule();
2596 }
2597 __set_current_state(TASK_RUNNING);
2598 }
2599
2600 /**
2601 * futex_wait_setup() - Prepare to wait on a futex
2602 * @uaddr: the futex userspace address
2603 * @val: the expected value
2604 * @flags: futex flags (FLAGS_SHARED, etc.)
2605 * @q: the associated futex_q
2606 * @hb: storage for hash_bucket pointer to be returned to caller
2607 *
2608 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2609 * compare it with the expected value. Handle atomic faults internally.
2610 * Return with the hb lock held and a q.key reference on success, and unlocked
2611 * with no q.key reference on failure.
2612 *
2613 * Return:
2614 * - 0 - uaddr contains val and hb has been locked;
2615 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2616 */
2617 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2618 struct futex_q *q, struct futex_hash_bucket **hb)
2619 {
2620 u32 uval;
2621 int ret;
2622
2623 /*
2624 * Access the page AFTER the hash-bucket is locked.
2625 * Order is important:
2626 *
2627 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2628 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2629 *
2630 * The basic logical guarantee of a futex is that it blocks ONLY
2631 * if cond(var) is known to be true at the time of blocking, for
2632 * any cond. If we locked the hash-bucket after testing *uaddr, that
2633 * would open a race condition where we could block indefinitely with
2634 * cond(var) false, which would violate the guarantee.
2635 *
2636 * On the other hand, we insert q and release the hash-bucket only
2637 * after testing *uaddr. This guarantees that futex_wait() will NOT
2638 * absorb a wakeup if *uaddr does not match the desired values
2639 * while the syscall executes.
2640 */
2641 retry:
2642 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2643 if (unlikely(ret != 0))
2644 return ret;
2645
2646 retry_private:
2647 *hb = queue_lock(q);
2648
2649 ret = get_futex_value_locked(&uval, uaddr);
2650
2651 if (ret) {
2652 queue_unlock(*hb);
2653
2654 ret = get_user(uval, uaddr);
2655 if (ret)
2656 goto out;
2657
2658 if (!(flags & FLAGS_SHARED))
2659 goto retry_private;
2660
2661 put_futex_key(&q->key);
2662 goto retry;
2663 }
2664
2665 if (uval != val) {
2666 queue_unlock(*hb);
2667 ret = -EWOULDBLOCK;
2668 }
2669
2670 out:
2671 if (ret)
2672 put_futex_key(&q->key);
2673 return ret;
2674 }
2675
2676 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2677 ktime_t *abs_time, u32 bitset)
2678 {
2679 struct hrtimer_sleeper timeout, *to = NULL;
2680 struct restart_block *restart;
2681 struct futex_hash_bucket *hb;
2682 struct futex_q q = futex_q_init;
2683 int ret;
2684
2685 if (!bitset)
2686 return -EINVAL;
2687 q.bitset = bitset;
2688
2689 if (abs_time) {
2690 to = &timeout;
2691
2692 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2693 CLOCK_REALTIME : CLOCK_MONOTONIC,
2694 HRTIMER_MODE_ABS);
2695 hrtimer_init_sleeper(to, current);
2696 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2697 current->timer_slack_ns);
2698 }
2699
2700 retry:
2701 /*
2702 * Prepare to wait on uaddr. On success, holds hb lock and increments
2703 * q.key refs.
2704 */
2705 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2706 if (ret)
2707 goto out;
2708
2709 /* queue_me and wait for wakeup, timeout, or a signal. */
2710 futex_wait_queue_me(hb, &q, to);
2711
2712 /* If we were woken (and unqueued), we succeeded, whatever. */
2713 ret = 0;
2714 /* unqueue_me() drops q.key ref */
2715 if (!unqueue_me(&q))
2716 goto out;
2717 ret = -ETIMEDOUT;
2718 if (to && !to->task)
2719 goto out;
2720
2721 /*
2722 * We expect signal_pending(current), but we might be the
2723 * victim of a spurious wakeup as well.
2724 */
2725 if (!signal_pending(current))
2726 goto retry;
2727
2728 ret = -ERESTARTSYS;
2729 if (!abs_time)
2730 goto out;
2731
2732 restart = &current->restart_block;
2733 restart->fn = futex_wait_restart;
2734 restart->futex.uaddr = uaddr;
2735 restart->futex.val = val;
2736 restart->futex.time = *abs_time;
2737 restart->futex.bitset = bitset;
2738 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2739
2740 ret = -ERESTART_RESTARTBLOCK;
2741
2742 out:
2743 if (to) {
2744 hrtimer_cancel(&to->timer);
2745 destroy_hrtimer_on_stack(&to->timer);
2746 }
2747 return ret;
2748 }
2749
2750
2751 static long futex_wait_restart(struct restart_block *restart)
2752 {
2753 u32 __user *uaddr = restart->futex.uaddr;
2754 ktime_t t, *tp = NULL;
2755
2756 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2757 t = restart->futex.time;
2758 tp = &t;
2759 }
2760 restart->fn = do_no_restart_syscall;
2761
2762 return (long)futex_wait(uaddr, restart->futex.flags,
2763 restart->futex.val, tp, restart->futex.bitset);
2764 }
2765
2766
2767 /*
2768 * Userspace tried a 0 -> TID atomic transition of the futex value
2769 * and failed. The kernel side here does the whole locking operation:
2770 * if there are waiters then it will block as a consequence of relying
2771 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2772 * a 0 value of the futex too.).
2773 *
2774 * Also serves as futex trylock_pi()'ing, and due semantics.
2775 */
2776 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2777 ktime_t *time, int trylock)
2778 {
2779 struct hrtimer_sleeper timeout, *to = NULL;
2780 struct futex_pi_state *pi_state = NULL;
2781 struct rt_mutex_waiter rt_waiter;
2782 struct futex_hash_bucket *hb;
2783 struct futex_q q = futex_q_init;
2784 int res, ret;
2785
2786 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2787 return -ENOSYS;
2788
2789 if (refill_pi_state_cache())
2790 return -ENOMEM;
2791
2792 if (time) {
2793 to = &timeout;
2794 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2795 HRTIMER_MODE_ABS);
2796 hrtimer_init_sleeper(to, current);
2797 hrtimer_set_expires(&to->timer, *time);
2798 }
2799
2800 retry:
2801 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2802 if (unlikely(ret != 0))
2803 goto out;
2804
2805 retry_private:
2806 hb = queue_lock(&q);
2807
2808 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2809 if (unlikely(ret)) {
2810 /*
2811 * Atomic work succeeded and we got the lock,
2812 * or failed. Either way, we do _not_ block.
2813 */
2814 switch (ret) {
2815 case 1:
2816 /* We got the lock. */
2817 ret = 0;
2818 goto out_unlock_put_key;
2819 case -EFAULT:
2820 goto uaddr_faulted;
2821 case -EAGAIN:
2822 /*
2823 * Two reasons for this:
2824 * - Task is exiting and we just wait for the
2825 * exit to complete.
2826 * - The user space value changed.
2827 */
2828 queue_unlock(hb);
2829 put_futex_key(&q.key);
2830 cond_resched();
2831 goto retry;
2832 default:
2833 goto out_unlock_put_key;
2834 }
2835 }
2836
2837 WARN_ON(!q.pi_state);
2838
2839 /*
2840 * Only actually queue now that the atomic ops are done:
2841 */
2842 __queue_me(&q, hb);
2843
2844 if (trylock) {
2845 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2846 /* Fixup the trylock return value: */
2847 ret = ret ? 0 : -EWOULDBLOCK;
2848 goto no_block;
2849 }
2850
2851 rt_mutex_init_waiter(&rt_waiter);
2852
2853 /*
2854 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2855 * hold it while doing rt_mutex_start_proxy(), because then it will
2856 * include hb->lock in the blocking chain, even through we'll not in
2857 * fact hold it while blocking. This will lead it to report -EDEADLK
2858 * and BUG when futex_unlock_pi() interleaves with this.
2859 *
2860 * Therefore acquire wait_lock while holding hb->lock, but drop the
2861 * latter before calling rt_mutex_start_proxy_lock(). This still fully
2862 * serializes against futex_unlock_pi() as that does the exact same
2863 * lock handoff sequence.
2864 */
2865 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2866 spin_unlock(q.lock_ptr);
2867 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2868 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2869
2870 if (ret) {
2871 if (ret == 1)
2872 ret = 0;
2873
2874 spin_lock(q.lock_ptr);
2875 goto no_block;
2876 }
2877
2878
2879 if (unlikely(to))
2880 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2881
2882 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2883
2884 spin_lock(q.lock_ptr);
2885 /*
2886 * If we failed to acquire the lock (signal/timeout), we must
2887 * first acquire the hb->lock before removing the lock from the
2888 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2889 * wait lists consistent.
2890 *
2891 * In particular; it is important that futex_unlock_pi() can not
2892 * observe this inconsistency.
2893 */
2894 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2895 ret = 0;
2896
2897 no_block:
2898 /*
2899 * Fixup the pi_state owner and possibly acquire the lock if we
2900 * haven't already.
2901 */
2902 res = fixup_owner(uaddr, &q, !ret);
2903 /*
2904 * If fixup_owner() returned an error, proprogate that. If it acquired
2905 * the lock, clear our -ETIMEDOUT or -EINTR.
2906 */
2907 if (res)
2908 ret = (res < 0) ? res : 0;
2909
2910 /*
2911 * If fixup_owner() faulted and was unable to handle the fault, unlock
2912 * it and return the fault to userspace.
2913 */
2914 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2915 pi_state = q.pi_state;
2916 get_pi_state(pi_state);
2917 }
2918
2919 /* Unqueue and drop the lock */
2920 unqueue_me_pi(&q);
2921
2922 if (pi_state) {
2923 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2924 put_pi_state(pi_state);
2925 }
2926
2927 goto out_put_key;
2928
2929 out_unlock_put_key:
2930 queue_unlock(hb);
2931
2932 out_put_key:
2933 put_futex_key(&q.key);
2934 out:
2935 if (to) {
2936 hrtimer_cancel(&to->timer);
2937 destroy_hrtimer_on_stack(&to->timer);
2938 }
2939 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2940
2941 uaddr_faulted:
2942 queue_unlock(hb);
2943
2944 ret = fault_in_user_writeable(uaddr);
2945 if (ret)
2946 goto out_put_key;
2947
2948 if (!(flags & FLAGS_SHARED))
2949 goto retry_private;
2950
2951 put_futex_key(&q.key);
2952 goto retry;
2953 }
2954
2955 /*
2956 * Userspace attempted a TID -> 0 atomic transition, and failed.
2957 * This is the in-kernel slowpath: we look up the PI state (if any),
2958 * and do the rt-mutex unlock.
2959 */
2960 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2961 {
2962 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2963 union futex_key key = FUTEX_KEY_INIT;
2964 struct futex_hash_bucket *hb;
2965 struct futex_q *top_waiter;
2966 int ret;
2967
2968 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2969 return -ENOSYS;
2970
2971 retry:
2972 if (get_user(uval, uaddr))
2973 return -EFAULT;
2974 /*
2975 * We release only a lock we actually own:
2976 */
2977 if ((uval & FUTEX_TID_MASK) != vpid)
2978 return -EPERM;
2979
2980 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
2981 if (ret)
2982 return ret;
2983
2984 hb = hash_futex(&key);
2985 spin_lock(&hb->lock);
2986
2987 /*
2988 * Check waiters first. We do not trust user space values at
2989 * all and we at least want to know if user space fiddled
2990 * with the futex value instead of blindly unlocking.
2991 */
2992 top_waiter = futex_top_waiter(hb, &key);
2993 if (top_waiter) {
2994 struct futex_pi_state *pi_state = top_waiter->pi_state;
2995
2996 ret = -EINVAL;
2997 if (!pi_state)
2998 goto out_unlock;
2999
3000 /*
3001 * If current does not own the pi_state then the futex is
3002 * inconsistent and user space fiddled with the futex value.
3003 */
3004 if (pi_state->owner != current)
3005 goto out_unlock;
3006
3007 get_pi_state(pi_state);
3008 /*
3009 * By taking wait_lock while still holding hb->lock, we ensure
3010 * there is no point where we hold neither; and therefore
3011 * wake_futex_pi() must observe a state consistent with what we
3012 * observed.
3013 */
3014 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3015 spin_unlock(&hb->lock);
3016
3017 /* drops pi_state->pi_mutex.wait_lock */
3018 ret = wake_futex_pi(uaddr, uval, pi_state);
3019
3020 put_pi_state(pi_state);
3021
3022 /*
3023 * Success, we're done! No tricky corner cases.
3024 */
3025 if (!ret)
3026 goto out_putkey;
3027 /*
3028 * The atomic access to the futex value generated a
3029 * pagefault, so retry the user-access and the wakeup:
3030 */
3031 if (ret == -EFAULT)
3032 goto pi_faulted;
3033 /*
3034 * A unconditional UNLOCK_PI op raced against a waiter
3035 * setting the FUTEX_WAITERS bit. Try again.
3036 */
3037 if (ret == -EAGAIN) {
3038 put_futex_key(&key);
3039 goto retry;
3040 }
3041 /*
3042 * wake_futex_pi has detected invalid state. Tell user
3043 * space.
3044 */
3045 goto out_putkey;
3046 }
3047
3048 /*
3049 * We have no kernel internal state, i.e. no waiters in the
3050 * kernel. Waiters which are about to queue themselves are stuck
3051 * on hb->lock. So we can safely ignore them. We do neither
3052 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3053 * owner.
3054 */
3055 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
3056 spin_unlock(&hb->lock);
3057 goto pi_faulted;
3058 }
3059
3060 /*
3061 * If uval has changed, let user space handle it.
3062 */
3063 ret = (curval == uval) ? 0 : -EAGAIN;
3064
3065 out_unlock:
3066 spin_unlock(&hb->lock);
3067 out_putkey:
3068 put_futex_key(&key);
3069 return ret;
3070
3071 pi_faulted:
3072 put_futex_key(&key);
3073
3074 ret = fault_in_user_writeable(uaddr);
3075 if (!ret)
3076 goto retry;
3077
3078 return ret;
3079 }
3080
3081 /**
3082 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3083 * @hb: the hash_bucket futex_q was original enqueued on
3084 * @q: the futex_q woken while waiting to be requeued
3085 * @key2: the futex_key of the requeue target futex
3086 * @timeout: the timeout associated with the wait (NULL if none)
3087 *
3088 * Detect if the task was woken on the initial futex as opposed to the requeue
3089 * target futex. If so, determine if it was a timeout or a signal that caused
3090 * the wakeup and return the appropriate error code to the caller. Must be
3091 * called with the hb lock held.
3092 *
3093 * Return:
3094 * - 0 = no early wakeup detected;
3095 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3096 */
3097 static inline
3098 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3099 struct futex_q *q, union futex_key *key2,
3100 struct hrtimer_sleeper *timeout)
3101 {
3102 int ret = 0;
3103
3104 /*
3105 * With the hb lock held, we avoid races while we process the wakeup.
3106 * We only need to hold hb (and not hb2) to ensure atomicity as the
3107 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3108 * It can't be requeued from uaddr2 to something else since we don't
3109 * support a PI aware source futex for requeue.
3110 */
3111 if (!match_futex(&q->key, key2)) {
3112 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3113 /*
3114 * We were woken prior to requeue by a timeout or a signal.
3115 * Unqueue the futex_q and determine which it was.
3116 */
3117 plist_del(&q->list, &hb->chain);
3118 hb_waiters_dec(hb);
3119
3120 /* Handle spurious wakeups gracefully */
3121 ret = -EWOULDBLOCK;
3122 if (timeout && !timeout->task)
3123 ret = -ETIMEDOUT;
3124 else if (signal_pending(current))
3125 ret = -ERESTARTNOINTR;
3126 }
3127 return ret;
3128 }
3129
3130 /**
3131 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3132 * @uaddr: the futex we initially wait on (non-pi)
3133 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3134 * the same type, no requeueing from private to shared, etc.
3135 * @val: the expected value of uaddr
3136 * @abs_time: absolute timeout
3137 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
3138 * @uaddr2: the pi futex we will take prior to returning to user-space
3139 *
3140 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3141 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3142 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3143 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3144 * without one, the pi logic would not know which task to boost/deboost, if
3145 * there was a need to.
3146 *
3147 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3148 * via the following--
3149 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3150 * 2) wakeup on uaddr2 after a requeue
3151 * 3) signal
3152 * 4) timeout
3153 *
3154 * If 3, cleanup and return -ERESTARTNOINTR.
3155 *
3156 * If 2, we may then block on trying to take the rt_mutex and return via:
3157 * 5) successful lock
3158 * 6) signal
3159 * 7) timeout
3160 * 8) other lock acquisition failure
3161 *
3162 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3163 *
3164 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3165 *
3166 * Return:
3167 * - 0 - On success;
3168 * - <0 - On error
3169 */
3170 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3171 u32 val, ktime_t *abs_time, u32 bitset,
3172 u32 __user *uaddr2)
3173 {
3174 struct hrtimer_sleeper timeout, *to = NULL;
3175 struct futex_pi_state *pi_state = NULL;
3176 struct rt_mutex_waiter rt_waiter;
3177 struct futex_hash_bucket *hb;
3178 union futex_key key2 = FUTEX_KEY_INIT;
3179 struct futex_q q = futex_q_init;
3180 int res, ret;
3181
3182 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3183 return -ENOSYS;
3184
3185 if (uaddr == uaddr2)
3186 return -EINVAL;
3187
3188 if (!bitset)
3189 return -EINVAL;
3190
3191 if (abs_time) {
3192 to = &timeout;
3193 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3194 CLOCK_REALTIME : CLOCK_MONOTONIC,
3195 HRTIMER_MODE_ABS);
3196 hrtimer_init_sleeper(to, current);
3197 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3198 current->timer_slack_ns);
3199 }
3200
3201 /*
3202 * The waiter is allocated on our stack, manipulated by the requeue
3203 * code while we sleep on uaddr.
3204 */
3205 rt_mutex_init_waiter(&rt_waiter);
3206
3207 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3208 if (unlikely(ret != 0))
3209 goto out;
3210
3211 q.bitset = bitset;
3212 q.rt_waiter = &rt_waiter;
3213 q.requeue_pi_key = &key2;
3214
3215 /*
3216 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3217 * count.
3218 */
3219 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3220 if (ret)
3221 goto out_key2;
3222
3223 /*
3224 * The check above which compares uaddrs is not sufficient for
3225 * shared futexes. We need to compare the keys:
3226 */
3227 if (match_futex(&q.key, &key2)) {
3228 queue_unlock(hb);
3229 ret = -EINVAL;
3230 goto out_put_keys;
3231 }
3232
3233 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3234 futex_wait_queue_me(hb, &q, to);
3235
3236 spin_lock(&hb->lock);
3237 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3238 spin_unlock(&hb->lock);
3239 if (ret)
3240 goto out_put_keys;
3241
3242 /*
3243 * In order for us to be here, we know our q.key == key2, and since
3244 * we took the hb->lock above, we also know that futex_requeue() has
3245 * completed and we no longer have to concern ourselves with a wakeup
3246 * race with the atomic proxy lock acquisition by the requeue code. The
3247 * futex_requeue dropped our key1 reference and incremented our key2
3248 * reference count.
3249 */
3250
3251 /* Check if the requeue code acquired the second futex for us. */
3252 if (!q.rt_waiter) {
3253 /*
3254 * Got the lock. We might not be the anticipated owner if we
3255 * did a lock-steal - fix up the PI-state in that case.
3256 */
3257 if (q.pi_state && (q.pi_state->owner != current)) {
3258 spin_lock(q.lock_ptr);
3259 ret = fixup_pi_state_owner(uaddr2, &q, current);
3260 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3261 pi_state = q.pi_state;
3262 get_pi_state(pi_state);
3263 }
3264 /*
3265 * Drop the reference to the pi state which
3266 * the requeue_pi() code acquired for us.
3267 */
3268 put_pi_state(q.pi_state);
3269 spin_unlock(q.lock_ptr);
3270 }
3271 } else {
3272 struct rt_mutex *pi_mutex;
3273
3274 /*
3275 * We have been woken up by futex_unlock_pi(), a timeout, or a
3276 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3277 * the pi_state.
3278 */
3279 WARN_ON(!q.pi_state);
3280 pi_mutex = &q.pi_state->pi_mutex;
3281 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3282
3283 spin_lock(q.lock_ptr);
3284 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3285 ret = 0;
3286
3287 debug_rt_mutex_free_waiter(&rt_waiter);
3288 /*
3289 * Fixup the pi_state owner and possibly acquire the lock if we
3290 * haven't already.
3291 */
3292 res = fixup_owner(uaddr2, &q, !ret);
3293 /*
3294 * If fixup_owner() returned an error, proprogate that. If it
3295 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3296 */
3297 if (res)
3298 ret = (res < 0) ? res : 0;
3299
3300 /*
3301 * If fixup_pi_state_owner() faulted and was unable to handle
3302 * the fault, unlock the rt_mutex and return the fault to
3303 * userspace.
3304 */
3305 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3306 pi_state = q.pi_state;
3307 get_pi_state(pi_state);
3308 }
3309
3310 /* Unqueue and drop the lock. */
3311 unqueue_me_pi(&q);
3312 }
3313
3314 if (pi_state) {
3315 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3316 put_pi_state(pi_state);
3317 }
3318
3319 if (ret == -EINTR) {
3320 /*
3321 * We've already been requeued, but cannot restart by calling
3322 * futex_lock_pi() directly. We could restart this syscall, but
3323 * it would detect that the user space "val" changed and return
3324 * -EWOULDBLOCK. Save the overhead of the restart and return
3325 * -EWOULDBLOCK directly.
3326 */
3327 ret = -EWOULDBLOCK;
3328 }
3329
3330 out_put_keys:
3331 put_futex_key(&q.key);
3332 out_key2:
3333 put_futex_key(&key2);
3334
3335 out:
3336 if (to) {
3337 hrtimer_cancel(&to->timer);
3338 destroy_hrtimer_on_stack(&to->timer);
3339 }
3340 return ret;
3341 }
3342
3343 /*
3344 * Support for robust futexes: the kernel cleans up held futexes at
3345 * thread exit time.
3346 *
3347 * Implementation: user-space maintains a per-thread list of locks it
3348 * is holding. Upon do_exit(), the kernel carefully walks this list,
3349 * and marks all locks that are owned by this thread with the
3350 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3351 * always manipulated with the lock held, so the list is private and
3352 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3353 * field, to allow the kernel to clean up if the thread dies after
3354 * acquiring the lock, but just before it could have added itself to
3355 * the list. There can only be one such pending lock.
3356 */
3357
3358 /**
3359 * sys_set_robust_list() - Set the robust-futex list head of a task
3360 * @head: pointer to the list-head
3361 * @len: length of the list-head, as userspace expects
3362 */
3363 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3364 size_t, len)
3365 {
3366 if (!futex_cmpxchg_enabled)
3367 return -ENOSYS;
3368 /*
3369 * The kernel knows only one size for now:
3370 */
3371 if (unlikely(len != sizeof(*head)))
3372 return -EINVAL;
3373
3374 current->robust_list = head;
3375
3376 return 0;
3377 }
3378
3379 /**
3380 * sys_get_robust_list() - Get the robust-futex list head of a task
3381 * @pid: pid of the process [zero for current task]
3382 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3383 * @len_ptr: pointer to a length field, the kernel fills in the header size
3384 */
3385 SYSCALL_DEFINE3(get_robust_list, int, pid,
3386 struct robust_list_head __user * __user *, head_ptr,
3387 size_t __user *, len_ptr)
3388 {
3389 struct robust_list_head __user *head;
3390 unsigned long ret;
3391 struct task_struct *p;
3392
3393 if (!futex_cmpxchg_enabled)
3394 return -ENOSYS;
3395
3396 rcu_read_lock();
3397
3398 ret = -ESRCH;
3399 if (!pid)
3400 p = current;
3401 else {
3402 p = find_task_by_vpid(pid);
3403 if (!p)
3404 goto err_unlock;
3405 }
3406
3407 ret = -EPERM;
3408 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3409 goto err_unlock;
3410
3411 head = p->robust_list;
3412 rcu_read_unlock();
3413
3414 if (put_user(sizeof(*head), len_ptr))
3415 return -EFAULT;
3416 return put_user(head, head_ptr);
3417
3418 err_unlock:
3419 rcu_read_unlock();
3420
3421 return ret;
3422 }
3423
3424 /*
3425 * Process a futex-list entry, check whether it's owned by the
3426 * dying task, and do notification if so:
3427 */
3428 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3429 {
3430 u32 uval, uninitialized_var(nval), mval;
3431
3432 retry:
3433 if (get_user(uval, uaddr))
3434 return -1;
3435
3436 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3437 /*
3438 * Ok, this dying thread is truly holding a futex
3439 * of interest. Set the OWNER_DIED bit atomically
3440 * via cmpxchg, and if the value had FUTEX_WAITERS
3441 * set, wake up a waiter (if any). (We have to do a
3442 * futex_wake() even if OWNER_DIED is already set -
3443 * to handle the rare but possible case of recursive
3444 * thread-death.) The rest of the cleanup is done in
3445 * userspace.
3446 */
3447 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3448 /*
3449 * We are not holding a lock here, but we want to have
3450 * the pagefault_disable/enable() protection because
3451 * we want to handle the fault gracefully. If the
3452 * access fails we try to fault in the futex with R/W
3453 * verification via get_user_pages. get_user() above
3454 * does not guarantee R/W access. If that fails we
3455 * give up and leave the futex locked.
3456 */
3457 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3458 if (fault_in_user_writeable(uaddr))
3459 return -1;
3460 goto retry;
3461 }
3462 if (nval != uval)
3463 goto retry;
3464
3465 /*
3466 * Wake robust non-PI futexes here. The wakeup of
3467 * PI futexes happens in exit_pi_state():
3468 */
3469 if (!pi && (uval & FUTEX_WAITERS))
3470 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3471 }
3472 return 0;
3473 }
3474
3475 /*
3476 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3477 */
3478 static inline int fetch_robust_entry(struct robust_list __user **entry,
3479 struct robust_list __user * __user *head,
3480 unsigned int *pi)
3481 {
3482 unsigned long uentry;
3483
3484 if (get_user(uentry, (unsigned long __user *)head))
3485 return -EFAULT;
3486
3487 *entry = (void __user *)(uentry & ~1UL);
3488 *pi = uentry & 1;
3489
3490 return 0;
3491 }
3492
3493 /*
3494 * Walk curr->robust_list (very carefully, it's a userspace list!)
3495 * and mark any locks found there dead, and notify any waiters.
3496 *
3497 * We silently return on any sign of list-walking problem.
3498 */
3499 void exit_robust_list(struct task_struct *curr)
3500 {
3501 struct robust_list_head __user *head = curr->robust_list;
3502 struct robust_list __user *entry, *next_entry, *pending;
3503 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3504 unsigned int uninitialized_var(next_pi);
3505 unsigned long futex_offset;
3506 int rc;
3507
3508 if (!futex_cmpxchg_enabled)
3509 return;
3510
3511 /*
3512 * Fetch the list head (which was registered earlier, via
3513 * sys_set_robust_list()):
3514 */
3515 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3516 return;
3517 /*
3518 * Fetch the relative futex offset:
3519 */
3520 if (get_user(futex_offset, &head->futex_offset))
3521 return;
3522 /*
3523 * Fetch any possibly pending lock-add first, and handle it
3524 * if it exists:
3525 */
3526 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3527 return;
3528
3529 next_entry = NULL; /* avoid warning with gcc */
3530 while (entry != &head->list) {
3531 /*
3532 * Fetch the next entry in the list before calling
3533 * handle_futex_death:
3534 */
3535 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3536 /*
3537 * A pending lock might already be on the list, so
3538 * don't process it twice:
3539 */
3540 if (entry != pending)
3541 if (handle_futex_death((void __user *)entry + futex_offset,
3542 curr, pi))
3543 return;
3544 if (rc)
3545 return;
3546 entry = next_entry;
3547 pi = next_pi;
3548 /*
3549 * Avoid excessively long or circular lists:
3550 */
3551 if (!--limit)
3552 break;
3553
3554 cond_resched();
3555 }
3556
3557 if (pending)
3558 handle_futex_death((void __user *)pending + futex_offset,
3559 curr, pip);
3560 }
3561
3562 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3563 u32 __user *uaddr2, u32 val2, u32 val3)
3564 {
3565 int cmd = op & FUTEX_CMD_MASK;
3566 unsigned int flags = 0;
3567
3568 if (!(op & FUTEX_PRIVATE_FLAG))
3569 flags |= FLAGS_SHARED;
3570
3571 if (op & FUTEX_CLOCK_REALTIME) {
3572 flags |= FLAGS_CLOCKRT;
3573 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3574 cmd != FUTEX_WAIT_REQUEUE_PI)
3575 return -ENOSYS;
3576 }
3577
3578 switch (cmd) {
3579 case FUTEX_LOCK_PI:
3580 case FUTEX_UNLOCK_PI:
3581 case FUTEX_TRYLOCK_PI:
3582 case FUTEX_WAIT_REQUEUE_PI:
3583 case FUTEX_CMP_REQUEUE_PI:
3584 if (!futex_cmpxchg_enabled)
3585 return -ENOSYS;
3586 }
3587
3588 switch (cmd) {
3589 case FUTEX_WAIT:
3590 val3 = FUTEX_BITSET_MATCH_ANY;
3591 /* fall through */
3592 case FUTEX_WAIT_BITSET:
3593 return futex_wait(uaddr, flags, val, timeout, val3);
3594 case FUTEX_WAKE:
3595 val3 = FUTEX_BITSET_MATCH_ANY;
3596 /* fall through */
3597 case FUTEX_WAKE_BITSET:
3598 return futex_wake(uaddr, flags, val, val3);
3599 case FUTEX_REQUEUE:
3600 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3601 case FUTEX_CMP_REQUEUE:
3602 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3603 case FUTEX_WAKE_OP:
3604 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3605 case FUTEX_LOCK_PI:
3606 return futex_lock_pi(uaddr, flags, timeout, 0);
3607 case FUTEX_UNLOCK_PI:
3608 return futex_unlock_pi(uaddr, flags);
3609 case FUTEX_TRYLOCK_PI:
3610 return futex_lock_pi(uaddr, flags, NULL, 1);
3611 case FUTEX_WAIT_REQUEUE_PI:
3612 val3 = FUTEX_BITSET_MATCH_ANY;
3613 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3614 uaddr2);
3615 case FUTEX_CMP_REQUEUE_PI:
3616 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3617 }
3618 return -ENOSYS;
3619 }
3620
3621
3622 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3623 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3624 u32, val3)
3625 {
3626 struct timespec64 ts;
3627 ktime_t t, *tp = NULL;
3628 u32 val2 = 0;
3629 int cmd = op & FUTEX_CMD_MASK;
3630
3631 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3632 cmd == FUTEX_WAIT_BITSET ||
3633 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3634 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3635 return -EFAULT;
3636 if (get_timespec64(&ts, utime))
3637 return -EFAULT;
3638 if (!timespec64_valid(&ts))
3639 return -EINVAL;
3640
3641 t = timespec64_to_ktime(ts);
3642 if (cmd == FUTEX_WAIT)
3643 t = ktime_add_safe(ktime_get(), t);
3644 tp = &t;
3645 }
3646 /*
3647 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3648 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3649 */
3650 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3651 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3652 val2 = (u32) (unsigned long) utime;
3653
3654 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3655 }
3656
3657 #ifdef CONFIG_COMPAT
3658 /*
3659 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3660 */
3661 static inline int
3662 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3663 compat_uptr_t __user *head, unsigned int *pi)
3664 {
3665 if (get_user(*uentry, head))
3666 return -EFAULT;
3667
3668 *entry = compat_ptr((*uentry) & ~1);
3669 *pi = (unsigned int)(*uentry) & 1;
3670
3671 return 0;
3672 }
3673
3674 static void __user *futex_uaddr(struct robust_list __user *entry,
3675 compat_long_t futex_offset)
3676 {
3677 compat_uptr_t base = ptr_to_compat(entry);
3678 void __user *uaddr = compat_ptr(base + futex_offset);
3679
3680 return uaddr;
3681 }
3682
3683 /*
3684 * Walk curr->robust_list (very carefully, it's a userspace list!)
3685 * and mark any locks found there dead, and notify any waiters.
3686 *
3687 * We silently return on any sign of list-walking problem.
3688 */
3689 void compat_exit_robust_list(struct task_struct *curr)
3690 {
3691 struct compat_robust_list_head __user *head = curr->compat_robust_list;
3692 struct robust_list __user *entry, *next_entry, *pending;
3693 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3694 unsigned int uninitialized_var(next_pi);
3695 compat_uptr_t uentry, next_uentry, upending;
3696 compat_long_t futex_offset;
3697 int rc;
3698
3699 if (!futex_cmpxchg_enabled)
3700 return;
3701
3702 /*
3703 * Fetch the list head (which was registered earlier, via
3704 * sys_set_robust_list()):
3705 */
3706 if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3707 return;
3708 /*
3709 * Fetch the relative futex offset:
3710 */
3711 if (get_user(futex_offset, &head->futex_offset))
3712 return;
3713 /*
3714 * Fetch any possibly pending lock-add first, and handle it
3715 * if it exists:
3716 */
3717 if (compat_fetch_robust_entry(&upending, &pending,
3718 &head->list_op_pending, &pip))
3719 return;
3720
3721 next_entry = NULL; /* avoid warning with gcc */
3722 while (entry != (struct robust_list __user *) &head->list) {
3723 /*
3724 * Fetch the next entry in the list before calling
3725 * handle_futex_death:
3726 */
3727 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3728 (compat_uptr_t __user *)&entry->next, &next_pi);
3729 /*
3730 * A pending lock might already be on the list, so
3731 * dont process it twice:
3732 */
3733 if (entry != pending) {
3734 void __user *uaddr = futex_uaddr(entry, futex_offset);
3735
3736 if (handle_futex_death(uaddr, curr, pi))
3737 return;
3738 }
3739 if (rc)
3740 return;
3741 uentry = next_uentry;
3742 entry = next_entry;
3743 pi = next_pi;
3744 /*
3745 * Avoid excessively long or circular lists:
3746 */
3747 if (!--limit)
3748 break;
3749
3750 cond_resched();
3751 }
3752 if (pending) {
3753 void __user *uaddr = futex_uaddr(pending, futex_offset);
3754
3755 handle_futex_death(uaddr, curr, pip);
3756 }
3757 }
3758
3759 COMPAT_SYSCALL_DEFINE2(set_robust_list,
3760 struct compat_robust_list_head __user *, head,
3761 compat_size_t, len)
3762 {
3763 if (!futex_cmpxchg_enabled)
3764 return -ENOSYS;
3765
3766 if (unlikely(len != sizeof(*head)))
3767 return -EINVAL;
3768
3769 current->compat_robust_list = head;
3770
3771 return 0;
3772 }
3773
3774 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3775 compat_uptr_t __user *, head_ptr,
3776 compat_size_t __user *, len_ptr)
3777 {
3778 struct compat_robust_list_head __user *head;
3779 unsigned long ret;
3780 struct task_struct *p;
3781
3782 if (!futex_cmpxchg_enabled)
3783 return -ENOSYS;
3784
3785 rcu_read_lock();
3786
3787 ret = -ESRCH;
3788 if (!pid)
3789 p = current;
3790 else {
3791 p = find_task_by_vpid(pid);
3792 if (!p)
3793 goto err_unlock;
3794 }
3795
3796 ret = -EPERM;
3797 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3798 goto err_unlock;
3799
3800 head = p->compat_robust_list;
3801 rcu_read_unlock();
3802
3803 if (put_user(sizeof(*head), len_ptr))
3804 return -EFAULT;
3805 return put_user(ptr_to_compat(head), head_ptr);
3806
3807 err_unlock:
3808 rcu_read_unlock();
3809
3810 return ret;
3811 }
3812 #endif /* CONFIG_COMPAT */
3813
3814 #ifdef CONFIG_COMPAT_32BIT_TIME
3815 COMPAT_SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3816 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3817 u32, val3)
3818 {
3819 struct timespec64 ts;
3820 ktime_t t, *tp = NULL;
3821 int val2 = 0;
3822 int cmd = op & FUTEX_CMD_MASK;
3823
3824 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3825 cmd == FUTEX_WAIT_BITSET ||
3826 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3827 if (get_old_timespec32(&ts, utime))
3828 return -EFAULT;
3829 if (!timespec64_valid(&ts))
3830 return -EINVAL;
3831
3832 t = timespec64_to_ktime(ts);
3833 if (cmd == FUTEX_WAIT)
3834 t = ktime_add_safe(ktime_get(), t);
3835 tp = &t;
3836 }
3837 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3838 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3839 val2 = (int) (unsigned long) utime;
3840
3841 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3842 }
3843 #endif /* CONFIG_COMPAT_32BIT_TIME */
3844
3845 static void __init futex_detect_cmpxchg(void)
3846 {
3847 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3848 u32 curval;
3849
3850 /*
3851 * This will fail and we want it. Some arch implementations do
3852 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3853 * functionality. We want to know that before we call in any
3854 * of the complex code paths. Also we want to prevent
3855 * registration of robust lists in that case. NULL is
3856 * guaranteed to fault and we get -EFAULT on functional
3857 * implementation, the non-functional ones will return
3858 * -ENOSYS.
3859 */
3860 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3861 futex_cmpxchg_enabled = 1;
3862 #endif
3863 }
3864
3865 static int __init futex_init(void)
3866 {
3867 unsigned int futex_shift;
3868 unsigned long i;
3869
3870 #if CONFIG_BASE_SMALL
3871 futex_hashsize = 16;
3872 #else
3873 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3874 #endif
3875
3876 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3877 futex_hashsize, 0,
3878 futex_hashsize < 256 ? HASH_SMALL : 0,
3879 &futex_shift, NULL,
3880 futex_hashsize, futex_hashsize);
3881 futex_hashsize = 1UL << futex_shift;
3882
3883 futex_detect_cmpxchg();
3884
3885 for (i = 0; i < futex_hashsize; i++) {
3886 atomic_set(&futex_queues[i].waiters, 0);
3887 plist_head_init(&futex_queues[i].chain);
3888 spin_lock_init(&futex_queues[i].lock);
3889 }
3890
3891 return 0;
3892 }
3893 core_initcall(futex_init);