]> git.proxmox.com Git - qemu.git/blob - kvm-all.c
kvm: Remove unneeded memory slot reservation
[qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
30
31 /* This check must be after config-host.h is included */
32 #ifdef CONFIG_EVENTFD
33 #include <sys/eventfd.h>
34 #endif
35
36 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
37 #define PAGE_SIZE TARGET_PAGE_SIZE
38
39 //#define DEBUG_KVM
40
41 #ifdef DEBUG_KVM
42 #define DPRINTF(fmt, ...) \
43 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
44 #else
45 #define DPRINTF(fmt, ...) \
46 do { } while (0)
47 #endif
48
49 typedef struct KVMSlot
50 {
51 target_phys_addr_t start_addr;
52 ram_addr_t memory_size;
53 ram_addr_t phys_offset;
54 int slot;
55 int flags;
56 } KVMSlot;
57
58 typedef struct kvm_dirty_log KVMDirtyLog;
59
60 struct KVMState
61 {
62 KVMSlot slots[32];
63 int fd;
64 int vmfd;
65 int coalesced_mmio;
66 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
67 int broken_set_mem_region;
68 int migration_log;
69 int vcpu_events;
70 int robust_singlestep;
71 int debugregs;
72 #ifdef KVM_CAP_SET_GUEST_DEBUG
73 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
74 #endif
75 int irqchip_in_kernel;
76 int pit_in_kernel;
77 int xsave, xcrs;
78 int many_ioeventfds;
79 };
80
81 static KVMState *kvm_state;
82
83 static const KVMCapabilityInfo kvm_required_capabilites[] = {
84 KVM_CAP_INFO(USER_MEMORY),
85 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
86 KVM_CAP_LAST_INFO
87 };
88
89 static KVMSlot *kvm_alloc_slot(KVMState *s)
90 {
91 int i;
92
93 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
94 if (s->slots[i].memory_size == 0) {
95 return &s->slots[i];
96 }
97 }
98
99 fprintf(stderr, "%s: no free slot available\n", __func__);
100 abort();
101 }
102
103 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
104 target_phys_addr_t start_addr,
105 target_phys_addr_t end_addr)
106 {
107 int i;
108
109 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
110 KVMSlot *mem = &s->slots[i];
111
112 if (start_addr == mem->start_addr &&
113 end_addr == mem->start_addr + mem->memory_size) {
114 return mem;
115 }
116 }
117
118 return NULL;
119 }
120
121 /*
122 * Find overlapping slot with lowest start address
123 */
124 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
125 target_phys_addr_t start_addr,
126 target_phys_addr_t end_addr)
127 {
128 KVMSlot *found = NULL;
129 int i;
130
131 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
132 KVMSlot *mem = &s->slots[i];
133
134 if (mem->memory_size == 0 ||
135 (found && found->start_addr < mem->start_addr)) {
136 continue;
137 }
138
139 if (end_addr > mem->start_addr &&
140 start_addr < mem->start_addr + mem->memory_size) {
141 found = mem;
142 }
143 }
144
145 return found;
146 }
147
148 int kvm_physical_memory_addr_from_ram(KVMState *s, ram_addr_t ram_addr,
149 target_phys_addr_t *phys_addr)
150 {
151 int i;
152
153 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
154 KVMSlot *mem = &s->slots[i];
155
156 if (ram_addr >= mem->phys_offset &&
157 ram_addr < mem->phys_offset + mem->memory_size) {
158 *phys_addr = mem->start_addr + (ram_addr - mem->phys_offset);
159 return 1;
160 }
161 }
162
163 return 0;
164 }
165
166 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
167 {
168 struct kvm_userspace_memory_region mem;
169
170 mem.slot = slot->slot;
171 mem.guest_phys_addr = slot->start_addr;
172 mem.memory_size = slot->memory_size;
173 mem.userspace_addr = (unsigned long)qemu_safe_ram_ptr(slot->phys_offset);
174 mem.flags = slot->flags;
175 if (s->migration_log) {
176 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
177 }
178 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
179 }
180
181 static void kvm_reset_vcpu(void *opaque)
182 {
183 CPUState *env = opaque;
184
185 kvm_arch_reset_vcpu(env);
186 }
187
188 int kvm_irqchip_in_kernel(void)
189 {
190 return kvm_state->irqchip_in_kernel;
191 }
192
193 int kvm_pit_in_kernel(void)
194 {
195 return kvm_state->pit_in_kernel;
196 }
197
198 int kvm_init_vcpu(CPUState *env)
199 {
200 KVMState *s = kvm_state;
201 long mmap_size;
202 int ret;
203
204 DPRINTF("kvm_init_vcpu\n");
205
206 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
207 if (ret < 0) {
208 DPRINTF("kvm_create_vcpu failed\n");
209 goto err;
210 }
211
212 env->kvm_fd = ret;
213 env->kvm_state = s;
214
215 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
216 if (mmap_size < 0) {
217 ret = mmap_size;
218 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
219 goto err;
220 }
221
222 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
223 env->kvm_fd, 0);
224 if (env->kvm_run == MAP_FAILED) {
225 ret = -errno;
226 DPRINTF("mmap'ing vcpu state failed\n");
227 goto err;
228 }
229
230 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
231 s->coalesced_mmio_ring =
232 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
233 }
234
235 ret = kvm_arch_init_vcpu(env);
236 if (ret == 0) {
237 qemu_register_reset(kvm_reset_vcpu, env);
238 kvm_arch_reset_vcpu(env);
239 }
240 err:
241 return ret;
242 }
243
244 /*
245 * dirty pages logging control
246 */
247 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
248 ram_addr_t size, int flags, int mask)
249 {
250 KVMState *s = kvm_state;
251 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
252 int old_flags;
253
254 if (mem == NULL) {
255 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
256 TARGET_FMT_plx "\n", __func__, phys_addr,
257 (target_phys_addr_t)(phys_addr + size - 1));
258 return -EINVAL;
259 }
260
261 old_flags = mem->flags;
262
263 flags = (mem->flags & ~mask) | flags;
264 mem->flags = flags;
265
266 /* If nothing changed effectively, no need to issue ioctl */
267 if (s->migration_log) {
268 flags |= KVM_MEM_LOG_DIRTY_PAGES;
269 }
270 if (flags == old_flags) {
271 return 0;
272 }
273
274 return kvm_set_user_memory_region(s, mem);
275 }
276
277 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
278 {
279 return kvm_dirty_pages_log_change(phys_addr, size, KVM_MEM_LOG_DIRTY_PAGES,
280 KVM_MEM_LOG_DIRTY_PAGES);
281 }
282
283 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
284 {
285 return kvm_dirty_pages_log_change(phys_addr, size, 0,
286 KVM_MEM_LOG_DIRTY_PAGES);
287 }
288
289 static int kvm_set_migration_log(int enable)
290 {
291 KVMState *s = kvm_state;
292 KVMSlot *mem;
293 int i, err;
294
295 s->migration_log = enable;
296
297 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
298 mem = &s->slots[i];
299
300 if (!mem->memory_size) {
301 continue;
302 }
303 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
304 continue;
305 }
306 err = kvm_set_user_memory_region(s, mem);
307 if (err) {
308 return err;
309 }
310 }
311 return 0;
312 }
313
314 /* get kvm's dirty pages bitmap and update qemu's */
315 static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
316 unsigned long *bitmap,
317 unsigned long offset,
318 unsigned long mem_size)
319 {
320 unsigned int i, j;
321 unsigned long page_number, addr, addr1, c;
322 ram_addr_t ram_addr;
323 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
324 HOST_LONG_BITS;
325
326 /*
327 * bitmap-traveling is faster than memory-traveling (for addr...)
328 * especially when most of the memory is not dirty.
329 */
330 for (i = 0; i < len; i++) {
331 if (bitmap[i] != 0) {
332 c = leul_to_cpu(bitmap[i]);
333 do {
334 j = ffsl(c) - 1;
335 c &= ~(1ul << j);
336 page_number = i * HOST_LONG_BITS + j;
337 addr1 = page_number * TARGET_PAGE_SIZE;
338 addr = offset + addr1;
339 ram_addr = cpu_get_physical_page_desc(addr);
340 cpu_physical_memory_set_dirty(ram_addr);
341 } while (c != 0);
342 }
343 }
344 return 0;
345 }
346
347 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
348
349 /**
350 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
351 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
352 * This means all bits are set to dirty.
353 *
354 * @start_add: start of logged region.
355 * @end_addr: end of logged region.
356 */
357 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
358 target_phys_addr_t end_addr)
359 {
360 KVMState *s = kvm_state;
361 unsigned long size, allocated_size = 0;
362 KVMDirtyLog d;
363 KVMSlot *mem;
364 int ret = 0;
365
366 d.dirty_bitmap = NULL;
367 while (start_addr < end_addr) {
368 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
369 if (mem == NULL) {
370 break;
371 }
372
373 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), HOST_LONG_BITS) / 8;
374 if (!d.dirty_bitmap) {
375 d.dirty_bitmap = qemu_malloc(size);
376 } else if (size > allocated_size) {
377 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
378 }
379 allocated_size = size;
380 memset(d.dirty_bitmap, 0, allocated_size);
381
382 d.slot = mem->slot;
383
384 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
385 DPRINTF("ioctl failed %d\n", errno);
386 ret = -1;
387 break;
388 }
389
390 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
391 mem->start_addr, mem->memory_size);
392 start_addr = mem->start_addr + mem->memory_size;
393 }
394 qemu_free(d.dirty_bitmap);
395
396 return ret;
397 }
398
399 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
400 {
401 int ret = -ENOSYS;
402 KVMState *s = kvm_state;
403
404 if (s->coalesced_mmio) {
405 struct kvm_coalesced_mmio_zone zone;
406
407 zone.addr = start;
408 zone.size = size;
409
410 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
411 }
412
413 return ret;
414 }
415
416 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
417 {
418 int ret = -ENOSYS;
419 KVMState *s = kvm_state;
420
421 if (s->coalesced_mmio) {
422 struct kvm_coalesced_mmio_zone zone;
423
424 zone.addr = start;
425 zone.size = size;
426
427 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
428 }
429
430 return ret;
431 }
432
433 int kvm_check_extension(KVMState *s, unsigned int extension)
434 {
435 int ret;
436
437 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
438 if (ret < 0) {
439 ret = 0;
440 }
441
442 return ret;
443 }
444
445 static int kvm_check_many_ioeventfds(void)
446 {
447 /* Userspace can use ioeventfd for io notification. This requires a host
448 * that supports eventfd(2) and an I/O thread; since eventfd does not
449 * support SIGIO it cannot interrupt the vcpu.
450 *
451 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
452 * can avoid creating too many ioeventfds.
453 */
454 #if defined(CONFIG_EVENTFD) && defined(CONFIG_IOTHREAD)
455 int ioeventfds[7];
456 int i, ret = 0;
457 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
458 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
459 if (ioeventfds[i] < 0) {
460 break;
461 }
462 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
463 if (ret < 0) {
464 close(ioeventfds[i]);
465 break;
466 }
467 }
468
469 /* Decide whether many devices are supported or not */
470 ret = i == ARRAY_SIZE(ioeventfds);
471
472 while (i-- > 0) {
473 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
474 close(ioeventfds[i]);
475 }
476 return ret;
477 #else
478 return 0;
479 #endif
480 }
481
482 static const KVMCapabilityInfo *
483 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
484 {
485 while (list->name) {
486 if (!kvm_check_extension(s, list->value)) {
487 return list;
488 }
489 list++;
490 }
491 return NULL;
492 }
493
494 static void kvm_set_phys_mem(target_phys_addr_t start_addr, ram_addr_t size,
495 ram_addr_t phys_offset)
496 {
497 KVMState *s = kvm_state;
498 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
499 KVMSlot *mem, old;
500 int err;
501
502 /* kvm works in page size chunks, but the function may be called
503 with sub-page size and unaligned start address. */
504 size = TARGET_PAGE_ALIGN(size);
505 start_addr = TARGET_PAGE_ALIGN(start_addr);
506
507 /* KVM does not support read-only slots */
508 phys_offset &= ~IO_MEM_ROM;
509
510 while (1) {
511 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
512 if (!mem) {
513 break;
514 }
515
516 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
517 (start_addr + size <= mem->start_addr + mem->memory_size) &&
518 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
519 /* The new slot fits into the existing one and comes with
520 * identical parameters - nothing to be done. */
521 return;
522 }
523
524 old = *mem;
525
526 /* unregister the overlapping slot */
527 mem->memory_size = 0;
528 err = kvm_set_user_memory_region(s, mem);
529 if (err) {
530 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
531 __func__, strerror(-err));
532 abort();
533 }
534
535 /* Workaround for older KVM versions: we can't join slots, even not by
536 * unregistering the previous ones and then registering the larger
537 * slot. We have to maintain the existing fragmentation. Sigh.
538 *
539 * This workaround assumes that the new slot starts at the same
540 * address as the first existing one. If not or if some overlapping
541 * slot comes around later, we will fail (not seen in practice so far)
542 * - and actually require a recent KVM version. */
543 if (s->broken_set_mem_region &&
544 old.start_addr == start_addr && old.memory_size < size &&
545 flags < IO_MEM_UNASSIGNED) {
546 mem = kvm_alloc_slot(s);
547 mem->memory_size = old.memory_size;
548 mem->start_addr = old.start_addr;
549 mem->phys_offset = old.phys_offset;
550 mem->flags = 0;
551
552 err = kvm_set_user_memory_region(s, mem);
553 if (err) {
554 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
555 strerror(-err));
556 abort();
557 }
558
559 start_addr += old.memory_size;
560 phys_offset += old.memory_size;
561 size -= old.memory_size;
562 continue;
563 }
564
565 /* register prefix slot */
566 if (old.start_addr < start_addr) {
567 mem = kvm_alloc_slot(s);
568 mem->memory_size = start_addr - old.start_addr;
569 mem->start_addr = old.start_addr;
570 mem->phys_offset = old.phys_offset;
571 mem->flags = 0;
572
573 err = kvm_set_user_memory_region(s, mem);
574 if (err) {
575 fprintf(stderr, "%s: error registering prefix slot: %s\n",
576 __func__, strerror(-err));
577 abort();
578 }
579 }
580
581 /* register suffix slot */
582 if (old.start_addr + old.memory_size > start_addr + size) {
583 ram_addr_t size_delta;
584
585 mem = kvm_alloc_slot(s);
586 mem->start_addr = start_addr + size;
587 size_delta = mem->start_addr - old.start_addr;
588 mem->memory_size = old.memory_size - size_delta;
589 mem->phys_offset = old.phys_offset + size_delta;
590 mem->flags = 0;
591
592 err = kvm_set_user_memory_region(s, mem);
593 if (err) {
594 fprintf(stderr, "%s: error registering suffix slot: %s\n",
595 __func__, strerror(-err));
596 abort();
597 }
598 }
599 }
600
601 /* in case the KVM bug workaround already "consumed" the new slot */
602 if (!size) {
603 return;
604 }
605 /* KVM does not need to know about this memory */
606 if (flags >= IO_MEM_UNASSIGNED) {
607 return;
608 }
609 mem = kvm_alloc_slot(s);
610 mem->memory_size = size;
611 mem->start_addr = start_addr;
612 mem->phys_offset = phys_offset;
613 mem->flags = 0;
614
615 err = kvm_set_user_memory_region(s, mem);
616 if (err) {
617 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
618 strerror(-err));
619 abort();
620 }
621 }
622
623 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
624 target_phys_addr_t start_addr,
625 ram_addr_t size, ram_addr_t phys_offset)
626 {
627 kvm_set_phys_mem(start_addr, size, phys_offset);
628 }
629
630 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
631 target_phys_addr_t start_addr,
632 target_phys_addr_t end_addr)
633 {
634 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
635 }
636
637 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
638 int enable)
639 {
640 return kvm_set_migration_log(enable);
641 }
642
643 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
644 .set_memory = kvm_client_set_memory,
645 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
646 .migration_log = kvm_client_migration_log,
647 };
648
649 int kvm_init(void)
650 {
651 static const char upgrade_note[] =
652 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
653 "(see http://sourceforge.net/projects/kvm).\n";
654 KVMState *s;
655 const KVMCapabilityInfo *missing_cap;
656 int ret;
657 int i;
658
659 s = qemu_mallocz(sizeof(KVMState));
660
661 #ifdef KVM_CAP_SET_GUEST_DEBUG
662 QTAILQ_INIT(&s->kvm_sw_breakpoints);
663 #endif
664 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
665 s->slots[i].slot = i;
666 }
667 s->vmfd = -1;
668 s->fd = qemu_open("/dev/kvm", O_RDWR);
669 if (s->fd == -1) {
670 fprintf(stderr, "Could not access KVM kernel module: %m\n");
671 ret = -errno;
672 goto err;
673 }
674
675 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
676 if (ret < KVM_API_VERSION) {
677 if (ret > 0) {
678 ret = -EINVAL;
679 }
680 fprintf(stderr, "kvm version too old\n");
681 goto err;
682 }
683
684 if (ret > KVM_API_VERSION) {
685 ret = -EINVAL;
686 fprintf(stderr, "kvm version not supported\n");
687 goto err;
688 }
689
690 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
691 if (s->vmfd < 0) {
692 #ifdef TARGET_S390X
693 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
694 "your host kernel command line\n");
695 #endif
696 goto err;
697 }
698
699 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
700 if (!missing_cap) {
701 missing_cap =
702 kvm_check_extension_list(s, kvm_arch_required_capabilities);
703 }
704 if (missing_cap) {
705 ret = -EINVAL;
706 fprintf(stderr, "kvm does not support %s\n%s",
707 missing_cap->name, upgrade_note);
708 goto err;
709 }
710
711 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
712
713 s->broken_set_mem_region = 1;
714 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
715 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
716 if (ret > 0) {
717 s->broken_set_mem_region = 0;
718 }
719 #endif
720
721 s->vcpu_events = 0;
722 #ifdef KVM_CAP_VCPU_EVENTS
723 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
724 #endif
725
726 s->robust_singlestep = 0;
727 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
728 s->robust_singlestep =
729 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
730 #endif
731
732 s->debugregs = 0;
733 #ifdef KVM_CAP_DEBUGREGS
734 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
735 #endif
736
737 s->xsave = 0;
738 #ifdef KVM_CAP_XSAVE
739 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
740 #endif
741
742 s->xcrs = 0;
743 #ifdef KVM_CAP_XCRS
744 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
745 #endif
746
747 ret = kvm_arch_init(s);
748 if (ret < 0) {
749 goto err;
750 }
751
752 kvm_state = s;
753 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
754
755 s->many_ioeventfds = kvm_check_many_ioeventfds();
756
757 return 0;
758
759 err:
760 if (s) {
761 if (s->vmfd != -1) {
762 close(s->vmfd);
763 }
764 if (s->fd != -1) {
765 close(s->fd);
766 }
767 }
768 qemu_free(s);
769
770 return ret;
771 }
772
773 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
774 uint32_t count)
775 {
776 int i;
777 uint8_t *ptr = data;
778
779 for (i = 0; i < count; i++) {
780 if (direction == KVM_EXIT_IO_IN) {
781 switch (size) {
782 case 1:
783 stb_p(ptr, cpu_inb(port));
784 break;
785 case 2:
786 stw_p(ptr, cpu_inw(port));
787 break;
788 case 4:
789 stl_p(ptr, cpu_inl(port));
790 break;
791 }
792 } else {
793 switch (size) {
794 case 1:
795 cpu_outb(port, ldub_p(ptr));
796 break;
797 case 2:
798 cpu_outw(port, lduw_p(ptr));
799 break;
800 case 4:
801 cpu_outl(port, ldl_p(ptr));
802 break;
803 }
804 }
805
806 ptr += size;
807 }
808 }
809
810 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
811 static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
812 {
813 fprintf(stderr, "KVM internal error.");
814 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
815 int i;
816
817 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
818 for (i = 0; i < run->internal.ndata; ++i) {
819 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
820 i, (uint64_t)run->internal.data[i]);
821 }
822 } else {
823 fprintf(stderr, "\n");
824 }
825 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
826 fprintf(stderr, "emulation failure\n");
827 if (!kvm_arch_stop_on_emulation_error(env)) {
828 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
829 return 0;
830 }
831 }
832 /* FIXME: Should trigger a qmp message to let management know
833 * something went wrong.
834 */
835 return -1;
836 }
837 #endif
838
839 void kvm_flush_coalesced_mmio_buffer(void)
840 {
841 KVMState *s = kvm_state;
842 if (s->coalesced_mmio_ring) {
843 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
844 while (ring->first != ring->last) {
845 struct kvm_coalesced_mmio *ent;
846
847 ent = &ring->coalesced_mmio[ring->first];
848
849 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
850 smp_wmb();
851 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
852 }
853 }
854 }
855
856 static void do_kvm_cpu_synchronize_state(void *_env)
857 {
858 CPUState *env = _env;
859
860 if (!env->kvm_vcpu_dirty) {
861 kvm_arch_get_registers(env);
862 env->kvm_vcpu_dirty = 1;
863 }
864 }
865
866 void kvm_cpu_synchronize_state(CPUState *env)
867 {
868 if (!env->kvm_vcpu_dirty) {
869 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
870 }
871 }
872
873 void kvm_cpu_synchronize_post_reset(CPUState *env)
874 {
875 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
876 env->kvm_vcpu_dirty = 0;
877 }
878
879 void kvm_cpu_synchronize_post_init(CPUState *env)
880 {
881 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
882 env->kvm_vcpu_dirty = 0;
883 }
884
885 int kvm_cpu_exec(CPUState *env)
886 {
887 struct kvm_run *run = env->kvm_run;
888 int ret;
889
890 DPRINTF("kvm_cpu_exec()\n");
891
892 if (kvm_arch_process_irqchip_events(env)) {
893 env->exit_request = 0;
894 return EXCP_HLT;
895 }
896
897 cpu_single_env = env;
898
899 do {
900 if (env->kvm_vcpu_dirty) {
901 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
902 env->kvm_vcpu_dirty = 0;
903 }
904
905 kvm_arch_pre_run(env, run);
906 if (env->exit_request) {
907 DPRINTF("interrupt exit requested\n");
908 /*
909 * KVM requires us to reenter the kernel after IO exits to complete
910 * instruction emulation. This self-signal will ensure that we
911 * leave ASAP again.
912 */
913 qemu_cpu_kick_self();
914 }
915 cpu_single_env = NULL;
916 qemu_mutex_unlock_iothread();
917
918 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
919
920 qemu_mutex_lock_iothread();
921 cpu_single_env = env;
922 kvm_arch_post_run(env, run);
923
924 kvm_flush_coalesced_mmio_buffer();
925
926 if (ret == -EINTR || ret == -EAGAIN) {
927 DPRINTF("io window exit\n");
928 ret = 0;
929 break;
930 }
931
932 if (ret < 0) {
933 DPRINTF("kvm run failed %s\n", strerror(-ret));
934 abort();
935 }
936
937 ret = 0; /* exit loop */
938 switch (run->exit_reason) {
939 case KVM_EXIT_IO:
940 DPRINTF("handle_io\n");
941 kvm_handle_io(run->io.port,
942 (uint8_t *)run + run->io.data_offset,
943 run->io.direction,
944 run->io.size,
945 run->io.count);
946 ret = 1;
947 break;
948 case KVM_EXIT_MMIO:
949 DPRINTF("handle_mmio\n");
950 cpu_physical_memory_rw(run->mmio.phys_addr,
951 run->mmio.data,
952 run->mmio.len,
953 run->mmio.is_write);
954 ret = 1;
955 break;
956 case KVM_EXIT_IRQ_WINDOW_OPEN:
957 DPRINTF("irq_window_open\n");
958 break;
959 case KVM_EXIT_SHUTDOWN:
960 DPRINTF("shutdown\n");
961 qemu_system_reset_request();
962 break;
963 case KVM_EXIT_UNKNOWN:
964 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
965 (uint64_t)run->hw.hardware_exit_reason);
966 ret = -1;
967 break;
968 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
969 case KVM_EXIT_INTERNAL_ERROR:
970 ret = kvm_handle_internal_error(env, run);
971 break;
972 #endif
973 case KVM_EXIT_DEBUG:
974 DPRINTF("kvm_exit_debug\n");
975 #ifdef KVM_CAP_SET_GUEST_DEBUG
976 if (kvm_arch_debug(&run->debug.arch)) {
977 ret = EXCP_DEBUG;
978 goto out;
979 }
980 /* re-enter, this exception was guest-internal */
981 ret = 1;
982 #endif /* KVM_CAP_SET_GUEST_DEBUG */
983 break;
984 default:
985 DPRINTF("kvm_arch_handle_exit\n");
986 ret = kvm_arch_handle_exit(env, run);
987 break;
988 }
989 } while (ret > 0);
990
991 if (ret < 0) {
992 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
993 vm_stop(VMSTOP_PANIC);
994 }
995 ret = EXCP_INTERRUPT;
996
997 out:
998 env->exit_request = 0;
999 cpu_single_env = NULL;
1000 return ret;
1001 }
1002
1003 int kvm_ioctl(KVMState *s, int type, ...)
1004 {
1005 int ret;
1006 void *arg;
1007 va_list ap;
1008
1009 va_start(ap, type);
1010 arg = va_arg(ap, void *);
1011 va_end(ap);
1012
1013 ret = ioctl(s->fd, type, arg);
1014 if (ret == -1) {
1015 ret = -errno;
1016 }
1017 return ret;
1018 }
1019
1020 int kvm_vm_ioctl(KVMState *s, int type, ...)
1021 {
1022 int ret;
1023 void *arg;
1024 va_list ap;
1025
1026 va_start(ap, type);
1027 arg = va_arg(ap, void *);
1028 va_end(ap);
1029
1030 ret = ioctl(s->vmfd, type, arg);
1031 if (ret == -1) {
1032 ret = -errno;
1033 }
1034 return ret;
1035 }
1036
1037 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1038 {
1039 int ret;
1040 void *arg;
1041 va_list ap;
1042
1043 va_start(ap, type);
1044 arg = va_arg(ap, void *);
1045 va_end(ap);
1046
1047 ret = ioctl(env->kvm_fd, type, arg);
1048 if (ret == -1) {
1049 ret = -errno;
1050 }
1051 return ret;
1052 }
1053
1054 int kvm_has_sync_mmu(void)
1055 {
1056 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1057 }
1058
1059 int kvm_has_vcpu_events(void)
1060 {
1061 return kvm_state->vcpu_events;
1062 }
1063
1064 int kvm_has_robust_singlestep(void)
1065 {
1066 return kvm_state->robust_singlestep;
1067 }
1068
1069 int kvm_has_debugregs(void)
1070 {
1071 return kvm_state->debugregs;
1072 }
1073
1074 int kvm_has_xsave(void)
1075 {
1076 return kvm_state->xsave;
1077 }
1078
1079 int kvm_has_xcrs(void)
1080 {
1081 return kvm_state->xcrs;
1082 }
1083
1084 int kvm_has_many_ioeventfds(void)
1085 {
1086 if (!kvm_enabled()) {
1087 return 0;
1088 }
1089 return kvm_state->many_ioeventfds;
1090 }
1091
1092 void kvm_setup_guest_memory(void *start, size_t size)
1093 {
1094 if (!kvm_has_sync_mmu()) {
1095 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1096
1097 if (ret) {
1098 perror("qemu_madvise");
1099 fprintf(stderr,
1100 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1101 exit(1);
1102 }
1103 }
1104 }
1105
1106 #ifdef KVM_CAP_SET_GUEST_DEBUG
1107 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1108 target_ulong pc)
1109 {
1110 struct kvm_sw_breakpoint *bp;
1111
1112 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1113 if (bp->pc == pc) {
1114 return bp;
1115 }
1116 }
1117 return NULL;
1118 }
1119
1120 int kvm_sw_breakpoints_active(CPUState *env)
1121 {
1122 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1123 }
1124
1125 struct kvm_set_guest_debug_data {
1126 struct kvm_guest_debug dbg;
1127 CPUState *env;
1128 int err;
1129 };
1130
1131 static void kvm_invoke_set_guest_debug(void *data)
1132 {
1133 struct kvm_set_guest_debug_data *dbg_data = data;
1134 CPUState *env = dbg_data->env;
1135
1136 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1137 }
1138
1139 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1140 {
1141 struct kvm_set_guest_debug_data data;
1142
1143 data.dbg.control = reinject_trap;
1144
1145 if (env->singlestep_enabled) {
1146 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1147 }
1148 kvm_arch_update_guest_debug(env, &data.dbg);
1149 data.env = env;
1150
1151 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1152 return data.err;
1153 }
1154
1155 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1156 target_ulong len, int type)
1157 {
1158 struct kvm_sw_breakpoint *bp;
1159 CPUState *env;
1160 int err;
1161
1162 if (type == GDB_BREAKPOINT_SW) {
1163 bp = kvm_find_sw_breakpoint(current_env, addr);
1164 if (bp) {
1165 bp->use_count++;
1166 return 0;
1167 }
1168
1169 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1170 if (!bp) {
1171 return -ENOMEM;
1172 }
1173
1174 bp->pc = addr;
1175 bp->use_count = 1;
1176 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1177 if (err) {
1178 free(bp);
1179 return err;
1180 }
1181
1182 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1183 bp, entry);
1184 } else {
1185 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1186 if (err) {
1187 return err;
1188 }
1189 }
1190
1191 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1192 err = kvm_update_guest_debug(env, 0);
1193 if (err) {
1194 return err;
1195 }
1196 }
1197 return 0;
1198 }
1199
1200 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1201 target_ulong len, int type)
1202 {
1203 struct kvm_sw_breakpoint *bp;
1204 CPUState *env;
1205 int err;
1206
1207 if (type == GDB_BREAKPOINT_SW) {
1208 bp = kvm_find_sw_breakpoint(current_env, addr);
1209 if (!bp) {
1210 return -ENOENT;
1211 }
1212
1213 if (bp->use_count > 1) {
1214 bp->use_count--;
1215 return 0;
1216 }
1217
1218 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1219 if (err) {
1220 return err;
1221 }
1222
1223 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1224 qemu_free(bp);
1225 } else {
1226 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1227 if (err) {
1228 return err;
1229 }
1230 }
1231
1232 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1233 err = kvm_update_guest_debug(env, 0);
1234 if (err) {
1235 return err;
1236 }
1237 }
1238 return 0;
1239 }
1240
1241 void kvm_remove_all_breakpoints(CPUState *current_env)
1242 {
1243 struct kvm_sw_breakpoint *bp, *next;
1244 KVMState *s = current_env->kvm_state;
1245 CPUState *env;
1246
1247 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1248 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1249 /* Try harder to find a CPU that currently sees the breakpoint. */
1250 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1251 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1252 break;
1253 }
1254 }
1255 }
1256 }
1257 kvm_arch_remove_all_hw_breakpoints();
1258
1259 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1260 kvm_update_guest_debug(env, 0);
1261 }
1262 }
1263
1264 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1265
1266 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1267 {
1268 return -EINVAL;
1269 }
1270
1271 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1272 target_ulong len, int type)
1273 {
1274 return -EINVAL;
1275 }
1276
1277 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1278 target_ulong len, int type)
1279 {
1280 return -EINVAL;
1281 }
1282
1283 void kvm_remove_all_breakpoints(CPUState *current_env)
1284 {
1285 }
1286 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1287
1288 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1289 {
1290 struct kvm_signal_mask *sigmask;
1291 int r;
1292
1293 if (!sigset) {
1294 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1295 }
1296
1297 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1298
1299 sigmask->len = 8;
1300 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1301 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1302 free(sigmask);
1303
1304 return r;
1305 }
1306
1307 int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1308 {
1309 #ifdef KVM_IOEVENTFD
1310 int ret;
1311 struct kvm_ioeventfd iofd;
1312
1313 iofd.datamatch = val;
1314 iofd.addr = addr;
1315 iofd.len = 4;
1316 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1317 iofd.fd = fd;
1318
1319 if (!kvm_enabled()) {
1320 return -ENOSYS;
1321 }
1322
1323 if (!assign) {
1324 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1325 }
1326
1327 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1328
1329 if (ret < 0) {
1330 return -errno;
1331 }
1332
1333 return 0;
1334 #else
1335 return -ENOSYS;
1336 #endif
1337 }
1338
1339 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1340 {
1341 #ifdef KVM_IOEVENTFD
1342 struct kvm_ioeventfd kick = {
1343 .datamatch = val,
1344 .addr = addr,
1345 .len = 2,
1346 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1347 .fd = fd,
1348 };
1349 int r;
1350 if (!kvm_enabled()) {
1351 return -ENOSYS;
1352 }
1353 if (!assign) {
1354 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1355 }
1356 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1357 if (r < 0) {
1358 return r;
1359 }
1360 return 0;
1361 #else
1362 return -ENOSYS;
1363 #endif
1364 }
1365
1366 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1367 {
1368 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1369 }
1370
1371 int kvm_on_sigbus(int code, void *addr)
1372 {
1373 return kvm_arch_on_sigbus(code, addr);
1374 }