]> git.proxmox.com Git - qemu.git/blob - kvm-all.c
Remove l1_phys_map from userspace emulation
[qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29
30 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
31 #define PAGE_SIZE TARGET_PAGE_SIZE
32
33 //#define DEBUG_KVM
34
35 #ifdef DEBUG_KVM
36 #define dprintf(fmt, ...) \
37 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
38 #else
39 #define dprintf(fmt, ...) \
40 do { } while (0)
41 #endif
42
43 typedef struct KVMSlot
44 {
45 target_phys_addr_t start_addr;
46 ram_addr_t memory_size;
47 ram_addr_t phys_offset;
48 int slot;
49 int flags;
50 } KVMSlot;
51
52 typedef struct kvm_dirty_log KVMDirtyLog;
53
54 int kvm_allowed = 0;
55
56 struct KVMState
57 {
58 KVMSlot slots[32];
59 int fd;
60 int vmfd;
61 int coalesced_mmio;
62 #ifdef KVM_CAP_COALESCED_MMIO
63 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
64 #endif
65 int broken_set_mem_region;
66 int migration_log;
67 int vcpu_events;
68 #ifdef KVM_CAP_SET_GUEST_DEBUG
69 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
70 #endif
71 int irqchip_in_kernel;
72 int pit_in_kernel;
73 };
74
75 static KVMState *kvm_state;
76
77 static KVMSlot *kvm_alloc_slot(KVMState *s)
78 {
79 int i;
80
81 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
82 /* KVM private memory slots */
83 if (i >= 8 && i < 12)
84 continue;
85 if (s->slots[i].memory_size == 0)
86 return &s->slots[i];
87 }
88
89 fprintf(stderr, "%s: no free slot available\n", __func__);
90 abort();
91 }
92
93 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
94 target_phys_addr_t start_addr,
95 target_phys_addr_t end_addr)
96 {
97 int i;
98
99 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
100 KVMSlot *mem = &s->slots[i];
101
102 if (start_addr == mem->start_addr &&
103 end_addr == mem->start_addr + mem->memory_size) {
104 return mem;
105 }
106 }
107
108 return NULL;
109 }
110
111 /*
112 * Find overlapping slot with lowest start address
113 */
114 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
115 target_phys_addr_t start_addr,
116 target_phys_addr_t end_addr)
117 {
118 KVMSlot *found = NULL;
119 int i;
120
121 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
122 KVMSlot *mem = &s->slots[i];
123
124 if (mem->memory_size == 0 ||
125 (found && found->start_addr < mem->start_addr)) {
126 continue;
127 }
128
129 if (end_addr > mem->start_addr &&
130 start_addr < mem->start_addr + mem->memory_size) {
131 found = mem;
132 }
133 }
134
135 return found;
136 }
137
138 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
139 {
140 struct kvm_userspace_memory_region mem;
141
142 mem.slot = slot->slot;
143 mem.guest_phys_addr = slot->start_addr;
144 mem.memory_size = slot->memory_size;
145 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
146 mem.flags = slot->flags;
147 if (s->migration_log) {
148 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
149 }
150 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
151 }
152
153 static void kvm_reset_vcpu(void *opaque)
154 {
155 CPUState *env = opaque;
156
157 kvm_arch_reset_vcpu(env);
158 if (kvm_arch_put_registers(env)) {
159 fprintf(stderr, "Fatal: kvm vcpu reset failed\n");
160 abort();
161 }
162 }
163
164 int kvm_irqchip_in_kernel(void)
165 {
166 return kvm_state->irqchip_in_kernel;
167 }
168
169 int kvm_pit_in_kernel(void)
170 {
171 return kvm_state->pit_in_kernel;
172 }
173
174
175 int kvm_init_vcpu(CPUState *env)
176 {
177 KVMState *s = kvm_state;
178 long mmap_size;
179 int ret;
180
181 dprintf("kvm_init_vcpu\n");
182
183 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
184 if (ret < 0) {
185 dprintf("kvm_create_vcpu failed\n");
186 goto err;
187 }
188
189 env->kvm_fd = ret;
190 env->kvm_state = s;
191
192 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
193 if (mmap_size < 0) {
194 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
195 goto err;
196 }
197
198 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
199 env->kvm_fd, 0);
200 if (env->kvm_run == MAP_FAILED) {
201 ret = -errno;
202 dprintf("mmap'ing vcpu state failed\n");
203 goto err;
204 }
205
206 #ifdef KVM_CAP_COALESCED_MMIO
207 if (s->coalesced_mmio && !s->coalesced_mmio_ring)
208 s->coalesced_mmio_ring = (void *) env->kvm_run +
209 s->coalesced_mmio * PAGE_SIZE;
210 #endif
211
212 ret = kvm_arch_init_vcpu(env);
213 if (ret == 0) {
214 qemu_register_reset(kvm_reset_vcpu, env);
215 kvm_arch_reset_vcpu(env);
216 ret = kvm_arch_put_registers(env);
217 }
218 err:
219 return ret;
220 }
221
222 /*
223 * dirty pages logging control
224 */
225 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
226 ram_addr_t size, int flags, int mask)
227 {
228 KVMState *s = kvm_state;
229 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
230 int old_flags;
231
232 if (mem == NULL) {
233 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
234 TARGET_FMT_plx "\n", __func__, phys_addr,
235 (target_phys_addr_t)(phys_addr + size - 1));
236 return -EINVAL;
237 }
238
239 old_flags = mem->flags;
240
241 flags = (mem->flags & ~mask) | flags;
242 mem->flags = flags;
243
244 /* If nothing changed effectively, no need to issue ioctl */
245 if (s->migration_log) {
246 flags |= KVM_MEM_LOG_DIRTY_PAGES;
247 }
248 if (flags == old_flags) {
249 return 0;
250 }
251
252 return kvm_set_user_memory_region(s, mem);
253 }
254
255 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
256 {
257 return kvm_dirty_pages_log_change(phys_addr, size,
258 KVM_MEM_LOG_DIRTY_PAGES,
259 KVM_MEM_LOG_DIRTY_PAGES);
260 }
261
262 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
263 {
264 return kvm_dirty_pages_log_change(phys_addr, size,
265 0,
266 KVM_MEM_LOG_DIRTY_PAGES);
267 }
268
269 static int kvm_set_migration_log(int enable)
270 {
271 KVMState *s = kvm_state;
272 KVMSlot *mem;
273 int i, err;
274
275 s->migration_log = enable;
276
277 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
278 mem = &s->slots[i];
279
280 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
281 continue;
282 }
283 err = kvm_set_user_memory_region(s, mem);
284 if (err) {
285 return err;
286 }
287 }
288 return 0;
289 }
290
291 static int test_le_bit(unsigned long nr, unsigned char *addr)
292 {
293 return (addr[nr >> 3] >> (nr & 7)) & 1;
294 }
295
296 /**
297 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
298 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
299 * This means all bits are set to dirty.
300 *
301 * @start_add: start of logged region.
302 * @end_addr: end of logged region.
303 */
304 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
305 target_phys_addr_t end_addr)
306 {
307 KVMState *s = kvm_state;
308 unsigned long size, allocated_size = 0;
309 target_phys_addr_t phys_addr;
310 ram_addr_t addr;
311 KVMDirtyLog d;
312 KVMSlot *mem;
313 int ret = 0;
314
315 d.dirty_bitmap = NULL;
316 while (start_addr < end_addr) {
317 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
318 if (mem == NULL) {
319 break;
320 }
321
322 size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
323 if (!d.dirty_bitmap) {
324 d.dirty_bitmap = qemu_malloc(size);
325 } else if (size > allocated_size) {
326 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
327 }
328 allocated_size = size;
329 memset(d.dirty_bitmap, 0, allocated_size);
330
331 d.slot = mem->slot;
332
333 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
334 dprintf("ioctl failed %d\n", errno);
335 ret = -1;
336 break;
337 }
338
339 for (phys_addr = mem->start_addr, addr = mem->phys_offset;
340 phys_addr < mem->start_addr + mem->memory_size;
341 phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
342 unsigned char *bitmap = (unsigned char *)d.dirty_bitmap;
343 unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
344
345 if (test_le_bit(nr, bitmap)) {
346 cpu_physical_memory_set_dirty(addr);
347 }
348 }
349 start_addr = phys_addr;
350 }
351 qemu_free(d.dirty_bitmap);
352
353 return ret;
354 }
355
356 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
357 {
358 int ret = -ENOSYS;
359 #ifdef KVM_CAP_COALESCED_MMIO
360 KVMState *s = kvm_state;
361
362 if (s->coalesced_mmio) {
363 struct kvm_coalesced_mmio_zone zone;
364
365 zone.addr = start;
366 zone.size = size;
367
368 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
369 }
370 #endif
371
372 return ret;
373 }
374
375 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
376 {
377 int ret = -ENOSYS;
378 #ifdef KVM_CAP_COALESCED_MMIO
379 KVMState *s = kvm_state;
380
381 if (s->coalesced_mmio) {
382 struct kvm_coalesced_mmio_zone zone;
383
384 zone.addr = start;
385 zone.size = size;
386
387 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
388 }
389 #endif
390
391 return ret;
392 }
393
394 int kvm_check_extension(KVMState *s, unsigned int extension)
395 {
396 int ret;
397
398 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
399 if (ret < 0) {
400 ret = 0;
401 }
402
403 return ret;
404 }
405
406 static void kvm_set_phys_mem(target_phys_addr_t start_addr,
407 ram_addr_t size,
408 ram_addr_t phys_offset)
409 {
410 KVMState *s = kvm_state;
411 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
412 KVMSlot *mem, old;
413 int err;
414
415 if (start_addr & ~TARGET_PAGE_MASK) {
416 if (flags >= IO_MEM_UNASSIGNED) {
417 if (!kvm_lookup_overlapping_slot(s, start_addr,
418 start_addr + size)) {
419 return;
420 }
421 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
422 } else {
423 fprintf(stderr, "Only page-aligned memory slots supported\n");
424 }
425 abort();
426 }
427
428 /* KVM does not support read-only slots */
429 phys_offset &= ~IO_MEM_ROM;
430
431 while (1) {
432 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
433 if (!mem) {
434 break;
435 }
436
437 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
438 (start_addr + size <= mem->start_addr + mem->memory_size) &&
439 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
440 /* The new slot fits into the existing one and comes with
441 * identical parameters - nothing to be done. */
442 return;
443 }
444
445 old = *mem;
446
447 /* unregister the overlapping slot */
448 mem->memory_size = 0;
449 err = kvm_set_user_memory_region(s, mem);
450 if (err) {
451 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
452 __func__, strerror(-err));
453 abort();
454 }
455
456 /* Workaround for older KVM versions: we can't join slots, even not by
457 * unregistering the previous ones and then registering the larger
458 * slot. We have to maintain the existing fragmentation. Sigh.
459 *
460 * This workaround assumes that the new slot starts at the same
461 * address as the first existing one. If not or if some overlapping
462 * slot comes around later, we will fail (not seen in practice so far)
463 * - and actually require a recent KVM version. */
464 if (s->broken_set_mem_region &&
465 old.start_addr == start_addr && old.memory_size < size &&
466 flags < IO_MEM_UNASSIGNED) {
467 mem = kvm_alloc_slot(s);
468 mem->memory_size = old.memory_size;
469 mem->start_addr = old.start_addr;
470 mem->phys_offset = old.phys_offset;
471 mem->flags = 0;
472
473 err = kvm_set_user_memory_region(s, mem);
474 if (err) {
475 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
476 strerror(-err));
477 abort();
478 }
479
480 start_addr += old.memory_size;
481 phys_offset += old.memory_size;
482 size -= old.memory_size;
483 continue;
484 }
485
486 /* register prefix slot */
487 if (old.start_addr < start_addr) {
488 mem = kvm_alloc_slot(s);
489 mem->memory_size = start_addr - old.start_addr;
490 mem->start_addr = old.start_addr;
491 mem->phys_offset = old.phys_offset;
492 mem->flags = 0;
493
494 err = kvm_set_user_memory_region(s, mem);
495 if (err) {
496 fprintf(stderr, "%s: error registering prefix slot: %s\n",
497 __func__, strerror(-err));
498 abort();
499 }
500 }
501
502 /* register suffix slot */
503 if (old.start_addr + old.memory_size > start_addr + size) {
504 ram_addr_t size_delta;
505
506 mem = kvm_alloc_slot(s);
507 mem->start_addr = start_addr + size;
508 size_delta = mem->start_addr - old.start_addr;
509 mem->memory_size = old.memory_size - size_delta;
510 mem->phys_offset = old.phys_offset + size_delta;
511 mem->flags = 0;
512
513 err = kvm_set_user_memory_region(s, mem);
514 if (err) {
515 fprintf(stderr, "%s: error registering suffix slot: %s\n",
516 __func__, strerror(-err));
517 abort();
518 }
519 }
520 }
521
522 /* in case the KVM bug workaround already "consumed" the new slot */
523 if (!size)
524 return;
525
526 /* KVM does not need to know about this memory */
527 if (flags >= IO_MEM_UNASSIGNED)
528 return;
529
530 mem = kvm_alloc_slot(s);
531 mem->memory_size = size;
532 mem->start_addr = start_addr;
533 mem->phys_offset = phys_offset;
534 mem->flags = 0;
535
536 err = kvm_set_user_memory_region(s, mem);
537 if (err) {
538 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
539 strerror(-err));
540 abort();
541 }
542 }
543
544 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
545 target_phys_addr_t start_addr,
546 ram_addr_t size,
547 ram_addr_t phys_offset)
548 {
549 kvm_set_phys_mem(start_addr, size, phys_offset);
550 }
551
552 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
553 target_phys_addr_t start_addr,
554 target_phys_addr_t end_addr)
555 {
556 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
557 }
558
559 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
560 int enable)
561 {
562 return kvm_set_migration_log(enable);
563 }
564
565 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
566 .set_memory = kvm_client_set_memory,
567 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
568 .migration_log = kvm_client_migration_log,
569 };
570
571 int kvm_init(int smp_cpus)
572 {
573 static const char upgrade_note[] =
574 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
575 "(see http://sourceforge.net/projects/kvm).\n";
576 KVMState *s;
577 int ret;
578 int i;
579
580 if (smp_cpus > 1) {
581 fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
582 return -EINVAL;
583 }
584
585 s = qemu_mallocz(sizeof(KVMState));
586
587 #ifdef KVM_CAP_SET_GUEST_DEBUG
588 QTAILQ_INIT(&s->kvm_sw_breakpoints);
589 #endif
590 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
591 s->slots[i].slot = i;
592
593 s->vmfd = -1;
594 s->fd = qemu_open("/dev/kvm", O_RDWR);
595 if (s->fd == -1) {
596 fprintf(stderr, "Could not access KVM kernel module: %m\n");
597 ret = -errno;
598 goto err;
599 }
600
601 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
602 if (ret < KVM_API_VERSION) {
603 if (ret > 0)
604 ret = -EINVAL;
605 fprintf(stderr, "kvm version too old\n");
606 goto err;
607 }
608
609 if (ret > KVM_API_VERSION) {
610 ret = -EINVAL;
611 fprintf(stderr, "kvm version not supported\n");
612 goto err;
613 }
614
615 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
616 if (s->vmfd < 0)
617 goto err;
618
619 /* initially, KVM allocated its own memory and we had to jump through
620 * hooks to make phys_ram_base point to this. Modern versions of KVM
621 * just use a user allocated buffer so we can use regular pages
622 * unmodified. Make sure we have a sufficiently modern version of KVM.
623 */
624 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
625 ret = -EINVAL;
626 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
627 upgrade_note);
628 goto err;
629 }
630
631 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
632 * destroyed properly. Since we rely on this capability, refuse to work
633 * with any kernel without this capability. */
634 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
635 ret = -EINVAL;
636
637 fprintf(stderr,
638 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
639 upgrade_note);
640 goto err;
641 }
642
643 s->coalesced_mmio = 0;
644 #ifdef KVM_CAP_COALESCED_MMIO
645 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
646 s->coalesced_mmio_ring = NULL;
647 #endif
648
649 s->broken_set_mem_region = 1;
650 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
651 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
652 if (ret > 0) {
653 s->broken_set_mem_region = 0;
654 }
655 #endif
656
657 s->vcpu_events = 0;
658 #ifdef KVM_CAP_VCPU_EVENTS
659 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
660 #endif
661
662 ret = kvm_arch_init(s, smp_cpus);
663 if (ret < 0)
664 goto err;
665
666 kvm_state = s;
667 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
668
669 return 0;
670
671 err:
672 if (s) {
673 if (s->vmfd != -1)
674 close(s->vmfd);
675 if (s->fd != -1)
676 close(s->fd);
677 }
678 qemu_free(s);
679
680 return ret;
681 }
682
683 static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
684 uint32_t count)
685 {
686 int i;
687 uint8_t *ptr = data;
688
689 for (i = 0; i < count; i++) {
690 if (direction == KVM_EXIT_IO_IN) {
691 switch (size) {
692 case 1:
693 stb_p(ptr, cpu_inb(port));
694 break;
695 case 2:
696 stw_p(ptr, cpu_inw(port));
697 break;
698 case 4:
699 stl_p(ptr, cpu_inl(port));
700 break;
701 }
702 } else {
703 switch (size) {
704 case 1:
705 cpu_outb(port, ldub_p(ptr));
706 break;
707 case 2:
708 cpu_outw(port, lduw_p(ptr));
709 break;
710 case 4:
711 cpu_outl(port, ldl_p(ptr));
712 break;
713 }
714 }
715
716 ptr += size;
717 }
718
719 return 1;
720 }
721
722 void kvm_flush_coalesced_mmio_buffer(void)
723 {
724 #ifdef KVM_CAP_COALESCED_MMIO
725 KVMState *s = kvm_state;
726 if (s->coalesced_mmio_ring) {
727 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
728 while (ring->first != ring->last) {
729 struct kvm_coalesced_mmio *ent;
730
731 ent = &ring->coalesced_mmio[ring->first];
732
733 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
734 smp_wmb();
735 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
736 }
737 }
738 #endif
739 }
740
741 void kvm_cpu_synchronize_state(CPUState *env)
742 {
743 if (!env->kvm_vcpu_dirty) {
744 kvm_arch_get_registers(env);
745 env->kvm_vcpu_dirty = 1;
746 }
747 }
748
749 int kvm_cpu_exec(CPUState *env)
750 {
751 struct kvm_run *run = env->kvm_run;
752 int ret;
753
754 dprintf("kvm_cpu_exec()\n");
755
756 do {
757 #ifndef CONFIG_IOTHREAD
758 if (env->exit_request) {
759 dprintf("interrupt exit requested\n");
760 ret = 0;
761 break;
762 }
763 #endif
764
765 if (env->kvm_vcpu_dirty) {
766 kvm_arch_put_registers(env);
767 env->kvm_vcpu_dirty = 0;
768 }
769
770 kvm_arch_pre_run(env, run);
771 qemu_mutex_unlock_iothread();
772 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
773 qemu_mutex_lock_iothread();
774 kvm_arch_post_run(env, run);
775
776 if (ret == -EINTR || ret == -EAGAIN) {
777 cpu_exit(env);
778 dprintf("io window exit\n");
779 ret = 0;
780 break;
781 }
782
783 if (ret < 0) {
784 dprintf("kvm run failed %s\n", strerror(-ret));
785 abort();
786 }
787
788 kvm_flush_coalesced_mmio_buffer();
789
790 ret = 0; /* exit loop */
791 switch (run->exit_reason) {
792 case KVM_EXIT_IO:
793 dprintf("handle_io\n");
794 ret = kvm_handle_io(run->io.port,
795 (uint8_t *)run + run->io.data_offset,
796 run->io.direction,
797 run->io.size,
798 run->io.count);
799 break;
800 case KVM_EXIT_MMIO:
801 dprintf("handle_mmio\n");
802 cpu_physical_memory_rw(run->mmio.phys_addr,
803 run->mmio.data,
804 run->mmio.len,
805 run->mmio.is_write);
806 ret = 1;
807 break;
808 case KVM_EXIT_IRQ_WINDOW_OPEN:
809 dprintf("irq_window_open\n");
810 break;
811 case KVM_EXIT_SHUTDOWN:
812 dprintf("shutdown\n");
813 qemu_system_reset_request();
814 ret = 1;
815 break;
816 case KVM_EXIT_UNKNOWN:
817 dprintf("kvm_exit_unknown\n");
818 break;
819 case KVM_EXIT_FAIL_ENTRY:
820 dprintf("kvm_exit_fail_entry\n");
821 break;
822 case KVM_EXIT_EXCEPTION:
823 dprintf("kvm_exit_exception\n");
824 break;
825 case KVM_EXIT_DEBUG:
826 dprintf("kvm_exit_debug\n");
827 #ifdef KVM_CAP_SET_GUEST_DEBUG
828 if (kvm_arch_debug(&run->debug.arch)) {
829 gdb_set_stop_cpu(env);
830 vm_stop(EXCP_DEBUG);
831 env->exception_index = EXCP_DEBUG;
832 return 0;
833 }
834 /* re-enter, this exception was guest-internal */
835 ret = 1;
836 #endif /* KVM_CAP_SET_GUEST_DEBUG */
837 break;
838 default:
839 dprintf("kvm_arch_handle_exit\n");
840 ret = kvm_arch_handle_exit(env, run);
841 break;
842 }
843 } while (ret > 0);
844
845 if (env->exit_request) {
846 env->exit_request = 0;
847 env->exception_index = EXCP_INTERRUPT;
848 }
849
850 return ret;
851 }
852
853 int kvm_ioctl(KVMState *s, int type, ...)
854 {
855 int ret;
856 void *arg;
857 va_list ap;
858
859 va_start(ap, type);
860 arg = va_arg(ap, void *);
861 va_end(ap);
862
863 ret = ioctl(s->fd, type, arg);
864 if (ret == -1)
865 ret = -errno;
866
867 return ret;
868 }
869
870 int kvm_vm_ioctl(KVMState *s, int type, ...)
871 {
872 int ret;
873 void *arg;
874 va_list ap;
875
876 va_start(ap, type);
877 arg = va_arg(ap, void *);
878 va_end(ap);
879
880 ret = ioctl(s->vmfd, type, arg);
881 if (ret == -1)
882 ret = -errno;
883
884 return ret;
885 }
886
887 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
888 {
889 int ret;
890 void *arg;
891 va_list ap;
892
893 va_start(ap, type);
894 arg = va_arg(ap, void *);
895 va_end(ap);
896
897 ret = ioctl(env->kvm_fd, type, arg);
898 if (ret == -1)
899 ret = -errno;
900
901 return ret;
902 }
903
904 int kvm_has_sync_mmu(void)
905 {
906 #ifdef KVM_CAP_SYNC_MMU
907 KVMState *s = kvm_state;
908
909 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
910 #else
911 return 0;
912 #endif
913 }
914
915 int kvm_has_vcpu_events(void)
916 {
917 return kvm_state->vcpu_events;
918 }
919
920 void kvm_setup_guest_memory(void *start, size_t size)
921 {
922 if (!kvm_has_sync_mmu()) {
923 #ifdef MADV_DONTFORK
924 int ret = madvise(start, size, MADV_DONTFORK);
925
926 if (ret) {
927 perror("madvice");
928 exit(1);
929 }
930 #else
931 fprintf(stderr,
932 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
933 exit(1);
934 #endif
935 }
936 }
937
938 #ifdef KVM_CAP_SET_GUEST_DEBUG
939 static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
940 {
941 #ifdef CONFIG_IOTHREAD
942 if (env != cpu_single_env) {
943 abort();
944 }
945 #endif
946 func(data);
947 }
948
949 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
950 target_ulong pc)
951 {
952 struct kvm_sw_breakpoint *bp;
953
954 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
955 if (bp->pc == pc)
956 return bp;
957 }
958 return NULL;
959 }
960
961 int kvm_sw_breakpoints_active(CPUState *env)
962 {
963 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
964 }
965
966 struct kvm_set_guest_debug_data {
967 struct kvm_guest_debug dbg;
968 CPUState *env;
969 int err;
970 };
971
972 static void kvm_invoke_set_guest_debug(void *data)
973 {
974 struct kvm_set_guest_debug_data *dbg_data = data;
975 CPUState *env = dbg_data->env;
976
977 if (env->kvm_vcpu_dirty) {
978 kvm_arch_put_registers(env);
979 env->kvm_vcpu_dirty = 0;
980 }
981 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
982 }
983
984 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
985 {
986 struct kvm_set_guest_debug_data data;
987
988 data.dbg.control = 0;
989 if (env->singlestep_enabled)
990 data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
991
992 kvm_arch_update_guest_debug(env, &data.dbg);
993 data.dbg.control |= reinject_trap;
994 data.env = env;
995
996 on_vcpu(env, kvm_invoke_set_guest_debug, &data);
997 return data.err;
998 }
999
1000 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1001 target_ulong len, int type)
1002 {
1003 struct kvm_sw_breakpoint *bp;
1004 CPUState *env;
1005 int err;
1006
1007 if (type == GDB_BREAKPOINT_SW) {
1008 bp = kvm_find_sw_breakpoint(current_env, addr);
1009 if (bp) {
1010 bp->use_count++;
1011 return 0;
1012 }
1013
1014 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1015 if (!bp)
1016 return -ENOMEM;
1017
1018 bp->pc = addr;
1019 bp->use_count = 1;
1020 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1021 if (err) {
1022 free(bp);
1023 return err;
1024 }
1025
1026 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1027 bp, entry);
1028 } else {
1029 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1030 if (err)
1031 return err;
1032 }
1033
1034 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1035 err = kvm_update_guest_debug(env, 0);
1036 if (err)
1037 return err;
1038 }
1039 return 0;
1040 }
1041
1042 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1043 target_ulong len, int type)
1044 {
1045 struct kvm_sw_breakpoint *bp;
1046 CPUState *env;
1047 int err;
1048
1049 if (type == GDB_BREAKPOINT_SW) {
1050 bp = kvm_find_sw_breakpoint(current_env, addr);
1051 if (!bp)
1052 return -ENOENT;
1053
1054 if (bp->use_count > 1) {
1055 bp->use_count--;
1056 return 0;
1057 }
1058
1059 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1060 if (err)
1061 return err;
1062
1063 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1064 qemu_free(bp);
1065 } else {
1066 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1067 if (err)
1068 return err;
1069 }
1070
1071 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1072 err = kvm_update_guest_debug(env, 0);
1073 if (err)
1074 return err;
1075 }
1076 return 0;
1077 }
1078
1079 void kvm_remove_all_breakpoints(CPUState *current_env)
1080 {
1081 struct kvm_sw_breakpoint *bp, *next;
1082 KVMState *s = current_env->kvm_state;
1083 CPUState *env;
1084
1085 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1086 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1087 /* Try harder to find a CPU that currently sees the breakpoint. */
1088 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1089 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1090 break;
1091 }
1092 }
1093 }
1094 kvm_arch_remove_all_hw_breakpoints();
1095
1096 for (env = first_cpu; env != NULL; env = env->next_cpu)
1097 kvm_update_guest_debug(env, 0);
1098 }
1099
1100 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1101
1102 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1103 {
1104 return -EINVAL;
1105 }
1106
1107 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1108 target_ulong len, int type)
1109 {
1110 return -EINVAL;
1111 }
1112
1113 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1114 target_ulong len, int type)
1115 {
1116 return -EINVAL;
1117 }
1118
1119 void kvm_remove_all_breakpoints(CPUState *current_env)
1120 {
1121 }
1122 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1123
1124 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1125 {
1126 struct kvm_signal_mask *sigmask;
1127 int r;
1128
1129 if (!sigset)
1130 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1131
1132 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1133
1134 sigmask->len = 8;
1135 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1136 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1137 free(sigmask);
1138
1139 return r;
1140 }