]> git.proxmox.com Git - qemu.git/blob - kvm-all.c
target-s390x: avoid AREG0 for FPU helpers
[qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "qemu-option.h"
26 #include "qemu-config.h"
27 #include "sysemu.h"
28 #include "hw/hw.h"
29 #include "hw/msi.h"
30 #include "gdbstub.h"
31 #include "kvm.h"
32 #include "bswap.h"
33 #include "memory.h"
34 #include "exec-memory.h"
35 #include "event_notifier.h"
36
37 /* This check must be after config-host.h is included */
38 #ifdef CONFIG_EVENTFD
39 #include <sys/eventfd.h>
40 #endif
41
42 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
43 #define PAGE_SIZE TARGET_PAGE_SIZE
44
45 //#define DEBUG_KVM
46
47 #ifdef DEBUG_KVM
48 #define DPRINTF(fmt, ...) \
49 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
50 #else
51 #define DPRINTF(fmt, ...) \
52 do { } while (0)
53 #endif
54
55 #define KVM_MSI_HASHTAB_SIZE 256
56
57 typedef struct KVMSlot
58 {
59 target_phys_addr_t start_addr;
60 ram_addr_t memory_size;
61 void *ram;
62 int slot;
63 int flags;
64 } KVMSlot;
65
66 typedef struct kvm_dirty_log KVMDirtyLog;
67
68 struct KVMState
69 {
70 KVMSlot slots[32];
71 int fd;
72 int vmfd;
73 int coalesced_mmio;
74 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
75 bool coalesced_flush_in_progress;
76 int broken_set_mem_region;
77 int migration_log;
78 int vcpu_events;
79 int robust_singlestep;
80 int debugregs;
81 #ifdef KVM_CAP_SET_GUEST_DEBUG
82 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
83 #endif
84 int pit_state2;
85 int xsave, xcrs;
86 int many_ioeventfds;
87 /* The man page (and posix) say ioctl numbers are signed int, but
88 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
89 * unsigned, and treating them as signed here can break things */
90 unsigned irqchip_inject_ioctl;
91 #ifdef KVM_CAP_IRQ_ROUTING
92 struct kvm_irq_routing *irq_routes;
93 int nr_allocated_irq_routes;
94 uint32_t *used_gsi_bitmap;
95 unsigned int gsi_count;
96 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
97 bool direct_msi;
98 #endif
99 };
100
101 KVMState *kvm_state;
102 bool kvm_kernel_irqchip;
103 bool kvm_async_interrupts_allowed;
104 bool kvm_irqfds_allowed;
105 bool kvm_msi_via_irqfd_allowed;
106 bool kvm_gsi_routing_allowed;
107
108 static const KVMCapabilityInfo kvm_required_capabilites[] = {
109 KVM_CAP_INFO(USER_MEMORY),
110 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
111 KVM_CAP_LAST_INFO
112 };
113
114 static KVMSlot *kvm_alloc_slot(KVMState *s)
115 {
116 int i;
117
118 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
119 if (s->slots[i].memory_size == 0) {
120 return &s->slots[i];
121 }
122 }
123
124 fprintf(stderr, "%s: no free slot available\n", __func__);
125 abort();
126 }
127
128 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
129 target_phys_addr_t start_addr,
130 target_phys_addr_t end_addr)
131 {
132 int i;
133
134 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
135 KVMSlot *mem = &s->slots[i];
136
137 if (start_addr == mem->start_addr &&
138 end_addr == mem->start_addr + mem->memory_size) {
139 return mem;
140 }
141 }
142
143 return NULL;
144 }
145
146 /*
147 * Find overlapping slot with lowest start address
148 */
149 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
150 target_phys_addr_t start_addr,
151 target_phys_addr_t end_addr)
152 {
153 KVMSlot *found = NULL;
154 int i;
155
156 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
157 KVMSlot *mem = &s->slots[i];
158
159 if (mem->memory_size == 0 ||
160 (found && found->start_addr < mem->start_addr)) {
161 continue;
162 }
163
164 if (end_addr > mem->start_addr &&
165 start_addr < mem->start_addr + mem->memory_size) {
166 found = mem;
167 }
168 }
169
170 return found;
171 }
172
173 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
174 target_phys_addr_t *phys_addr)
175 {
176 int i;
177
178 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
179 KVMSlot *mem = &s->slots[i];
180
181 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
182 *phys_addr = mem->start_addr + (ram - mem->ram);
183 return 1;
184 }
185 }
186
187 return 0;
188 }
189
190 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
191 {
192 struct kvm_userspace_memory_region mem;
193
194 mem.slot = slot->slot;
195 mem.guest_phys_addr = slot->start_addr;
196 mem.memory_size = slot->memory_size;
197 mem.userspace_addr = (unsigned long)slot->ram;
198 mem.flags = slot->flags;
199 if (s->migration_log) {
200 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
201 }
202 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
203 }
204
205 static void kvm_reset_vcpu(void *opaque)
206 {
207 CPUArchState *env = opaque;
208
209 kvm_arch_reset_vcpu(env);
210 }
211
212 int kvm_init_vcpu(CPUArchState *env)
213 {
214 KVMState *s = kvm_state;
215 long mmap_size;
216 int ret;
217
218 DPRINTF("kvm_init_vcpu\n");
219
220 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
221 if (ret < 0) {
222 DPRINTF("kvm_create_vcpu failed\n");
223 goto err;
224 }
225
226 env->kvm_fd = ret;
227 env->kvm_state = s;
228 env->kvm_vcpu_dirty = 1;
229
230 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
231 if (mmap_size < 0) {
232 ret = mmap_size;
233 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
234 goto err;
235 }
236
237 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
238 env->kvm_fd, 0);
239 if (env->kvm_run == MAP_FAILED) {
240 ret = -errno;
241 DPRINTF("mmap'ing vcpu state failed\n");
242 goto err;
243 }
244
245 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
246 s->coalesced_mmio_ring =
247 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
248 }
249
250 ret = kvm_arch_init_vcpu(env);
251 if (ret == 0) {
252 qemu_register_reset(kvm_reset_vcpu, env);
253 kvm_arch_reset_vcpu(env);
254 }
255 err:
256 return ret;
257 }
258
259 /*
260 * dirty pages logging control
261 */
262
263 static int kvm_mem_flags(KVMState *s, bool log_dirty)
264 {
265 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
266 }
267
268 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
269 {
270 KVMState *s = kvm_state;
271 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
272 int old_flags;
273
274 old_flags = mem->flags;
275
276 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
277 mem->flags = flags;
278
279 /* If nothing changed effectively, no need to issue ioctl */
280 if (s->migration_log) {
281 flags |= KVM_MEM_LOG_DIRTY_PAGES;
282 }
283
284 if (flags == old_flags) {
285 return 0;
286 }
287
288 return kvm_set_user_memory_region(s, mem);
289 }
290
291 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
292 ram_addr_t size, bool log_dirty)
293 {
294 KVMState *s = kvm_state;
295 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
296
297 if (mem == NULL) {
298 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
299 TARGET_FMT_plx "\n", __func__, phys_addr,
300 (target_phys_addr_t)(phys_addr + size - 1));
301 return -EINVAL;
302 }
303 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
304 }
305
306 static void kvm_log_start(MemoryListener *listener,
307 MemoryRegionSection *section)
308 {
309 int r;
310
311 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
312 section->size, true);
313 if (r < 0) {
314 abort();
315 }
316 }
317
318 static void kvm_log_stop(MemoryListener *listener,
319 MemoryRegionSection *section)
320 {
321 int r;
322
323 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
324 section->size, false);
325 if (r < 0) {
326 abort();
327 }
328 }
329
330 static int kvm_set_migration_log(int enable)
331 {
332 KVMState *s = kvm_state;
333 KVMSlot *mem;
334 int i, err;
335
336 s->migration_log = enable;
337
338 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
339 mem = &s->slots[i];
340
341 if (!mem->memory_size) {
342 continue;
343 }
344 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
345 continue;
346 }
347 err = kvm_set_user_memory_region(s, mem);
348 if (err) {
349 return err;
350 }
351 }
352 return 0;
353 }
354
355 /* get kvm's dirty pages bitmap and update qemu's */
356 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
357 unsigned long *bitmap)
358 {
359 unsigned int i, j;
360 unsigned long page_number, c;
361 target_phys_addr_t addr, addr1;
362 unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
363 unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
364
365 /*
366 * bitmap-traveling is faster than memory-traveling (for addr...)
367 * especially when most of the memory is not dirty.
368 */
369 for (i = 0; i < len; i++) {
370 if (bitmap[i] != 0) {
371 c = leul_to_cpu(bitmap[i]);
372 do {
373 j = ffsl(c) - 1;
374 c &= ~(1ul << j);
375 page_number = (i * HOST_LONG_BITS + j) * hpratio;
376 addr1 = page_number * TARGET_PAGE_SIZE;
377 addr = section->offset_within_region + addr1;
378 memory_region_set_dirty(section->mr, addr,
379 TARGET_PAGE_SIZE * hpratio);
380 } while (c != 0);
381 }
382 }
383 return 0;
384 }
385
386 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
387
388 /**
389 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
390 * This function updates qemu's dirty bitmap using
391 * memory_region_set_dirty(). This means all bits are set
392 * to dirty.
393 *
394 * @start_add: start of logged region.
395 * @end_addr: end of logged region.
396 */
397 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
398 {
399 KVMState *s = kvm_state;
400 unsigned long size, allocated_size = 0;
401 KVMDirtyLog d;
402 KVMSlot *mem;
403 int ret = 0;
404 target_phys_addr_t start_addr = section->offset_within_address_space;
405 target_phys_addr_t end_addr = start_addr + section->size;
406
407 d.dirty_bitmap = NULL;
408 while (start_addr < end_addr) {
409 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
410 if (mem == NULL) {
411 break;
412 }
413
414 /* XXX bad kernel interface alert
415 * For dirty bitmap, kernel allocates array of size aligned to
416 * bits-per-long. But for case when the kernel is 64bits and
417 * the userspace is 32bits, userspace can't align to the same
418 * bits-per-long, since sizeof(long) is different between kernel
419 * and user space. This way, userspace will provide buffer which
420 * may be 4 bytes less than the kernel will use, resulting in
421 * userspace memory corruption (which is not detectable by valgrind
422 * too, in most cases).
423 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
424 * a hope that sizeof(long) wont become >8 any time soon.
425 */
426 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
427 /*HOST_LONG_BITS*/ 64) / 8;
428 if (!d.dirty_bitmap) {
429 d.dirty_bitmap = g_malloc(size);
430 } else if (size > allocated_size) {
431 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
432 }
433 allocated_size = size;
434 memset(d.dirty_bitmap, 0, allocated_size);
435
436 d.slot = mem->slot;
437
438 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
439 DPRINTF("ioctl failed %d\n", errno);
440 ret = -1;
441 break;
442 }
443
444 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
445 start_addr = mem->start_addr + mem->memory_size;
446 }
447 g_free(d.dirty_bitmap);
448
449 return ret;
450 }
451
452 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
453 {
454 int ret = -ENOSYS;
455 KVMState *s = kvm_state;
456
457 if (s->coalesced_mmio) {
458 struct kvm_coalesced_mmio_zone zone;
459
460 zone.addr = start;
461 zone.size = size;
462 zone.pad = 0;
463
464 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
465 }
466
467 return ret;
468 }
469
470 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
471 {
472 int ret = -ENOSYS;
473 KVMState *s = kvm_state;
474
475 if (s->coalesced_mmio) {
476 struct kvm_coalesced_mmio_zone zone;
477
478 zone.addr = start;
479 zone.size = size;
480 zone.pad = 0;
481
482 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
483 }
484
485 return ret;
486 }
487
488 int kvm_check_extension(KVMState *s, unsigned int extension)
489 {
490 int ret;
491
492 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
493 if (ret < 0) {
494 ret = 0;
495 }
496
497 return ret;
498 }
499
500 static int kvm_check_many_ioeventfds(void)
501 {
502 /* Userspace can use ioeventfd for io notification. This requires a host
503 * that supports eventfd(2) and an I/O thread; since eventfd does not
504 * support SIGIO it cannot interrupt the vcpu.
505 *
506 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
507 * can avoid creating too many ioeventfds.
508 */
509 #if defined(CONFIG_EVENTFD)
510 int ioeventfds[7];
511 int i, ret = 0;
512 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
513 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
514 if (ioeventfds[i] < 0) {
515 break;
516 }
517 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
518 if (ret < 0) {
519 close(ioeventfds[i]);
520 break;
521 }
522 }
523
524 /* Decide whether many devices are supported or not */
525 ret = i == ARRAY_SIZE(ioeventfds);
526
527 while (i-- > 0) {
528 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
529 close(ioeventfds[i]);
530 }
531 return ret;
532 #else
533 return 0;
534 #endif
535 }
536
537 static const KVMCapabilityInfo *
538 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
539 {
540 while (list->name) {
541 if (!kvm_check_extension(s, list->value)) {
542 return list;
543 }
544 list++;
545 }
546 return NULL;
547 }
548
549 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
550 {
551 KVMState *s = kvm_state;
552 KVMSlot *mem, old;
553 int err;
554 MemoryRegion *mr = section->mr;
555 bool log_dirty = memory_region_is_logging(mr);
556 target_phys_addr_t start_addr = section->offset_within_address_space;
557 ram_addr_t size = section->size;
558 void *ram = NULL;
559 unsigned delta;
560
561 /* kvm works in page size chunks, but the function may be called
562 with sub-page size and unaligned start address. */
563 delta = TARGET_PAGE_ALIGN(size) - size;
564 if (delta > size) {
565 return;
566 }
567 start_addr += delta;
568 size -= delta;
569 size &= TARGET_PAGE_MASK;
570 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
571 return;
572 }
573
574 if (!memory_region_is_ram(mr)) {
575 return;
576 }
577
578 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
579
580 while (1) {
581 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
582 if (!mem) {
583 break;
584 }
585
586 if (add && start_addr >= mem->start_addr &&
587 (start_addr + size <= mem->start_addr + mem->memory_size) &&
588 (ram - start_addr == mem->ram - mem->start_addr)) {
589 /* The new slot fits into the existing one and comes with
590 * identical parameters - update flags and done. */
591 kvm_slot_dirty_pages_log_change(mem, log_dirty);
592 return;
593 }
594
595 old = *mem;
596
597 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
598 kvm_physical_sync_dirty_bitmap(section);
599 }
600
601 /* unregister the overlapping slot */
602 mem->memory_size = 0;
603 err = kvm_set_user_memory_region(s, mem);
604 if (err) {
605 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
606 __func__, strerror(-err));
607 abort();
608 }
609
610 /* Workaround for older KVM versions: we can't join slots, even not by
611 * unregistering the previous ones and then registering the larger
612 * slot. We have to maintain the existing fragmentation. Sigh.
613 *
614 * This workaround assumes that the new slot starts at the same
615 * address as the first existing one. If not or if some overlapping
616 * slot comes around later, we will fail (not seen in practice so far)
617 * - and actually require a recent KVM version. */
618 if (s->broken_set_mem_region &&
619 old.start_addr == start_addr && old.memory_size < size && add) {
620 mem = kvm_alloc_slot(s);
621 mem->memory_size = old.memory_size;
622 mem->start_addr = old.start_addr;
623 mem->ram = old.ram;
624 mem->flags = kvm_mem_flags(s, log_dirty);
625
626 err = kvm_set_user_memory_region(s, mem);
627 if (err) {
628 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
629 strerror(-err));
630 abort();
631 }
632
633 start_addr += old.memory_size;
634 ram += old.memory_size;
635 size -= old.memory_size;
636 continue;
637 }
638
639 /* register prefix slot */
640 if (old.start_addr < start_addr) {
641 mem = kvm_alloc_slot(s);
642 mem->memory_size = start_addr - old.start_addr;
643 mem->start_addr = old.start_addr;
644 mem->ram = old.ram;
645 mem->flags = kvm_mem_flags(s, log_dirty);
646
647 err = kvm_set_user_memory_region(s, mem);
648 if (err) {
649 fprintf(stderr, "%s: error registering prefix slot: %s\n",
650 __func__, strerror(-err));
651 #ifdef TARGET_PPC
652 fprintf(stderr, "%s: This is probably because your kernel's " \
653 "PAGE_SIZE is too big. Please try to use 4k " \
654 "PAGE_SIZE!\n", __func__);
655 #endif
656 abort();
657 }
658 }
659
660 /* register suffix slot */
661 if (old.start_addr + old.memory_size > start_addr + size) {
662 ram_addr_t size_delta;
663
664 mem = kvm_alloc_slot(s);
665 mem->start_addr = start_addr + size;
666 size_delta = mem->start_addr - old.start_addr;
667 mem->memory_size = old.memory_size - size_delta;
668 mem->ram = old.ram + size_delta;
669 mem->flags = kvm_mem_flags(s, log_dirty);
670
671 err = kvm_set_user_memory_region(s, mem);
672 if (err) {
673 fprintf(stderr, "%s: error registering suffix slot: %s\n",
674 __func__, strerror(-err));
675 abort();
676 }
677 }
678 }
679
680 /* in case the KVM bug workaround already "consumed" the new slot */
681 if (!size) {
682 return;
683 }
684 if (!add) {
685 return;
686 }
687 mem = kvm_alloc_slot(s);
688 mem->memory_size = size;
689 mem->start_addr = start_addr;
690 mem->ram = ram;
691 mem->flags = kvm_mem_flags(s, log_dirty);
692
693 err = kvm_set_user_memory_region(s, mem);
694 if (err) {
695 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
696 strerror(-err));
697 abort();
698 }
699 }
700
701 static void kvm_begin(MemoryListener *listener)
702 {
703 }
704
705 static void kvm_commit(MemoryListener *listener)
706 {
707 }
708
709 static void kvm_region_add(MemoryListener *listener,
710 MemoryRegionSection *section)
711 {
712 kvm_set_phys_mem(section, true);
713 }
714
715 static void kvm_region_del(MemoryListener *listener,
716 MemoryRegionSection *section)
717 {
718 kvm_set_phys_mem(section, false);
719 }
720
721 static void kvm_region_nop(MemoryListener *listener,
722 MemoryRegionSection *section)
723 {
724 }
725
726 static void kvm_log_sync(MemoryListener *listener,
727 MemoryRegionSection *section)
728 {
729 int r;
730
731 r = kvm_physical_sync_dirty_bitmap(section);
732 if (r < 0) {
733 abort();
734 }
735 }
736
737 static void kvm_log_global_start(struct MemoryListener *listener)
738 {
739 int r;
740
741 r = kvm_set_migration_log(1);
742 assert(r >= 0);
743 }
744
745 static void kvm_log_global_stop(struct MemoryListener *listener)
746 {
747 int r;
748
749 r = kvm_set_migration_log(0);
750 assert(r >= 0);
751 }
752
753 static void kvm_mem_ioeventfd_add(MemoryRegionSection *section,
754 bool match_data, uint64_t data, int fd)
755 {
756 int r;
757
758 assert(match_data && section->size <= 8);
759
760 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
761 data, true, section->size);
762 if (r < 0) {
763 abort();
764 }
765 }
766
767 static void kvm_mem_ioeventfd_del(MemoryRegionSection *section,
768 bool match_data, uint64_t data, int fd)
769 {
770 int r;
771
772 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
773 data, false, section->size);
774 if (r < 0) {
775 abort();
776 }
777 }
778
779 static void kvm_io_ioeventfd_add(MemoryRegionSection *section,
780 bool match_data, uint64_t data, int fd)
781 {
782 int r;
783
784 assert(match_data && section->size == 2);
785
786 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
787 data, true);
788 if (r < 0) {
789 abort();
790 }
791 }
792
793 static void kvm_io_ioeventfd_del(MemoryRegionSection *section,
794 bool match_data, uint64_t data, int fd)
795
796 {
797 int r;
798
799 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
800 data, false);
801 if (r < 0) {
802 abort();
803 }
804 }
805
806 static void kvm_eventfd_add(MemoryListener *listener,
807 MemoryRegionSection *section,
808 bool match_data, uint64_t data,
809 EventNotifier *e)
810 {
811 if (section->address_space == get_system_memory()) {
812 kvm_mem_ioeventfd_add(section, match_data, data,
813 event_notifier_get_fd(e));
814 } else {
815 kvm_io_ioeventfd_add(section, match_data, data,
816 event_notifier_get_fd(e));
817 }
818 }
819
820 static void kvm_eventfd_del(MemoryListener *listener,
821 MemoryRegionSection *section,
822 bool match_data, uint64_t data,
823 EventNotifier *e)
824 {
825 if (section->address_space == get_system_memory()) {
826 kvm_mem_ioeventfd_del(section, match_data, data,
827 event_notifier_get_fd(e));
828 } else {
829 kvm_io_ioeventfd_del(section, match_data, data,
830 event_notifier_get_fd(e));
831 }
832 }
833
834 static MemoryListener kvm_memory_listener = {
835 .begin = kvm_begin,
836 .commit = kvm_commit,
837 .region_add = kvm_region_add,
838 .region_del = kvm_region_del,
839 .region_nop = kvm_region_nop,
840 .log_start = kvm_log_start,
841 .log_stop = kvm_log_stop,
842 .log_sync = kvm_log_sync,
843 .log_global_start = kvm_log_global_start,
844 .log_global_stop = kvm_log_global_stop,
845 .eventfd_add = kvm_eventfd_add,
846 .eventfd_del = kvm_eventfd_del,
847 .priority = 10,
848 };
849
850 static void kvm_handle_interrupt(CPUArchState *env, int mask)
851 {
852 env->interrupt_request |= mask;
853
854 if (!qemu_cpu_is_self(env)) {
855 qemu_cpu_kick(env);
856 }
857 }
858
859 int kvm_set_irq(KVMState *s, int irq, int level)
860 {
861 struct kvm_irq_level event;
862 int ret;
863
864 assert(kvm_async_interrupts_enabled());
865
866 event.level = level;
867 event.irq = irq;
868 ret = kvm_vm_ioctl(s, s->irqchip_inject_ioctl, &event);
869 if (ret < 0) {
870 perror("kvm_set_irq");
871 abort();
872 }
873
874 return (s->irqchip_inject_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
875 }
876
877 #ifdef KVM_CAP_IRQ_ROUTING
878 typedef struct KVMMSIRoute {
879 struct kvm_irq_routing_entry kroute;
880 QTAILQ_ENTRY(KVMMSIRoute) entry;
881 } KVMMSIRoute;
882
883 static void set_gsi(KVMState *s, unsigned int gsi)
884 {
885 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
886 }
887
888 static void clear_gsi(KVMState *s, unsigned int gsi)
889 {
890 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
891 }
892
893 static void kvm_init_irq_routing(KVMState *s)
894 {
895 int gsi_count, i;
896
897 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
898 if (gsi_count > 0) {
899 unsigned int gsi_bits, i;
900
901 /* Round up so we can search ints using ffs */
902 gsi_bits = ALIGN(gsi_count, 32);
903 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
904 s->gsi_count = gsi_count;
905
906 /* Mark any over-allocated bits as already in use */
907 for (i = gsi_count; i < gsi_bits; i++) {
908 set_gsi(s, i);
909 }
910 }
911
912 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
913 s->nr_allocated_irq_routes = 0;
914
915 if (!s->direct_msi) {
916 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
917 QTAILQ_INIT(&s->msi_hashtab[i]);
918 }
919 }
920
921 kvm_arch_init_irq_routing(s);
922 }
923
924 static void kvm_irqchip_commit_routes(KVMState *s)
925 {
926 int ret;
927
928 s->irq_routes->flags = 0;
929 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
930 assert(ret == 0);
931 }
932
933 static void kvm_add_routing_entry(KVMState *s,
934 struct kvm_irq_routing_entry *entry)
935 {
936 struct kvm_irq_routing_entry *new;
937 int n, size;
938
939 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
940 n = s->nr_allocated_irq_routes * 2;
941 if (n < 64) {
942 n = 64;
943 }
944 size = sizeof(struct kvm_irq_routing);
945 size += n * sizeof(*new);
946 s->irq_routes = g_realloc(s->irq_routes, size);
947 s->nr_allocated_irq_routes = n;
948 }
949 n = s->irq_routes->nr++;
950 new = &s->irq_routes->entries[n];
951 memset(new, 0, sizeof(*new));
952 new->gsi = entry->gsi;
953 new->type = entry->type;
954 new->flags = entry->flags;
955 new->u = entry->u;
956
957 set_gsi(s, entry->gsi);
958
959 kvm_irqchip_commit_routes(s);
960 }
961
962 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
963 {
964 struct kvm_irq_routing_entry e;
965
966 assert(pin < s->gsi_count);
967
968 e.gsi = irq;
969 e.type = KVM_IRQ_ROUTING_IRQCHIP;
970 e.flags = 0;
971 e.u.irqchip.irqchip = irqchip;
972 e.u.irqchip.pin = pin;
973 kvm_add_routing_entry(s, &e);
974 }
975
976 void kvm_irqchip_release_virq(KVMState *s, int virq)
977 {
978 struct kvm_irq_routing_entry *e;
979 int i;
980
981 for (i = 0; i < s->irq_routes->nr; i++) {
982 e = &s->irq_routes->entries[i];
983 if (e->gsi == virq) {
984 s->irq_routes->nr--;
985 *e = s->irq_routes->entries[s->irq_routes->nr];
986 }
987 }
988 clear_gsi(s, virq);
989
990 kvm_irqchip_commit_routes(s);
991 }
992
993 static unsigned int kvm_hash_msi(uint32_t data)
994 {
995 /* This is optimized for IA32 MSI layout. However, no other arch shall
996 * repeat the mistake of not providing a direct MSI injection API. */
997 return data & 0xff;
998 }
999
1000 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1001 {
1002 KVMMSIRoute *route, *next;
1003 unsigned int hash;
1004
1005 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1006 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1007 kvm_irqchip_release_virq(s, route->kroute.gsi);
1008 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1009 g_free(route);
1010 }
1011 }
1012 }
1013
1014 static int kvm_irqchip_get_virq(KVMState *s)
1015 {
1016 uint32_t *word = s->used_gsi_bitmap;
1017 int max_words = ALIGN(s->gsi_count, 32) / 32;
1018 int i, bit;
1019 bool retry = true;
1020
1021 again:
1022 /* Return the lowest unused GSI in the bitmap */
1023 for (i = 0; i < max_words; i++) {
1024 bit = ffs(~word[i]);
1025 if (!bit) {
1026 continue;
1027 }
1028
1029 return bit - 1 + i * 32;
1030 }
1031 if (!s->direct_msi && retry) {
1032 retry = false;
1033 kvm_flush_dynamic_msi_routes(s);
1034 goto again;
1035 }
1036 return -ENOSPC;
1037
1038 }
1039
1040 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1041 {
1042 unsigned int hash = kvm_hash_msi(msg.data);
1043 KVMMSIRoute *route;
1044
1045 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1046 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1047 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1048 route->kroute.u.msi.data == msg.data) {
1049 return route;
1050 }
1051 }
1052 return NULL;
1053 }
1054
1055 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1056 {
1057 struct kvm_msi msi;
1058 KVMMSIRoute *route;
1059
1060 if (s->direct_msi) {
1061 msi.address_lo = (uint32_t)msg.address;
1062 msi.address_hi = msg.address >> 32;
1063 msi.data = msg.data;
1064 msi.flags = 0;
1065 memset(msi.pad, 0, sizeof(msi.pad));
1066
1067 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1068 }
1069
1070 route = kvm_lookup_msi_route(s, msg);
1071 if (!route) {
1072 int virq;
1073
1074 virq = kvm_irqchip_get_virq(s);
1075 if (virq < 0) {
1076 return virq;
1077 }
1078
1079 route = g_malloc(sizeof(KVMMSIRoute));
1080 route->kroute.gsi = virq;
1081 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1082 route->kroute.flags = 0;
1083 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1084 route->kroute.u.msi.address_hi = msg.address >> 32;
1085 route->kroute.u.msi.data = msg.data;
1086
1087 kvm_add_routing_entry(s, &route->kroute);
1088
1089 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1090 entry);
1091 }
1092
1093 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1094
1095 return kvm_set_irq(s, route->kroute.gsi, 1);
1096 }
1097
1098 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1099 {
1100 struct kvm_irq_routing_entry kroute;
1101 int virq;
1102
1103 if (!kvm_gsi_routing_enabled()) {
1104 return -ENOSYS;
1105 }
1106
1107 virq = kvm_irqchip_get_virq(s);
1108 if (virq < 0) {
1109 return virq;
1110 }
1111
1112 kroute.gsi = virq;
1113 kroute.type = KVM_IRQ_ROUTING_MSI;
1114 kroute.flags = 0;
1115 kroute.u.msi.address_lo = (uint32_t)msg.address;
1116 kroute.u.msi.address_hi = msg.address >> 32;
1117 kroute.u.msi.data = msg.data;
1118
1119 kvm_add_routing_entry(s, &kroute);
1120
1121 return virq;
1122 }
1123
1124 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1125 {
1126 struct kvm_irqfd irqfd = {
1127 .fd = fd,
1128 .gsi = virq,
1129 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1130 };
1131
1132 if (!kvm_irqfds_enabled()) {
1133 return -ENOSYS;
1134 }
1135
1136 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1137 }
1138
1139 #else /* !KVM_CAP_IRQ_ROUTING */
1140
1141 static void kvm_init_irq_routing(KVMState *s)
1142 {
1143 }
1144
1145 void kvm_irqchip_release_virq(KVMState *s, int virq)
1146 {
1147 }
1148
1149 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1150 {
1151 abort();
1152 }
1153
1154 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1155 {
1156 return -ENOSYS;
1157 }
1158
1159 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1160 {
1161 abort();
1162 }
1163 #endif /* !KVM_CAP_IRQ_ROUTING */
1164
1165 int kvm_irqchip_add_irqfd(KVMState *s, int fd, int virq)
1166 {
1167 return kvm_irqchip_assign_irqfd(s, fd, virq, true);
1168 }
1169
1170 int kvm_irqchip_add_irq_notifier(KVMState *s, EventNotifier *n, int virq)
1171 {
1172 return kvm_irqchip_add_irqfd(s, event_notifier_get_fd(n), virq);
1173 }
1174
1175 int kvm_irqchip_remove_irqfd(KVMState *s, int fd, int virq)
1176 {
1177 return kvm_irqchip_assign_irqfd(s, fd, virq, false);
1178 }
1179
1180 int kvm_irqchip_remove_irq_notifier(KVMState *s, EventNotifier *n, int virq)
1181 {
1182 return kvm_irqchip_remove_irqfd(s, event_notifier_get_fd(n), virq);
1183 }
1184
1185 static int kvm_irqchip_create(KVMState *s)
1186 {
1187 QemuOptsList *list = qemu_find_opts("machine");
1188 int ret;
1189
1190 if (QTAILQ_EMPTY(&list->head) ||
1191 !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
1192 "kernel_irqchip", true) ||
1193 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1194 return 0;
1195 }
1196
1197 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1198 if (ret < 0) {
1199 fprintf(stderr, "Create kernel irqchip failed\n");
1200 return ret;
1201 }
1202
1203 s->irqchip_inject_ioctl = KVM_IRQ_LINE;
1204 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1205 s->irqchip_inject_ioctl = KVM_IRQ_LINE_STATUS;
1206 }
1207 kvm_kernel_irqchip = true;
1208 /* If we have an in-kernel IRQ chip then we must have asynchronous
1209 * interrupt delivery (though the reverse is not necessarily true)
1210 */
1211 kvm_async_interrupts_allowed = true;
1212
1213 kvm_init_irq_routing(s);
1214
1215 return 0;
1216 }
1217
1218 static int kvm_max_vcpus(KVMState *s)
1219 {
1220 int ret;
1221
1222 /* Find number of supported CPUs using the recommended
1223 * procedure from the kernel API documentation to cope with
1224 * older kernels that may be missing capabilities.
1225 */
1226 ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1227 if (ret) {
1228 return ret;
1229 }
1230 ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1231 if (ret) {
1232 return ret;
1233 }
1234
1235 return 4;
1236 }
1237
1238 int kvm_init(void)
1239 {
1240 static const char upgrade_note[] =
1241 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1242 "(see http://sourceforge.net/projects/kvm).\n";
1243 KVMState *s;
1244 const KVMCapabilityInfo *missing_cap;
1245 int ret;
1246 int i;
1247 int max_vcpus;
1248
1249 s = g_malloc0(sizeof(KVMState));
1250
1251 /*
1252 * On systems where the kernel can support different base page
1253 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1254 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1255 * page size for the system though.
1256 */
1257 assert(TARGET_PAGE_SIZE <= getpagesize());
1258
1259 #ifdef KVM_CAP_SET_GUEST_DEBUG
1260 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1261 #endif
1262 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
1263 s->slots[i].slot = i;
1264 }
1265 s->vmfd = -1;
1266 s->fd = qemu_open("/dev/kvm", O_RDWR);
1267 if (s->fd == -1) {
1268 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1269 ret = -errno;
1270 goto err;
1271 }
1272
1273 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1274 if (ret < KVM_API_VERSION) {
1275 if (ret > 0) {
1276 ret = -EINVAL;
1277 }
1278 fprintf(stderr, "kvm version too old\n");
1279 goto err;
1280 }
1281
1282 if (ret > KVM_API_VERSION) {
1283 ret = -EINVAL;
1284 fprintf(stderr, "kvm version not supported\n");
1285 goto err;
1286 }
1287
1288 max_vcpus = kvm_max_vcpus(s);
1289 if (smp_cpus > max_vcpus) {
1290 ret = -EINVAL;
1291 fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus "
1292 "supported by KVM (%d)\n", smp_cpus, max_vcpus);
1293 goto err;
1294 }
1295
1296 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1297 if (s->vmfd < 0) {
1298 #ifdef TARGET_S390X
1299 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1300 "your host kernel command line\n");
1301 #endif
1302 ret = s->vmfd;
1303 goto err;
1304 }
1305
1306 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1307 if (!missing_cap) {
1308 missing_cap =
1309 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1310 }
1311 if (missing_cap) {
1312 ret = -EINVAL;
1313 fprintf(stderr, "kvm does not support %s\n%s",
1314 missing_cap->name, upgrade_note);
1315 goto err;
1316 }
1317
1318 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1319
1320 s->broken_set_mem_region = 1;
1321 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1322 if (ret > 0) {
1323 s->broken_set_mem_region = 0;
1324 }
1325
1326 #ifdef KVM_CAP_VCPU_EVENTS
1327 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1328 #endif
1329
1330 s->robust_singlestep =
1331 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1332
1333 #ifdef KVM_CAP_DEBUGREGS
1334 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1335 #endif
1336
1337 #ifdef KVM_CAP_XSAVE
1338 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1339 #endif
1340
1341 #ifdef KVM_CAP_XCRS
1342 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1343 #endif
1344
1345 #ifdef KVM_CAP_PIT_STATE2
1346 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1347 #endif
1348
1349 #ifdef KVM_CAP_IRQ_ROUTING
1350 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1351 #endif
1352
1353 ret = kvm_arch_init(s);
1354 if (ret < 0) {
1355 goto err;
1356 }
1357
1358 ret = kvm_irqchip_create(s);
1359 if (ret < 0) {
1360 goto err;
1361 }
1362
1363 kvm_state = s;
1364 memory_listener_register(&kvm_memory_listener, NULL);
1365
1366 s->many_ioeventfds = kvm_check_many_ioeventfds();
1367
1368 cpu_interrupt_handler = kvm_handle_interrupt;
1369
1370 return 0;
1371
1372 err:
1373 if (s) {
1374 if (s->vmfd >= 0) {
1375 close(s->vmfd);
1376 }
1377 if (s->fd != -1) {
1378 close(s->fd);
1379 }
1380 }
1381 g_free(s);
1382
1383 return ret;
1384 }
1385
1386 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1387 uint32_t count)
1388 {
1389 int i;
1390 uint8_t *ptr = data;
1391
1392 for (i = 0; i < count; i++) {
1393 if (direction == KVM_EXIT_IO_IN) {
1394 switch (size) {
1395 case 1:
1396 stb_p(ptr, cpu_inb(port));
1397 break;
1398 case 2:
1399 stw_p(ptr, cpu_inw(port));
1400 break;
1401 case 4:
1402 stl_p(ptr, cpu_inl(port));
1403 break;
1404 }
1405 } else {
1406 switch (size) {
1407 case 1:
1408 cpu_outb(port, ldub_p(ptr));
1409 break;
1410 case 2:
1411 cpu_outw(port, lduw_p(ptr));
1412 break;
1413 case 4:
1414 cpu_outl(port, ldl_p(ptr));
1415 break;
1416 }
1417 }
1418
1419 ptr += size;
1420 }
1421 }
1422
1423 static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run)
1424 {
1425 fprintf(stderr, "KVM internal error.");
1426 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1427 int i;
1428
1429 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1430 for (i = 0; i < run->internal.ndata; ++i) {
1431 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1432 i, (uint64_t)run->internal.data[i]);
1433 }
1434 } else {
1435 fprintf(stderr, "\n");
1436 }
1437 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1438 fprintf(stderr, "emulation failure\n");
1439 if (!kvm_arch_stop_on_emulation_error(env)) {
1440 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1441 return EXCP_INTERRUPT;
1442 }
1443 }
1444 /* FIXME: Should trigger a qmp message to let management know
1445 * something went wrong.
1446 */
1447 return -1;
1448 }
1449
1450 void kvm_flush_coalesced_mmio_buffer(void)
1451 {
1452 KVMState *s = kvm_state;
1453
1454 if (s->coalesced_flush_in_progress) {
1455 return;
1456 }
1457
1458 s->coalesced_flush_in_progress = true;
1459
1460 if (s->coalesced_mmio_ring) {
1461 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1462 while (ring->first != ring->last) {
1463 struct kvm_coalesced_mmio *ent;
1464
1465 ent = &ring->coalesced_mmio[ring->first];
1466
1467 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1468 smp_wmb();
1469 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1470 }
1471 }
1472
1473 s->coalesced_flush_in_progress = false;
1474 }
1475
1476 static void do_kvm_cpu_synchronize_state(void *_env)
1477 {
1478 CPUArchState *env = _env;
1479
1480 if (!env->kvm_vcpu_dirty) {
1481 kvm_arch_get_registers(env);
1482 env->kvm_vcpu_dirty = 1;
1483 }
1484 }
1485
1486 void kvm_cpu_synchronize_state(CPUArchState *env)
1487 {
1488 if (!env->kvm_vcpu_dirty) {
1489 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
1490 }
1491 }
1492
1493 void kvm_cpu_synchronize_post_reset(CPUArchState *env)
1494 {
1495 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
1496 env->kvm_vcpu_dirty = 0;
1497 }
1498
1499 void kvm_cpu_synchronize_post_init(CPUArchState *env)
1500 {
1501 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
1502 env->kvm_vcpu_dirty = 0;
1503 }
1504
1505 int kvm_cpu_exec(CPUArchState *env)
1506 {
1507 struct kvm_run *run = env->kvm_run;
1508 int ret, run_ret;
1509
1510 DPRINTF("kvm_cpu_exec()\n");
1511
1512 if (kvm_arch_process_async_events(env)) {
1513 env->exit_request = 0;
1514 return EXCP_HLT;
1515 }
1516
1517 do {
1518 if (env->kvm_vcpu_dirty) {
1519 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
1520 env->kvm_vcpu_dirty = 0;
1521 }
1522
1523 kvm_arch_pre_run(env, run);
1524 if (env->exit_request) {
1525 DPRINTF("interrupt exit requested\n");
1526 /*
1527 * KVM requires us to reenter the kernel after IO exits to complete
1528 * instruction emulation. This self-signal will ensure that we
1529 * leave ASAP again.
1530 */
1531 qemu_cpu_kick_self();
1532 }
1533 qemu_mutex_unlock_iothread();
1534
1535 run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
1536
1537 qemu_mutex_lock_iothread();
1538 kvm_arch_post_run(env, run);
1539
1540 kvm_flush_coalesced_mmio_buffer();
1541
1542 if (run_ret < 0) {
1543 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1544 DPRINTF("io window exit\n");
1545 ret = EXCP_INTERRUPT;
1546 break;
1547 }
1548 fprintf(stderr, "error: kvm run failed %s\n",
1549 strerror(-run_ret));
1550 abort();
1551 }
1552
1553 switch (run->exit_reason) {
1554 case KVM_EXIT_IO:
1555 DPRINTF("handle_io\n");
1556 kvm_handle_io(run->io.port,
1557 (uint8_t *)run + run->io.data_offset,
1558 run->io.direction,
1559 run->io.size,
1560 run->io.count);
1561 ret = 0;
1562 break;
1563 case KVM_EXIT_MMIO:
1564 DPRINTF("handle_mmio\n");
1565 cpu_physical_memory_rw(run->mmio.phys_addr,
1566 run->mmio.data,
1567 run->mmio.len,
1568 run->mmio.is_write);
1569 ret = 0;
1570 break;
1571 case KVM_EXIT_IRQ_WINDOW_OPEN:
1572 DPRINTF("irq_window_open\n");
1573 ret = EXCP_INTERRUPT;
1574 break;
1575 case KVM_EXIT_SHUTDOWN:
1576 DPRINTF("shutdown\n");
1577 qemu_system_reset_request();
1578 ret = EXCP_INTERRUPT;
1579 break;
1580 case KVM_EXIT_UNKNOWN:
1581 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1582 (uint64_t)run->hw.hardware_exit_reason);
1583 ret = -1;
1584 break;
1585 case KVM_EXIT_INTERNAL_ERROR:
1586 ret = kvm_handle_internal_error(env, run);
1587 break;
1588 default:
1589 DPRINTF("kvm_arch_handle_exit\n");
1590 ret = kvm_arch_handle_exit(env, run);
1591 break;
1592 }
1593 } while (ret == 0);
1594
1595 if (ret < 0) {
1596 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1597 vm_stop(RUN_STATE_INTERNAL_ERROR);
1598 }
1599
1600 env->exit_request = 0;
1601 return ret;
1602 }
1603
1604 int kvm_ioctl(KVMState *s, int type, ...)
1605 {
1606 int ret;
1607 void *arg;
1608 va_list ap;
1609
1610 va_start(ap, type);
1611 arg = va_arg(ap, void *);
1612 va_end(ap);
1613
1614 ret = ioctl(s->fd, type, arg);
1615 if (ret == -1) {
1616 ret = -errno;
1617 }
1618 return ret;
1619 }
1620
1621 int kvm_vm_ioctl(KVMState *s, int type, ...)
1622 {
1623 int ret;
1624 void *arg;
1625 va_list ap;
1626
1627 va_start(ap, type);
1628 arg = va_arg(ap, void *);
1629 va_end(ap);
1630
1631 ret = ioctl(s->vmfd, type, arg);
1632 if (ret == -1) {
1633 ret = -errno;
1634 }
1635 return ret;
1636 }
1637
1638 int kvm_vcpu_ioctl(CPUArchState *env, int type, ...)
1639 {
1640 int ret;
1641 void *arg;
1642 va_list ap;
1643
1644 va_start(ap, type);
1645 arg = va_arg(ap, void *);
1646 va_end(ap);
1647
1648 ret = ioctl(env->kvm_fd, type, arg);
1649 if (ret == -1) {
1650 ret = -errno;
1651 }
1652 return ret;
1653 }
1654
1655 int kvm_has_sync_mmu(void)
1656 {
1657 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1658 }
1659
1660 int kvm_has_vcpu_events(void)
1661 {
1662 return kvm_state->vcpu_events;
1663 }
1664
1665 int kvm_has_robust_singlestep(void)
1666 {
1667 return kvm_state->robust_singlestep;
1668 }
1669
1670 int kvm_has_debugregs(void)
1671 {
1672 return kvm_state->debugregs;
1673 }
1674
1675 int kvm_has_xsave(void)
1676 {
1677 return kvm_state->xsave;
1678 }
1679
1680 int kvm_has_xcrs(void)
1681 {
1682 return kvm_state->xcrs;
1683 }
1684
1685 int kvm_has_pit_state2(void)
1686 {
1687 return kvm_state->pit_state2;
1688 }
1689
1690 int kvm_has_many_ioeventfds(void)
1691 {
1692 if (!kvm_enabled()) {
1693 return 0;
1694 }
1695 return kvm_state->many_ioeventfds;
1696 }
1697
1698 int kvm_has_gsi_routing(void)
1699 {
1700 #ifdef KVM_CAP_IRQ_ROUTING
1701 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1702 #else
1703 return false;
1704 #endif
1705 }
1706
1707 void *kvm_vmalloc(ram_addr_t size)
1708 {
1709 #ifdef TARGET_S390X
1710 void *mem;
1711
1712 mem = kvm_arch_vmalloc(size);
1713 if (mem) {
1714 return mem;
1715 }
1716 #endif
1717 return qemu_vmalloc(size);
1718 }
1719
1720 void kvm_setup_guest_memory(void *start, size_t size)
1721 {
1722 if (!kvm_has_sync_mmu()) {
1723 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1724
1725 if (ret) {
1726 perror("qemu_madvise");
1727 fprintf(stderr,
1728 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1729 exit(1);
1730 }
1731 }
1732 }
1733
1734 #ifdef KVM_CAP_SET_GUEST_DEBUG
1735 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUArchState *env,
1736 target_ulong pc)
1737 {
1738 struct kvm_sw_breakpoint *bp;
1739
1740 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1741 if (bp->pc == pc) {
1742 return bp;
1743 }
1744 }
1745 return NULL;
1746 }
1747
1748 int kvm_sw_breakpoints_active(CPUArchState *env)
1749 {
1750 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1751 }
1752
1753 struct kvm_set_guest_debug_data {
1754 struct kvm_guest_debug dbg;
1755 CPUArchState *env;
1756 int err;
1757 };
1758
1759 static void kvm_invoke_set_guest_debug(void *data)
1760 {
1761 struct kvm_set_guest_debug_data *dbg_data = data;
1762 CPUArchState *env = dbg_data->env;
1763
1764 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1765 }
1766
1767 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1768 {
1769 struct kvm_set_guest_debug_data data;
1770
1771 data.dbg.control = reinject_trap;
1772
1773 if (env->singlestep_enabled) {
1774 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1775 }
1776 kvm_arch_update_guest_debug(env, &data.dbg);
1777 data.env = env;
1778
1779 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1780 return data.err;
1781 }
1782
1783 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1784 target_ulong len, int type)
1785 {
1786 struct kvm_sw_breakpoint *bp;
1787 CPUArchState *env;
1788 int err;
1789
1790 if (type == GDB_BREAKPOINT_SW) {
1791 bp = kvm_find_sw_breakpoint(current_env, addr);
1792 if (bp) {
1793 bp->use_count++;
1794 return 0;
1795 }
1796
1797 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1798 if (!bp) {
1799 return -ENOMEM;
1800 }
1801
1802 bp->pc = addr;
1803 bp->use_count = 1;
1804 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1805 if (err) {
1806 g_free(bp);
1807 return err;
1808 }
1809
1810 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1811 bp, entry);
1812 } else {
1813 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1814 if (err) {
1815 return err;
1816 }
1817 }
1818
1819 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1820 err = kvm_update_guest_debug(env, 0);
1821 if (err) {
1822 return err;
1823 }
1824 }
1825 return 0;
1826 }
1827
1828 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1829 target_ulong len, int type)
1830 {
1831 struct kvm_sw_breakpoint *bp;
1832 CPUArchState *env;
1833 int err;
1834
1835 if (type == GDB_BREAKPOINT_SW) {
1836 bp = kvm_find_sw_breakpoint(current_env, addr);
1837 if (!bp) {
1838 return -ENOENT;
1839 }
1840
1841 if (bp->use_count > 1) {
1842 bp->use_count--;
1843 return 0;
1844 }
1845
1846 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1847 if (err) {
1848 return err;
1849 }
1850
1851 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1852 g_free(bp);
1853 } else {
1854 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1855 if (err) {
1856 return err;
1857 }
1858 }
1859
1860 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1861 err = kvm_update_guest_debug(env, 0);
1862 if (err) {
1863 return err;
1864 }
1865 }
1866 return 0;
1867 }
1868
1869 void kvm_remove_all_breakpoints(CPUArchState *current_env)
1870 {
1871 struct kvm_sw_breakpoint *bp, *next;
1872 KVMState *s = current_env->kvm_state;
1873 CPUArchState *env;
1874
1875 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1876 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1877 /* Try harder to find a CPU that currently sees the breakpoint. */
1878 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1879 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1880 break;
1881 }
1882 }
1883 }
1884 }
1885 kvm_arch_remove_all_hw_breakpoints();
1886
1887 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1888 kvm_update_guest_debug(env, 0);
1889 }
1890 }
1891
1892 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1893
1894 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1895 {
1896 return -EINVAL;
1897 }
1898
1899 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1900 target_ulong len, int type)
1901 {
1902 return -EINVAL;
1903 }
1904
1905 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1906 target_ulong len, int type)
1907 {
1908 return -EINVAL;
1909 }
1910
1911 void kvm_remove_all_breakpoints(CPUArchState *current_env)
1912 {
1913 }
1914 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1915
1916 int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset)
1917 {
1918 struct kvm_signal_mask *sigmask;
1919 int r;
1920
1921 if (!sigset) {
1922 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1923 }
1924
1925 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
1926
1927 sigmask->len = 8;
1928 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1929 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1930 g_free(sigmask);
1931
1932 return r;
1933 }
1934
1935 int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, bool assign,
1936 uint32_t size)
1937 {
1938 int ret;
1939 struct kvm_ioeventfd iofd;
1940
1941 iofd.datamatch = val;
1942 iofd.addr = addr;
1943 iofd.len = size;
1944 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1945 iofd.fd = fd;
1946
1947 if (!kvm_enabled()) {
1948 return -ENOSYS;
1949 }
1950
1951 if (!assign) {
1952 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1953 }
1954
1955 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1956
1957 if (ret < 0) {
1958 return -errno;
1959 }
1960
1961 return 0;
1962 }
1963
1964 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1965 {
1966 struct kvm_ioeventfd kick = {
1967 .datamatch = val,
1968 .addr = addr,
1969 .len = 2,
1970 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1971 .fd = fd,
1972 };
1973 int r;
1974 if (!kvm_enabled()) {
1975 return -ENOSYS;
1976 }
1977 if (!assign) {
1978 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1979 }
1980 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1981 if (r < 0) {
1982 return r;
1983 }
1984 return 0;
1985 }
1986
1987 int kvm_on_sigbus_vcpu(CPUArchState *env, int code, void *addr)
1988 {
1989 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1990 }
1991
1992 int kvm_on_sigbus(int code, void *addr)
1993 {
1994 return kvm_arch_on_sigbus(code, addr);
1995 }