]> git.proxmox.com Git - qemu.git/blob - kvm-all.c
vmstate: fix varrays with uint32_t indexes
[qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
30 #include "memory.h"
31 #include "exec-memory.h"
32
33 /* This check must be after config-host.h is included */
34 #ifdef CONFIG_EVENTFD
35 #include <sys/eventfd.h>
36 #endif
37
38 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
39 #define PAGE_SIZE TARGET_PAGE_SIZE
40
41 //#define DEBUG_KVM
42
43 #ifdef DEBUG_KVM
44 #define DPRINTF(fmt, ...) \
45 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
46 #else
47 #define DPRINTF(fmt, ...) \
48 do { } while (0)
49 #endif
50
51 typedef struct KVMSlot
52 {
53 target_phys_addr_t start_addr;
54 ram_addr_t memory_size;
55 void *ram;
56 int slot;
57 int flags;
58 } KVMSlot;
59
60 typedef struct kvm_dirty_log KVMDirtyLog;
61
62 struct KVMState
63 {
64 KVMSlot slots[32];
65 int fd;
66 int vmfd;
67 int coalesced_mmio;
68 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
69 bool coalesced_flush_in_progress;
70 int broken_set_mem_region;
71 int migration_log;
72 int vcpu_events;
73 int robust_singlestep;
74 int debugregs;
75 #ifdef KVM_CAP_SET_GUEST_DEBUG
76 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
77 #endif
78 int pit_in_kernel;
79 int pit_state2;
80 int xsave, xcrs;
81 int many_ioeventfds;
82 int irqchip_inject_ioctl;
83 #ifdef KVM_CAP_IRQ_ROUTING
84 struct kvm_irq_routing *irq_routes;
85 int nr_allocated_irq_routes;
86 uint32_t *used_gsi_bitmap;
87 unsigned int max_gsi;
88 #endif
89 };
90
91 KVMState *kvm_state;
92 bool kvm_kernel_irqchip;
93
94 static const KVMCapabilityInfo kvm_required_capabilites[] = {
95 KVM_CAP_INFO(USER_MEMORY),
96 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
97 KVM_CAP_LAST_INFO
98 };
99
100 static KVMSlot *kvm_alloc_slot(KVMState *s)
101 {
102 int i;
103
104 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
105 if (s->slots[i].memory_size == 0) {
106 return &s->slots[i];
107 }
108 }
109
110 fprintf(stderr, "%s: no free slot available\n", __func__);
111 abort();
112 }
113
114 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
115 target_phys_addr_t start_addr,
116 target_phys_addr_t end_addr)
117 {
118 int i;
119
120 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
121 KVMSlot *mem = &s->slots[i];
122
123 if (start_addr == mem->start_addr &&
124 end_addr == mem->start_addr + mem->memory_size) {
125 return mem;
126 }
127 }
128
129 return NULL;
130 }
131
132 /*
133 * Find overlapping slot with lowest start address
134 */
135 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
136 target_phys_addr_t start_addr,
137 target_phys_addr_t end_addr)
138 {
139 KVMSlot *found = NULL;
140 int i;
141
142 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
143 KVMSlot *mem = &s->slots[i];
144
145 if (mem->memory_size == 0 ||
146 (found && found->start_addr < mem->start_addr)) {
147 continue;
148 }
149
150 if (end_addr > mem->start_addr &&
151 start_addr < mem->start_addr + mem->memory_size) {
152 found = mem;
153 }
154 }
155
156 return found;
157 }
158
159 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
160 target_phys_addr_t *phys_addr)
161 {
162 int i;
163
164 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
165 KVMSlot *mem = &s->slots[i];
166
167 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
168 *phys_addr = mem->start_addr + (ram - mem->ram);
169 return 1;
170 }
171 }
172
173 return 0;
174 }
175
176 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
177 {
178 struct kvm_userspace_memory_region mem;
179
180 mem.slot = slot->slot;
181 mem.guest_phys_addr = slot->start_addr;
182 mem.memory_size = slot->memory_size;
183 mem.userspace_addr = (unsigned long)slot->ram;
184 mem.flags = slot->flags;
185 if (s->migration_log) {
186 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
187 }
188 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
189 }
190
191 static void kvm_reset_vcpu(void *opaque)
192 {
193 CPUArchState *env = opaque;
194
195 kvm_arch_reset_vcpu(env);
196 }
197
198 int kvm_pit_in_kernel(void)
199 {
200 return kvm_state->pit_in_kernel;
201 }
202
203 int kvm_init_vcpu(CPUArchState *env)
204 {
205 KVMState *s = kvm_state;
206 long mmap_size;
207 int ret;
208
209 DPRINTF("kvm_init_vcpu\n");
210
211 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
212 if (ret < 0) {
213 DPRINTF("kvm_create_vcpu failed\n");
214 goto err;
215 }
216
217 env->kvm_fd = ret;
218 env->kvm_state = s;
219 env->kvm_vcpu_dirty = 1;
220
221 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
222 if (mmap_size < 0) {
223 ret = mmap_size;
224 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
225 goto err;
226 }
227
228 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
229 env->kvm_fd, 0);
230 if (env->kvm_run == MAP_FAILED) {
231 ret = -errno;
232 DPRINTF("mmap'ing vcpu state failed\n");
233 goto err;
234 }
235
236 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
237 s->coalesced_mmio_ring =
238 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
239 }
240
241 ret = kvm_arch_init_vcpu(env);
242 if (ret == 0) {
243 qemu_register_reset(kvm_reset_vcpu, env);
244 kvm_arch_reset_vcpu(env);
245 }
246 err:
247 return ret;
248 }
249
250 /*
251 * dirty pages logging control
252 */
253
254 static int kvm_mem_flags(KVMState *s, bool log_dirty)
255 {
256 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
257 }
258
259 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
260 {
261 KVMState *s = kvm_state;
262 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
263 int old_flags;
264
265 old_flags = mem->flags;
266
267 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
268 mem->flags = flags;
269
270 /* If nothing changed effectively, no need to issue ioctl */
271 if (s->migration_log) {
272 flags |= KVM_MEM_LOG_DIRTY_PAGES;
273 }
274
275 if (flags == old_flags) {
276 return 0;
277 }
278
279 return kvm_set_user_memory_region(s, mem);
280 }
281
282 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
283 ram_addr_t size, bool log_dirty)
284 {
285 KVMState *s = kvm_state;
286 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
287
288 if (mem == NULL) {
289 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
290 TARGET_FMT_plx "\n", __func__, phys_addr,
291 (target_phys_addr_t)(phys_addr + size - 1));
292 return -EINVAL;
293 }
294 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
295 }
296
297 static void kvm_log_start(MemoryListener *listener,
298 MemoryRegionSection *section)
299 {
300 int r;
301
302 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
303 section->size, true);
304 if (r < 0) {
305 abort();
306 }
307 }
308
309 static void kvm_log_stop(MemoryListener *listener,
310 MemoryRegionSection *section)
311 {
312 int r;
313
314 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
315 section->size, false);
316 if (r < 0) {
317 abort();
318 }
319 }
320
321 static int kvm_set_migration_log(int enable)
322 {
323 KVMState *s = kvm_state;
324 KVMSlot *mem;
325 int i, err;
326
327 s->migration_log = enable;
328
329 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
330 mem = &s->slots[i];
331
332 if (!mem->memory_size) {
333 continue;
334 }
335 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
336 continue;
337 }
338 err = kvm_set_user_memory_region(s, mem);
339 if (err) {
340 return err;
341 }
342 }
343 return 0;
344 }
345
346 /* get kvm's dirty pages bitmap and update qemu's */
347 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
348 unsigned long *bitmap)
349 {
350 unsigned int i, j;
351 unsigned long page_number, c;
352 target_phys_addr_t addr, addr1;
353 unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
354
355 /*
356 * bitmap-traveling is faster than memory-traveling (for addr...)
357 * especially when most of the memory is not dirty.
358 */
359 for (i = 0; i < len; i++) {
360 if (bitmap[i] != 0) {
361 c = leul_to_cpu(bitmap[i]);
362 do {
363 j = ffsl(c) - 1;
364 c &= ~(1ul << j);
365 page_number = i * HOST_LONG_BITS + j;
366 addr1 = page_number * TARGET_PAGE_SIZE;
367 addr = section->offset_within_region + addr1;
368 memory_region_set_dirty(section->mr, addr, TARGET_PAGE_SIZE);
369 } while (c != 0);
370 }
371 }
372 return 0;
373 }
374
375 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
376
377 /**
378 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
379 * This function updates qemu's dirty bitmap using
380 * memory_region_set_dirty(). This means all bits are set
381 * to dirty.
382 *
383 * @start_add: start of logged region.
384 * @end_addr: end of logged region.
385 */
386 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
387 {
388 KVMState *s = kvm_state;
389 unsigned long size, allocated_size = 0;
390 KVMDirtyLog d;
391 KVMSlot *mem;
392 int ret = 0;
393 target_phys_addr_t start_addr = section->offset_within_address_space;
394 target_phys_addr_t end_addr = start_addr + section->size;
395
396 d.dirty_bitmap = NULL;
397 while (start_addr < end_addr) {
398 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
399 if (mem == NULL) {
400 break;
401 }
402
403 /* XXX bad kernel interface alert
404 * For dirty bitmap, kernel allocates array of size aligned to
405 * bits-per-long. But for case when the kernel is 64bits and
406 * the userspace is 32bits, userspace can't align to the same
407 * bits-per-long, since sizeof(long) is different between kernel
408 * and user space. This way, userspace will provide buffer which
409 * may be 4 bytes less than the kernel will use, resulting in
410 * userspace memory corruption (which is not detectable by valgrind
411 * too, in most cases).
412 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
413 * a hope that sizeof(long) wont become >8 any time soon.
414 */
415 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
416 /*HOST_LONG_BITS*/ 64) / 8;
417 if (!d.dirty_bitmap) {
418 d.dirty_bitmap = g_malloc(size);
419 } else if (size > allocated_size) {
420 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
421 }
422 allocated_size = size;
423 memset(d.dirty_bitmap, 0, allocated_size);
424
425 d.slot = mem->slot;
426
427 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
428 DPRINTF("ioctl failed %d\n", errno);
429 ret = -1;
430 break;
431 }
432
433 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
434 start_addr = mem->start_addr + mem->memory_size;
435 }
436 g_free(d.dirty_bitmap);
437
438 return ret;
439 }
440
441 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
442 {
443 int ret = -ENOSYS;
444 KVMState *s = kvm_state;
445
446 if (s->coalesced_mmio) {
447 struct kvm_coalesced_mmio_zone zone;
448
449 zone.addr = start;
450 zone.size = size;
451 zone.pad = 0;
452
453 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
454 }
455
456 return ret;
457 }
458
459 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
460 {
461 int ret = -ENOSYS;
462 KVMState *s = kvm_state;
463
464 if (s->coalesced_mmio) {
465 struct kvm_coalesced_mmio_zone zone;
466
467 zone.addr = start;
468 zone.size = size;
469 zone.pad = 0;
470
471 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
472 }
473
474 return ret;
475 }
476
477 int kvm_check_extension(KVMState *s, unsigned int extension)
478 {
479 int ret;
480
481 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
482 if (ret < 0) {
483 ret = 0;
484 }
485
486 return ret;
487 }
488
489 static int kvm_check_many_ioeventfds(void)
490 {
491 /* Userspace can use ioeventfd for io notification. This requires a host
492 * that supports eventfd(2) and an I/O thread; since eventfd does not
493 * support SIGIO it cannot interrupt the vcpu.
494 *
495 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
496 * can avoid creating too many ioeventfds.
497 */
498 #if defined(CONFIG_EVENTFD)
499 int ioeventfds[7];
500 int i, ret = 0;
501 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
502 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
503 if (ioeventfds[i] < 0) {
504 break;
505 }
506 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
507 if (ret < 0) {
508 close(ioeventfds[i]);
509 break;
510 }
511 }
512
513 /* Decide whether many devices are supported or not */
514 ret = i == ARRAY_SIZE(ioeventfds);
515
516 while (i-- > 0) {
517 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
518 close(ioeventfds[i]);
519 }
520 return ret;
521 #else
522 return 0;
523 #endif
524 }
525
526 static const KVMCapabilityInfo *
527 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
528 {
529 while (list->name) {
530 if (!kvm_check_extension(s, list->value)) {
531 return list;
532 }
533 list++;
534 }
535 return NULL;
536 }
537
538 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
539 {
540 KVMState *s = kvm_state;
541 KVMSlot *mem, old;
542 int err;
543 MemoryRegion *mr = section->mr;
544 bool log_dirty = memory_region_is_logging(mr);
545 target_phys_addr_t start_addr = section->offset_within_address_space;
546 ram_addr_t size = section->size;
547 void *ram = NULL;
548 unsigned delta;
549
550 /* kvm works in page size chunks, but the function may be called
551 with sub-page size and unaligned start address. */
552 delta = TARGET_PAGE_ALIGN(size) - size;
553 if (delta > size) {
554 return;
555 }
556 start_addr += delta;
557 size -= delta;
558 size &= TARGET_PAGE_MASK;
559 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
560 return;
561 }
562
563 if (!memory_region_is_ram(mr)) {
564 return;
565 }
566
567 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
568
569 while (1) {
570 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
571 if (!mem) {
572 break;
573 }
574
575 if (add && start_addr >= mem->start_addr &&
576 (start_addr + size <= mem->start_addr + mem->memory_size) &&
577 (ram - start_addr == mem->ram - mem->start_addr)) {
578 /* The new slot fits into the existing one and comes with
579 * identical parameters - update flags and done. */
580 kvm_slot_dirty_pages_log_change(mem, log_dirty);
581 return;
582 }
583
584 old = *mem;
585
586 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
587 kvm_physical_sync_dirty_bitmap(section);
588 }
589
590 /* unregister the overlapping slot */
591 mem->memory_size = 0;
592 err = kvm_set_user_memory_region(s, mem);
593 if (err) {
594 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
595 __func__, strerror(-err));
596 abort();
597 }
598
599 /* Workaround for older KVM versions: we can't join slots, even not by
600 * unregistering the previous ones and then registering the larger
601 * slot. We have to maintain the existing fragmentation. Sigh.
602 *
603 * This workaround assumes that the new slot starts at the same
604 * address as the first existing one. If not or if some overlapping
605 * slot comes around later, we will fail (not seen in practice so far)
606 * - and actually require a recent KVM version. */
607 if (s->broken_set_mem_region &&
608 old.start_addr == start_addr && old.memory_size < size && add) {
609 mem = kvm_alloc_slot(s);
610 mem->memory_size = old.memory_size;
611 mem->start_addr = old.start_addr;
612 mem->ram = old.ram;
613 mem->flags = kvm_mem_flags(s, log_dirty);
614
615 err = kvm_set_user_memory_region(s, mem);
616 if (err) {
617 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
618 strerror(-err));
619 abort();
620 }
621
622 start_addr += old.memory_size;
623 ram += old.memory_size;
624 size -= old.memory_size;
625 continue;
626 }
627
628 /* register prefix slot */
629 if (old.start_addr < start_addr) {
630 mem = kvm_alloc_slot(s);
631 mem->memory_size = start_addr - old.start_addr;
632 mem->start_addr = old.start_addr;
633 mem->ram = old.ram;
634 mem->flags = kvm_mem_flags(s, log_dirty);
635
636 err = kvm_set_user_memory_region(s, mem);
637 if (err) {
638 fprintf(stderr, "%s: error registering prefix slot: %s\n",
639 __func__, strerror(-err));
640 #ifdef TARGET_PPC
641 fprintf(stderr, "%s: This is probably because your kernel's " \
642 "PAGE_SIZE is too big. Please try to use 4k " \
643 "PAGE_SIZE!\n", __func__);
644 #endif
645 abort();
646 }
647 }
648
649 /* register suffix slot */
650 if (old.start_addr + old.memory_size > start_addr + size) {
651 ram_addr_t size_delta;
652
653 mem = kvm_alloc_slot(s);
654 mem->start_addr = start_addr + size;
655 size_delta = mem->start_addr - old.start_addr;
656 mem->memory_size = old.memory_size - size_delta;
657 mem->ram = old.ram + size_delta;
658 mem->flags = kvm_mem_flags(s, log_dirty);
659
660 err = kvm_set_user_memory_region(s, mem);
661 if (err) {
662 fprintf(stderr, "%s: error registering suffix slot: %s\n",
663 __func__, strerror(-err));
664 abort();
665 }
666 }
667 }
668
669 /* in case the KVM bug workaround already "consumed" the new slot */
670 if (!size) {
671 return;
672 }
673 if (!add) {
674 return;
675 }
676 mem = kvm_alloc_slot(s);
677 mem->memory_size = size;
678 mem->start_addr = start_addr;
679 mem->ram = ram;
680 mem->flags = kvm_mem_flags(s, log_dirty);
681
682 err = kvm_set_user_memory_region(s, mem);
683 if (err) {
684 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
685 strerror(-err));
686 abort();
687 }
688 }
689
690 static void kvm_begin(MemoryListener *listener)
691 {
692 }
693
694 static void kvm_commit(MemoryListener *listener)
695 {
696 }
697
698 static void kvm_region_add(MemoryListener *listener,
699 MemoryRegionSection *section)
700 {
701 kvm_set_phys_mem(section, true);
702 }
703
704 static void kvm_region_del(MemoryListener *listener,
705 MemoryRegionSection *section)
706 {
707 kvm_set_phys_mem(section, false);
708 }
709
710 static void kvm_region_nop(MemoryListener *listener,
711 MemoryRegionSection *section)
712 {
713 }
714
715 static void kvm_log_sync(MemoryListener *listener,
716 MemoryRegionSection *section)
717 {
718 int r;
719
720 r = kvm_physical_sync_dirty_bitmap(section);
721 if (r < 0) {
722 abort();
723 }
724 }
725
726 static void kvm_log_global_start(struct MemoryListener *listener)
727 {
728 int r;
729
730 r = kvm_set_migration_log(1);
731 assert(r >= 0);
732 }
733
734 static void kvm_log_global_stop(struct MemoryListener *listener)
735 {
736 int r;
737
738 r = kvm_set_migration_log(0);
739 assert(r >= 0);
740 }
741
742 static void kvm_mem_ioeventfd_add(MemoryRegionSection *section,
743 bool match_data, uint64_t data, int fd)
744 {
745 int r;
746
747 assert(match_data && section->size == 4);
748
749 r = kvm_set_ioeventfd_mmio_long(fd, section->offset_within_address_space,
750 data, true);
751 if (r < 0) {
752 abort();
753 }
754 }
755
756 static void kvm_mem_ioeventfd_del(MemoryRegionSection *section,
757 bool match_data, uint64_t data, int fd)
758 {
759 int r;
760
761 r = kvm_set_ioeventfd_mmio_long(fd, section->offset_within_address_space,
762 data, false);
763 if (r < 0) {
764 abort();
765 }
766 }
767
768 static void kvm_io_ioeventfd_add(MemoryRegionSection *section,
769 bool match_data, uint64_t data, int fd)
770 {
771 int r;
772
773 assert(match_data && section->size == 2);
774
775 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
776 data, true);
777 if (r < 0) {
778 abort();
779 }
780 }
781
782 static void kvm_io_ioeventfd_del(MemoryRegionSection *section,
783 bool match_data, uint64_t data, int fd)
784
785 {
786 int r;
787
788 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
789 data, false);
790 if (r < 0) {
791 abort();
792 }
793 }
794
795 static void kvm_eventfd_add(MemoryListener *listener,
796 MemoryRegionSection *section,
797 bool match_data, uint64_t data, int fd)
798 {
799 if (section->address_space == get_system_memory()) {
800 kvm_mem_ioeventfd_add(section, match_data, data, fd);
801 } else {
802 kvm_io_ioeventfd_add(section, match_data, data, fd);
803 }
804 }
805
806 static void kvm_eventfd_del(MemoryListener *listener,
807 MemoryRegionSection *section,
808 bool match_data, uint64_t data, int fd)
809 {
810 if (section->address_space == get_system_memory()) {
811 kvm_mem_ioeventfd_del(section, match_data, data, fd);
812 } else {
813 kvm_io_ioeventfd_del(section, match_data, data, fd);
814 }
815 }
816
817 static MemoryListener kvm_memory_listener = {
818 .begin = kvm_begin,
819 .commit = kvm_commit,
820 .region_add = kvm_region_add,
821 .region_del = kvm_region_del,
822 .region_nop = kvm_region_nop,
823 .log_start = kvm_log_start,
824 .log_stop = kvm_log_stop,
825 .log_sync = kvm_log_sync,
826 .log_global_start = kvm_log_global_start,
827 .log_global_stop = kvm_log_global_stop,
828 .eventfd_add = kvm_eventfd_add,
829 .eventfd_del = kvm_eventfd_del,
830 .priority = 10,
831 };
832
833 static void kvm_handle_interrupt(CPUArchState *env, int mask)
834 {
835 env->interrupt_request |= mask;
836
837 if (!qemu_cpu_is_self(env)) {
838 qemu_cpu_kick(env);
839 }
840 }
841
842 int kvm_irqchip_set_irq(KVMState *s, int irq, int level)
843 {
844 struct kvm_irq_level event;
845 int ret;
846
847 assert(kvm_irqchip_in_kernel());
848
849 event.level = level;
850 event.irq = irq;
851 ret = kvm_vm_ioctl(s, s->irqchip_inject_ioctl, &event);
852 if (ret < 0) {
853 perror("kvm_set_irqchip_line");
854 abort();
855 }
856
857 return (s->irqchip_inject_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
858 }
859
860 #ifdef KVM_CAP_IRQ_ROUTING
861 static void set_gsi(KVMState *s, unsigned int gsi)
862 {
863 assert(gsi < s->max_gsi);
864
865 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
866 }
867
868 static void kvm_init_irq_routing(KVMState *s)
869 {
870 int gsi_count;
871
872 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
873 if (gsi_count > 0) {
874 unsigned int gsi_bits, i;
875
876 /* Round up so we can search ints using ffs */
877 gsi_bits = (gsi_count + 31) / 32;
878 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
879 s->max_gsi = gsi_bits;
880
881 /* Mark any over-allocated bits as already in use */
882 for (i = gsi_count; i < gsi_bits; i++) {
883 set_gsi(s, i);
884 }
885 }
886
887 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
888 s->nr_allocated_irq_routes = 0;
889
890 kvm_arch_init_irq_routing(s);
891 }
892
893 static void kvm_add_routing_entry(KVMState *s,
894 struct kvm_irq_routing_entry *entry)
895 {
896 struct kvm_irq_routing_entry *new;
897 int n, size;
898
899 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
900 n = s->nr_allocated_irq_routes * 2;
901 if (n < 64) {
902 n = 64;
903 }
904 size = sizeof(struct kvm_irq_routing);
905 size += n * sizeof(*new);
906 s->irq_routes = g_realloc(s->irq_routes, size);
907 s->nr_allocated_irq_routes = n;
908 }
909 n = s->irq_routes->nr++;
910 new = &s->irq_routes->entries[n];
911 memset(new, 0, sizeof(*new));
912 new->gsi = entry->gsi;
913 new->type = entry->type;
914 new->flags = entry->flags;
915 new->u = entry->u;
916
917 set_gsi(s, entry->gsi);
918 }
919
920 void kvm_irqchip_add_route(KVMState *s, int irq, int irqchip, int pin)
921 {
922 struct kvm_irq_routing_entry e;
923
924 e.gsi = irq;
925 e.type = KVM_IRQ_ROUTING_IRQCHIP;
926 e.flags = 0;
927 e.u.irqchip.irqchip = irqchip;
928 e.u.irqchip.pin = pin;
929 kvm_add_routing_entry(s, &e);
930 }
931
932 int kvm_irqchip_commit_routes(KVMState *s)
933 {
934 s->irq_routes->flags = 0;
935 return kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
936 }
937
938 #else /* !KVM_CAP_IRQ_ROUTING */
939
940 static void kvm_init_irq_routing(KVMState *s)
941 {
942 }
943 #endif /* !KVM_CAP_IRQ_ROUTING */
944
945 static int kvm_irqchip_create(KVMState *s)
946 {
947 QemuOptsList *list = qemu_find_opts("machine");
948 int ret;
949
950 if (QTAILQ_EMPTY(&list->head) ||
951 !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
952 "kernel_irqchip", false) ||
953 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
954 return 0;
955 }
956
957 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
958 if (ret < 0) {
959 fprintf(stderr, "Create kernel irqchip failed\n");
960 return ret;
961 }
962
963 s->irqchip_inject_ioctl = KVM_IRQ_LINE;
964 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
965 s->irqchip_inject_ioctl = KVM_IRQ_LINE_STATUS;
966 }
967 kvm_kernel_irqchip = true;
968
969 kvm_init_irq_routing(s);
970
971 return 0;
972 }
973
974 int kvm_init(void)
975 {
976 static const char upgrade_note[] =
977 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
978 "(see http://sourceforge.net/projects/kvm).\n";
979 KVMState *s;
980 const KVMCapabilityInfo *missing_cap;
981 int ret;
982 int i;
983
984 s = g_malloc0(sizeof(KVMState));
985
986 #ifdef KVM_CAP_SET_GUEST_DEBUG
987 QTAILQ_INIT(&s->kvm_sw_breakpoints);
988 #endif
989 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
990 s->slots[i].slot = i;
991 }
992 s->vmfd = -1;
993 s->fd = qemu_open("/dev/kvm", O_RDWR);
994 if (s->fd == -1) {
995 fprintf(stderr, "Could not access KVM kernel module: %m\n");
996 ret = -errno;
997 goto err;
998 }
999
1000 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1001 if (ret < KVM_API_VERSION) {
1002 if (ret > 0) {
1003 ret = -EINVAL;
1004 }
1005 fprintf(stderr, "kvm version too old\n");
1006 goto err;
1007 }
1008
1009 if (ret > KVM_API_VERSION) {
1010 ret = -EINVAL;
1011 fprintf(stderr, "kvm version not supported\n");
1012 goto err;
1013 }
1014
1015 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1016 if (s->vmfd < 0) {
1017 #ifdef TARGET_S390X
1018 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1019 "your host kernel command line\n");
1020 #endif
1021 ret = s->vmfd;
1022 goto err;
1023 }
1024
1025 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1026 if (!missing_cap) {
1027 missing_cap =
1028 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1029 }
1030 if (missing_cap) {
1031 ret = -EINVAL;
1032 fprintf(stderr, "kvm does not support %s\n%s",
1033 missing_cap->name, upgrade_note);
1034 goto err;
1035 }
1036
1037 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1038
1039 s->broken_set_mem_region = 1;
1040 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1041 if (ret > 0) {
1042 s->broken_set_mem_region = 0;
1043 }
1044
1045 #ifdef KVM_CAP_VCPU_EVENTS
1046 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1047 #endif
1048
1049 s->robust_singlestep =
1050 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1051
1052 #ifdef KVM_CAP_DEBUGREGS
1053 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1054 #endif
1055
1056 #ifdef KVM_CAP_XSAVE
1057 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1058 #endif
1059
1060 #ifdef KVM_CAP_XCRS
1061 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1062 #endif
1063
1064 #ifdef KVM_CAP_PIT_STATE2
1065 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1066 #endif
1067
1068 ret = kvm_arch_init(s);
1069 if (ret < 0) {
1070 goto err;
1071 }
1072
1073 ret = kvm_irqchip_create(s);
1074 if (ret < 0) {
1075 goto err;
1076 }
1077
1078 kvm_state = s;
1079 memory_listener_register(&kvm_memory_listener, NULL);
1080
1081 s->many_ioeventfds = kvm_check_many_ioeventfds();
1082
1083 cpu_interrupt_handler = kvm_handle_interrupt;
1084
1085 return 0;
1086
1087 err:
1088 if (s) {
1089 if (s->vmfd >= 0) {
1090 close(s->vmfd);
1091 }
1092 if (s->fd != -1) {
1093 close(s->fd);
1094 }
1095 }
1096 g_free(s);
1097
1098 return ret;
1099 }
1100
1101 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1102 uint32_t count)
1103 {
1104 int i;
1105 uint8_t *ptr = data;
1106
1107 for (i = 0; i < count; i++) {
1108 if (direction == KVM_EXIT_IO_IN) {
1109 switch (size) {
1110 case 1:
1111 stb_p(ptr, cpu_inb(port));
1112 break;
1113 case 2:
1114 stw_p(ptr, cpu_inw(port));
1115 break;
1116 case 4:
1117 stl_p(ptr, cpu_inl(port));
1118 break;
1119 }
1120 } else {
1121 switch (size) {
1122 case 1:
1123 cpu_outb(port, ldub_p(ptr));
1124 break;
1125 case 2:
1126 cpu_outw(port, lduw_p(ptr));
1127 break;
1128 case 4:
1129 cpu_outl(port, ldl_p(ptr));
1130 break;
1131 }
1132 }
1133
1134 ptr += size;
1135 }
1136 }
1137
1138 static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run)
1139 {
1140 fprintf(stderr, "KVM internal error.");
1141 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1142 int i;
1143
1144 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1145 for (i = 0; i < run->internal.ndata; ++i) {
1146 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1147 i, (uint64_t)run->internal.data[i]);
1148 }
1149 } else {
1150 fprintf(stderr, "\n");
1151 }
1152 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1153 fprintf(stderr, "emulation failure\n");
1154 if (!kvm_arch_stop_on_emulation_error(env)) {
1155 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1156 return EXCP_INTERRUPT;
1157 }
1158 }
1159 /* FIXME: Should trigger a qmp message to let management know
1160 * something went wrong.
1161 */
1162 return -1;
1163 }
1164
1165 void kvm_flush_coalesced_mmio_buffer(void)
1166 {
1167 KVMState *s = kvm_state;
1168
1169 if (s->coalesced_flush_in_progress) {
1170 return;
1171 }
1172
1173 s->coalesced_flush_in_progress = true;
1174
1175 if (s->coalesced_mmio_ring) {
1176 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1177 while (ring->first != ring->last) {
1178 struct kvm_coalesced_mmio *ent;
1179
1180 ent = &ring->coalesced_mmio[ring->first];
1181
1182 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1183 smp_wmb();
1184 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1185 }
1186 }
1187
1188 s->coalesced_flush_in_progress = false;
1189 }
1190
1191 static void do_kvm_cpu_synchronize_state(void *_env)
1192 {
1193 CPUArchState *env = _env;
1194
1195 if (!env->kvm_vcpu_dirty) {
1196 kvm_arch_get_registers(env);
1197 env->kvm_vcpu_dirty = 1;
1198 }
1199 }
1200
1201 void kvm_cpu_synchronize_state(CPUArchState *env)
1202 {
1203 if (!env->kvm_vcpu_dirty) {
1204 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
1205 }
1206 }
1207
1208 void kvm_cpu_synchronize_post_reset(CPUArchState *env)
1209 {
1210 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
1211 env->kvm_vcpu_dirty = 0;
1212 }
1213
1214 void kvm_cpu_synchronize_post_init(CPUArchState *env)
1215 {
1216 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
1217 env->kvm_vcpu_dirty = 0;
1218 }
1219
1220 int kvm_cpu_exec(CPUArchState *env)
1221 {
1222 struct kvm_run *run = env->kvm_run;
1223 int ret, run_ret;
1224
1225 DPRINTF("kvm_cpu_exec()\n");
1226
1227 if (kvm_arch_process_async_events(env)) {
1228 env->exit_request = 0;
1229 return EXCP_HLT;
1230 }
1231
1232 do {
1233 if (env->kvm_vcpu_dirty) {
1234 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
1235 env->kvm_vcpu_dirty = 0;
1236 }
1237
1238 kvm_arch_pre_run(env, run);
1239 if (env->exit_request) {
1240 DPRINTF("interrupt exit requested\n");
1241 /*
1242 * KVM requires us to reenter the kernel after IO exits to complete
1243 * instruction emulation. This self-signal will ensure that we
1244 * leave ASAP again.
1245 */
1246 qemu_cpu_kick_self();
1247 }
1248 qemu_mutex_unlock_iothread();
1249
1250 run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
1251
1252 qemu_mutex_lock_iothread();
1253 kvm_arch_post_run(env, run);
1254
1255 kvm_flush_coalesced_mmio_buffer();
1256
1257 if (run_ret < 0) {
1258 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1259 DPRINTF("io window exit\n");
1260 ret = EXCP_INTERRUPT;
1261 break;
1262 }
1263 fprintf(stderr, "error: kvm run failed %s\n",
1264 strerror(-run_ret));
1265 abort();
1266 }
1267
1268 switch (run->exit_reason) {
1269 case KVM_EXIT_IO:
1270 DPRINTF("handle_io\n");
1271 kvm_handle_io(run->io.port,
1272 (uint8_t *)run + run->io.data_offset,
1273 run->io.direction,
1274 run->io.size,
1275 run->io.count);
1276 ret = 0;
1277 break;
1278 case KVM_EXIT_MMIO:
1279 DPRINTF("handle_mmio\n");
1280 cpu_physical_memory_rw(run->mmio.phys_addr,
1281 run->mmio.data,
1282 run->mmio.len,
1283 run->mmio.is_write);
1284 ret = 0;
1285 break;
1286 case KVM_EXIT_IRQ_WINDOW_OPEN:
1287 DPRINTF("irq_window_open\n");
1288 ret = EXCP_INTERRUPT;
1289 break;
1290 case KVM_EXIT_SHUTDOWN:
1291 DPRINTF("shutdown\n");
1292 qemu_system_reset_request();
1293 ret = EXCP_INTERRUPT;
1294 break;
1295 case KVM_EXIT_UNKNOWN:
1296 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1297 (uint64_t)run->hw.hardware_exit_reason);
1298 ret = -1;
1299 break;
1300 case KVM_EXIT_INTERNAL_ERROR:
1301 ret = kvm_handle_internal_error(env, run);
1302 break;
1303 default:
1304 DPRINTF("kvm_arch_handle_exit\n");
1305 ret = kvm_arch_handle_exit(env, run);
1306 break;
1307 }
1308 } while (ret == 0);
1309
1310 if (ret < 0) {
1311 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1312 vm_stop(RUN_STATE_INTERNAL_ERROR);
1313 }
1314
1315 env->exit_request = 0;
1316 return ret;
1317 }
1318
1319 int kvm_ioctl(KVMState *s, int type, ...)
1320 {
1321 int ret;
1322 void *arg;
1323 va_list ap;
1324
1325 va_start(ap, type);
1326 arg = va_arg(ap, void *);
1327 va_end(ap);
1328
1329 ret = ioctl(s->fd, type, arg);
1330 if (ret == -1) {
1331 ret = -errno;
1332 }
1333 return ret;
1334 }
1335
1336 int kvm_vm_ioctl(KVMState *s, int type, ...)
1337 {
1338 int ret;
1339 void *arg;
1340 va_list ap;
1341
1342 va_start(ap, type);
1343 arg = va_arg(ap, void *);
1344 va_end(ap);
1345
1346 ret = ioctl(s->vmfd, type, arg);
1347 if (ret == -1) {
1348 ret = -errno;
1349 }
1350 return ret;
1351 }
1352
1353 int kvm_vcpu_ioctl(CPUArchState *env, int type, ...)
1354 {
1355 int ret;
1356 void *arg;
1357 va_list ap;
1358
1359 va_start(ap, type);
1360 arg = va_arg(ap, void *);
1361 va_end(ap);
1362
1363 ret = ioctl(env->kvm_fd, type, arg);
1364 if (ret == -1) {
1365 ret = -errno;
1366 }
1367 return ret;
1368 }
1369
1370 int kvm_has_sync_mmu(void)
1371 {
1372 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1373 }
1374
1375 int kvm_has_vcpu_events(void)
1376 {
1377 return kvm_state->vcpu_events;
1378 }
1379
1380 int kvm_has_robust_singlestep(void)
1381 {
1382 return kvm_state->robust_singlestep;
1383 }
1384
1385 int kvm_has_debugregs(void)
1386 {
1387 return kvm_state->debugregs;
1388 }
1389
1390 int kvm_has_xsave(void)
1391 {
1392 return kvm_state->xsave;
1393 }
1394
1395 int kvm_has_xcrs(void)
1396 {
1397 return kvm_state->xcrs;
1398 }
1399
1400 int kvm_has_pit_state2(void)
1401 {
1402 return kvm_state->pit_state2;
1403 }
1404
1405 int kvm_has_many_ioeventfds(void)
1406 {
1407 if (!kvm_enabled()) {
1408 return 0;
1409 }
1410 return kvm_state->many_ioeventfds;
1411 }
1412
1413 int kvm_has_gsi_routing(void)
1414 {
1415 #ifdef KVM_CAP_IRQ_ROUTING
1416 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1417 #else
1418 return false;
1419 #endif
1420 }
1421
1422 int kvm_allows_irq0_override(void)
1423 {
1424 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
1425 }
1426
1427 void kvm_setup_guest_memory(void *start, size_t size)
1428 {
1429 if (!kvm_has_sync_mmu()) {
1430 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1431
1432 if (ret) {
1433 perror("qemu_madvise");
1434 fprintf(stderr,
1435 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1436 exit(1);
1437 }
1438 }
1439 }
1440
1441 #ifdef KVM_CAP_SET_GUEST_DEBUG
1442 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUArchState *env,
1443 target_ulong pc)
1444 {
1445 struct kvm_sw_breakpoint *bp;
1446
1447 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1448 if (bp->pc == pc) {
1449 return bp;
1450 }
1451 }
1452 return NULL;
1453 }
1454
1455 int kvm_sw_breakpoints_active(CPUArchState *env)
1456 {
1457 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1458 }
1459
1460 struct kvm_set_guest_debug_data {
1461 struct kvm_guest_debug dbg;
1462 CPUArchState *env;
1463 int err;
1464 };
1465
1466 static void kvm_invoke_set_guest_debug(void *data)
1467 {
1468 struct kvm_set_guest_debug_data *dbg_data = data;
1469 CPUArchState *env = dbg_data->env;
1470
1471 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1472 }
1473
1474 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1475 {
1476 struct kvm_set_guest_debug_data data;
1477
1478 data.dbg.control = reinject_trap;
1479
1480 if (env->singlestep_enabled) {
1481 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1482 }
1483 kvm_arch_update_guest_debug(env, &data.dbg);
1484 data.env = env;
1485
1486 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1487 return data.err;
1488 }
1489
1490 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1491 target_ulong len, int type)
1492 {
1493 struct kvm_sw_breakpoint *bp;
1494 CPUArchState *env;
1495 int err;
1496
1497 if (type == GDB_BREAKPOINT_SW) {
1498 bp = kvm_find_sw_breakpoint(current_env, addr);
1499 if (bp) {
1500 bp->use_count++;
1501 return 0;
1502 }
1503
1504 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1505 if (!bp) {
1506 return -ENOMEM;
1507 }
1508
1509 bp->pc = addr;
1510 bp->use_count = 1;
1511 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1512 if (err) {
1513 g_free(bp);
1514 return err;
1515 }
1516
1517 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1518 bp, entry);
1519 } else {
1520 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1521 if (err) {
1522 return err;
1523 }
1524 }
1525
1526 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1527 err = kvm_update_guest_debug(env, 0);
1528 if (err) {
1529 return err;
1530 }
1531 }
1532 return 0;
1533 }
1534
1535 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1536 target_ulong len, int type)
1537 {
1538 struct kvm_sw_breakpoint *bp;
1539 CPUArchState *env;
1540 int err;
1541
1542 if (type == GDB_BREAKPOINT_SW) {
1543 bp = kvm_find_sw_breakpoint(current_env, addr);
1544 if (!bp) {
1545 return -ENOENT;
1546 }
1547
1548 if (bp->use_count > 1) {
1549 bp->use_count--;
1550 return 0;
1551 }
1552
1553 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1554 if (err) {
1555 return err;
1556 }
1557
1558 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1559 g_free(bp);
1560 } else {
1561 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1562 if (err) {
1563 return err;
1564 }
1565 }
1566
1567 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1568 err = kvm_update_guest_debug(env, 0);
1569 if (err) {
1570 return err;
1571 }
1572 }
1573 return 0;
1574 }
1575
1576 void kvm_remove_all_breakpoints(CPUArchState *current_env)
1577 {
1578 struct kvm_sw_breakpoint *bp, *next;
1579 KVMState *s = current_env->kvm_state;
1580 CPUArchState *env;
1581
1582 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1583 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1584 /* Try harder to find a CPU that currently sees the breakpoint. */
1585 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1586 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1587 break;
1588 }
1589 }
1590 }
1591 }
1592 kvm_arch_remove_all_hw_breakpoints();
1593
1594 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1595 kvm_update_guest_debug(env, 0);
1596 }
1597 }
1598
1599 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1600
1601 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1602 {
1603 return -EINVAL;
1604 }
1605
1606 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1607 target_ulong len, int type)
1608 {
1609 return -EINVAL;
1610 }
1611
1612 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1613 target_ulong len, int type)
1614 {
1615 return -EINVAL;
1616 }
1617
1618 void kvm_remove_all_breakpoints(CPUArchState *current_env)
1619 {
1620 }
1621 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1622
1623 int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset)
1624 {
1625 struct kvm_signal_mask *sigmask;
1626 int r;
1627
1628 if (!sigset) {
1629 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1630 }
1631
1632 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
1633
1634 sigmask->len = 8;
1635 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1636 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1637 g_free(sigmask);
1638
1639 return r;
1640 }
1641
1642 int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1643 {
1644 int ret;
1645 struct kvm_ioeventfd iofd;
1646
1647 iofd.datamatch = val;
1648 iofd.addr = addr;
1649 iofd.len = 4;
1650 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1651 iofd.fd = fd;
1652
1653 if (!kvm_enabled()) {
1654 return -ENOSYS;
1655 }
1656
1657 if (!assign) {
1658 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1659 }
1660
1661 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1662
1663 if (ret < 0) {
1664 return -errno;
1665 }
1666
1667 return 0;
1668 }
1669
1670 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1671 {
1672 struct kvm_ioeventfd kick = {
1673 .datamatch = val,
1674 .addr = addr,
1675 .len = 2,
1676 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1677 .fd = fd,
1678 };
1679 int r;
1680 if (!kvm_enabled()) {
1681 return -ENOSYS;
1682 }
1683 if (!assign) {
1684 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1685 }
1686 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1687 if (r < 0) {
1688 return r;
1689 }
1690 return 0;
1691 }
1692
1693 int kvm_on_sigbus_vcpu(CPUArchState *env, int code, void *addr)
1694 {
1695 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1696 }
1697
1698 int kvm_on_sigbus(int code, void *addr)
1699 {
1700 return kvm_arch_on_sigbus(code, addr);
1701 }