]> git.proxmox.com Git - qemu.git/blob - kvm-all.c
MAINTAINERS: Add entry for QOM CPU
[qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "qemu-option.h"
26 #include "qemu-config.h"
27 #include "sysemu.h"
28 #include "hw/hw.h"
29 #include "hw/msi.h"
30 #include "gdbstub.h"
31 #include "kvm.h"
32 #include "bswap.h"
33 #include "memory.h"
34 #include "exec-memory.h"
35 #include "event_notifier.h"
36
37 /* This check must be after config-host.h is included */
38 #ifdef CONFIG_EVENTFD
39 #include <sys/eventfd.h>
40 #endif
41
42 #ifdef CONFIG_VALGRIND_H
43 #include <valgrind/memcheck.h>
44 #endif
45
46 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
47 #define PAGE_SIZE TARGET_PAGE_SIZE
48
49 //#define DEBUG_KVM
50
51 #ifdef DEBUG_KVM
52 #define DPRINTF(fmt, ...) \
53 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
54 #else
55 #define DPRINTF(fmt, ...) \
56 do { } while (0)
57 #endif
58
59 #define KVM_MSI_HASHTAB_SIZE 256
60
61 typedef struct KVMSlot
62 {
63 target_phys_addr_t start_addr;
64 ram_addr_t memory_size;
65 void *ram;
66 int slot;
67 int flags;
68 } KVMSlot;
69
70 typedef struct kvm_dirty_log KVMDirtyLog;
71
72 struct KVMState
73 {
74 KVMSlot slots[32];
75 int fd;
76 int vmfd;
77 int coalesced_mmio;
78 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
79 bool coalesced_flush_in_progress;
80 int broken_set_mem_region;
81 int migration_log;
82 int vcpu_events;
83 int robust_singlestep;
84 int debugregs;
85 #ifdef KVM_CAP_SET_GUEST_DEBUG
86 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
87 #endif
88 int pit_state2;
89 int xsave, xcrs;
90 int many_ioeventfds;
91 /* The man page (and posix) say ioctl numbers are signed int, but
92 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
93 * unsigned, and treating them as signed here can break things */
94 unsigned irqchip_inject_ioctl;
95 #ifdef KVM_CAP_IRQ_ROUTING
96 struct kvm_irq_routing *irq_routes;
97 int nr_allocated_irq_routes;
98 uint32_t *used_gsi_bitmap;
99 unsigned int gsi_count;
100 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
101 bool direct_msi;
102 #endif
103 };
104
105 KVMState *kvm_state;
106 bool kvm_kernel_irqchip;
107 bool kvm_async_interrupts_allowed;
108 bool kvm_irqfds_allowed;
109 bool kvm_msi_via_irqfd_allowed;
110 bool kvm_gsi_routing_allowed;
111
112 static const KVMCapabilityInfo kvm_required_capabilites[] = {
113 KVM_CAP_INFO(USER_MEMORY),
114 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
115 KVM_CAP_LAST_INFO
116 };
117
118 static KVMSlot *kvm_alloc_slot(KVMState *s)
119 {
120 int i;
121
122 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
123 if (s->slots[i].memory_size == 0) {
124 return &s->slots[i];
125 }
126 }
127
128 fprintf(stderr, "%s: no free slot available\n", __func__);
129 abort();
130 }
131
132 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
133 target_phys_addr_t start_addr,
134 target_phys_addr_t end_addr)
135 {
136 int i;
137
138 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
139 KVMSlot *mem = &s->slots[i];
140
141 if (start_addr == mem->start_addr &&
142 end_addr == mem->start_addr + mem->memory_size) {
143 return mem;
144 }
145 }
146
147 return NULL;
148 }
149
150 /*
151 * Find overlapping slot with lowest start address
152 */
153 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
154 target_phys_addr_t start_addr,
155 target_phys_addr_t end_addr)
156 {
157 KVMSlot *found = NULL;
158 int i;
159
160 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
161 KVMSlot *mem = &s->slots[i];
162
163 if (mem->memory_size == 0 ||
164 (found && found->start_addr < mem->start_addr)) {
165 continue;
166 }
167
168 if (end_addr > mem->start_addr &&
169 start_addr < mem->start_addr + mem->memory_size) {
170 found = mem;
171 }
172 }
173
174 return found;
175 }
176
177 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
178 target_phys_addr_t *phys_addr)
179 {
180 int i;
181
182 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
183 KVMSlot *mem = &s->slots[i];
184
185 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
186 *phys_addr = mem->start_addr + (ram - mem->ram);
187 return 1;
188 }
189 }
190
191 return 0;
192 }
193
194 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
195 {
196 struct kvm_userspace_memory_region mem;
197
198 mem.slot = slot->slot;
199 mem.guest_phys_addr = slot->start_addr;
200 mem.memory_size = slot->memory_size;
201 mem.userspace_addr = (unsigned long)slot->ram;
202 mem.flags = slot->flags;
203 if (s->migration_log) {
204 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
205 }
206 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
207 }
208
209 static void kvm_reset_vcpu(void *opaque)
210 {
211 CPUArchState *env = opaque;
212
213 kvm_arch_reset_vcpu(env);
214 }
215
216 int kvm_init_vcpu(CPUArchState *env)
217 {
218 KVMState *s = kvm_state;
219 long mmap_size;
220 int ret;
221
222 DPRINTF("kvm_init_vcpu\n");
223
224 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
225 if (ret < 0) {
226 DPRINTF("kvm_create_vcpu failed\n");
227 goto err;
228 }
229
230 env->kvm_fd = ret;
231 env->kvm_state = s;
232 env->kvm_vcpu_dirty = 1;
233
234 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
235 if (mmap_size < 0) {
236 ret = mmap_size;
237 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
238 goto err;
239 }
240
241 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
242 env->kvm_fd, 0);
243 if (env->kvm_run == MAP_FAILED) {
244 ret = -errno;
245 DPRINTF("mmap'ing vcpu state failed\n");
246 goto err;
247 }
248
249 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
250 s->coalesced_mmio_ring =
251 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
252 }
253
254 ret = kvm_arch_init_vcpu(env);
255 if (ret == 0) {
256 qemu_register_reset(kvm_reset_vcpu, env);
257 kvm_arch_reset_vcpu(env);
258 }
259 err:
260 return ret;
261 }
262
263 /*
264 * dirty pages logging control
265 */
266
267 static int kvm_mem_flags(KVMState *s, bool log_dirty)
268 {
269 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
270 }
271
272 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
273 {
274 KVMState *s = kvm_state;
275 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
276 int old_flags;
277
278 old_flags = mem->flags;
279
280 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
281 mem->flags = flags;
282
283 /* If nothing changed effectively, no need to issue ioctl */
284 if (s->migration_log) {
285 flags |= KVM_MEM_LOG_DIRTY_PAGES;
286 }
287
288 if (flags == old_flags) {
289 return 0;
290 }
291
292 return kvm_set_user_memory_region(s, mem);
293 }
294
295 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
296 ram_addr_t size, bool log_dirty)
297 {
298 KVMState *s = kvm_state;
299 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
300
301 if (mem == NULL) {
302 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
303 TARGET_FMT_plx "\n", __func__, phys_addr,
304 (target_phys_addr_t)(phys_addr + size - 1));
305 return -EINVAL;
306 }
307 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
308 }
309
310 static void kvm_log_start(MemoryListener *listener,
311 MemoryRegionSection *section)
312 {
313 int r;
314
315 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
316 section->size, true);
317 if (r < 0) {
318 abort();
319 }
320 }
321
322 static void kvm_log_stop(MemoryListener *listener,
323 MemoryRegionSection *section)
324 {
325 int r;
326
327 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
328 section->size, false);
329 if (r < 0) {
330 abort();
331 }
332 }
333
334 static int kvm_set_migration_log(int enable)
335 {
336 KVMState *s = kvm_state;
337 KVMSlot *mem;
338 int i, err;
339
340 s->migration_log = enable;
341
342 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
343 mem = &s->slots[i];
344
345 if (!mem->memory_size) {
346 continue;
347 }
348 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
349 continue;
350 }
351 err = kvm_set_user_memory_region(s, mem);
352 if (err) {
353 return err;
354 }
355 }
356 return 0;
357 }
358
359 /* get kvm's dirty pages bitmap and update qemu's */
360 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
361 unsigned long *bitmap)
362 {
363 unsigned int i, j;
364 unsigned long page_number, c;
365 target_phys_addr_t addr, addr1;
366 unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
367 unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
368
369 /*
370 * bitmap-traveling is faster than memory-traveling (for addr...)
371 * especially when most of the memory is not dirty.
372 */
373 for (i = 0; i < len; i++) {
374 if (bitmap[i] != 0) {
375 c = leul_to_cpu(bitmap[i]);
376 do {
377 j = ffsl(c) - 1;
378 c &= ~(1ul << j);
379 page_number = (i * HOST_LONG_BITS + j) * hpratio;
380 addr1 = page_number * TARGET_PAGE_SIZE;
381 addr = section->offset_within_region + addr1;
382 memory_region_set_dirty(section->mr, addr,
383 TARGET_PAGE_SIZE * hpratio);
384 } while (c != 0);
385 }
386 }
387 return 0;
388 }
389
390 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
391
392 /**
393 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
394 * This function updates qemu's dirty bitmap using
395 * memory_region_set_dirty(). This means all bits are set
396 * to dirty.
397 *
398 * @start_add: start of logged region.
399 * @end_addr: end of logged region.
400 */
401 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
402 {
403 KVMState *s = kvm_state;
404 unsigned long size, allocated_size = 0;
405 KVMDirtyLog d;
406 KVMSlot *mem;
407 int ret = 0;
408 target_phys_addr_t start_addr = section->offset_within_address_space;
409 target_phys_addr_t end_addr = start_addr + section->size;
410
411 d.dirty_bitmap = NULL;
412 while (start_addr < end_addr) {
413 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
414 if (mem == NULL) {
415 break;
416 }
417
418 /* XXX bad kernel interface alert
419 * For dirty bitmap, kernel allocates array of size aligned to
420 * bits-per-long. But for case when the kernel is 64bits and
421 * the userspace is 32bits, userspace can't align to the same
422 * bits-per-long, since sizeof(long) is different between kernel
423 * and user space. This way, userspace will provide buffer which
424 * may be 4 bytes less than the kernel will use, resulting in
425 * userspace memory corruption (which is not detectable by valgrind
426 * too, in most cases).
427 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
428 * a hope that sizeof(long) wont become >8 any time soon.
429 */
430 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
431 /*HOST_LONG_BITS*/ 64) / 8;
432 if (!d.dirty_bitmap) {
433 d.dirty_bitmap = g_malloc(size);
434 } else if (size > allocated_size) {
435 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
436 }
437 allocated_size = size;
438 memset(d.dirty_bitmap, 0, allocated_size);
439
440 d.slot = mem->slot;
441
442 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
443 DPRINTF("ioctl failed %d\n", errno);
444 ret = -1;
445 break;
446 }
447
448 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
449 start_addr = mem->start_addr + mem->memory_size;
450 }
451 g_free(d.dirty_bitmap);
452
453 return ret;
454 }
455
456 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
457 {
458 int ret = -ENOSYS;
459 KVMState *s = kvm_state;
460
461 if (s->coalesced_mmio) {
462 struct kvm_coalesced_mmio_zone zone;
463
464 zone.addr = start;
465 zone.size = size;
466 zone.pad = 0;
467
468 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
469 }
470
471 return ret;
472 }
473
474 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
475 {
476 int ret = -ENOSYS;
477 KVMState *s = kvm_state;
478
479 if (s->coalesced_mmio) {
480 struct kvm_coalesced_mmio_zone zone;
481
482 zone.addr = start;
483 zone.size = size;
484 zone.pad = 0;
485
486 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
487 }
488
489 return ret;
490 }
491
492 int kvm_check_extension(KVMState *s, unsigned int extension)
493 {
494 int ret;
495
496 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
497 if (ret < 0) {
498 ret = 0;
499 }
500
501 return ret;
502 }
503
504 static int kvm_check_many_ioeventfds(void)
505 {
506 /* Userspace can use ioeventfd for io notification. This requires a host
507 * that supports eventfd(2) and an I/O thread; since eventfd does not
508 * support SIGIO it cannot interrupt the vcpu.
509 *
510 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
511 * can avoid creating too many ioeventfds.
512 */
513 #if defined(CONFIG_EVENTFD)
514 int ioeventfds[7];
515 int i, ret = 0;
516 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
517 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
518 if (ioeventfds[i] < 0) {
519 break;
520 }
521 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
522 if (ret < 0) {
523 close(ioeventfds[i]);
524 break;
525 }
526 }
527
528 /* Decide whether many devices are supported or not */
529 ret = i == ARRAY_SIZE(ioeventfds);
530
531 while (i-- > 0) {
532 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
533 close(ioeventfds[i]);
534 }
535 return ret;
536 #else
537 return 0;
538 #endif
539 }
540
541 static const KVMCapabilityInfo *
542 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
543 {
544 while (list->name) {
545 if (!kvm_check_extension(s, list->value)) {
546 return list;
547 }
548 list++;
549 }
550 return NULL;
551 }
552
553 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
554 {
555 KVMState *s = kvm_state;
556 KVMSlot *mem, old;
557 int err;
558 MemoryRegion *mr = section->mr;
559 bool log_dirty = memory_region_is_logging(mr);
560 target_phys_addr_t start_addr = section->offset_within_address_space;
561 ram_addr_t size = section->size;
562 void *ram = NULL;
563 unsigned delta;
564
565 /* kvm works in page size chunks, but the function may be called
566 with sub-page size and unaligned start address. */
567 delta = TARGET_PAGE_ALIGN(size) - size;
568 if (delta > size) {
569 return;
570 }
571 start_addr += delta;
572 size -= delta;
573 size &= TARGET_PAGE_MASK;
574 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
575 return;
576 }
577
578 if (!memory_region_is_ram(mr)) {
579 return;
580 }
581
582 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
583
584 while (1) {
585 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
586 if (!mem) {
587 break;
588 }
589
590 if (add && start_addr >= mem->start_addr &&
591 (start_addr + size <= mem->start_addr + mem->memory_size) &&
592 (ram - start_addr == mem->ram - mem->start_addr)) {
593 /* The new slot fits into the existing one and comes with
594 * identical parameters - update flags and done. */
595 kvm_slot_dirty_pages_log_change(mem, log_dirty);
596 return;
597 }
598
599 old = *mem;
600
601 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
602 kvm_physical_sync_dirty_bitmap(section);
603 }
604
605 /* unregister the overlapping slot */
606 mem->memory_size = 0;
607 err = kvm_set_user_memory_region(s, mem);
608 if (err) {
609 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
610 __func__, strerror(-err));
611 abort();
612 }
613
614 /* Workaround for older KVM versions: we can't join slots, even not by
615 * unregistering the previous ones and then registering the larger
616 * slot. We have to maintain the existing fragmentation. Sigh.
617 *
618 * This workaround assumes that the new slot starts at the same
619 * address as the first existing one. If not or if some overlapping
620 * slot comes around later, we will fail (not seen in practice so far)
621 * - and actually require a recent KVM version. */
622 if (s->broken_set_mem_region &&
623 old.start_addr == start_addr && old.memory_size < size && add) {
624 mem = kvm_alloc_slot(s);
625 mem->memory_size = old.memory_size;
626 mem->start_addr = old.start_addr;
627 mem->ram = old.ram;
628 mem->flags = kvm_mem_flags(s, log_dirty);
629
630 err = kvm_set_user_memory_region(s, mem);
631 if (err) {
632 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
633 strerror(-err));
634 abort();
635 }
636
637 start_addr += old.memory_size;
638 ram += old.memory_size;
639 size -= old.memory_size;
640 continue;
641 }
642
643 /* register prefix slot */
644 if (old.start_addr < start_addr) {
645 mem = kvm_alloc_slot(s);
646 mem->memory_size = start_addr - old.start_addr;
647 mem->start_addr = old.start_addr;
648 mem->ram = old.ram;
649 mem->flags = kvm_mem_flags(s, log_dirty);
650
651 err = kvm_set_user_memory_region(s, mem);
652 if (err) {
653 fprintf(stderr, "%s: error registering prefix slot: %s\n",
654 __func__, strerror(-err));
655 #ifdef TARGET_PPC
656 fprintf(stderr, "%s: This is probably because your kernel's " \
657 "PAGE_SIZE is too big. Please try to use 4k " \
658 "PAGE_SIZE!\n", __func__);
659 #endif
660 abort();
661 }
662 }
663
664 /* register suffix slot */
665 if (old.start_addr + old.memory_size > start_addr + size) {
666 ram_addr_t size_delta;
667
668 mem = kvm_alloc_slot(s);
669 mem->start_addr = start_addr + size;
670 size_delta = mem->start_addr - old.start_addr;
671 mem->memory_size = old.memory_size - size_delta;
672 mem->ram = old.ram + size_delta;
673 mem->flags = kvm_mem_flags(s, log_dirty);
674
675 err = kvm_set_user_memory_region(s, mem);
676 if (err) {
677 fprintf(stderr, "%s: error registering suffix slot: %s\n",
678 __func__, strerror(-err));
679 abort();
680 }
681 }
682 }
683
684 /* in case the KVM bug workaround already "consumed" the new slot */
685 if (!size) {
686 return;
687 }
688 if (!add) {
689 return;
690 }
691 mem = kvm_alloc_slot(s);
692 mem->memory_size = size;
693 mem->start_addr = start_addr;
694 mem->ram = ram;
695 mem->flags = kvm_mem_flags(s, log_dirty);
696
697 err = kvm_set_user_memory_region(s, mem);
698 if (err) {
699 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
700 strerror(-err));
701 abort();
702 }
703 }
704
705 static void kvm_begin(MemoryListener *listener)
706 {
707 }
708
709 static void kvm_commit(MemoryListener *listener)
710 {
711 }
712
713 static void kvm_region_add(MemoryListener *listener,
714 MemoryRegionSection *section)
715 {
716 kvm_set_phys_mem(section, true);
717 }
718
719 static void kvm_region_del(MemoryListener *listener,
720 MemoryRegionSection *section)
721 {
722 kvm_set_phys_mem(section, false);
723 }
724
725 static void kvm_region_nop(MemoryListener *listener,
726 MemoryRegionSection *section)
727 {
728 }
729
730 static void kvm_log_sync(MemoryListener *listener,
731 MemoryRegionSection *section)
732 {
733 int r;
734
735 r = kvm_physical_sync_dirty_bitmap(section);
736 if (r < 0) {
737 abort();
738 }
739 }
740
741 static void kvm_log_global_start(struct MemoryListener *listener)
742 {
743 int r;
744
745 r = kvm_set_migration_log(1);
746 assert(r >= 0);
747 }
748
749 static void kvm_log_global_stop(struct MemoryListener *listener)
750 {
751 int r;
752
753 r = kvm_set_migration_log(0);
754 assert(r >= 0);
755 }
756
757 static void kvm_mem_ioeventfd_add(MemoryRegionSection *section,
758 bool match_data, uint64_t data, int fd)
759 {
760 int r;
761
762 assert(match_data && section->size <= 8);
763
764 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
765 data, true, section->size);
766 if (r < 0) {
767 abort();
768 }
769 }
770
771 static void kvm_mem_ioeventfd_del(MemoryRegionSection *section,
772 bool match_data, uint64_t data, int fd)
773 {
774 int r;
775
776 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
777 data, false, section->size);
778 if (r < 0) {
779 abort();
780 }
781 }
782
783 static void kvm_io_ioeventfd_add(MemoryRegionSection *section,
784 bool match_data, uint64_t data, int fd)
785 {
786 int r;
787
788 assert(match_data && section->size == 2);
789
790 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
791 data, true);
792 if (r < 0) {
793 abort();
794 }
795 }
796
797 static void kvm_io_ioeventfd_del(MemoryRegionSection *section,
798 bool match_data, uint64_t data, int fd)
799
800 {
801 int r;
802
803 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
804 data, false);
805 if (r < 0) {
806 abort();
807 }
808 }
809
810 static void kvm_eventfd_add(MemoryListener *listener,
811 MemoryRegionSection *section,
812 bool match_data, uint64_t data,
813 EventNotifier *e)
814 {
815 if (section->address_space == get_system_memory()) {
816 kvm_mem_ioeventfd_add(section, match_data, data,
817 event_notifier_get_fd(e));
818 } else {
819 kvm_io_ioeventfd_add(section, match_data, data,
820 event_notifier_get_fd(e));
821 }
822 }
823
824 static void kvm_eventfd_del(MemoryListener *listener,
825 MemoryRegionSection *section,
826 bool match_data, uint64_t data,
827 EventNotifier *e)
828 {
829 if (section->address_space == get_system_memory()) {
830 kvm_mem_ioeventfd_del(section, match_data, data,
831 event_notifier_get_fd(e));
832 } else {
833 kvm_io_ioeventfd_del(section, match_data, data,
834 event_notifier_get_fd(e));
835 }
836 }
837
838 static MemoryListener kvm_memory_listener = {
839 .begin = kvm_begin,
840 .commit = kvm_commit,
841 .region_add = kvm_region_add,
842 .region_del = kvm_region_del,
843 .region_nop = kvm_region_nop,
844 .log_start = kvm_log_start,
845 .log_stop = kvm_log_stop,
846 .log_sync = kvm_log_sync,
847 .log_global_start = kvm_log_global_start,
848 .log_global_stop = kvm_log_global_stop,
849 .eventfd_add = kvm_eventfd_add,
850 .eventfd_del = kvm_eventfd_del,
851 .priority = 10,
852 };
853
854 static void kvm_handle_interrupt(CPUArchState *env, int mask)
855 {
856 env->interrupt_request |= mask;
857
858 if (!qemu_cpu_is_self(env)) {
859 qemu_cpu_kick(env);
860 }
861 }
862
863 int kvm_set_irq(KVMState *s, int irq, int level)
864 {
865 struct kvm_irq_level event;
866 int ret;
867
868 assert(kvm_async_interrupts_enabled());
869
870 event.level = level;
871 event.irq = irq;
872 ret = kvm_vm_ioctl(s, s->irqchip_inject_ioctl, &event);
873 if (ret < 0) {
874 perror("kvm_set_irq");
875 abort();
876 }
877
878 return (s->irqchip_inject_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
879 }
880
881 #ifdef KVM_CAP_IRQ_ROUTING
882 typedef struct KVMMSIRoute {
883 struct kvm_irq_routing_entry kroute;
884 QTAILQ_ENTRY(KVMMSIRoute) entry;
885 } KVMMSIRoute;
886
887 static void set_gsi(KVMState *s, unsigned int gsi)
888 {
889 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
890 }
891
892 static void clear_gsi(KVMState *s, unsigned int gsi)
893 {
894 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
895 }
896
897 static void kvm_init_irq_routing(KVMState *s)
898 {
899 int gsi_count, i;
900
901 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
902 if (gsi_count > 0) {
903 unsigned int gsi_bits, i;
904
905 /* Round up so we can search ints using ffs */
906 gsi_bits = ALIGN(gsi_count, 32);
907 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
908 s->gsi_count = gsi_count;
909
910 /* Mark any over-allocated bits as already in use */
911 for (i = gsi_count; i < gsi_bits; i++) {
912 set_gsi(s, i);
913 }
914 }
915
916 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
917 s->nr_allocated_irq_routes = 0;
918
919 if (!s->direct_msi) {
920 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
921 QTAILQ_INIT(&s->msi_hashtab[i]);
922 }
923 }
924
925 kvm_arch_init_irq_routing(s);
926 }
927
928 static void kvm_irqchip_commit_routes(KVMState *s)
929 {
930 int ret;
931
932 s->irq_routes->flags = 0;
933 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
934 assert(ret == 0);
935 }
936
937 static void kvm_add_routing_entry(KVMState *s,
938 struct kvm_irq_routing_entry *entry)
939 {
940 struct kvm_irq_routing_entry *new;
941 int n, size;
942
943 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
944 n = s->nr_allocated_irq_routes * 2;
945 if (n < 64) {
946 n = 64;
947 }
948 size = sizeof(struct kvm_irq_routing);
949 size += n * sizeof(*new);
950 s->irq_routes = g_realloc(s->irq_routes, size);
951 s->nr_allocated_irq_routes = n;
952 }
953 n = s->irq_routes->nr++;
954 new = &s->irq_routes->entries[n];
955 memset(new, 0, sizeof(*new));
956 new->gsi = entry->gsi;
957 new->type = entry->type;
958 new->flags = entry->flags;
959 new->u = entry->u;
960
961 set_gsi(s, entry->gsi);
962
963 kvm_irqchip_commit_routes(s);
964 }
965
966 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
967 {
968 struct kvm_irq_routing_entry e;
969
970 assert(pin < s->gsi_count);
971
972 e.gsi = irq;
973 e.type = KVM_IRQ_ROUTING_IRQCHIP;
974 e.flags = 0;
975 e.u.irqchip.irqchip = irqchip;
976 e.u.irqchip.pin = pin;
977 kvm_add_routing_entry(s, &e);
978 }
979
980 void kvm_irqchip_release_virq(KVMState *s, int virq)
981 {
982 struct kvm_irq_routing_entry *e;
983 int i;
984
985 for (i = 0; i < s->irq_routes->nr; i++) {
986 e = &s->irq_routes->entries[i];
987 if (e->gsi == virq) {
988 s->irq_routes->nr--;
989 *e = s->irq_routes->entries[s->irq_routes->nr];
990 }
991 }
992 clear_gsi(s, virq);
993
994 kvm_irqchip_commit_routes(s);
995 }
996
997 static unsigned int kvm_hash_msi(uint32_t data)
998 {
999 /* This is optimized for IA32 MSI layout. However, no other arch shall
1000 * repeat the mistake of not providing a direct MSI injection API. */
1001 return data & 0xff;
1002 }
1003
1004 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1005 {
1006 KVMMSIRoute *route, *next;
1007 unsigned int hash;
1008
1009 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1010 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1011 kvm_irqchip_release_virq(s, route->kroute.gsi);
1012 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1013 g_free(route);
1014 }
1015 }
1016 }
1017
1018 static int kvm_irqchip_get_virq(KVMState *s)
1019 {
1020 uint32_t *word = s->used_gsi_bitmap;
1021 int max_words = ALIGN(s->gsi_count, 32) / 32;
1022 int i, bit;
1023 bool retry = true;
1024
1025 again:
1026 /* Return the lowest unused GSI in the bitmap */
1027 for (i = 0; i < max_words; i++) {
1028 bit = ffs(~word[i]);
1029 if (!bit) {
1030 continue;
1031 }
1032
1033 return bit - 1 + i * 32;
1034 }
1035 if (!s->direct_msi && retry) {
1036 retry = false;
1037 kvm_flush_dynamic_msi_routes(s);
1038 goto again;
1039 }
1040 return -ENOSPC;
1041
1042 }
1043
1044 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1045 {
1046 unsigned int hash = kvm_hash_msi(msg.data);
1047 KVMMSIRoute *route;
1048
1049 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1050 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1051 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1052 route->kroute.u.msi.data == msg.data) {
1053 return route;
1054 }
1055 }
1056 return NULL;
1057 }
1058
1059 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1060 {
1061 struct kvm_msi msi;
1062 KVMMSIRoute *route;
1063
1064 if (s->direct_msi) {
1065 msi.address_lo = (uint32_t)msg.address;
1066 msi.address_hi = msg.address >> 32;
1067 msi.data = msg.data;
1068 msi.flags = 0;
1069 memset(msi.pad, 0, sizeof(msi.pad));
1070
1071 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1072 }
1073
1074 route = kvm_lookup_msi_route(s, msg);
1075 if (!route) {
1076 int virq;
1077
1078 virq = kvm_irqchip_get_virq(s);
1079 if (virq < 0) {
1080 return virq;
1081 }
1082
1083 route = g_malloc(sizeof(KVMMSIRoute));
1084 route->kroute.gsi = virq;
1085 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1086 route->kroute.flags = 0;
1087 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1088 route->kroute.u.msi.address_hi = msg.address >> 32;
1089 route->kroute.u.msi.data = msg.data;
1090
1091 kvm_add_routing_entry(s, &route->kroute);
1092
1093 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1094 entry);
1095 }
1096
1097 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1098
1099 return kvm_set_irq(s, route->kroute.gsi, 1);
1100 }
1101
1102 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1103 {
1104 struct kvm_irq_routing_entry kroute;
1105 int virq;
1106
1107 if (!kvm_gsi_routing_enabled()) {
1108 return -ENOSYS;
1109 }
1110
1111 virq = kvm_irqchip_get_virq(s);
1112 if (virq < 0) {
1113 return virq;
1114 }
1115
1116 kroute.gsi = virq;
1117 kroute.type = KVM_IRQ_ROUTING_MSI;
1118 kroute.flags = 0;
1119 kroute.u.msi.address_lo = (uint32_t)msg.address;
1120 kroute.u.msi.address_hi = msg.address >> 32;
1121 kroute.u.msi.data = msg.data;
1122
1123 kvm_add_routing_entry(s, &kroute);
1124
1125 return virq;
1126 }
1127
1128 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1129 {
1130 struct kvm_irqfd irqfd = {
1131 .fd = fd,
1132 .gsi = virq,
1133 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1134 };
1135
1136 if (!kvm_irqfds_enabled()) {
1137 return -ENOSYS;
1138 }
1139
1140 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1141 }
1142
1143 #else /* !KVM_CAP_IRQ_ROUTING */
1144
1145 static void kvm_init_irq_routing(KVMState *s)
1146 {
1147 }
1148
1149 void kvm_irqchip_release_virq(KVMState *s, int virq)
1150 {
1151 }
1152
1153 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1154 {
1155 abort();
1156 }
1157
1158 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1159 {
1160 return -ENOSYS;
1161 }
1162
1163 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1164 {
1165 abort();
1166 }
1167 #endif /* !KVM_CAP_IRQ_ROUTING */
1168
1169 int kvm_irqchip_add_irqfd(KVMState *s, int fd, int virq)
1170 {
1171 return kvm_irqchip_assign_irqfd(s, fd, virq, true);
1172 }
1173
1174 int kvm_irqchip_add_irq_notifier(KVMState *s, EventNotifier *n, int virq)
1175 {
1176 return kvm_irqchip_add_irqfd(s, event_notifier_get_fd(n), virq);
1177 }
1178
1179 int kvm_irqchip_remove_irqfd(KVMState *s, int fd, int virq)
1180 {
1181 return kvm_irqchip_assign_irqfd(s, fd, virq, false);
1182 }
1183
1184 int kvm_irqchip_remove_irq_notifier(KVMState *s, EventNotifier *n, int virq)
1185 {
1186 return kvm_irqchip_remove_irqfd(s, event_notifier_get_fd(n), virq);
1187 }
1188
1189 static int kvm_irqchip_create(KVMState *s)
1190 {
1191 QemuOptsList *list = qemu_find_opts("machine");
1192 int ret;
1193
1194 if (QTAILQ_EMPTY(&list->head) ||
1195 !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
1196 "kernel_irqchip", true) ||
1197 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1198 return 0;
1199 }
1200
1201 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1202 if (ret < 0) {
1203 fprintf(stderr, "Create kernel irqchip failed\n");
1204 return ret;
1205 }
1206
1207 s->irqchip_inject_ioctl = KVM_IRQ_LINE;
1208 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1209 s->irqchip_inject_ioctl = KVM_IRQ_LINE_STATUS;
1210 }
1211 kvm_kernel_irqchip = true;
1212 /* If we have an in-kernel IRQ chip then we must have asynchronous
1213 * interrupt delivery (though the reverse is not necessarily true)
1214 */
1215 kvm_async_interrupts_allowed = true;
1216
1217 kvm_init_irq_routing(s);
1218
1219 return 0;
1220 }
1221
1222 static int kvm_max_vcpus(KVMState *s)
1223 {
1224 int ret;
1225
1226 /* Find number of supported CPUs using the recommended
1227 * procedure from the kernel API documentation to cope with
1228 * older kernels that may be missing capabilities.
1229 */
1230 ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1231 if (ret) {
1232 return ret;
1233 }
1234 ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1235 if (ret) {
1236 return ret;
1237 }
1238
1239 return 4;
1240 }
1241
1242 int kvm_init(void)
1243 {
1244 static const char upgrade_note[] =
1245 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1246 "(see http://sourceforge.net/projects/kvm).\n";
1247 KVMState *s;
1248 const KVMCapabilityInfo *missing_cap;
1249 int ret;
1250 int i;
1251 int max_vcpus;
1252
1253 s = g_malloc0(sizeof(KVMState));
1254
1255 /*
1256 * On systems where the kernel can support different base page
1257 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1258 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1259 * page size for the system though.
1260 */
1261 assert(TARGET_PAGE_SIZE <= getpagesize());
1262
1263 #ifdef KVM_CAP_SET_GUEST_DEBUG
1264 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1265 #endif
1266 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
1267 s->slots[i].slot = i;
1268 }
1269 s->vmfd = -1;
1270 s->fd = qemu_open("/dev/kvm", O_RDWR);
1271 if (s->fd == -1) {
1272 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1273 ret = -errno;
1274 goto err;
1275 }
1276
1277 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1278 if (ret < KVM_API_VERSION) {
1279 if (ret > 0) {
1280 ret = -EINVAL;
1281 }
1282 fprintf(stderr, "kvm version too old\n");
1283 goto err;
1284 }
1285
1286 if (ret > KVM_API_VERSION) {
1287 ret = -EINVAL;
1288 fprintf(stderr, "kvm version not supported\n");
1289 goto err;
1290 }
1291
1292 max_vcpus = kvm_max_vcpus(s);
1293 if (smp_cpus > max_vcpus) {
1294 ret = -EINVAL;
1295 fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus "
1296 "supported by KVM (%d)\n", smp_cpus, max_vcpus);
1297 goto err;
1298 }
1299
1300 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1301 if (s->vmfd < 0) {
1302 #ifdef TARGET_S390X
1303 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1304 "your host kernel command line\n");
1305 #endif
1306 ret = s->vmfd;
1307 goto err;
1308 }
1309
1310 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1311 if (!missing_cap) {
1312 missing_cap =
1313 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1314 }
1315 if (missing_cap) {
1316 ret = -EINVAL;
1317 fprintf(stderr, "kvm does not support %s\n%s",
1318 missing_cap->name, upgrade_note);
1319 goto err;
1320 }
1321
1322 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1323
1324 s->broken_set_mem_region = 1;
1325 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1326 if (ret > 0) {
1327 s->broken_set_mem_region = 0;
1328 }
1329
1330 #ifdef KVM_CAP_VCPU_EVENTS
1331 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1332 #endif
1333
1334 s->robust_singlestep =
1335 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1336
1337 #ifdef KVM_CAP_DEBUGREGS
1338 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1339 #endif
1340
1341 #ifdef KVM_CAP_XSAVE
1342 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1343 #endif
1344
1345 #ifdef KVM_CAP_XCRS
1346 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1347 #endif
1348
1349 #ifdef KVM_CAP_PIT_STATE2
1350 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1351 #endif
1352
1353 #ifdef KVM_CAP_IRQ_ROUTING
1354 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1355 #endif
1356
1357 ret = kvm_arch_init(s);
1358 if (ret < 0) {
1359 goto err;
1360 }
1361
1362 ret = kvm_irqchip_create(s);
1363 if (ret < 0) {
1364 goto err;
1365 }
1366
1367 kvm_state = s;
1368 memory_listener_register(&kvm_memory_listener, NULL);
1369
1370 s->many_ioeventfds = kvm_check_many_ioeventfds();
1371
1372 cpu_interrupt_handler = kvm_handle_interrupt;
1373
1374 return 0;
1375
1376 err:
1377 if (s->vmfd >= 0) {
1378 close(s->vmfd);
1379 }
1380 if (s->fd != -1) {
1381 close(s->fd);
1382 }
1383 g_free(s);
1384
1385 return ret;
1386 }
1387
1388 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1389 uint32_t count)
1390 {
1391 int i;
1392 uint8_t *ptr = data;
1393
1394 for (i = 0; i < count; i++) {
1395 if (direction == KVM_EXIT_IO_IN) {
1396 switch (size) {
1397 case 1:
1398 stb_p(ptr, cpu_inb(port));
1399 break;
1400 case 2:
1401 stw_p(ptr, cpu_inw(port));
1402 break;
1403 case 4:
1404 stl_p(ptr, cpu_inl(port));
1405 break;
1406 }
1407 } else {
1408 switch (size) {
1409 case 1:
1410 cpu_outb(port, ldub_p(ptr));
1411 break;
1412 case 2:
1413 cpu_outw(port, lduw_p(ptr));
1414 break;
1415 case 4:
1416 cpu_outl(port, ldl_p(ptr));
1417 break;
1418 }
1419 }
1420
1421 ptr += size;
1422 }
1423 }
1424
1425 static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run)
1426 {
1427 fprintf(stderr, "KVM internal error.");
1428 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1429 int i;
1430
1431 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1432 for (i = 0; i < run->internal.ndata; ++i) {
1433 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1434 i, (uint64_t)run->internal.data[i]);
1435 }
1436 } else {
1437 fprintf(stderr, "\n");
1438 }
1439 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1440 fprintf(stderr, "emulation failure\n");
1441 if (!kvm_arch_stop_on_emulation_error(env)) {
1442 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1443 return EXCP_INTERRUPT;
1444 }
1445 }
1446 /* FIXME: Should trigger a qmp message to let management know
1447 * something went wrong.
1448 */
1449 return -1;
1450 }
1451
1452 void kvm_flush_coalesced_mmio_buffer(void)
1453 {
1454 KVMState *s = kvm_state;
1455
1456 if (s->coalesced_flush_in_progress) {
1457 return;
1458 }
1459
1460 s->coalesced_flush_in_progress = true;
1461
1462 if (s->coalesced_mmio_ring) {
1463 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1464 while (ring->first != ring->last) {
1465 struct kvm_coalesced_mmio *ent;
1466
1467 ent = &ring->coalesced_mmio[ring->first];
1468
1469 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1470 smp_wmb();
1471 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1472 }
1473 }
1474
1475 s->coalesced_flush_in_progress = false;
1476 }
1477
1478 static void do_kvm_cpu_synchronize_state(void *_env)
1479 {
1480 CPUArchState *env = _env;
1481
1482 if (!env->kvm_vcpu_dirty) {
1483 kvm_arch_get_registers(env);
1484 env->kvm_vcpu_dirty = 1;
1485 }
1486 }
1487
1488 void kvm_cpu_synchronize_state(CPUArchState *env)
1489 {
1490 if (!env->kvm_vcpu_dirty) {
1491 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
1492 }
1493 }
1494
1495 void kvm_cpu_synchronize_post_reset(CPUArchState *env)
1496 {
1497 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
1498 env->kvm_vcpu_dirty = 0;
1499 }
1500
1501 void kvm_cpu_synchronize_post_init(CPUArchState *env)
1502 {
1503 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
1504 env->kvm_vcpu_dirty = 0;
1505 }
1506
1507 int kvm_cpu_exec(CPUArchState *env)
1508 {
1509 struct kvm_run *run = env->kvm_run;
1510 int ret, run_ret;
1511
1512 DPRINTF("kvm_cpu_exec()\n");
1513
1514 if (kvm_arch_process_async_events(env)) {
1515 env->exit_request = 0;
1516 return EXCP_HLT;
1517 }
1518
1519 do {
1520 if (env->kvm_vcpu_dirty) {
1521 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
1522 env->kvm_vcpu_dirty = 0;
1523 }
1524
1525 kvm_arch_pre_run(env, run);
1526 if (env->exit_request) {
1527 DPRINTF("interrupt exit requested\n");
1528 /*
1529 * KVM requires us to reenter the kernel after IO exits to complete
1530 * instruction emulation. This self-signal will ensure that we
1531 * leave ASAP again.
1532 */
1533 qemu_cpu_kick_self();
1534 }
1535 qemu_mutex_unlock_iothread();
1536
1537 run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
1538
1539 qemu_mutex_lock_iothread();
1540 kvm_arch_post_run(env, run);
1541
1542 kvm_flush_coalesced_mmio_buffer();
1543
1544 if (run_ret < 0) {
1545 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1546 DPRINTF("io window exit\n");
1547 ret = EXCP_INTERRUPT;
1548 break;
1549 }
1550 fprintf(stderr, "error: kvm run failed %s\n",
1551 strerror(-run_ret));
1552 abort();
1553 }
1554
1555 switch (run->exit_reason) {
1556 case KVM_EXIT_IO:
1557 DPRINTF("handle_io\n");
1558 kvm_handle_io(run->io.port,
1559 (uint8_t *)run + run->io.data_offset,
1560 run->io.direction,
1561 run->io.size,
1562 run->io.count);
1563 ret = 0;
1564 break;
1565 case KVM_EXIT_MMIO:
1566 DPRINTF("handle_mmio\n");
1567 cpu_physical_memory_rw(run->mmio.phys_addr,
1568 run->mmio.data,
1569 run->mmio.len,
1570 run->mmio.is_write);
1571 ret = 0;
1572 break;
1573 case KVM_EXIT_IRQ_WINDOW_OPEN:
1574 DPRINTF("irq_window_open\n");
1575 ret = EXCP_INTERRUPT;
1576 break;
1577 case KVM_EXIT_SHUTDOWN:
1578 DPRINTF("shutdown\n");
1579 qemu_system_reset_request();
1580 ret = EXCP_INTERRUPT;
1581 break;
1582 case KVM_EXIT_UNKNOWN:
1583 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1584 (uint64_t)run->hw.hardware_exit_reason);
1585 ret = -1;
1586 break;
1587 case KVM_EXIT_INTERNAL_ERROR:
1588 ret = kvm_handle_internal_error(env, run);
1589 break;
1590 default:
1591 DPRINTF("kvm_arch_handle_exit\n");
1592 ret = kvm_arch_handle_exit(env, run);
1593 break;
1594 }
1595 } while (ret == 0);
1596
1597 if (ret < 0) {
1598 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1599 vm_stop(RUN_STATE_INTERNAL_ERROR);
1600 }
1601
1602 env->exit_request = 0;
1603 return ret;
1604 }
1605
1606 int kvm_ioctl(KVMState *s, int type, ...)
1607 {
1608 int ret;
1609 void *arg;
1610 va_list ap;
1611
1612 va_start(ap, type);
1613 arg = va_arg(ap, void *);
1614 va_end(ap);
1615
1616 ret = ioctl(s->fd, type, arg);
1617 if (ret == -1) {
1618 ret = -errno;
1619 }
1620 return ret;
1621 }
1622
1623 int kvm_vm_ioctl(KVMState *s, int type, ...)
1624 {
1625 int ret;
1626 void *arg;
1627 va_list ap;
1628
1629 va_start(ap, type);
1630 arg = va_arg(ap, void *);
1631 va_end(ap);
1632
1633 ret = ioctl(s->vmfd, type, arg);
1634 if (ret == -1) {
1635 ret = -errno;
1636 }
1637 return ret;
1638 }
1639
1640 int kvm_vcpu_ioctl(CPUArchState *env, int type, ...)
1641 {
1642 int ret;
1643 void *arg;
1644 va_list ap;
1645
1646 va_start(ap, type);
1647 arg = va_arg(ap, void *);
1648 va_end(ap);
1649
1650 ret = ioctl(env->kvm_fd, type, arg);
1651 if (ret == -1) {
1652 ret = -errno;
1653 }
1654 return ret;
1655 }
1656
1657 int kvm_has_sync_mmu(void)
1658 {
1659 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1660 }
1661
1662 int kvm_has_vcpu_events(void)
1663 {
1664 return kvm_state->vcpu_events;
1665 }
1666
1667 int kvm_has_robust_singlestep(void)
1668 {
1669 return kvm_state->robust_singlestep;
1670 }
1671
1672 int kvm_has_debugregs(void)
1673 {
1674 return kvm_state->debugregs;
1675 }
1676
1677 int kvm_has_xsave(void)
1678 {
1679 return kvm_state->xsave;
1680 }
1681
1682 int kvm_has_xcrs(void)
1683 {
1684 return kvm_state->xcrs;
1685 }
1686
1687 int kvm_has_pit_state2(void)
1688 {
1689 return kvm_state->pit_state2;
1690 }
1691
1692 int kvm_has_many_ioeventfds(void)
1693 {
1694 if (!kvm_enabled()) {
1695 return 0;
1696 }
1697 return kvm_state->many_ioeventfds;
1698 }
1699
1700 int kvm_has_gsi_routing(void)
1701 {
1702 #ifdef KVM_CAP_IRQ_ROUTING
1703 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1704 #else
1705 return false;
1706 #endif
1707 }
1708
1709 void *kvm_vmalloc(ram_addr_t size)
1710 {
1711 #ifdef TARGET_S390X
1712 void *mem;
1713
1714 mem = kvm_arch_vmalloc(size);
1715 if (mem) {
1716 return mem;
1717 }
1718 #endif
1719 return qemu_vmalloc(size);
1720 }
1721
1722 void kvm_setup_guest_memory(void *start, size_t size)
1723 {
1724 #ifdef CONFIG_VALGRIND_H
1725 VALGRIND_MAKE_MEM_DEFINED(start, size);
1726 #endif
1727 if (!kvm_has_sync_mmu()) {
1728 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1729
1730 if (ret) {
1731 perror("qemu_madvise");
1732 fprintf(stderr,
1733 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1734 exit(1);
1735 }
1736 }
1737 }
1738
1739 #ifdef KVM_CAP_SET_GUEST_DEBUG
1740 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUArchState *env,
1741 target_ulong pc)
1742 {
1743 struct kvm_sw_breakpoint *bp;
1744
1745 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1746 if (bp->pc == pc) {
1747 return bp;
1748 }
1749 }
1750 return NULL;
1751 }
1752
1753 int kvm_sw_breakpoints_active(CPUArchState *env)
1754 {
1755 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1756 }
1757
1758 struct kvm_set_guest_debug_data {
1759 struct kvm_guest_debug dbg;
1760 CPUArchState *env;
1761 int err;
1762 };
1763
1764 static void kvm_invoke_set_guest_debug(void *data)
1765 {
1766 struct kvm_set_guest_debug_data *dbg_data = data;
1767 CPUArchState *env = dbg_data->env;
1768
1769 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1770 }
1771
1772 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1773 {
1774 struct kvm_set_guest_debug_data data;
1775
1776 data.dbg.control = reinject_trap;
1777
1778 if (env->singlestep_enabled) {
1779 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1780 }
1781 kvm_arch_update_guest_debug(env, &data.dbg);
1782 data.env = env;
1783
1784 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1785 return data.err;
1786 }
1787
1788 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1789 target_ulong len, int type)
1790 {
1791 struct kvm_sw_breakpoint *bp;
1792 CPUArchState *env;
1793 int err;
1794
1795 if (type == GDB_BREAKPOINT_SW) {
1796 bp = kvm_find_sw_breakpoint(current_env, addr);
1797 if (bp) {
1798 bp->use_count++;
1799 return 0;
1800 }
1801
1802 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1803 if (!bp) {
1804 return -ENOMEM;
1805 }
1806
1807 bp->pc = addr;
1808 bp->use_count = 1;
1809 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1810 if (err) {
1811 g_free(bp);
1812 return err;
1813 }
1814
1815 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1816 bp, entry);
1817 } else {
1818 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1819 if (err) {
1820 return err;
1821 }
1822 }
1823
1824 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1825 err = kvm_update_guest_debug(env, 0);
1826 if (err) {
1827 return err;
1828 }
1829 }
1830 return 0;
1831 }
1832
1833 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1834 target_ulong len, int type)
1835 {
1836 struct kvm_sw_breakpoint *bp;
1837 CPUArchState *env;
1838 int err;
1839
1840 if (type == GDB_BREAKPOINT_SW) {
1841 bp = kvm_find_sw_breakpoint(current_env, addr);
1842 if (!bp) {
1843 return -ENOENT;
1844 }
1845
1846 if (bp->use_count > 1) {
1847 bp->use_count--;
1848 return 0;
1849 }
1850
1851 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1852 if (err) {
1853 return err;
1854 }
1855
1856 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1857 g_free(bp);
1858 } else {
1859 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1860 if (err) {
1861 return err;
1862 }
1863 }
1864
1865 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1866 err = kvm_update_guest_debug(env, 0);
1867 if (err) {
1868 return err;
1869 }
1870 }
1871 return 0;
1872 }
1873
1874 void kvm_remove_all_breakpoints(CPUArchState *current_env)
1875 {
1876 struct kvm_sw_breakpoint *bp, *next;
1877 KVMState *s = current_env->kvm_state;
1878 CPUArchState *env;
1879
1880 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1881 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1882 /* Try harder to find a CPU that currently sees the breakpoint. */
1883 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1884 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1885 break;
1886 }
1887 }
1888 }
1889 }
1890 kvm_arch_remove_all_hw_breakpoints();
1891
1892 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1893 kvm_update_guest_debug(env, 0);
1894 }
1895 }
1896
1897 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1898
1899 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1900 {
1901 return -EINVAL;
1902 }
1903
1904 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1905 target_ulong len, int type)
1906 {
1907 return -EINVAL;
1908 }
1909
1910 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1911 target_ulong len, int type)
1912 {
1913 return -EINVAL;
1914 }
1915
1916 void kvm_remove_all_breakpoints(CPUArchState *current_env)
1917 {
1918 }
1919 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1920
1921 int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset)
1922 {
1923 struct kvm_signal_mask *sigmask;
1924 int r;
1925
1926 if (!sigset) {
1927 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1928 }
1929
1930 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
1931
1932 sigmask->len = 8;
1933 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1934 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1935 g_free(sigmask);
1936
1937 return r;
1938 }
1939
1940 int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, bool assign,
1941 uint32_t size)
1942 {
1943 int ret;
1944 struct kvm_ioeventfd iofd;
1945
1946 iofd.datamatch = val;
1947 iofd.addr = addr;
1948 iofd.len = size;
1949 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1950 iofd.fd = fd;
1951
1952 if (!kvm_enabled()) {
1953 return -ENOSYS;
1954 }
1955
1956 if (!assign) {
1957 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1958 }
1959
1960 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1961
1962 if (ret < 0) {
1963 return -errno;
1964 }
1965
1966 return 0;
1967 }
1968
1969 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1970 {
1971 struct kvm_ioeventfd kick = {
1972 .datamatch = val,
1973 .addr = addr,
1974 .len = 2,
1975 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1976 .fd = fd,
1977 };
1978 int r;
1979 if (!kvm_enabled()) {
1980 return -ENOSYS;
1981 }
1982 if (!assign) {
1983 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1984 }
1985 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1986 if (r < 0) {
1987 return r;
1988 }
1989 return 0;
1990 }
1991
1992 int kvm_on_sigbus_vcpu(CPUArchState *env, int code, void *addr)
1993 {
1994 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1995 }
1996
1997 int kvm_on_sigbus(int code, void *addr)
1998 {
1999 return kvm_arch_on_sigbus(code, addr);
2000 }